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Preface to the Instructor
Introductory physics texts have grown ever larger, more massive, more encyclopedic, 
more colorful, and more expensive. Essential University Physics bucks that trend—with-
out compromising coverage, pedagogy, or quality. The text benefits from the author’s three 
decades of teaching introductory physics, seeing firsthand the difficulties and misconcep-
tions that students face as well as the “Got It!” moments when big ideas become clear. It 
also builds on the author’s honing multiple editions of a previous calculus-based textbook 
and on feedback from hundreds of instructors and students.

Goals of this Book
Physics is the fundamental science, at once fascinating, challenging, and subtle—and yet 
simple in a way that reflects the few basic principles that govern the physical universe. My 
goal is to bring this sense of physics alive for students in a range of academic  disciplines 
who need a solid calculus-based physics course—whether they’re engineers, physics 
 majors, premeds, biologists, chemists, geologists, mathematicians, computer scientists, 
or other majors. My own courses are populated by just such a variety of students, and 
among my greatest joys as a teacher is having students who took a course only because it 
was  required say afterward that they really enjoyed their exposure to the ideas of physics. 
More specifically, my goals include:

● Helping students build the analytical and quantitative skills and confidence needed 
to apply physics in problem solving for science and engineering.

● Addressing key misconceptions and helping students build a stronger conceptual 
understanding.

● Helping students see the relevance and excitement of the physics they’re studying 
with contemporary applications in science, technology, and everyday life.

● Helping students develop an appreciation of the physical universe at its most 
 fundamental level.

● Engaging students with an informal, conversational writing style that balances 
 precision with approachability.

new to the third edition
The overall theme for this third-edition revision is to present a more unified view of 
 physics, emphasizing “big ideas” and the connections among different topics covered 
throughout the book. We’ve also updated material and features based on feedback from 
 instructors, students, and reviewers. A modest growth, averaging about one page per 
chapter, allows for expanded coverage of topics where additional elaboration seemed 
 warranted. Several chapters have had major rewrites of key physics topics. We’ve also 
made a number of additions and modifications aimed at improving students’ understand-
ing,  increasing  relevancy, and offering expanded problem-solving opportunities. 

● Chapter opening pages have been redesigned to include explicit connections, both 
textual and graphic, with preceding and subsequent chapters.

● The presentation of energy and work in Chapters 6 and 7 has been extensively 
 rewritten with a clearer invocation of systems concepts. Internal energy is 
 introduced much earlier in the book, and potential energy is carefully presented as 
a property not of objects but of systems. Two new sections in Chapter 7  emphasize 
the universality of energy conservation, including the role of internal energy 
in  systems subject to dissipative forces. Forward references tie this material to 
the chapters on thermodynamics, electromagnetism, and relativity. The updated 
 treatment of energy also allows the text to make a closer connection between the 
conservation laws for energy and momentum.
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viii Preface to the Instructor

● The presentation of magnetic flux and Faraday’s law in Chapter 27 has been 
recast so as to distinguish motional emf from emfs induced by changing magnetic 
fields—including Einstein’s observation about induction, which is presented as a 
forward-looking connection to Chapter 33.

● There is more emphasis on calculus in earlier chapters, allowing instructors who wish 
to do so to use calculus approaches to topics that are usually introduced  algebraically. 
We’ve also added more calculus-based problems. However, we  continue to empha-
size the standard approach in the main text for those who teach the course with a 
 calculus corequisite or otherwise want to go slowly with more challenging math.

● A host of new applications connects the physics concepts that students are  learning 
with contemporary technological and biomedical innovations, as well as recent 
scientific discoveries. A sample of new applications includes Inertial Guidance 
Systems, Vehicle Stability Control, Climate Modeling, Electrophoresis, MEMS 
(Microelectromechanical Systems), The Taser, Uninterruptible Power Supplies, 
Geomagnetic Storms, PET Scans, Noise-Cancelling Headphones, Femtosecond 
Chemistry, Windows on the Universe, and many more.

● Additional worked examples have been added in areas where students show the 
need for more practice in problem solving. Many of these are not just artificial 
 textbook problems but are based on contemporary science and technology, such 
as the Mars Curiosity rover landing, the Fukushima accident, and the Chelyabinsk 
 meteor. Following user requests, we’ve added an example of a collision in the 
center-of-mass reference frame.

● New GOT IT? boxes, now in nearly every section of every chapter, provide quick 
checks on students’ conceptual understanding. Many of the GOT IT? questions 
have been formatted as Clicker questions, available on the Instructor’s Resource 
DVD and in the Instructor’s Resource Area in Mastering.

● End-of chapter problem sets have been extensively revised:
● Each EOC problem set has at least 10 percent new or substantially revised 

 problems.
● More “For Thought and Discussion Questions” have been added.
● Nearly every chapter has more intermediate-level problems.
● More calculus-based problems have been added.
● Every chapter now has at least one data problem, designed to help students 

 develop strong quantitative reasoning skills. These problems present a data  table 
and require students to determine appropriate functions of the data to plot in 
 order to achieve a linear relationship and from that to find values of physical 
quantities involved in the experiment from which the data were taken.

● New tags have been added to label appropriate problems. These include CH 
(challenge), ENV (environmental), and DATA, and they join the previous BIO 
and COMP (computer) problem tags. 

● QR codes in margins allow students to use smartphones or other devices for  immediate 
access to video tutor demonstrations that illustrate selected concepts while challenging 
 students to interact with the video by predicting outcomes of simple experiments.

● References to PhET simulations appear in the margins where appropriate.
● As with earlier revisions, we’ve incorporated new research results, new applications 

of physics principles, and findings from physics education research.

Pedagogical innovations
This book is concise, but it’s also progressive in its embrace of proven techniques from 
 physics education research and strategic in its approach to learning physics.  Chapter 1  
 introduces the IDEA framework for problem solving, and every one of the book’s 
 subsequent worked examples employs this framework. IDEA—an acronym for  Identify, 
Develop, Evaluate, Assess—is not a “cookbook” method for students to apply mind-
lessly, but rather a tool for organizing students’ thinking and discouraging equation 
hunting. It  begins with an interpretation of the problem and an identification of the key 
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 physics  concepts involved; develops a plan for reaching the solution; carries out the math-
ematical evaluation; and  assesses the solution to see that it makes sense, to compare the 
 example with others, and to mine additional insights into physics. In nearly all of the 
text’s worked  examples, the Develop phase includes making a drawing, and most of these 
use a  hand-drawn style to  encourage students to make their own drawings—a step that 
 research suggests they often skip. IDEA provides a common approach to all physics prob-
lem solving, an approach that emphasizes the conceptual unity of physics and helps break 
the  typical student view of physics as a hodgepodge of equations and unrelated ideas. In 
 addition to IDEA-based worked examples, other pedagogical features include:

● Problem-Solving Strategy boxes that follow the IDEA framework to provide 
 detailed guidance for specific classes of physics problems, such as Newton’s   
second law, conservation of energy, thermal-energy balance, Gauss’s law, or  
multiloop  circuits.

● Tactics boxes that reinforce specific essential skills such as differentiation, setting 
up integrals, vector products, drawing free-body diagrams, simplifying series and 
parallel circuits, or ray tracing.

● QR codes in the  textbook allow students to link to video tutor demonstrations as 
they read, using their smartphones. These “Pause and predict” videos of key phys-
ics concepts ask students to submit a prediction before they see the outcome. The 
videos are also available in the Study Area of Mastering and in the Pearson eText. 

● GoT IT? boxes that provide quick checks for students to test their conceptual 
 understanding. Many of these use a multiple-choice or quantitative ranking format 
to probe student misconceptions and facilitate their use with classroom-response 
systems. Many new GOT IT? boxes have been added in the third edition, and now 
nearly every section of every chapter has at least one GOT IT? box.

● Tips that provide helpful problem-solving hints or warn against common pitfalls 
and misconceptions.

● Chapter openers that include a graphical indication of where the chapter lies in 
sequence as well as three columns of points that help make connections with other 
material throughout the book. These include a backward-looking “What You Know,” 
“What You’re Learning” for the present chapter, and a forward-looking “How You’ll 
Use It.” Each chapter also includes an opening photo, captioned with a question 
whose answer should be evident after the student has completed the  chapter.

● Applications, self-contained presentations typically shorter than half a page, 
 provide interesting and contemporary instances of physics in the real world, such as 
bicycle stability; flywheel energy storage; laser vision correction;  ultracapacitors; 
noise-cancelling headphones; wind energy; magnetic resonance imaging; smart-
phone gyroscopes;  combined-cycle power generation; circuit models of the cell 
membrane; CD, DVD, and Blu-ray technologies; radiocarbon dating; and many, 
many more.

● For Thought and Discussion questions at the end of each chapter designed for 
peer learning or for self-study to enhance students’ conceptual understanding of 
physics.

● Annotated figures that adopt the research-based approach of including simple 
“instructor’s voice” commentary to help students read and interpret pictorial and 
graphical information.

● End-of-chapter problems that begin with simpler exercises keyed to individual 
chapter sections and ramp up to more challenging and often multistep problems 
that synthesize chapter material. Context-rich problems focusing on real-world 
 situations are interspersed throughout each problem set.

● Chapter summaries that combine text, art, and equations to provide a  synthesized 
overview of each chapter. Each summary is hierarchical, beginning with the 
 chapter’s “big ideas,” then focusing on key concepts and equations, and ending with 
a list of “applications”—specific instances or applications of the physics presented 
in the chapter.
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Organization
This contemporary book is concise, strategic, and progressive, but it’s traditional in its 
organization. Following the introductory Chapter 1, the book is divided into six parts. 
Part One (Chapters 2–12) develops the basic concepts of mechanics, including  Newton’s 
laws and conservation principles as applied to single particles and multiparticle  systems. 
Part Two (Chapters 13–15) extends mechanics to oscillations, waves, and fluids.  
Part Three (Chapters 16–19) covers thermodynamics. Part Four (Chapters 20–29) deals 
with  electricity and magnetism. Part Five (Chapters 30–32) treats optics, first in the 
 geometrical optics approximation and then including wave phenomena. Part Six (Chapters 
33–39)  introduces relativity and quantum physics. Each part begins with a brief descrip-
tion of its coverage, and ends with a conceptual summary and a challenge problem that 
synthesizes ideas from several chapters.

Essential University Physics is available in two paperback volumes, so students can 
purchase only what they need—making the low-cost aspect of this text even more attrac-
tive. Volume 1 includes Parts One, Two, and Three, mechanics through thermodynamics. 
Volume 2 contains Parts Four, Five, and Six, electricity and magnetism along with optics 
and modern physics.

instructor Supplements
NoTE: For convenience, all of the following instructor sup-
plements (except the  Instructor’s Resource DVD) can be 
downloaded from the Instructor’s Resource Area of Mastering-
Physics® (www.masteringphysics.com) as well as from the In-
structor’s Resource Center on www.pearsonhighered.com/irc.

● The Instructor’s Solutions Manual (ISBN 0-133-85713-1) 
contains solutions to all end-of-chapter exercises and 
problems, written in the Interpret/Develop/Evaluate/As-
sess (IDEA) problem-solving framework. The solutions 
are provided in PDF and editable Microsoft® Word for-
mats for Mac and PC, with equations in MathType.

● The Instructor’s Resource DVD (ISBN 0-133-85714-X)  
provides all the figures, photos, and tables from the text 
in JPEG format. All the problem-solving strategies, 
 Tactics Boxes, key  equations, and chapter summaries are 
provided in PDF and editable  Microsoft® Word formats 
with equations in MathType. Each chapter also has a set 
of  PowerPoint® lecture outlines and questions including 
the new GOT IT! Clickers. A comprehensive library of 
more than 220 applets from ActivPhysics onLineTM, 
a suite of over 70 PhET simulations, and 40 video tutor 
demonstrations are also included. Also, the complete 
Instructor’s Solutions Manual is provided in both Word 
and PDF formats.

● MasteringPhysics® (www. masteringphysics.com) 
is the most advanced  physics homework and 

 tutorial system available. This online homework and 
 tutoring  system guides students through the toughest 
topics in physics with self-paced tutorials that provide 
individualized coaching. These assignable, in-depth 
 tutorials are  designed to coach students with hints and 

feedback specific to their individual errors.  Instructors 
can also  assign end-of-chapter problems from every 
chapter,  including multiple-choice questions, section-
specific  exercises, and general problems.  Quantitative 
problems can be assigned with numerical answers and 
randomized values (with sig fig feedback) or solutions. 
This third edition includes nearly 400 new problems 
written by the author  explictly for use with 
 MasteringPhysics.

● Learning Catalytics is a “bring your own device” 
student engagement,  assessment, and classroom 
 intelligence system that is based on cutting-edge 
 research,  innovation, and implementation of interactive 
teaching and peer instruction. With Learning Catalytics 
pre-lecture questions, you can see what students do and 
don’t understand and adjust lectures accordingly.

● Pearson eText is available either automatically when 
MasteringPhysics® is  packaged with new books or as a 
purchased upgrade online. Users can search for words or 
phrases, create notes, highlight text, bookmark  sections, 
click on  definitions to key terms, and launch PhET 
 simulations and video tutor demonstrations as they 
read. Professors also have the ability to annotate the text 
for their course and hide chapters not covered in their 
 syllabi.

● The Test Bank (ISBN 0-133-85715-8) contains more 
than 2000 multiple-choice, true-false, and conceptual 
questions in TestGen® and Microsoft Word® formats for 
Mac and PC users. More than half of the questions can 
be assigned with  randomized numerical values.
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Student Supplements
● MasteringPhysics® (www.masteringphysics.com) 

is the most advanced  physics homework and tutorial 
system available. This online homework and tutoring 
 system guides students through the most important 
topics in physics with  self-paced  tutorials that provide 
 individualized coaching. These assignable, in-depth 
 tutorials are designed to coach students with hints and 
feedback  specific to their individual errors. Instructors 
can also assign end-of-chapter problems from every 
 chapter  including multiple-choice questions, section-
specific exercises, and general  problems. Quantitative 
problems can be assigned with numerical answers and 
 randomized values (with sig fig feedback) or solutions.

● Pearson eText is available through Mastering Physics®, 
either automatically when  Mastering Physics® is 
 packaged with new books or as a purchased  upgrade 
 online. Allowing students access to the text  wherever 
they have access to the Internet, Pearson eText 
 comprises the full text with additional  interactive 
 features. Users can search for words or phrases,  create 
notes, highlight text, bookmark sections, click on 
 definitions to key terms, and launch PhET simulations 
and video tutor demonstrations as they read.
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xiii

Preface to the Student
Welcome to physics! Maybe you’re taking introductory  physics 
because you’re majoring in a field of science or  engineering 
that requires a semester or two of physics. Maybe you’re 
 premed, and you know that medical schools are increasingly 
interested in seeing calculus-based physics on your transcript. 
Perhaps you’re really gung-ho and plan to major in physics. Or 
maybe you want to study physics further as a minor associated 
with related fields like math or chemistry or to complement 
a discipline like economics, environmental studies, or even 
 music. Perhaps you had a great high-school physics course, and 
you’re eager to continue. Maybe high-school physics was an 
academic disaster for you, and you’re approaching this course 
with trepidation. Or perhaps this is your first experience with 
physics. Whatever your reason for taking introductory physics, 
welcome!

And whatever your reason, my goals for you are similar: 
I’d like to help you develop an understanding and appreciation 
of the physical universe at a deep and fundamental level; I’d 
like you to become aware of the broad range of natural and 
technological phenomena that physics can explain; and I’d like 
to help you strengthen your analytic and quantitative problem-
solving skills. Even if you’re studying physics only because it’s 
a requirement, I want to help you engage the subject and come 
away with an appreciation for this fundamental science and its 
wide applicability. One of my greatest joys as a physics teacher 
is having students tell me after the course that they had taken 
it only because it was required, but found they really enjoyed 
their exposure to the ideas of physics.

Physics is fundamental. To understand physics is to under-
stand how the world works, both in everyday life and on scales 
of time and space so small and so large as to defy intuition. For 
that reason I hope you’ll find physics fascinating. But you’ll 
also find it challenging. Learning physics will challenge you 
with the need for precise thinking and language; with subtle 
interpretations of even commonplace phenomena; and with the 
need for skillful application of mathematics. But there’s also 
a simplicity to physics, a simplicity that results because there 
are in physics only a very few really basic principles to learn. 
Those succinct principles encompass a universe of natural 
 phenomena and technological applications.

I’ve been teaching introductory physics for decades, and 
this book distills everything my students have taught me about 
the many different ways to approach physics; about the subtle 
misconceptions students often bring to physics; about the ideas 
and types of problems that present the greatest challenges; and 
about ways to make physics engaging, exciting, and relevant to 
your life and interests.

I have some specific advice for you that grows out of my 
long experience teaching introductory physics. Keeping this 
advice in mind will make physics easier (but not necessarily 
easy!), more interesting, and, I hope, more fun:

● Read each chapter thoroughly and carefully before you 
attempt to work any problem assignments. I’ve written 
this text with an informal, conversational style to make it 
engaging. It’s not a reference work to be left alone until 
you need some specific piece of information; rather, 
it’s an unfolding “story” of physics—its big ideas and 
their applications in quantitative problem solving. You 
may think physics is hard because it’s mathematical, 
but in my long experience I’ve found that failure to read 
thoroughly is the biggest single reason for difficulties in 
introductory physics.

● Look for the big ideas. Physics isn’t a hodgepodge of 
different phenomena, laws, and equations to memorize. 
Rather, it’s a few big ideas from which flow myriad 
 applications, examples, and special cases. In particular, 
don’t think of physics as a jumble of equations that you 
choose among when solving a problem. Rather, identify 
those few big ideas and the equations that represent 
them, and try to see how seemingly distinct examples 
and special cases relate to the big ideas.

● When working problems, re-read the  appropriate 
 sections of the text, paying particular attention to 
the worked examples. Follow the IDEA strategy 
 described in Chapter 1 and used in every subsequent 
worked  example. Don’t skimp on the final Assess step. 
 Always ask: Does this answer make sense? How can I 
 understand my answer in relation to the big principles of 
physics? How was this problem like others I’ve worked, 
or like examples in the text?

● Don’t confuse physics with math. Mathematics is a tool, 
not an end in itself. Equations in physics aren’t abstract 
math, but statements about the physical world. Be sure 
you understand each equation for what it says about 
physics, not just as an equality between mathematical 
terms.

● Work with others. Getting together informally in a room 
with a blackboard is a great way to explore physics, 
to clarify your ideas and help others clarify theirs, and 
to learn from your peers. I urge you to discuss physics 
problems together with your classmates, to contemplate 
together the “For Thought and Discussion” questions at 
the end of each chapter, and to engage one another in 
lively dialog as you grow your understanding of physics, 
the fundamental science.

A01_WOLF3724_03_SE_FM_V1.indd   13 17/06/15   11:26 PM



xiv

5.3 Circular Motion  76

5.4 Friction  80

5.5 Drag Forces  84

Chapter 6 Energy, Work, and Power  90

6.1 Energy  91

6.2 Work  92

6.3 Forces That Vary  96

6.4 Kinetic Energy  99

6.5 Power  101

Chapter 7 Conservation of Energy  109

7.1 Conservative and Nonconservative Forces  110

7.2 Potential Energy  111

7.3 Conservation of Mechanical Energy  115

7.4 Nonconservative Forces  118

7.5 Conservation of Energy  119

7.6 Potential-Energy Curves  120

Chapter 8 Gravity  129

8.1 Toward a Law of Gravity  129

8.2 Universal Gravitation  130

8.3 Orbital Motion  132

8.4 Gravitational Energy  135

8.5 The Gravitational Field  138

Chapter 9 Systems of Particles  144

9.1 Center of Mass  144

9.2 Momentum  149

9.3 Kinetic Energy of a System  153

9.4 Collisions  153

9.5 Totally Inelastic Collisions  154

9.6 Elastic Collisions  156

Chapter 10 Rotational Motion  168

10.1 Angular Velocity and Acceleration  168

10.2 Torque  171

10.3  Rotational Inertia and the Analog of  
Newton’s Law  173

10.4 Rotational Energy  178

10.5 Rolling Motion  180

Volume 1 contains Chapters 1–19
Volume 2 contains Chapters 20–39

Chapter 1 Doing Physics  1

1.1 Realms of Physics  1

1.2 Measurements and Units  3

1.3 Working with Numbers  5

1.4 Strategies for Learning Physics  9

Part One

Mechanics  14
Chapter 2 Motion in a Straight Line  15

2.1 Average Motion  15

2.2 Instantaneous Velocity  17

2.3 Acceleration  19

2.4 Constant Acceleration  21

2.5 The Acceleration of Gravity  24

2.6 When Acceleration Isn’t Constant  26

Chapter 3 Motion in Two and Three Dimensions  32

3.1 Vectors  32

3.2 Velocity and Acceleration Vectors  35

3.3 Relative Motion  36

3.4 Constant Acceleration  37

3.5 Projectile Motion  39

3.6 Uniform Circular Motion  43

Chapter 4 Force and Motion  51

4.1 The Wrong Question  51

4.2 Newton’s First and Second Laws  52

4.3 Forces  55

4.4 The Force of Gravity  56

4.5 Using Newton’s Second Law  58

4.6 Newton’s Third Law  60

Chapter 5 Using Newton’s Laws  71

5.1 Using Newton’s Second Law  71

5.2 Multiple Objects  74

Detailed Contents

A01_WOLF3724_03_SE_FM_V1.indd   14 17/06/15   11:26 PM



Contents xv

Chapter 11  Rotational Vectors and Angular Momentum  189

11.1 Angular Velocity and Acceleration Vectors  189

11.2 Torque and the Vector Cross Product  190

11.3 Angular Momentum  192

11.4 Conservation of Angular Momentum  194

11.5 Gyroscopes and Precession  196

Chapter 12 Static Equilibrium  204

12.1 Conditions for Equilibrium  204

12.2 Center of Gravity  206

12.3 Examples of Static Equilibrium  207

12.4 Stability  209

Part twO

 Oscillations, Waves, and 
Fluids  221

Chapter 13 Oscillatory Motion  222

13.1 Describing Oscillatory Motion  223

13.2 Simple Harmonic Motion  224

13.3 Applications of Simple Harmonic Motion  227

13.4 Circular Motion and Harmonic Motion  231

13.5 Energy in Simple Harmonic Motion  232

13.6 Damped Harmonic Motion  233

13.7 Driven Oscillations and Resonance  235

Chapter 14 Wave Motion  243

14.1 Waves and Their Properties  244

14.2 Wave Math  245

14.3 Waves on a String  247

14.4 Sound Waves  250

14.5 Interference  251

14.6 Reflection and Refraction  254

14.7 Standing Waves  255

14.8 The Doppler Effect and Shock Waves  258

Chapter 15 Fluid Motion  265

15.1 Density and Pressure  265

15.2 Hydrostatic Equilibrium  266

15.3 Archimedes’ Principle and Buoyancy  269

15.4 Fluid Dynamics  271

15.5 Applications of Fluid Dynamics  273

15.6 Viscosity and Turbulence  277

Part three

Thermodynamics  284
Chapter 16 Temperature and Heat  285

16.1  Heat, Temperature, and Thermodynamic 
 Equilibrium  285

16.2 Heat Capacity and Specific Heat  287

16.3 Heat Transfer  289

16.4 Thermal-Energy Balance  294

Chapter 17 The Thermal Behavior of Matter  303

17.1 Gases  303

17.2 Phase Changes  307

17.3 Thermal Expansion  310

Chapter 18  Heat, Work, and the First Law of 
 Thermodynamics  317

18.1 The First Law of Thermodynamics  317

18.2 Thermodynamic Processes  319

18.3 Specific Heats of an Ideal Gas  326

Chapter 19 The Second Law of Thermodynamics  334

19.1 Reversibility and Irreversibility  334

19.2 The Second Law of Thermodynamics  335

19.3 Applications of the Second Law  339

19.4 Entropy and Energy Quality  342

Part FOur

Electromagnetism  354
Chapter 20 Electric Charge, Force, and Field  355

20.1 Electric Charge  355

20.2 Coulomb’s Law  356

20.3 The Electric Field  359

20.4 Fields of Charge Distributions  362

20.5 Matter in Electric Fields  366

Chapter 21 Gauss’s Law  375

21.1 Electric Field Lines  375

21.2 Electric Field and Electric Flux  377

21.3 Gauss’s Law  380

A01_WOLF3724_03_SE_FM_V1.indd   15 17/06/15   11:26 PM



xvi Contents

27.5 Magnetic Energy  514

27.6 Induced Electric Fields  517

Chapter 28 Alternating-Current Circuits  525

28.1 Alternating Current  525

28.2 Circuit Elements in AC Circuits  526

28.3 LC Circuits  530

28.4 Driven RLC Circuits and Resonance  533

28.5 Power in AC Circuits  536

28.6 Transformers and Power Supplies  537

Chapter 29  Maxwell’s Equations and Electromagnetic 
Waves  543

29.1 The Four Laws of Electromagnetism  544

29.2 Ambiguity in Ampère’s Law  544

29.3 Maxwell’s Equations  546

29.4 Electromagnetic Waves  547

29.5 Properties of Electromagnetic Waves  551

29.6 The Electromagnetic Spectrum  554

29.7 Producing Electromagnetic Waves  555

29.8  Energy and Momentum in Electromagnetic 
Waves  556

Part Five

Optics  565
Chapter 30 Reflection and Refraction  566

30.1 Reflection  567

30.2 Refraction  568

30.3 Total Internal Reflection  571

30.4 Dispersion  572

Chapter 31 Images and Optical Instruments  579

31.1 Images with Mirrors  580

31.2 Images with Lenses  585

31.3 Refraction in Lenses: The Details  588

31.4 Optical Instruments  591

Chapter 32 Interference and Diffraction  599

32.1 Coherence and Interference  599

32.2 Double-Slit Interference  601

32.3  Multiple-Slit Interference and Diffraction 
 Gratings  604

21.4 Using Gauss’s Law  382

21.5 Fields of Arbitrary Charge Distributions  388

21.6 Gauss’s Law and Conductors  390

Chapter 22 Electric Potential  399

22.1 Electric Potential Difference  400

22.2 Calculating Potential Difference  403

22.3 Potential Difference and the Electric Field  408

22.4 Charged Conductors  410

Chapter 23 Electrostatic Energy and Capacitors  418

23.1 Electrostatic Energy  418

23.2 Capacitors  419

23.3 Using Capacitors  421

23.4 Energy in the Electric Field  425

Chapter 24 Electric Current  432

24.1 Electric Current  433

24.2 Conduction Mechanisms  435

24.3 Resistance and Ohm’s Law  439

24.4 Electric Power  441

24.5 Electrical Safety  442

Chapter 25 Electric Circuits  449

25.1 Circuits, Symbols, and Electromotive Force  449

25.2 Series and Parallel Resistors  450

25.3 Kirchhoff’s Laws and Multiloop Circuits  456

25.4 Electrical Measurements  458

25.5 Capacitors in Circuits  459

Chapter 26 Magnetism: Force and Field  469

26.1 What Is Magnetism?  470

26.2 Magnetic Force and Field  470

26.3 Charged Particles in Magnetic Fields  472

26.4 The Magnetic Force on a Current  475

26.5 Origin of the Magnetic Field  476

26.6 Magnetic Dipoles  479

26.7 Magnetic Matter  483

26.8 Ampère’s Law  484

Chapter 27 Electromagnetic Induction  497

27.1 Induced Currents  498

27.2 Faraday’s Law  499

27.3 Induction and Energy  503

27.4 Inductance  509

A01_WOLF3724_03_SE_FM_V1.indd   16 17/06/15   11:26 PM



Contents xvii

Chapter 36 Atomic Physics  684
36.1 The Hydrogen Atom  684
36.2 Electron Spin  688
36.3 The Exclusion Principle  691
36.4 Multielectron Atoms and the Periodic Table  692
36.5 Transitions and Atomic Spectra  696

Chapter 37 Molecules and Solids  702
37.1 Molecular Bonding  702
37.2 Molecular Energy Levels  704
37.3 Solids  707
37.4 Superconductivity  713

Chapter 38 Nuclear Physics  720
38.1 Elements, Isotopes, and Nuclear Structure  721
38.2 Radioactivity  726
38.3 Binding Energy and Nucleosynthesis  731
38.4 Nuclear Fission  733
38.5 Nuclear Fusion  739

Chapter 39 From Quarks to the Cosmos  747
39.1 Particles and Forces  748
39.2 Particles and More Particles  749
39.3 Quarks and the Standard Model  752
39.4 Unification  755
39.5 The Evolving Universe  757

aPPendiCeS
appendix a Mathematics  A-1

appendix B The International System of Units (SI)  A-9

appendix C Conversion Factors  A-11

appendix d The Elements  A-13

appendix e Astrophysical Data  A-16

Answers to Odd-Numbered Problems  A-17

Credits  C-1

Index  I-1

32.4 Interferometry  607

32.5 Huygens’ Principle and Diffraction  610

32.6 The Diffraction Limit  613

Part Six

Modern Physics  621
Chapter 33 Relativity  622

33.1 Speed c Relative to What?  623

33.2 Matter, Motion, and the Ether  623

33.3 Special Relativity  625

33.4 Space and Time in Relativity  626

33.5 Simultaneity Is Relative  632

33.6 The Lorentz Transformations  633

33.7 Energy and Momentum in Relativity  637

33.8 Electromagnetism and Relativity  640

33.9 General Relativity  641

Chapter 34 Particles and Waves  647

34.1 Toward Quantum Theory  648

34.2 Blackbody Radiation  648

34.3 Photons  650

34.4 Atomic Spectra and the Bohr Atom  654

34.5 Matter Waves  657

34.6 The Uncertainty Principle  659

34.7 Complementarity  661

Chapter 35 Quantum Mechanics  667

35.1 Particles, Waves, and Probability  668

35.2 The Schrödinger Equation  669

35.3 Particles and Potentials  671

35.4 Quantum Mechanics in Three Dimensions  678

35.5 Relativistic Quantum Mechanics  679

A01_WOLF3724_03_SE_FM_V1.indd   17 17/06/15   11:26 PM



A01_WOLF3724_03_SE_FM_V1.indd   18 17/06/15   11:26 PM



1

2
Motion in a  

Straight Line

3
Motion in Two and 
Three Dimensions

How You’ll Use It
■ Skills and knowledge that you 

develop in this chapter will serve you 
throughout your study of physics.

■ You’ll be able to express quantitative 
answers to physics problems in 
scientific notation, with the correct 
units and the appropriate uncertainty 
expressed through significant figures.

■ Being able to make quick estimates 
will help you gauge the sizes of 
physical effects and will help you 
recognize whether your quantitative 
answers make sense.

■ The problem-solving strategy you’ll 
learn here will serve you in the many 
physics problems that you’ll work in 
order to really learn physics.

1
Doing Physics

What You Know
■ You’re coming to this course with 

a solid background in algebra, 
geometry, and trigonometry.

■ You may have had calculus, or you’ll 
be starting it concurrently.

■ You don’t need to have taken physics 
to get a full understanding from this 
book.

You slip a DVD into your player and settle in to watch a movie. The DVD spins, and a pre-
cisely focused laser beam “reads” its content. Electronic circuitry processes the informa-

tion, sending it to your video display and to loudspeakers that turn electrical signals into 
sound waves. Every step of the way, principles of physics govern the delivery of the movie 
from DVD to you.

1.1 Realms of Physics
That DVD player is a metaphor for all of physics—the science that describes the fun-
damental workings of physical reality. Physics explains natural phenomena ranging 
from the behavior of atoms and molecules to thunderstorms and rainbows and on to 
the evolution of stars, galaxies, and the universe itself. Technological applications of 
physics are the basis for everything from microelectronics to medical imaging to cars, 
airplanes, and space flight.

At its most fundamental, physics provides a nearly unified description of all 
physical phenomena. However, it’s convenient to divide physics into distinct realms 
(Fig. 1.1). Your DVD player encompasses essentially all those realms. Mechanics, the 
branch of physics that deals with motion, describes the spinning disc. Mechanics also 
explains the motion of a car, the orbits of the planets, and the stability of a skyscraper. 
Part 1 of this book deals with the basic ideas of mechanics.

What You’re Learning
■ This chapter gives you an overview 

of physics and its subfields, which 
together describe the entire physical 
universe.

■ You’ll learn the basis of the SI system 
of measurement units.

■ You’ll learn to express and manipulate 
numbers used in quantitative science.

■ You’ll learn to deal with precision and 
uncertainty.

■ You’ll develop a skill for making quick 
estimates.

■ You’ll learn how to extract information 
from experimental data.

■ You’ll see a strategy for solving physics 
problems.

Which realms of physics are involved in the 
workings of your DVD player?
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2 Chapter 1 Doing Physics

Those sound waves coming from your loudspeakers represent wave motion. Other 
 examples include the ocean waves that pound Earth’s coastlines, the wave of standing 
spectators that sweeps through a football stadium, and the undulations of Earth’s crust 
that spread the energy of an earthquake. Part 2 of this book covers wave motion and other 
phenomena involving the motion of fluids like air and water.

When you burn your own DVD, the high temperature produced by an intensely fo-
cused laser beam alters the material properties of a writable DVD, thus storing video or 
computer information. That’s an example of thermodynamics—the study of heat and its 
effects on matter. Thermodynamics also describes the delicate balance of energy-transfer 
processes that keeps our planet at a habitable temperature and puts serious constraints on 
our ability to meet the burgeoning energy demands of modern society. Part 3 comprises 
four chapters on thermodynamics.

An electric motor spins your DVD, converting electrical energy to the energy of mo-
tion. Electric motors are ubiquitous in modern society, running everything from subway 
trains and hybrid cars, to elevators and washing machines, to insulin pumps and artificial 
hearts. Conversely, electric generators convert the energy of motion to electricity, provid-
ing virtually all of our electrical energy. Motors and generators are two applications of 
electromagnetism in modern technology. Others include computers, audiovisual electron-
ics, microwave ovens, digital watches, and even the humble lightbulb; without these elec-
tromagnetic technologies our lives would be very different. Equally electromagnetic are 
all the wireless technologies that enable modern communications, from satellite TV to cell 
phones to wireless computer networks, mice, and keyboards. And even light itself is an 
electromagnetic phenomenon. Part 4 presents the principles of electromagnetism and their 
many applications.

The precise focusing of laser light in your DVD player allows hours of video to fit on a 
small plastic disc. The details and limitations of that focusing are governed by the princi-
ples of optics, the study of light and its behavior. Applications of optics range from simple 
magnifiers to contact lenses to sophisticated instruments such as microscopes,  telescopes, 
and spectrometers. Optical fibers carry your e-mail, web pages, and music downloads 
over the global Internet. Natural optical systems include your eye and the raindrops that 
deflect sunlight to form rainbows. Part 5 of the book explores optical principles and their 
applications.

That laser light in your DVD player is an example of an electromagnetic wave, but an 
atomic-level look at the light’s interaction with matter reveals particle-like “bundles” of 
electromagnetic energy. This is the realm of quantum physics, which deals with the of-
ten counterintuitive behavior of matter and energy at the atomic level. Quantum phenom-
ena also explain how that DVD laser works and, more profoundly, the structure of atoms 
and the periodic arrangement of the elements that is the basis of all chemistry. Quantum 
physics is one of the two great developments of modern physics. The other is Einstein’s 
theory of relativity. Relativity and quantum physics arose during the 20th century, and 
together they’ve radically altered our commonsense notions of time, space, and causality.  
Part 6 of the book surveys the ideas of modern physics, ending with what we do—and 
don’t—know about the history, future, and composition of the entire universe.

Figure 1.1 Realms of physics.

Mechanics

Thermodynamics Electromagnetism

Optics

Oscillations, waves,
and �uids

Modern
physics

Physics

Name some systems in your car that exemplify the different realms 
of physics.

EvaluatE Mechanics is easy; the car is fundamentally a mechanical 
system whose purpose is motion. Details include starting, stopping, 
cornering, as well as a host of other motions within mechanical sub-
systems. Your car’s springs and shock absorbers constitute an oscilla-
tory system engineered to give a comfortable ride. The car’s engine is 
a prime example of a thermodynamic system, converting the energy 

of burning gasoline into the car’s motion. Electromagnetic systems 
range from the starter motor and spark plugs to sophisticated elec-
tronic devices that monitor and optimize engine performance. Optical 
principles govern rear- and side-view mirrors and headlights. Increas-
ingly, optical fibers transmit information to critical safety systems. 
Modern physics is less obvious in your car, but ultimately, everything 
from the chemical reactions of burning gasoline to the atomic-scale 
operation of automotive electronics is governed by its principles.

ConCeptual example 1.1 Car physics
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1.2 Measurements and Units 3

1.2 measurements and Units
“A long way” means different things to a sedentary person, a marathon runner, a pilot, 
and an astronaut. We need to quantify our measurements. Science uses the metric system, 
with fundamental quantities length, mass, and time measured in meters, kilograms, and 
seconds, respectively. The modern version of the metric system is SI, for Système Interna-
tional d’Unités (International System of Units), which incorporates scientifically precise 
definitions of the fundamental quantities.

The three fundamental quantities were originally defined in reference to nature: the 
meter in terms of Earth’s size, the kilogram as an amount of water, and the second by the 
length of the day. For length and mass, these were later replaced by specific artifacts— 
a bar whose length was defined as 1 meter and a cylinder whose mass defined the kilo-
gram. But natural standards like the day’s length can change, as can the properties of 
artifacts. So early SI definitions gave way to operational definitions, which are meas-
urement standards based on laboratory procedures. Such standards have the advantage 
that scientists anywhere can reproduce them. By the late 20th century, two of the three 
fundamental units—the meter and the second—had operational definitions, but the kilo-
gram did not.

A special type of operational definition involves giving an exact value to a particular 
constant of nature—a quantity formerly subject to experimental determination and with a 
stated uncertainty in its value. As described below, the meter was the first such unit to be 
defined in this way. By the early 21st century, it was clear that defining units in terms of 
fundamental, invariant physical constants was the best way to ensure long-term stability 
of the SI unit system. Currently, SI is undergoing a sweeping revision, which will result in 
redefining the kilogram and three of the four remaining so-called base units with defini-
tions that lock in exact values of fundamental constants. These so-called explicit-constant 
definitions will have similar wording, making explicit that the unit in question follows 
from the defined value of the particular physical constant.

Length
The meter was first defined as one ten-millionth of the distance from Earth’s equator to 
the North Pole. In 1889 a standard meter was fabricated to replace the Earth-based unit, 
and in 1960 that gave way to a standard based on the wavelength of light. By the 1970s, 
the speed of light had become one of the most precisely determined quantities. As a result, 
the meter was redefined in 1983 as the distance light travels in vacuum in 1/299,792,458 
of a second. The effect of this definition is to make the speed of light a defined quantity: 
299,792,458 m/s. Thus, the meter became the first SI unit to be based on a defined value 
for a fundamental constant. The new SI definitions won’t change the meter but will reword 
its definition to make it of the explicit-constant type:

The meter, symbol m, is the unit of length; its magnitude is set by fixing the nu-
merical value of the speed of light in vacuum to be equal to exactly 299,792,458 
when it is expressed in the SI unit m/s.

time
The second used to be defined by Earth’s rotation, but that’s not constant, so it was later 
redefined as a specific fraction of the year 1900. An operational definition followed in 
1967, associating the second with the radiation emitted by a particular atomic process. 
The new definition will keep the essence of that operational definition but reworded in the 
explicit-constant style:

The second, symbol s, is the unit of time; its magnitude is set by fixing the nu-
merical value of the ground-state hyperfine splitting frequency of the cesium-133 
atom, at rest and at a temperature of 0 K, to be exactly 9,192,631,770 when it is 
expressed in the SI unit s-1, which is equal to Hz.

aPPLICatIon  Units matter: a 
Bad Day on mars

In September 1999, the Mars Climate Orbiter 
was destroyed when the spacecraft passed 
through Mars’s atmosphere and experienced 
stresses and heating it was not designed to tol-
erate. Why did this $125-million craft enter the 
Martian atmosphere when it was supposed to re-
main in the vacuum of space? NASA identified 
the root cause as a failure to convert the English 
units one team used to specify rocket thrust to 
the SI units another team expected. Units matter!
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4 Chapter 1 Doing Physics

The device that implements this definition—which will seem less obscure once you’ve 
studied some atomic physics—is called an atomic clock. Here the phrase “equal to Hz” 
introduces the unit hertz (Hz) for frequency—the number of cycles of a repeating process 
that occur each second.

mass
Since 1889, the kilogram has been defined as the mass of a single artifact—the interna-
tional prototype kilogram, a platinum–iridium cylinder kept in a vault at the International 
Bureau of Weights and Measures in Sèvres, France. Not only is this artifact-based standard 
awkward to access, but comparison measurements have revealed tiny yet growing mass 
discrepancies between the international prototype kilogram and secondary mass standards 
based on it.

In the current SI revision, the kilogram will become the last of the SI base units to 
be defined operationally, with a new explicit-constant definition resulting from fixing the 
value of Planck’s constant, h, a fundamental constant of nature related to the “graininess” 
of physical quantities at the atomic and subatomic levels. The units of Planck’s constant 
involve seconds, meters, and kilograms, and giving h an exact value actually sets the 
value of 1 s-1 # m2 # kg. But with the meter and second already defined, fixing the unit 
s-1 # m2 # kg then determines the kilogram. A device that implements this definition is the 
watt balance, which balances an unknown mass against forces resulting from electrical 
effects whose magnitude, in turn, can be related to Planck’s constant. The new formal defi-
nition of the kilogram will be similar to the explicit-constant definitions of the meter and 
second, but the exact value of Planck’s constant is yet to be established.

other SI Units
The SI includes seven independent base units: In addition to the meter, second, and kilo-
gram, there are the ampere (A) for electric current, the kelvin (K) for temperature, the mole 
(mol) for the amount of a substance, and the candela (cd) for luminosity. We’ll introduce 
these units later, as needed. In the ongoing SI revision these will be given new, explicit-
constant definitions; for all but the candela, this involves fixing the values of fundamental 
physical constants. In addition to the seven physical base units, two supplementary units 
define geometrical measures of angle: the radian (rad) for ordinary angles (Fig. 1.2) and 
the steradian (sr) for solid angles. Units for all other physical quantities are derived from 
the base units.

SI Prefixes
You could specify the length of a bacterium (e.g., 0.00001 m) or the distance to the next 
city (e.g., 58,000 m) in meters, but the results are unwieldy—too small in the first case 
and too large in the latter. So we use prefixes to indicate multiples of the SI base units. 
For example, the prefix k (for “kilo”) means 1000; 1 km is 1000 m, and the distance 
to the next city is 58 km. Similarly, the prefix m (the lowercase Greek “mu”) means 
“ micro,” or 10-6. So our bacterium is 10 µm long. The SI prefixes are listed in Table 1.1, 
which is repeated inside the front cover. We’ll use the prefixes routinely in examples and 
 problems, and we’ll often express answers using SI prefixes, without doing an explicit 
unit conversion.

When two units are used together, a hyphen appears between them—for example, 
newton-meter. Each unit has a symbol, such as m for meter or N for newton (the SI unit 
of force). Symbols are ordinarily lowercase, but those named after people are uppercase. 
Thus “newton” is written with a small “n” but its symbol is a capital N. The exception is 
the unit of volume, the liter; since the lowercase “l” is easily confused with the number 1, 
the symbol for liter is a capital L. When two units are multiplied, their symbols are sepa-
rated by a centered dot: N # m for newton-meter. Division of units is expressed by using 
the slash 1>2 or writing with the denominator unit raised to the -1 power. Thus the SI unit 
of speed is the meter per second, written m/s or m # s-1.

Figure 1.2 The radian is the SI unit of angle.

u

The angle u in radians
is de�ned as the ratio
of the subtended arc
length s to the radius
r :  u =    .

r

s

s
r

Table 1.1 SI Prefixes

Prefix Symbol Power

yotta Y 1024

zetta Z 1021

exa E 1018

peta P 1015

tera T 1012

giga G 109

mega M 106

kilo k 103

hecto h 102

deca da 101

— — 100

deci d 10-1

centi c 10-2

milli m 10-3

micro µ 10-6

nano n 10-9

pico p 10-12

femto f 10-15

atto a 10-18

zepto z 10-21

yocto y 10-24
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1.3 Working with Numbers 5

other Unit Systems
The inches, feet, yards, miles, and pounds of the so-called English system still dominate 
measurement in the United States. Other non-SI units such as the hour are often mixed 
with English or SI units, as with speed limits in miles per hour or kilometers per hour. In 
some areas of physics there are good reasons for using non-SI units. We’ll discuss these 
as the need arises and will occasionally use non-SI units in examples and problems. We’ll 
also often find it convenient to use degrees rather than radians for angles. The vast major-
ity of examples and problems in this book, however, use strictly SI units.

Changing Units
Sometimes we need to change from one unit system to another—for example, from Eng-
lish to SI. Appendix C contains tables for converting among unit systems; you should 
familiarize yourself with this and the other appendices and refer to them often.

For example, Appendix C shows that 1 ft = 0.3048 m. Since 1 ft and 0.3048 m rep-
resent the same physical distance, multiplying any distance by their ratio will change 
the units but not the actual physical distance. Thus the height of Dubai’s Burj Khalifa 
(Fig. 1.3)—the world’s tallest structure—is 2717 ft or

12717 ft2 a0.3048 m

1 ft
b = 828.1 m

Often you’ll need to change several units in the same expression. Keeping track of the 
units through a chain of multiplications helps prevent you from carelessly inverting any 
of the conversion factors. A numerical answer cannot be correct unless it has the right 
units!

Got It? 1.1 A Canadian speed limit of 50 km/h is closest to which U.S. limit ex-
pressed in miles per hour? (a) 60 mph; (b) 45 mph; (c) 30 mph

Figure 1.3 Dubai’s Burj Khalifa is the world’s 
tallest  structure.

828 m
2717 ft

Express a 65 mi/h speed limit in meters per second.

EvaluatE According to Appendix C, 1 mi = 1609 m, so we can 
multiply miles by the ratio 1609 m/mi to get meters. Similarly, we use 

the conversion factor 3600 s/h to convert hours to seconds. Combin-
ing these two conversions gives

65 mi/h = a65 mi

h
ba1609 m

mi
ba 1 h

3600 s
b = 29 m/s

 ■

examPLe 1.1 Changing Units: Speed Limits

1.3 Working with numbers
Scientific notation
The range of measured quantities in the universe is enormous; lengths alone go from about 
1/1,000,000,000,000,000 m for the radius of a proton to 1,000,000,000,000,000,000,000 m  
for the size of a galaxy; our telescopes see 100,000 times farther still. Therefore, we 
frequently express numbers in scientific notation, where a reasonable-size number is 
 multiplied by a power of 10. For example, 4185 is 4.185 * 103 and 0.00012 is 1.2 * 10-4. 
Table 1.2 suggests the vast range of measurements for the fundamental quantities of length, 
time, and mass. Take a minute (about 102 heartbeats, or 3 * 10-8 of a typical  human lifes-
pan) to peruse this table along with Fig. 1.4.
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6 Chapter 1 Doing Physics

Figure 1.4 Large and small.

This galaxy is 1021 m across and
has a mass of ∼ 1042 kg.

Your movie is stored on a DVD in “pits”
only 4 * 10-7 m in size.

1021 m

Table 1.2 Distances, Times, and Masses (rounded to 
one significant figure)

Radius of observable universe 1 * 1026 m

Earth’s radius 6 * 106 m

Tallest mountain 9 * 103 m

Height of person 2 m

Diameter of red blood cell 1 * 10-5 m

Size of proton 1 * 10-15 m

Age of universe 4 * 1017 s

Earth’s orbital period (1 year) 3 * 107 s

Human heartbeat 1 s

Wave period, microwave oven 5 * 10-10 s

Time for light to cross a proton 3 * 10-24 s

Mass of Milky Way galaxy 1 * 1042 kg

Mass of mountain 1 * 1018 kg

Mass of human 70 kg

Mass of red blood cell 1 * 10-13 kg

Mass of uranium atom 4 * 10-25 kg

Mass of electron 1 * 10-30 kg

Earthquake-generated tsunamis are so devastating because the entire 
ocean, from surface to bottom, participates in the wave motion. The 
speed of such waves is given by v = 1gh, where g = 9.8 m/s2 is the 
gravitational acceleration and h is the depth in meters. Determine a 
tsunami’s speed in 3.0-km-deep water.

EvaluatE That 3.0-km depth is 3.0 * 103 m, so we have

v = 1gh = 319.8 m/s2213.0 * 103 m241>2 = 129.4 * 103 m2/s221>2

 = 12.94 * 104 m2/s221>2 = 12.94 * 102 m/s = 1.7 * 102 m/s

examPLe 1.2 Scientific notation: tsunami Warnings

Scientific calculators handle numbers in scientific notation. But straightforward rules 
allow you to manipulate scientific notation if you don’t have such a calculator handy.

tactics 1.1 Using Scientific notation

addition/Subtraction
To add (or subtract) numbers in scientific notation, first give them the same exponent and then add (or 
subtract):

3.75 * 106 + 5.2 * 105 = 3.75 * 106 + 0.52 * 106 = 4.27 * 106

multiplication/Division
To multiply (or divide) numbers in scientific notation, multiply (or divide) the digits and add (or subtract) 
the exponents:

13.0 * 108 m/s212.1 * 10-10 s2 = 13.0212.12 * 108 + 1- 102 m = 6.3 * 10-2 m

Powers/Roots
To raise numbers in scientific notation to any power, raise the digits to the given power and multiply the 
exponent by the power:

 213.61 * 10423 = 23.613 * 10142132 = 147.04 * 101221>2

 = 247.04 * 10112211>22 = 6.86 * 106

where we wrote 29.4 * 103 m2/s2 as 2.94 * 104 m2/s2 in the second line 
in order to calculate the square root more easily. Converting the speed 
to km/h gives

 1.7 * 102 m/s = a1.7 * 102 m

s
ba 1 km

1.0 * 103 m
ba3.6 * 103 s

h
b

 = 6.1 * 102 km/h

This speed—about 600 km/h—shows why even distant coastlines 
have little time to prepare for the arrival of a tsunami. ■
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1.3 Working with Numbers 7

Significant Figures
How precise is that 1.7 * 102 m/s we calculated in Example 1.2? The two significant 
 figures in this number imply that the value is closer to 1.7 than to 1.6 or 1.8. The fewer 
significant figures, the less precisely we can claim to know a given quantity.

In Example 1.2 we were, in fact, given two significant figures for both quantities. The 
mere act of calculating can’t add precision, so we rounded our answer to two significant 
figures as well. Calculators and computers often give numbers with many figures, but 
most of those are usually meaningless.

What’s Earth’s circumference? It’s 2pRE, and p is approximately 3.14159. cBut 
if you only know Earth’s radius as 6.37 * 106 m, knowing p to more significant figures 
doesn’t mean you can claim to know the circumference any more precisely. This example 
suggests a rule for handling calculations involving numbers with different  precisions:

In multiplication and division, the answer should have the same number of signifi-
cant figures as the least precise of the quantities entering the calculation.

You’re engineering an access ramp to a bridge whose main span is 1.248 km long. The 
ramp will be 65.4 m long. What will be the overall length? A simple calculation gives 
1.248 km + 0.0654 km = 1.3134 km. How should you round this? You know the bridge 
length to {0.001 km, so an addition this small is significant. Therefore, your answer 
should have three digits to the right of the decimal point, giving 1.313 km. Thus:

In addition and subtraction, the answer should have the same number of digits 
to the right of the decimal point as the term in the sum or difference that has the 
smallest number of digits to the right of the decimal point.

In subtraction, this rule can quickly lead to loss of precision, as Example 1.3 illustrates.

A uranium fuel rod is 3.241 m long before it’s inserted in a nuclear 
reactor. After insertion, heat from the nuclear reaction has increased 
its length to 3.249 m. What’s the increase in its length?

EvaluatE Subtraction gives 3.249 m - 3.241 m = 0.008 m or  
8 mm. Should this be 8 mm or 8.000 mm? Just 8 mm. Subtraction 
 affected only the last digit of the four-significant-figure lengths, leav-
ing only one significant figure in the answer. ■

examPLe 1.3 Significant Figures: nuclear Fuel

✓tIP Intermediate Results

Although it’s important that your final answer reflect the precision of the numbers that 
went into it, any intermediate results should have at least one extra significant figure. 
Otherwise, rounding of intermediate results could alter your answer.

Got It? 1.2 Rank the numbers according to (1) their size and (2) the number of 
significant figures. Some may be of equal rank. 0.0008, 3.14 * 107, 2.998 * 10-9, 55 * 106, 
0.041 * 109

What about whole numbers ending in zero, like 60, 300, or 410? How many significant 
figures do they have? Strictly speaking, 60 and 300 have only one significant figure, while 
410 has two. If you want to express the number 60 to two significant figures, you should 
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8 Chapter 1 Doing Physics

write 6.0 * 101; similarly, 300 to three significant figures would be 3.00 * 102, and 410 to 
three significant figures would be 4.10 * 102.

Working with Data
In physics, in other sciences, and even in nonscience fields, you’ll find yourself working 
with data—numbers that come from real-world measurements. One important use of data 
in the sciences is to confirm hypotheses about relations between physical quantities. Sci-
entific hypotheses can generally be described quantitatively using equations, which often 
give or can be manipulated to give a linear relationship between quantities. Plotting such 
data and fitting a line through the data points—using procedures such as regression analy-
sis, least-squares fitting, or even “eyeballing” a best-fit line—can confirm the hypothesis 
and give useful information about the phenomena under study. You’ll probably have op-
portunities to do such data fitting in your physics lab and in other science courses. Because 
it’s so important in experimental science, we’ve included at least one data problem with 
each chapter. Example 1.4 shows a typical example of fitting data to a straight line.

As you’ll see in Chapter 2, the distance fallen by an object dropped 
from rest should increase in proportion to the square of the time since 
it was dropped; the proportionality should be half the acceleration due 
to gravity. The table shows actual data from measurements on a fall-
ing ball. Determine a quantity such that, when you plot fall distance 
y against it, you should get a straight line. Make the plot, fit a straight 
line, and from its slope determine an approximate value for the gravi-
tational acceleration.

EvaluatE We’re told that the fall distance y should be proportional 
to the square of the time; thus we choose to plot y versus t2. So we’ve 
added a row to the table, listing the values of t2. Figure 1.5 is our plot. 
Although we did this one by hand, on graph paper, you could use a 
spreadsheet or other program to make your plot. A spreadsheet pro-
gram would offer the option to draw a best-fit line and give its slope, 
but a hand-drawn line, “eyeballed” to catch the general trend of the 
data points, works surprisingly well. We’ve indicated such a line, and 
the figure shows that its slope is very nearly 5.0 m/s2.

assEss The fact that our data points lie very nearly on a straight line 
confirms the hypothesis that fall distance should be proportional to 
time squared. Real data almost never lie exactly on a theoretically pre-
dicted line or curve. A more sophisticated analysis would show error 
bars, indicating the measurement uncertainty in each data point. Be-
cause our line’s measured slope is supposed to be half the gravitational 
acceleration, our analysis suggests a gravitational acceleration of 
about 10 m/s2. This is close to the commonly used value of 9.8 m/s2.

examPLe 1.4 Data analysis: a Falling Ball

Time (s)

Distance (m)

0.500

1.12

1.00

5.30

1.50

12.2

2.00

18.5

2.50

34.1

3.00

43.6

Best-�t line

Figure 1.5 Our graph for Example 1.4. We “eyeballed” the best-fit line using 
a ruler; note that it doesn’t go through particular points but tries to capture 
the average trend of all the data points.

■

estimation
Some problems in physics and engineering call for precise numerical answers. We need 
to know exactly how long to fire a rocket to put a space probe on course toward a distant 
planet, or exactly what size to cut the tiny quartz crystal whose vibrations set the pulse of 
a digital watch. But for many other purposes, we need only a rough idea of the size of a 
physical effect. And rough estimates help check whether the results of more difficult cal-
culations make sense.

PheT: Estimation
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1.4 Strategies for Learning Physics 9

1.4 Strategies for Learning Physics
You can learn about physics, and you can learn to do physics. This book is for science 
and engineering students, so it emphasizes both. Learning about physics will help you 
appreciate the role of this fundamental science in explaining both natural and techno-
logical phenomena. Learning to do physics will make you adept at solving quantitative 
 problems—finding answers to questions about how the natural world works and about 
how we forge the technologies at the heart of modern society.

Physics: Challenge and Simplicity
Physics problems can be challenging, calling for clever insight and mathematical agility. 
That challenge is what gives physics a reputation as a difficult subject. But underlying all 
of physics is only a handful of basic principles. Because physics is so fundamental, it’s 
also inherently simple. There are only a few basic ideas to learn; if you really understand 
those, you can apply them in a wide variety of situations. These ideas and their applica-
tions are all connected, and we’ll emphasize those connections and the underlying simplic-
ity of physics by reminding you how the many examples, applications, and problems are 
manifestations of the same few basic principles. If you approach physics as a hodgepodge 
of unrelated laws and equations, you’ll miss the point and make things difficult. But if you 
look for the basic principles, for connections among seemingly unrelated phenomena and 
problems, then you’ll discover the underlying simplicity that reflects the scope and power 
of physics—the fundamental science.

Problem Solving: the IDea Strategy
Solving a quantitative physics problem always starts with basic principles or concepts and 
ends with a precise answer expressed as either a numerical quantity or an algebraic expres-
sion. Whatever the principle, whatever the realm of physics, and whatever the specific 
situation, the path from principle to answer follows four simple steps—steps that make up 
a comprehensive strategy for approaching all problems in physics. Their acronym, IDEA, 
will help you remember these steps, and they’ll be reinforced as we apply them over and 
over again in worked examples throughout the book. We’ll generally write all four steps 

Estimate the mass of your brain and the number of cells it contains.

EvaluatE My head is about 6 in. or 15 cm wide, but there’s a lot 
of skull bone in there, so maybe my brain is about 10 cm or 0.1 m 
across. I don’t know its exact shape, but for estimating, I’ll take it 
to be a cube. Then its volume is 110 cm23 = 1000 cm3, or 10-3 m3. 
I’m mostly water, and water’s density is 1 gram per cubic centimeter 
11 g/cm32, so my 1000@cm3 brain has a mass of about 1 kg.

How big is a brain cell? I don’t know, but Table 1.2 lists 
the diameter of a red blood cell as about 10-5 m. If brain cells are 
roughly the same size, then each cell has a volume of approximately 
110-5 m23 = 10-15 m3. Then the number of cells in my 10-3@m3 brain 
is roughly

N =
10-3 m3/brain

10-15 m3/cell
= 1012 cells/brain

Crude though they are, these estimates aren’t bad. The average adult 
brain’s mass is about 1.3 kg, and it contains at least 1011 cells (Fig. 1.6).

examPLe 1.5 estimation: Counting Brain Cells

■

Figure 1.6 The average human brain contains more than 1011 cells.
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10 Chapter 1 Doing Physics

separately, although the examples in this chapter cut right to the EVALUATE phase. And 
in some chapters we’ll introduce versions of this strategy tailored to specific material.

The IDEA strategy isn’t a “cookbook” formula for working physics problems. Rather, 
it’s a tool for organizing your thoughts, clarifying your conceptual understanding, devel-
oping and executing plans for solving problems, and assessing your answers. Here’s the 
big IDEA:

ProblEm-solving stratEgy 1.1 Physics Problems

InteRPRet The first step is to interpret the problem to be sure you know what it’s asking. Then 
identify the applicable concepts and principles—Newton’s laws of motion, conservation of en-
ergy, the first law of thermodynamics, Gauss’s law, and so forth. Also identify the players in the 
situation—the object whose motion you’re asked to describe, the forces acting, the thermody-
namic system you’re to analyze, the charges that produce an electric field, the components in an 
electric circuit, the light rays that will help you locate an image, and so on.

DeveLoP The second step is to develop a plan for solving the problem. It’s always helpful and 
often essential to draw a diagram showing the situation. Your drawing should indicate objects, 
forces, and other physical entities. Labeling masses, positions, forces, velocities, heat flows, 
electric or magnetic fields, and other quantities will be a big help. Next, determine the relevant 
mathematical formulas—namely, those that contain the quantities you’re given in the problem 
as well as the unknown(s) you’re solving for. Don’t just grab equations—rather, think about 
how each reflects the underlying concepts and principles that you’ve identified as applying to 
this problem. The plan you develop might include calculating intermediate quantities, finding 
values in a table or in one of this text’s several appendices, or even solving a preliminary prob-
lem whose answer you need in order to get your final result.

evaLUate Physics problems have numerical or symbolic answers, and you need to evaluate 
your answer. In this step you execute your plan, going in sequence through the steps you’ve 
outlined. Here’s where your math skills come in. Use algebra, trig, or calculus, as needed, to 
solve your equations. It’s a good idea to keep all numerical quantities, whether known or not, 
in symbolic form as you work through the solution of your problem. At the end you can plug in 
numbers and work the arithmetic to evaluate the numerical answer, if the problem calls for one.

aSSeSS Don’t be satisfied with your answer until you assess whether it makes sense! Are the 
units correct? Do the numbers sound reasonable? Does the algebraic form of your answer work 
in obvious special cases, like perhaps “turning off” gravity or making an object’s mass zero or 
infinite? Checking special cases not only helps you decide whether your answer makes sense 
but also can give you insights into the underlying physics. In worked examples, we’ll often use 
this step to enhance your knowledge of physics by relating the example to other applications of 
physics.

Don’t memorize the IDEA problem-solving strategy. Instead, grow to understand it as 
you see it applied in examples and as you apply it yourself in working end-of-chapter 
problems. This book has a number of additional features and supplements, discussed in 
the Preface, to help you develop your problem-solving skills.
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Chapter 1 Summary
Big Idea

Physics is the fundamental science. It’s convenient to consider several realms of physics, which 
together describe all that’s known about physical reality:

Key Concepts and equations

Numbers describing physical quantities must have units. The SI unit system comprises seven fundamental units:

applications

The IDEA strategy for solving physics problems consists of four steps: Interpret, Develop, Evaluate, and Assess.
Estimation and data analysis are additional skills that help with physics.

Mechanics

Thermodynamics Electromagnetism

Optics

Oscillations, waves,
and �uids

Modern
physics

Physics

Length: meter (m)

Mass: kilogram (kg) Temperature: kelvin (K)

Amount: mole (mol)

Luminosity: candela (cd)

Electric current: ampere (A)

Time: second (s)

SI

In addition, physics uses geometric measures of angle.

Numbers are often written with prefixes or in scientific notation to express powers of 10. Precision 
is shown by the number of significant figures:

6.37 Mm

 Power of 10

Earth>s radius 6.37 * 106 m = 6.37 Mm

Three significant figures SI prefix for *106

N =  = 1012 cells>brain
10-3 m3>brain

10-15 m3>cell
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12 Chapter 1 Doing Physics

For homework assigned on MasteringPhysics, go to www.masteringphysics.com

BIO Biology and/or medicine-related problems DATA Data problems ENV Environmental problems CH Challenge problems Comp Computer problems

For thought and Discussion
 1. Explain why measurement standards based on laboratory proce-

dures are preferable to those based on specific objects such as the 
international prototype kilogram.

 2. When a computer that carries seven significant figures adds 
1.000000 and 2.5 * 10-15, what’s its answer? Why?

 3. Why doesn’t Earth’s rotation provide a suitable time standard?
 4. To raise a power of 10 to another power, you multiply the expo-

nent by the power. Explain why this works.
 5. What facts might a scientist use in estimating Earth’s age?
 6. How would you determine the length of a curved line?
 7. Write 1/x as x to some power.
 8. Emissions of carbon dioxide from fossil-fuel combustion are of-

ten expressed in gigatonnes per year, where 1 tonne = 1000 kg. 
But sometimes CO2 emissions are given in petagrams per year. 
How are the two units related?

 9. In Chapter 3, you’ll learn that the range of a projectile launched 
over level ground is given by x = v0

2 sin 2u/g, where v0 is the ini-
tial speed, u is the launch angle, and g is the acceleration of grav-
ity. If you did an experiment that involved launching projectiles 
with the same speed v0 but different launch angles, what quantity 
would you plot the range x against in order to get a straight line 
and thus verify this relationship?

 10. What is meant by an explicit-constant definition of a unit?
11. You’re asked to make a rough estimate of the total mass of 

all the students in your university. You report your answer as 
1.16 * 106 kg. Why isn’t this an appropriate answer?

exercises and problems
exercises

Section 1.2 Measurements and Units
12. The power output of a typical large power plant is 1000 mega-

watts (MW). Express this result in (a) W, (b) kW, and (c) GW.
13. The diameter of a hydrogen atom is about 0.1 nm, and the di-

ameter of a proton is about 1 fm. How many times bigger than a 
proton is a hydrogen atom?

14. Use the definition of the meter to determine how far light travels 
in 1 ns.

15. In nanoseconds, how long is the period of the cesium-133 radia-
tion used to define the second?

16. Lake Baikal in Siberia holds the world’s largest quantity of fresh 
water, about 14 Eg. How many kilograms is that?

17. A hydrogen atom is about 0.1 nm in diameter. How many hydro-
gen atoms lined up side by side would make a line 1 cm long?

18. How long a piece of wire would you need to form a circular arc 
subtending an angle of 1.4 rad, if the radius of the arc is 8.1 cm?

19. Making a turn, a jetliner flies 2.1 km on a circular path of radius 
3.4 km. Through what angle does it turn?

20. A car is moving at 35.0 mi/h. Express its speed in (a) m/s and  
(b) ft/s.

21. You have postage for a 1-oz letter but only a metric scale. What’s 
the maximum mass your letter can have, in grams?

22. A year is very nearly p * 107 s. By what percentage is this figure 
in error?

23. How many cubic centimeters are in a cubic meter?

24. Since the start of the industrial era, humankind has emitted about 
half an exagram of carbon to the atmosphere. What’s that in 
tonnes 1t, where 1 t = 1000 kg2?

25. A gallon of paint covers 350 ft2. What’s its coverage in m2/L?
26. Highways in Canada have speed limits of 100 km/h. How does 

this compare with the 65 mi/h speed limit common in the United 
States?

27. One m/s is how many km/h?
28. A 3.0-lb box of grass seed will seed 2100 ft2 of lawn. Express 

this coverage in m2/kg.
29. A radian is how many degrees?
30. Convert the following to SI units: (a) 55 mi/h; (b) 40.0 km/h;  

(c) 1 week (take that 1 as an exact number); (d) the period of Mars’s 
orbit (consult Appendix E).

31. The distance to the Andromeda galaxy, the nearest large neigh-
bor galaxy of our Milky Way, is about 2.4 * 1022 m. Express this 
more succinctly using SI prefixes.

Section 1.3 Working with Numbers
32. Add 3.63105 m and 2.13103 km.
33. Divide 4.23103 m/s by 0.57 ms, and express your answer in m/s2.
34. Add 5.131022 cm and 6.83103 mm, and multiply the result by 

1.83104 N (N is the SI unit of force).
35. Find the cube root of 6.4 * 1019 without a calculator.
36. Add 1.46 m and 2.3 cm.
37. You’re asked to specify the length of an updated aircraft model 

for a sales brochure. The original plane was 41 m long; the new 
model has a 3.6-cm-long radio antenna added to its nose. What 
length do you put in the brochure?

38. Repeat the preceding exercise, this time using 41.05 m as the air-
plane’s original length.

Problems
39. To see why it’s important to carry more digits in intermediate 

calculations, determine 11323 to three significant figures in two 
ways: (a) Find 13 and round to three significant figures, then 
cube and again round; and (b) find 13 to four significant figures, 
then cube and round to three significant figures.

40. You’ve been hired as an environmental watchdog for a big-city 
newspaper. You’re asked to estimate the number of trees that  
go into one day’s printing, given that half the newsprint comes 
from recycling, the rest from new wood pulp. What do you 
 report?

41. The average dairy cow produces about 104 kg of milk per year. 
Estimate the number of dairy cows needed to keep the United 
States supplied with milk.

42. How many Earths would fit inside the Sun?
43. The average American uses electrical energy at the rate of about 

1.5 kilowatts (kW). Solar energy reaches Earth’s surface at an 
average rate of about 300 watts on every square meter (a value 
that accounts for night and clouds). What fraction of the United 
States’ land area would have to be covered with 20% efficient 
solar cells to provide all of our electrical energy?

44. You’re writing a biography of the physicist Enrico Fermi, who 
was fond of estimation problems. Here’s one problem Fermi 
posed: What’s the number of piano tuners in Chicago? Give your 
estimate, and explain to your readers how you got it.

45. (a) Estimate the volume of water going over Niagara Falls each 
second. (b) The falls provides the outlet for Lake Erie; if the 
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Answers to Chapter Questions 13

62. You’re shopping for a new computer, and a salesperson claims 
the microprocessor chip in the model you’re looking at contains 
50 billion electronic components. The chip measures 5 mm on 
a side and uses 14-nm technology, meaning each component is  
14 nm across. Is the salesperson right?

63. Café Milagro sells coffee online. A half-kilogram bag of cof-
fee costs $8.95, excluding shipping. If you order six bags, the 
shipping costs $6.90. What’s the cost per bag when you include 
 shipping?

64. The world consumes energy at the rate of about 500 EJ per year, 
where the joule (J) is the SI energy unit. Convert this figure to 
watts (W), where 1 W = 1 J/s, and then estimate the average per 
capita energy consumption rate in watts.

65. The volume of a sphere is given by V = 4
3pr3, where r is the 

sphere’s radius. For solid spheres with the same density—made, 
for example, from the same material—mass is proportional to 
volume. The table below lists measures of diameter and mass for 
different steel balls. (a) Determine a quantity which, when you 
plot mass against it, should yield a straight line. (b) Make your 
plot, establish a best-fit line, and determine its slope (which in 
this case is proportional to the spheres’ density).

Diameter (cm) 0.75 1.00 1.54 2.16 2.54

Mass (g) 1.81 3.95 15.8 38.6 68.2

Passage Problems
The human body contains about 1014 cells, and the diameter of a typi-
cal cell is about 10 µm Like all ordinary matter, cells are made of at-
oms; a typical atomic diameter is 0.1 nm.
66. How does the number of atoms in a cell compare with the num-

ber of cells in the body?
a. greater
b. smaller
c. about the same

67. The volume of a cell is about
a. 10-10 m3.
b. 10-15 m3.
c. 10-20 m3.
d. 10-30 m3.

68. The mass of a cell is about
a. 10-10 kg.
b. 10-12 kg.
c. 10-14 kg.
d. 10-16 kg.

69. The number of atoms in the body is closest to
a. 1014.
b. 1020.
c. 1030.
d. 1040.

answers to Chapter Questions
answer to Chapter opening Question
All of them!

answers to Got It? Questions
1.1 (c)
1.2 (1) 2.998 * 10-9, 0.0008, 3.14 * 107, 0.041 * 109, 55 * 106

  (2)  0.0008, 0.041 * 109 and 55 * 106 (with two significant  figures 
each), 3.14 * 107, 2.998 * 10-9

DATA

BIO

falls were shut off, estimate how long it would take Lake Erie to  
rise 1 m.

46. Estimate the number of air molecules in your dorm room.
47. A human hair is about 100 µm across. Estimate the number of 

hairs in a typical braid.
48. You’re working in the fraud protection division of a credit-card 

company, and you’re asked to estimate the chances that a 16-digit 
number chosen at random will be a valid credit-card number. 
What do you answer?

49. Bubble gum’s density is about 1 g/cm3. You blow an 8-g wad of 
gum into a bubble 10 cm in diameter. What’s the bubble’s thick-
ness? (Hint: Think about spreading the bubble into a flat sheet. 
The surface area of a sphere is 4pr2.)

50. The Moon barely covers the Sun during a solar eclipse. Given 
that Moon and Sun are, respectively, 4 * 105 km and 1.5 * 108 km 
from Earth, determine how much bigger the Sun’s diameter is than 
the Moon’s. If the Moon’s radius is 1800 km, how big is the Sun?

51. The semiconductor chip at the heart of a personal computer is a 
square 4 mm on a side and contains 1010 electronic components. 
(a) What’s the size of each component, assuming they’re square? 
(b) If a calculation requires that electrical impulses traverse 104 
components on the chip, each a million times, how many such 
calculations can the computer perform each second? (Hint: The 
maximum speed of an electrical impulse is about two-thirds the 
speed of light.)

52. Estimate the number of (a) atoms and (b) cells in your body.
53. When we write the number 3.6 as typical of a number with 

two significant figures, we’re saying that the actual value is 
closer to 3.6 than to 3.5 or 3.7; that is, the actual value lies be-
tween 3.55 and 3.65. Show that the percent uncertainty implied  
by such two-significant-figure precision varies with the value of 
the number, being the lowest for numbers beginning with 9 and 
the highest for numbers beginning with 1. In particular, what is the  
 percent uncertainty implied by the numbers (a) 1.1, (b) 5.0, and 
(c) 9.9?

54. Continental drift occurs at about the rate your fingernails grow. 
Estimate the age of the Atlantic Ocean, given that the eastern and 
western hemispheres have been drifting apart.

55. You’re driving into Canada and trying to decide whether to fill 
your gas tank before or after crossing the border. Gas in the United 
States costs $3.67/gallon, in Canada it’s $1.32/L, and the Canadian 
dollar is worth 95¢ in U.S. currency. Where should you fill up?

56. In the 1908 London Olympics, the intended 26-mile marathon 
was extended 385 yards to put the end in front of the royal re-
viewing stand. This distance subsequently became standard. 
What’s the marathon distance in kilometers, to the nearest  meter?

57.  An environmental group is lobbying to shut down a coal-burning 
power plant that produces electrical energy at the rate of 1 GW (a 
watt, W, is a unit of power—the rate of energy production or con-
sumption). They suggest replacing the plant with wind turbines 
that can produce 1.5 MW each but that, due to intermittent wind, 
average only 30% of that power. Estimate the number of wind 
turbines needed.

58. If you’re working from the print version of this book, estimate 
the thickness of each page.

59. Estimate the area of skin on your body.
60. Estimate the mass of water in the world’s oceans, and express it 

with SI prefixes.
61. Express the following with appropriate units and significant fig-

ures: (a) 1.0 m plus 1 mm, (b) 1.0 m times 1 mm, (c) 1.0 m minus 
999 mm, and (d) 1.0 m divided by 999 mm.

env

BIO
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Mechanics

Part One Overview

Awilderness hiker uses the Global Positioning System to follow her chosen route. 
A farmer plows a field with centimeter-scale precision, guided by GPS and sav-

ing precious fuel as a result. One scientist uses GPS to track endangered elephants, 
another to study the accelerated flow of glaciers as Earth’s climate warms. Our deep 
understanding of motion is what lets us use a constellation of satellites, 20,000 km up 
and moving faster than 10,000 km/h, to find positions on Earth so precisely.

Motion occurs at all scales, from the intricate dance of molecules at the heart of life’s 
cellular mechanics, to the everyday motion of cars, baseballs, and our own  bodies, to 
the trajectories of GPS and TV satellites and of spacecraft exploring the distant  planets, 
to the stately motions of the celestial bodies themselves and the overall expansion 
of the universe. The study of motion is called mechanics. The 11  chapters of Part 1 
introduce the physics of motion, first for individual bodies and then for  complicated 
systems whose constituent parts move relative to one another.

We explore motion here from the viewpoint of Newtonian mechanics, which 
 applies accurately in all cases except the subatomic realm and when relative speeds 
approach that of light. The Newtonian mechanics of Part 1 provides the groundwork 
for much of the material in subsequent parts, until, in the book’s final chapters, we 
extend mechanics into the subatomic and high-speed realms.

A hiker checks her position using signals 
from GPS satellites.
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1
Doing Physics

3
Motion in Two and 
Three Dimensions

4
Force and Motion

Motion in a Straight Line

2

What You Know
■ You’ve learned the units for basic 

physical quantities.

■ You understand the SI unit system, 
especially units for length, time, and 
mass.

■ You can express numbers in scientific 
notation and using SI prefixes.

■ You can handle precision and 
accuracy through significant figures.

■ You can make order-of-magnitude 
estimates.

■ You’ve learned the IDEA   
problem-solving strategy.

Electrons swarming around atomic nuclei, cars speeding along a highway, blood coursing 
through your veins, galaxies rushing apart in the expanding universe—all these are exam-

ples of matter in motion. The study of motion without regard to its cause is called  kinematics 
(from the Greek “kinema,” or motion, as in motion pictures). This chapter deals with the sim-
plest case: a single object moving in a straight line. Later, we generalize to motion in more 
dimensions and with more complicated objects. But the basic concepts and mathematical 
techniques we develop here continue to apply.

2.1 Average Motion
You drive 15 minutes to a pizza place 10 km away, grab your pizza, and return home 
in another 15 minutes. You’ve traveled a total distance of 20 km, and the trip took half 
an hour, so your average speed—distance divided by time—was 40 kilometers per 
hour. To describe your motion more precisely, we introduce the quantity x that gives 
your position at any time t. We then define displacement, ∆x, as the net change in 

What You’re Learning
■ You’ll learn the fundamental concepts 

used to describe motion: position, 
velocity, and acceleration—restricted 
in this chapter to motion in one 
dimension.

■ You’ll learn to distinguish average 
from instantaneous values.

■ You’ll see how calculus is used to 
establish instantaneous values.

■ You’ll learn to describe motion 
resulting from constant acceleration, 
including the important case of 
objects moving under the influence of 
gravity near Earth’s surface.

How You’ll Use It
■ One-dimensional motion will be your 

stepping stone to richer and more 
complex motion in two and three 
dimensions, which you’ll see in Chapter 3.

■ Your understanding of acceleration 
will help you adopt the Newtonian 
view of motion, introduced in Chapter 
4 and elaborated in Chapter 5.

■ You’ll encounter analogies to Chapter 
2’s motion concepts in Chapter 10’s 
treatment of rotational motion.

■ You’ll apply motion concepts to 
systems of particles in Chapter 9.

■ You’ll continue to encounter motion 
concepts throughout the book, even 
beyond Part 1.

The server tosses the tennis ball straight up and hits it on its way down. Right at its peak height, the ball 
has zero velocity, but what’s its acceleration?
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16 Chapter 2 Motion in a Straight Line

position: ∆x = x2 - x1, where x1 and x2 are your starting and ending positions, respec-
tively. Your average velocity, v, is displacement divided by the time interval:

 v =
∆x

∆t
  1average velocity2 (2.1)

where ∆t = t2 - t1 is the interval between your ending and starting times. The bar in v 
indicates an average quantity (and is read “v bar”). The symbol ∆ (capital Greek delta) 
stands for “the change in.” For the round trip to the pizza place, your overall displacement 
was zero and therefore your average velocity was also zero—even though your average 
speed was not (Fig. 2.1).

Directions and Coordinate Systems
It matters whether you go north or south, east or west. Displacement therefore includes not 
only how far but also in what direction. For motion in a straight line, we can describe both 
properties by taking position coordinates x to be positive going in one direction from some 
origin, and negative in the other. This gives us a one-dimensional coordinate system. The 
choice of coordinate system—both of origin and of which direction is positive—is entirely 
up to you. The coordinate system isn’t physically real; it’s just a convenience we create to 
help in the mathematical description of motion.

Figure 2.2 shows some Midwestern cities that lie on a north–south line. We’ve estab-
lished a coordinate system with northward direction positive and origin at Kansas City. Ar-
rows show displacements from Houston to Des Moines and from International Falls to Des 
Moines; the former is approximately +1300 km, and the latter is approximately -750 km, 
with the minus sign indicating a southward direction. Suppose the Houston-to-Des Moines 
trip takes 2.6 hours by plane; then the average velocity is 11300 km2/12.6 h2 = 500 km/h. 
If the International Falls-to-Des Moines trip takes 10 h by car, then the average velocity is 
1-750 km2/110 h2 = -75 km/h; again, the minus sign indicates southward.

In calculating average velocity, all that matters is the overall displacement. Maybe that 
trip from Houston to Des Moines was a nonstop flight going 500 km/h. Or maybe it involved 
a faster plane that stopped for half an hour in Kansas City. Maybe the plane even went first 
to Minneapolis, then backtracked to Des Moines. No matter: The displacement remains 1300 
km and, as long as the total time is 2.6 h, the average velocity remains 500 km/h.

GOT IT? 2.1 We just described three trips from Houston to Des Moines: (a) direct; 
(b) with a stop in Kansas City; and (c) via Minneapolis. For which of these trips is the 
average speed the same as the average velocity? Where the two differ, which is greater?

0

10

150

Leave home

Arrive at
pizza place

Return
home

Time, t (min)

∆t = 30 min

Po
si

tio
n,

 x
 (

km
)

30

20

At time t1 = 0, your
position is x1 = 0.

Now your position is x2 = 0,
so  your displacement is
∆x = x2 - x1 = 0,
and your average 

velocity v =        = 0.

But, your average speed was
40 km>h.

∆x
∆t

Figure 2.1 Position versus time for the pizza trip.

From Houston to
Des Moines is a
displacement of
+1300 km.

The choice of
origin is arbitrary.

+1200 km

+800 km

+400 km

0 km

-400 km

-800 km

-1200 km

N

S

From International
Falls to Des Moines
is a displacement
of -750 km.

Figure 2.2 Describing motion in the central 
United States.

Video Tutor Demo | Balls Take High and Low Tracks

PheT: The Moving Man
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2.2 Instantaneous Velocity 17

2.2 Instantaneous Velocity
Geologists determine the velocity of a lava flow by dropping a stick into the lava and 
timing how long it takes the stick to go a known distance (Fig. 2.3a). Dividing the 
distance by the time then gives the average velocity. But did the lava flow faster at the 
beginning of the interval? Or did it speed up and slow down again? To understand mo-
tion fully, including how it changes with time, we need to know the velocity at each 
instant.

Geologists could explore that detail with a series of observations taken over 
smaller intervals of time and distance (Fig. 2.3b). As the size of the intervals shrinks, 
a more detailed picture of the motion emerges. In the limit of very small intervals, 
we’re measuring the velocity at a single instant. This is the instantaneous velocity, or 
 simply the velocity. The magnitude of the instantaneous velocity is the instantaneous 
speed.

To get a cheap flight from Houston to Kansas City—a distance of 
1000 km—you have to connect in Minneapolis, 700 km north of 
 Kansas City. The flight to Minneapolis takes 2.2 h, then you have a 
30-min layover, and then a 1.3-h flight to Kansas City. What are your 
average velocity and your average speed on this trip?

Interpret We interpret this as a one-dimensional kinematics prob-
lem involving the distinction between velocity and speed, and we 
identify three distinct travel segments: the two flights and the layover. 
We identify the key concepts as speed and velocity; their distinction is 
clear from our pizza example.

Develop Figure 2.2 is our drawing. We determine that Equation 2.1, 
v = ∆x/∆t, will give the average velocity, and that the average 
speed is the total distance divided by the total time. We develop our 
plan: Find the displacement and the total time, and use those values to 
get the average velocity; then find the total distance traveled and use 
that along with the total time to get the average speed.

evaluate You start in Houston and end up in Kansas City, 
for a displacement of 1000 km—regardless of how far you 
actually traveled. The total time for the three segments is 
∆t = 2.2 h + 0.50 h + 1.3 h = 4.0 h. Then the average velocity, 
from Equation 2.1, is

v =
∆x

∆t
=

1000 km

4.0 h
= 250 km/h

However, that Minneapolis connection means you’ve gone an extra 
2 * 700 km, for a total distance of 2400 km in 4 hours. Thus your av-
erage speed is 12400 km2/14.0 h2 = 600 km/h, more than twice your 
average velocity.

assess Make sense? Average velocity depends only on the net dis-
placement between the starting and ending points. Average speed 
takes into account the actual distance you travel—which can be a lot 
longer on a circuitous trip like this one. So it’s entirely reasonable that 
the average speed should be greater. ■

ExAMpLE 2.1  Speed and Velocity: Flying with a Connection

The average velocity as the stick 
goes from A to B is v = ∆x>∆t.

Using shorter distance intervals gives details 
about how the velocity changes.

(a)

(b)

∆t

A B
∆x

∆t1 = 5 s ∆t2 = 10 s

∆t3 = 15 s ∆t4 = 10 s

∆x1 ∆x2 ∆x3 ∆x4
A B

Figure 2.3 Determining the velocity of a lava flow.
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18 Chapter 2 Motion in a Straight Line

You might object that it’s impossible to achieve that limit of an arbitrarily small time 
interval. With observational measurements that’s true, but calculus lets us go there. Figure 
2.4a is a plot of position versus time for the stick in the lava flow shown in Fig. 2.3. Where 
the curve is steep, the position changes rapidly with time—so the velocity is greater. 
Where the curve is flatter, the velocity is lower. Study the clocks in Fig. 2.3b and you’ll 
see that the stick starts out moving rapidly, then slows, and then speeds up a bit at the end. 
The curve in Fig. 2.4a reflects this behavior.

Suppose we want the instantaneous velocity at the time marked t1 in Fig. 2.4a. We can 
approximate this quantity by measuring the displacement ∆x over the interval ∆t between 
t1 and some later time t2: the ratio ∆x/∆t is then the average velocity over this interval. 
Note that this ratio is the slope of a line drawn through points on the curve that mark the 
ends of the interval.

Figure 2.4b shows what happens as we make the time interval ∆t arbitrarily small: 
Eventually, the line between the two points becomes indistinguishable from the tangent 
line to the curve. That tangent line has the same slope as the curve right at the point we’re 
interested in, and therefore it defines the instantaneous velocity at that point. We write this 
mathematically by saying that the instantaneous velocity is the limit, as the time interval 
∆t becomes arbitrarily close to zero, of the ratio of displacement ∆x to ∆t:

 v = lim
∆tS0

 
∆x

∆t
 (2.2a)

You can imagine making the interval ∆t as close to zero as you like, getting ever better 
approximations to the instantaneous velocity. Given a graph of position versus time, an 
easy approach is to “eyeball” the tangent line to the graph at a point you’re interested in; 
its slope is the instantaneous velocity (Fig. 2.5).

GOT IT? 2.2 The figures show position-versus-time graphs for four objects. Which 
object is moving with constant speed? Which reverses direction? Which starts slowly and 
then speeds up?

t

x

t

x

(a)

t

x

(c)(b)

t

(d)

x

Given position as a mathematical function of time, calculus provides a quick way to 
find instantaneous velocity. In calculus, the result of the limiting process described in 
Equation 2.2a is called the derivative of x with respect to t and is given the symbol dx/dt:

dx

dt
= lim

∆tS0
 
∆x

∆t

The quantities dx and dt are called infinitesimals; they represent vanishingly small 
 quantities that result from the limiting process. We can then write Equation 2.2a as

 v =
dx

dt
  1instantaneous velocity2 (2.2b)

Given position x as a function of time t, calculus shows how to find the velocity v = dx/dt. 
Consult Tactics 2.1 if you haven’t yet seen derivatives in your calculus class or if you need 
a refresher.

Figure 2.4 Position-versus-time graph for the 
motion in Fig. 2.3.

Average velocity is the
slope of this line.

As the interval gets
shorter, average 
velocity approaches 
instantaneous
velocity at time t1.

(a)

(b)

Time, t

Po
si

tio
n,

 x

∆x
∆t

t1 t2

t1

Figure 2.5 The instantaneous velocity is the 
slope of the tangent line.

The slopes of 3 tangent
lines give the instantaneous
velocity at 3 different times.

Time, t

Po
si

tio
n,

 x

ta tb tc

∆t

∆t
∆t

∆x

∆x
∆x
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2.3 Acceleration 19

2.3 Acceleration
When velocity changes, as in Example 2.2, an object is said to undergo acceleration. Quan-
titatively, we define acceleration as the rate of change of velocity, just as we defined velocity 
as the rate of change of position. The average acceleration over a time interval ∆t is

 a =
∆v

∆t
  1average acceleration2 (2.4)

where ∆v is the change in velocity and the bar on a indicates that this is an average value. 
Just as we defined instantaneous velocity through a limiting procedure, we define instan-
taneous acceleration as

 a = lim
∆tS0

 
∆v

∆t
=

dv

dt
  1instantaneous acceleration2 (2.5)

As we did with velocity, we also use the term acceleration alone to mean instantaneous 
acceleration.

In one-dimensional motion, acceleration is either in the direction of the velocity or 
opposite it. In the former case the accelerating object speeds up, whereas in the latter it 
slows (Fig. 2.6). Although slowing is sometimes called deceleration, it’s simpler to use 

tactIcs 2.1 Taking Derivatives

You don’t have to go through an elaborate limiting process every time you want to find an instantaneous 
velocity. That’s because calculus provides formulas for the derivatives of common functions. For example, 
any function of the form x = btn, where b and n are constants, has the derivative

 
dx

dt
= nbtn-1 (2.3)

Appendix A lists derivatives of other common functions.

The altitude of a rocket in the first half-minute of its ascent is given by 
x = bt2, where the constant b is 2.90 m/s2. Find a general expression 
for the rocket’s velocity as a function of time and from it the instan-
taneous velocity at t = 20 s. Also find an expression for the average 
velocity, and compare your two velocity expressions.

Interpret We interpret this as a problem involving the comparison 
of two distinct but related concepts: instantaneous velocity and av-
erage velocity. We identify the rocket as the object whose velocities 
we’re interested in.

Develop Equation 2.2b, v = dx/dt, gives the instantaneous velocity 
and Equation 2.1, v = ∆x/∆t, gives the average velocity. Our plan 
is to use Equation 2.3, dx/dt = nbtn-1, to evaluate the derivative that 
gives the instantaneous velocity. Then we can use Equation 2.1 for the 
average velocity, but first we’ll need to determine the displacement 
from the equation we’re given for the rocket’s position.

evaluate Applying Equation 2.2b with position given by x = bt2 
and using Equation 2.3 to evaluate the derivative, we have

v =
dx

dt
=

d1bt22
dt

= 2bt

for the instantaneous velocity. Evaluating at t = 20 s with b = 2.90 m/s2 
gives v = 116 m/s. For the average velocity we need the total  

displacement at 20 s. Since x = bt2, Equation 2.1 gives

v =
∆x

∆t
=

bt2

t
= bt

where we’ve used x = bt2 for ∆x and t for ∆t because both position 
and time are taken to be zero at liftoff. Comparison with our earlier re-
sult shows that the average velocity from liftoff to any particular time 
is exactly half the instantaneous velocity at that time.

assess Make sense? Yes: The rocket’s speed is always increasing, 
so its velocity at the end of any time interval is greater than the aver-
age velocity over that interval. The fact that the average velocity is 
exactly half the instantaneous velocity results from the quadratic 1t22 
dependence of position on time.

✓TIp Language

Language often holds clues to the meaning of physical concepts. In 
this example we speak of the instantaneous velocity at a particular 
time. That wording should remind you of the limiting process that 
focuses on a single instant. In contrast, we speak of the average 
velocity over a time interval, since averaging explicitly involves a 
range of times.

ExAMpLE 2.2  Instantaneous Velocity: A Rocket Ascends

When a and v have the
same direction, the 
car speeds up.

When a is opposite
v, the car slows.

(a)

(b)

v

a

v

a

Figure 2.6 Acceleration and velocity.

■

PheT: Calculus Grapher
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20 Chapter 2 Motion in a Straight Line

acceleration to describe the time rate of change of velocity no matter what’s happening. 
With two-dimensional motion, we’ll find much richer relationships between the directions 
of velocity and acceleration.

Since acceleration is the rate of change of velocity, its units are (distance per time) per 
time, or distance/time2. In SI, that’s m/s2. Sometimes acceleration is given in mixed units; 
for example, a car going from 0 to 60 mi/h in 10 s has an average acceleration of 6 mi/h/s.

position, Velocity, and Acceleration
Figure 2.7 shows graphs of position, velocity, and acceleration for an object undergo-
ing one-dimensional motion. In Fig. 2.7a, the rise and fall of the position-versus-time 
curve shows that the object first moves away from the origin, reverses, then reaches 
the origin again at t = 4 s. It then continues moving into the region x 6 0. Veloc-
ity, shown in Fig. 2.7b, is the slope of the position-versus-time curve in Fig. 2.7a.  
Note that the magnitude of the velocity (that is, the speed) is large where the curve in 
Fig. 2.7a is steep—that is, where position is changing most rapidly. At the peak of the 
 position curve, the object is momentarily at rest as it reverses, so there the position 
curve is flat and the velocity is zero. After the object reverses, at about 2.7 s, it’s head-
ing in the negative x-direction and so its velocity is negative.

Just as velocity is the slope of the position-versus-time curve, acceleration is the slope 
of the velocity-versus-time curve. Initially that slope is positive—velocity is increasing—
but eventually it peaks at the point of maximum velocity and zero acceleration and then it 
decreases. That velocity decrease corresponds to a negative acceleration, as shown clearly 
in the region of Fig. 2.7c beyond about 1.3 s.

Figure 2.7 (a) Position, (b) velocity, and 
(c) acceleration versus time.

Here the position
reaches a maxi-
mum, so the 
velocity is zero.

Here the velocity
peaks, so the 
acceleration is zero.

(a)

(b)

(c)
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COnCEpTUAL ExAMpLE 2.1 Acceleration Without Velocity?

Figure 2.8 Our sketch for Conceptual Example 2.1.

Can an object be accelerating even though it’s not moving?

evaluate Figure 2.7 shows that velocity is the slope of the posi-
tion curve—and the slope depends on how the position is chang-
ing, not on its actual value. Similarly, acceleration depends only 
on the rate of change of velocity, not on velocity itself. So there’s 
no intrinsic reason why there can’t be acceleration at an instant 
when velocity is zero.

assess Figure 2.8, which shows a ball thrown straight up, is a case 
in point. Right at the peak of its flight, the ball’s velocity is instanta-
neously zero. But just before the peak it’s moving upward, and just 
after it’s moving downward. No matter how small a time interval you 
consider, the velocity is always changing. Therefore, the ball is accel-
erating, even right at the instant its velocity is zero.

MakIng the connectIon Just 0.010 s before it peaks, the ball in 
Fig. 2.8 is moving upward at 0.098 m/s; 0.010 s after it peaks, it’s 
moving downward with the same speed. What’s its average accelera-
tion over this 0.02-s interval?

evaluate Equation 2.4 gives the average acceleration: a = ∆v/∆t 
=  1-0.098 m/s - 0.098 m/s2/10.020 s2 = -9.8 m/s2.  Here  we’ve  
 implicitly chosen a coordinate system with a positive upward direc-
tion, so both the final velocity and the acceleration are negative. The 
time interval is so small that our result must be close to the instan-
taneous acceleration right at the peak—when the velocity is zero. 
You might recognize 9.8 m/s2 as the acceleration due to the Earth’s 
gravity.

At the peak 
of its �ight, 
the ball is 
instantaneously 
at rest.

Just before the peak,
v is positive;  just
after, it’s negative.

Since v is steadily decreasing, the 
acceleration is constant and negative.

(a)

(b)

(c)
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2.4 Constant Acceleration 21

Acceleration is the rate of change of velocity, and velocity is the rate of change of 
position. That makes acceleration the rate of change of the rate of change of position. 
Mathematically, acceleration is the second derivative of position with respect to time. 
Symbolically, we write the second derivative as d2x/dt2; this is just a symbol and doesn’t 
mean that anything is actually squared. Then the relationship among acceleration, velocity, 
and position can be written

 a =
dv

dt
=

d

dt
 adx

dt
b =

d2x

dt2  (2.6)

Equation 2.6 expresses acceleration in terms of position through the calculus operation of 
taking the second derivative. If you’ve studied integrals in calculus, you can see that it should 
be possible to go the opposite way, finding position as a function of time given acceleration as 
a function of time. In Section 2.4 we’ll do this for the special case of constant acceleration, al-
though there we’ll take an algebra-based approach; Problem 87 obtains the same results using 
calculus. We’ll take a quick look at nonconstant acceleration in Section 2.6. The Application on 
this page provides an important technology that finds an object’s position from its acceleration.

GOT IT? 2.3 An elevator is going up at constant speed, slows to a stop, then starts 
down and soon reaches the same constant speed it had going up. Is the elevator’s aver-
age acceleration between its upward and downward constant-speed motions (a) zero,  
(b) downward, (c) first upward and then downward, or (d) first downward and then upward?

2.4 Constant Acceleration
The description of motion has an especially simple form when acceleration is constant. 
Suppose an object starts at time t = 0 with some initial velocity v0 and constant accelera-
tion a. Later, at some time t, it has velocity v. Because the acceleration doesn’t change, its 
average and instantaneous values are identical, so we can write

a = a =
∆v

∆t
=

v - v0

t - 0

or, rearranging,

 v = v0 + at  1for constant acceleration only2 (2.7)

This equation says that the velocity changes from its initial value by an amount that is 
the product of acceleration and time.

✓TIp Know Your Limits

Many equations we develop are special cases of more general laws, and they’re limited 
to special circumstances. Equation 2.7 is a case in point: It applies only when accelera-
tion is constant.

Having determined velocity as a function of time, we now consider position. With con-
stant acceleration, velocity increases steadily—and thus the average velocity over an interval 
is the average of the velocities at the beginning and the end of that interval. So we can write

 v = 1
21v0 + v2 (2.8)

for the average velocity over the interval from t = 0 to some later time when the velocity 
is v. We can also write the average velocity as the change in position divided by the time 
interval. Suppose that at time 0 our object was at position x0. Then its average velocity 
over a time interval from 0 to time t is

v =
∆x

∆t
=

x - x0

t - 0

AppLICATIOn  Inertial 
Guidance

Given an object’s initial position and velocity, 
and its subsequent acceleration—which may 
vary with time—it’s possible to invert Equation 
2.6 and solve for position (more on the math-
ematics of this inversion in Section 2.6). Inertial 
guidance systems, also called inertial navigation 
systems, exploit this principle to allow subma-
rines, ships, and airplanes to keep track of their 
locations based solely on internal measurements 
of their own acceleration. This frees them from 
the need for external positioning references such 
as the Global Positioning System (GPS), radar, 
or direct observation. Inertial guidance is espe-
cially important for submarines, which usually 
can’t access external sources for information 
about their positions. In the one-dimensional 
motion of this chapter, an inertial guidance 
system would consist of a single accelerometer 
whose reading is tracked continually. In practi-
cal systems, three accelerometers at right angles 
track acceleration in all three dimensions. In-
formation from on-board gyroscopes registers 
orientation, so the system “knows” the changing 
directions of the three accelerations.

Early inertial guidance systems were heavy 
and expensive, but the miniaturization of accel-
erometers and gyroscopes—so that they’re now 
in every smartphone—has enabled smaller and 
less expensive inertial guidance systems. The 
photo shows a complete inertial navigation sys-
tem developed by the U.S. Defense Advanced 
Research Projects Agency (DARPA) for use in 
locations where GPS signals aren’t available; 
it’s so small that it fits within the Lincoln Me-
morial on a penny!
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22 Chapter 2 Motion in a Straight Line

where x is the object’s position at time t. Equating this expression for v with the expression 
in Equation 2.8 gives

 x = x0 + vt = x0 + 1
21v0 + v2t (2.9)

But we already found the instantaneous velocity v that appears in this expression; it’s given 
by Equation 2.7. Substituting and simplifying then give the position as a function of time:

 x = x0 + v0 t + 1
2 at2  1for constant acceleration only2 (2.10)

Does Equation 2.10 make sense? With no acceleration 1a = 02, position would in-
crease linearly with time, at a rate given by the initial velocity v0. With constant accelera-
tion, the additional term 1

2 at2 describes the effect of the ever-changing velocity; time is 
squared because the longer the object travels, the faster it moves, so the more distance it 
covers in a given time. Figure 2.9 shows the meaning of the terms in Equation 2.10.

How much runway do I need to land a jetliner, given touchdown speed and a constant 
acceleration? A question like this involves position, velocity, and acceleration without ex-
plicit mention of time. So we solve Equation 2.7 for time, t = 1v - v02/a, and substitute 
this expression for t in Equation 2.9 to write

x - x0 = 1
2 
1v0 + v21v - v02

a

or, since 1a + b21a - b2 = a2 - b2,

 v2 = v0
2 + 2a1x - x02 (2.11)

Equations 2.7, 2.9, 2.10, and 2.11 link all possible combinations of position, veloc-
ity, and acceleration for motion with constant acceleration. We summarize them in 
Table 2.1, and remind you that they apply only in the case of constant acceleration.

Although we derived these equations algebraically, we could instead have used  
calculus. Problem 87 takes this approach in getting from Equation 2.7 to Equation 2.10.

Using the Equations of Motion
The equations in Table 2.1 fully describe motion under constant acceleration. Don’t re-
gard them as separate laws, but recognize them as complementary descriptions of a single 
underlying phenomenon—one-dimensional motion with constant acceleration. Having 
several equations provides convenient starting points for approaching problems. Don’t 
memorize these equations, but grow familiar with them as you work problems. We now 
offer a strategy for solving problems about one-dimensional motion with constant accel-
eration using these equations.

Table 2.1 Equations of Motion for Constant 
Acceleration

equation Contains Number

v = v0 + at v, a, t; no x 2.7 

x = x0 + 1
21v0 + v2t x, v, t; no a 2.9 

x = x0 + v0t + 1
2 at2 x, a, t; no v 2.10

v2 = v0
2 + 2a1x - x02 x, v, a; no t 2.11

probleM-solvIng strategy 2.1 Motion with Constant Acceleration

InTERpRET Interpret the problem to be sure it asks about motion with constant acceleration. 
Next, identify the object(s) whose motion you’re interested in.

DEVELOp Draw a diagram with appropriate labels, and choose a coordinate system. For in-
stance, sketch the initial and final physical situations, or draw a position-versus-time graph. 
Then determine which equations of motion from Table 2.1 contain the quantities you’re given 
and will be easiest to solve for the unknown(s).

EVALUATE Solve the equations in symbolic form and then evaluate numerical quantities.

ASSESS Does your answer make sense? Are the units correct? Do the numbers sound reason-
able? What happens in special cases—for example, when a distance, velocity, acceleration, or 
time becomes very large or very small?

Figure 2.9 Meaning of the terms in Equation 2.10.

The next two examples are typical of problems involving constant acceleration. Ex-
ample 2.3 is a straightforward application of the equations we’ve just derived to a single 
object. Example 2.4 involves two objects, in which case we need to write equations de-
scribing the motions of both objects.

1
2

Acceleration causes the
position–time graph to
curve upward.

With no
acceleration,

position changes
at a steady rate.

With v = 0 and a = 0, position doesn’t change.

x

tTime, t

Po
si

tio
n,

 x

x0

v0t
x0

Slope = v0

at2
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2.4 Constant Acceleration 23

A jetliner touches down at 270 km/h. The plane then decelerates (i.e., 
undergoes acceleration directed opposite its velocity) at 4.5 m/s2. 
What’s the minimum runway length on which this aircraft can land?

Interpret We interpret this as a problem involving one-dimensional 
motion with constant acceleration and identify the airplane as the ob-
ject of interest.

Develop We determine that Equation 2.11, v2 = v0
2 + 2a1x - x02, 

relates distance, velocity, and acceleration; so our plan is to solve that 
equation for the minimum runway length. We want the airplane to 
come to a stop, so the final velocity v is 0, and v0 is the initial touch-
down velocity. If x0 is the touchdown point, then the quantity x - x0 
is the distance we’re interested in; we’ll call this ∆x.

evaluate Setting v = 0 and solving Equation 2.11 then give

∆x =
-v0

2

2a
=

- 31270 km/h211000 m/km211/3600 h/s242

1221-4.5 m/s22 = 625 m

Note that we used a negative value for the acceleration because the 
plane’s acceleration is directed opposite its velocity—which we chose 
as the positive x-direction. We also converted the speed to m/s for 
compatibility with the SI units given for acceleration.

assess Make sense? That 625 m is just over one-third of a mile, 
which seems a bit short. However, this is an absolute minimum with 
no margin of safety. For full-size jetliners, the standard for minimum 
landing runway length is about 5000 feet or 1.5 km.

✓TIp Be Careful with Mixed Units

Frequently problems are stated in units other than SI. Although it’s 
possible to work consistently in other units, when in doubt, convert 
to SI. In this problem, the acceleration is originally in SI units but 
the velocity isn’t—a sure indication of the need for conversion. 

ExAMpLE 2.3  Motion with Constant Acceleration: Landing a Jetliner

A speeding motorist zooms through a 50 km/h zone at 75 km/h (that’s 
21 m/s) without noticing a stationary police car. The police officer im-
mediately heads after the speeder, accelerating at 2.5 m/s2. When the 
officer catches up to the speeder, how far down the road are they, and 
how fast is the police car going?

Interpret We interpret this as two problems involving one-dimensional 
motion with constant acceleration. We identify the objects in question 
as the speeding car and the police car. Their motions are related be-
cause we’re interested in the point where the two coincide.

Develop It’s helpful to draw a sketch showing qualitatively the posi-
tion-versus-time graphs for the two cars. Since the speeding car moves 
with constant speed, its graph is a straight line. The police car is accel-
erating from rest, so its graph starts flat and gets increasingly steeper. 
Our sketch in Fig. 2.10 shows clearly the point we’re interested 
in, when the two cars coincide for the second time. Equation 2.10, 
x = x0 + v0t + 1

2  at2, gives position versus time with constant accel-
eration. Our plan is (1) to write versions of this equation specialized 

to each car, (2) to equate the resulting position expressions to find the 
time when the cars coincide, and (3) to find the corresponding posi-
tion and the police car’s velocity. For the latter we’ll use Equation 2.7,  
v = v0 + at.

evaluate Let’s take the origin to be the point where the speeder 
passes the police car and t = 0 to be the corresponding time, as 
marked in Fig. 2.10. Then x0 = 0 in Equation 2.10 for both cars, 
while the speeder has no acceleration and the police car has no initial 
velocity. Thus our two versions of Equation 2.10 are

xs = vs0 t 1speeder2 and xp = 1
2 ap t

2 1police car2
Equating xs and xp tells when the speeder and the police car are at the 
same place, so we write vs0 t = 1

2 ap t
2. This equation is satisfied when 

t = 0 or t = 2vs0 /ap. Why two answers? We asked for any times 
when the two cars are in the same place. That includes the initial en-
counter at t = 0 as well as the later time t = 2vs0 /ap when the police 
car catches the speeder; both points are shown on our sketch. Where 
does this occur? We can evaluate using t = 2vs0 /ap in the speeder’s 
equation:

xs = vs0 t = vs0 
2vs0

ap
=

2vs0
2

ap
=

122121 m/s22

2.5 m/s2 = 350 m

Equation 2.7 then gives the police car’s speed at this time:

vp = ap t = ap

2vs0

ap
= 2vs0 = 150 km/h

assess Make sense? As Fig. 2.10 shows, the police car starts from 
rest and undergoes constant acceleration, so it has to be going faster 
at the point where the two cars meet. In fact, it’s going twice as fast—
again, as in Example 2.2, that’s because the police car’s position 
depends quadratically on time. That quadratic dependence also tells 
us that the police car’s position-versus-time graph in Fig. 2.10 is a  
parabola. ■

ExAMpLE 2.4  Motion with Two Objects: Speed Trap!

Figure 2.10 Our sketch of position versus time for the cars in Example 2.4.

Motorist
passes
police
car.

Police car
catches up.

■
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24 Chapter 2 Motion in a Straight Line

GOT IT? 2.4 The police car in Example 2.4 starts with zero velocity and is going at 
twice the car’s velocity when it catches up to the car. So at some intermediate instant it 
must be going at the same velocity as the car. Is that instant (a) halfway between the times 
when the two cars coincide, (b) closer to the time when the speeder passes the stationary 
police car, or (c) closer to the time when the police car catches the speeder?

2.5 The Acceleration of Gravity
Drop an object, and it falls at an increasing rate, accelerating because of gravity (Fig. 2.11). 
The acceleration is constant for objects falling near Earth’s surface, and furthermore it has 
the same value for all objects. This value, the acceleration of gravity, is designated g and 
is approximately 9.8 m/s2 near Earth’s surface.

The acceleration of gravity applies strictly only in free fall—motion under the influence of 
gravity alone. Air resistance, in particular, may dramatically alter the motion, giving the false 
impression that gravity acts differently on lighter and heavier objects. As early as the year 1600, 
Galileo is reputed to have shown that all objects have the same acceleration by dropping objects 
off the Leaning Tower of Pisa. Astronauts have verified that a feather and a hammer fall with 
the same acceleration on the airless Moon—although that acceleration is less than on Earth.

Although g is approximately constant near Earth’s surface, it varies slightly with latitude 
and even local geology. The variation with altitude becomes substantial over distances of 
tens to hundreds of kilometers. But nearer Earth’s surface it’s a good approximation to take g 
as strictly constant. Then an object in free fall undergoes constant acceleration, and the equa-
tions of Table 2.1 apply. In working gravitational problems, we usually replace x with y to 
designate the vertical direction. If we make the arbitrary but common choice that the upward 
direction is positive, then acceleration a becomes -g because the acceleration is downward.

A diver drops from a 10-m-high cliff. At what speed does he enter the 
water, and how long is he in the air?

Interpret This is a case of constant acceleration due to gravity, and the 
diver is the object of interest. The diver drops a known distance starting 
from rest, and we want to know the speed and time when he hits the water.

Develop Figure 2.12 is a sketch showing what the diver’s position 
versus time should look like. We’ve incorporated what we know: 
the initial position 10 m above the water, the start from rest, and the 
downward acceleration that results in a parabolic position-versus-time 
curve. Given the dive height, Equation 2.11 determines the speed v. 
Following our newly adopted convention that y designates the ver-
tical direction, we write Equation 2.11 as v2 = v 2

0 + 2a1y - y02. 
Since the diver starts from rest, v0 = 0 and the equation becomes 
v2 = -2g1y - y02. So our plan is first to solve for the speed at the 
water; then use Equation 2.7, v = v0 + at, to get the time.

evaluate Our sketch shows that we’ve chosen y = 0 at the water, 
so y0 = 10 m and Equation 2.11 gives

�v �  = 2-2g1y - y02 = 21-2219.8 m/s2210 m - 10 m2
 = 14 m/s

This is the magnitude of the velocity, hence the absolute value sign; 
the actual value is v = -14 m/s, with the minus sign indicating 
downward motion. Knowing the initial and final velocities, we use 
Equation 2.7 to find how long the dive takes. Solving that equation 
for t gives

t =
v0 - v

g
=

0 m/s - 1-14 m/s2
9.8 m/s2 = 1.4 s

Note the careful attention to signs here; we wrote v with its 
 negative sign and used a = -g  in Equation 2.7 because we 
 defined downward to be the negative direction in our coordinate 
system.

assess Make sense? Our expression for v gives a higher speed with 
a greater acceleration or a greater distance y - y0—both as expected. 
Our approach here isn’t the only one possible; we could also have 
found the time by solving Equation 2.10 and then evaluating the speed 
using  Equation 2.7. ■

ExAMpLE 2.5  Constant Acceleration due to Gravity: Cliff Diving

Curve is �at
here because diver
starts from rest.

We want this 
slope (speed) c

cand
this time.

Figure 2.12 Our sketch for Example 2.5.

Figure 2.11 Strobe photo of a falling ball. 
Successive images are farther apart, showing 
that the ball is accelerating.
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2.5 The Acceleration of Gravity 25

You toss a ball straight up at 7.3 m/s; it leaves your hand at 1.5 m 
above the floor. Find when it hits the floor, the maximum height it 
reaches, and its speed when it passes your hand on the way down.

Interpret We have constant acceleration due to gravity, and here the 
object of interest is the ball. We want to find time, height, and speed.

Develop The ball starts by going up, eventually comes to a stop, and then 
heads downward. Figure 2.13 is a sketch of the height versus time that we 
expect, showing what we know and the three quantities we’re after. Equa-
tion 2.10, y = y0 + v0 t + 1

2 at2, determines position as a function of time, 
so our plan is to use that equation to find the time the ball hits the floor 
(again, we’ve replaced horizontal position x with height y in Equation 2.10). 
Then we can use Equation 2.11, v2 = v0

2 + 2a1y - y02, to find the 
height at which v = 0—that is, the peak height. Finally, Equation 2.11 will 
also give us the speed at any height, letting us answer the question about the 
speed when the ball passes the height of 1.5 m on its way down.

evaluate Our sketch shows that we’ve taken y = 0 at the 
floor; so when the ball is at the floor, Equation 2.10 becomes 
0 = y0 + v0 t - 1

2 gt2, which we can solve for t using the quadratic 
formula [Appendix A; t = 1v0 { 2v0

2 + 2y0  g2/g]. Here v0 is the 
initial velocity, 7.3 m/s; it’s positive because the motion is initially 
upward. The initial position is the hand height, so y0 = 1.5 m, and 
g of course is 9.8 m/s2 (we accounted for the downward acceleration 
by putting a = -g in Equation 2.10). Putting in these numbers gives 
t = 1.7 s or -0.18 s; the answer we want is 1.7 s. At the peak of its 
flight, the ball’s velocity is instantaneously zero because it’s mov-
ing neither up nor down. So we set v2 = 0 in Equation 2.11 to get 
0 = v0

2 - 2g1y - y02. Solving for y then gives the peak height:

y = y0 +
v0

2

2g
= 1.5 m +

17.3 m/s22

12219.8 m/s22 = 4.2 m

To find the speed when the ball reaches 1.5 m on the way down, 
we set y = y0 in Equation 2.11. The result is v2 = v0

2 , so v = {v0 
or {7.3 m/s. Once again, there are two answers. The equation has 
given us all the velocities the ball has at 1.5 m—including the initial 
upward velocity and the later downward velocity. We’ve shown here 
that an upward-thrown object returns to its initial height with the same 
speed it had initially.

assess Make sense? With no air resistance to sap the ball of its en-
ergy, it seems reasonable that the ball comes back down with the same 
speed—a fact we’ll explore further when we introduce energy con-
servation in Chapter 7. But why are there two answers for time and 
velocity? Equation 2.10 doesn’t “know” about your hand or the floor; 
it “assumes” the ball has always been undergoing downward accelera-
tion g. We asked of Equation 2.10 when the ball would be at y = 0. 
The second answer, 1.7 s, was the one we wanted. But if the ball had 
always been in free fall, it would also have been on the floor 0.18 
s earlier, heading upward. That’s the meaning of the other answer, 
-0.18 s, as we’ve indicated on our sketch. Similarly, Equation 2.11 
gave us all the velocities the ball had at a height of 1.5 m, including 
both the initial upward velocity and the later downward velocity. ■

ExAMpLE 2.6  Constant Acceleration due to Gravity: Tossing a Ball

Figure 2.13 Our sketch for Example 2.6.

We’re given the
initial speed and
height.

Here is another
time the ball
would have been
at �oor level.

The curve is �at at
the top since speed
is instantaneously 
zero.

We want this
height c

cand
this speed c

cand this 
time.

✓TIp Multiple Answers

Frequently the mathematics of a problem gives more than one answer. Think about 
what each answer means before discarding it! Sometimes an answer isn’t consistent 
with the physical assumptions of the problem, but other times all answers are meaning-
ful even if they aren’t all what you’re looking for.

GOT IT? 2.5 Standing on a roof, you simultaneously throw one ball straight up and 
drop another from rest. Which hits the ground first? Which hits the ground moving faster?

In Example 2.5 the diver was moving downward, and the downward gravitational ac-
celeration steadily increased his speed. But, as Conceptual Example 2.1 suggested, the 
acceleration of gravity is downward regardless of an object’s motion. Throw a ball straight 
up, and it’s accelerating downward even while moving upward. Since velocity and ac-
celeration are in opposite directions, the ball slows until it reaches its peak, then pauses 
instantaneously, and then gains speed as it falls. All the while its acceleration is 9.8 m/s2 
downward.
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26 Chapter 2 Motion in a Straight Line

GOT IT? 2.6 The graph shows accelera-
tion versus time for three different objects, all of 
which start at rest from the same position. Only 
object (b) undergoes constant acceleration. Which 
object is going fastest at the time t1?

AppLICATIOn Keeping Time

The NIST-F1 atomic clock, shown here with its developers, sets the U.S. 
standard of time. The clock is so accurate that it won’t gain or lose more than 
a second in 100 million years! It gets its remarkable accuracy by monitoring a 
super-cold clump of freely falling cesium atoms for what is, in this context, a 
long time period of about 1 s. The atom clump is put in free fall by a more so-
phisticated version of the ball toss in Example 2.6. In the NIST-F1 clock, laser 
beams gently “toss” the ball of atoms upward with a speed that gives it an up-
and-down travel time of about 1 s (see Problem 66). For this reason NIST-F1 is 
called an atomic fountain clock. In the photo you can see the clock’s towerlike 
structure that accommodates this atomic fountain.

Essential University Physics 3e
Wolfson
Benjamin Cummings
Pearson Education
9937202018
Fig 02-UN-04
Pickup: 6969202018
Rolin Graphics
jr    5/12/14    15p3 x 15p3
jr   8/18/14  

2.6 When Acceleration Isn’t Constant
Sections 2.4 and 2.5 both dealt with constant acceleration. Fortunately, there are many 
important applications, such as situations involving gravity near Earth’s surface, where ac-
celeration is constant. But when it isn’t, then the equations listed in Table 2.1 don’t apply. 
In Chapter 3 you’ll see that acceleration can vary in magnitude, direction, or both. In the 
one-dimensional situations of the current chapter, a nonconstant acceleration a would be 
specified by giving a as a function of time t: a(t). If you’ve already studied integral calcu-
lus, then you know that integration is the opposite of differentiation. Since acceleration is 
the derivative of velocity, you get from acceleration to velocity by integration; from there 
you can get to position by integrating again. Mathematically, we express these relations as

 v1t2 = La1t2 dt  (2.12)

 x1t2 = Lv1t2 dt (2.13)

These results don’t fully determine v and x; you also need to know the initial conditions 
(usually, the values at time t = 0); these provide what are called in calculus the constants 
of integration. In Problem 87, you can evaluate the integrals in Equations 2.12 and 2.13 for 
the case of constant acceleration, giving an alternate derivation of Equations 2.7 and 2.10. 
Problems 82, 88, and 89 challenge you to use integral calculus to find an object’s position 
in the case of nonconstant accelerations, while Problem 90 explores the case of an expo-
nentially decreasing acceleration.
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ChaPter 2 SuMMary
Big Idea

The big ideas here are those of kinematics—the study of motion 
without regard to its cause. Position, velocity, and acceleration are 
the quantities that characterize motion: Position Velocity

Rate of
change

Rate of
change

Acceleration

Key Concepts and Equations

Average velocity and acceleration involve changes in position and velocity, respectively, 
occurring over a time interval ∆t:

 v =
∆x

∆t

 a =
∆v

∆t

Here ∆x is the displacement, or change in position, and ∆v is the change in velocity.
Instantaneous values are the limits of infinitesimally small time intervals and are given 

by calculus as the time derivatives of position and velocity:

 v =
dx

dt

 a =
dv

dt

∆t
∆x

Time, t

Po
si

tio
n,

 x

This line’s 
slope is the
average
velocity c

cand this line’s 
slope is the instantaneous
velocity.

∆t
∆v

Time, t
0
V

el
oc

ity
, v

cwhile the
instantaneous
acceleration a
is the slope of

this line.

The average acceleration a
is this line’s slope c

Applications

Constant acceleration is a special case that yields simple equations 
 describing one-dimensional motion:

 v = v0 + at

 x = x0 + v0 t + 1
2 at2

 v2 = v0
2 + 2a1x - x02

These equations apply only in the case of constant acceleration.
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Slope = v0

at2

An important example is the acceleration of gravity, essentially con-
stant near Earth’s surface, with magnitude approximately 9.8 m/s2.

At the peak 
of its �ight, 
the ball is 
instantaneously 
at rest.

Just before the peak,
v is positive;  just
after, it’s negative.

Since v is steadily decreasing, the 
acceleration is constant and negative.
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For homework assigned on MasteringPhysics, go to www.masteringphysics.com

BIO Biology and/or medicine-related problems DATA Data problems ENV Environmental problems CH Challenge problems Comp Computer problems

For thought and Discussion
 1. Under what conditions are average and instantaneous velocity 

equal?
 2. Does a speedometer measure speed or velocity?
 3. You check your odometer at the beginning of a day’s driving and 

again at the end. Under what conditions would the difference be-
tween the two readings represent your displacement?

 4. Consider two possible definitions of average speed: (a) the aver-
age of the values of the instantaneous speed over a time interval 
and (b) the magnitude of the average velocity. Are these definitions 
equivalent? Give two examples to demonstrate your conclusion.

 5. Is it possible to be at position x = 0 and still be moving?
 6. Is it possible to have zero velocity and still be accelerating?
 7. If you know the initial velocity v0 and the initial and final heights 

y0 and y, you can use Equation 2.10 to solve for the time t when 
the object will be at height y. But the equation is quadratic in t, so 
you’ll get two answers. Physically, why is this?

 8. Starting from rest, an object undergoes acceleration given by 
a = bt, where t is time and b is a constant. Can you use bt for a 
in Equation 2.10 to predict the object’s position as a function of 
time? Why or why not?

 9. In which of the velocity-versus-time graphs shown in Fig. 2.14 
would the average velocity over the interval shown equal the  
average of the velocities at the ends of the interval?

v

t
(a)

v

t
(b)

v

t
(c)

Figure 2.14 For Thought and Discussion 9

 10. If you travel in a straight line at 50 km/h for 1 h and at 100 km/h 
for another hour, is your average velocity 75 km/h? If not, is it 
more or less?

 11. If you travel in a straight line at 50 km/h for 50 km and then at 
100 km/h for another 50 km, is your average velocity 75 km/h? If 
not, is it more or less?

exercises and Problems
Exercises

Section 2.1 Average Motion
 12. In 2009, Usain Bolt of Jamaica set a world record in the 100-m 

dash with a time of 9.58 s. What was his average speed?
13. The standard 26-mile, 385-yard marathon dates to 1908, when 

the Olympic marathon started at Windsor Castle and finished 
before the Royal Box at London’s Olympic Stadium. Today’s 
top marathoners achieve times around 2 hours, 3 minutes for the 
standard marathon. (a) What’s the average speed of a marathon 
run in this time? (b) Marathons before 1908 were typically about 
25 miles. How much longer does the race last today as a result 

of the extra mile and 385 yards, assuming it’s run at part (a)’s 
 average speed?

14. Starting from home, you bicycle 24 km north in 2.5 h and then 
turn around and pedal straight home in 1.5 h. What are your (a) 
displacement at the end of the first 2.5 h, (b) average velocity 
over the first 2.5 h, (c) average velocity for the homeward leg 
of the trip, (d) displacement for the entire trip, and (e) average 
velocity for the entire trip?

15. The Voyager 1 spacecraft is expected to continue broadcast-
ing data until at least 2020, when it will be some 14 billion 
miles from Earth. How long will it take Voyager’s radio sig-
nals, traveling at the speed of light, to reach Earth from this 
distance?

16. In 2008, Australian Emma Snowsill set an unofficial record in the 
women’s Olympic triathlon, completing the 1.5-km swim, 40-km 
bicycle ride, and 10-km run in 1 h, 58 min, 27.66 s. What was her 
average speed?

17. Taking Earth’s orbit to be a circle of radius 1.5 * 108 km, deter-
mine Earth’s orbital speed in (a) meters per second and (b) miles 
per second.

18. What’s the conversion factor from meters per second to miles per 
hour?

Section 2.2 Instantaneous Velocity
19. On a single graph, plot distance versus time for the first two trips 

from Houston to Des Moines described on page 16. For each trip, 
identify graphically the average velocity and, for each segment of 
the trip, the instantaneous velocity.

20. For the motion plotted in Fig. 2.15, estimate (a) the greatest 
velocity in the positive x-direction, (b) the greatest velocity in 
the negative x-direction, (c) any times when the object is instan-
taneously at rest, and (d) the average velocity over the interval 
shown.
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Figure 2.15 Exercise 20

21. A model rocket is launched straight upward. Its altitude 
y as a function of time is given by y = bt - ct2, where 
b = 82 m/s, c = 4.9 m/s2, t is the time in seconds, and y is in 
meters. (a) Use differentiation to find a general expression for the 
rocket’s velocity as a function of time. (b) When is the velocity 
zero?

Section 2.3 Acceleration
22. A giant eruption on the Sun propels solar material from rest to 

450 km/s over a period of 1 h. Find the average acceleration.
23. Starting from rest, a subway train first accelerates to 25 m/s, then 

brakes. Forty-eight seconds after starting, it’s moving at 17 m/s. 
What’s its average acceleration in this 48-s interval?
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24. A space shuttle’s main engines cut off 8.5 min after launch, at 
which time its speed is 7.6 km/s. What’s the shuttle’s average ac-
celeration during this interval?

25. An egg drops from a second-story window, taking 1.12 s to fall 
and reaching 11.0 m/s just before hitting the ground. On con-
tact, the egg stops completely in 0.131 s. Calculate the magni-
tudes of its average acceleration (a) while falling and (b) while 
stopping.

26. An airplane’s takeoff speed is 320 km/h. If its average accelera-
tion is 2.9 m/s2, how much time is it accelerating down the run-
way before it lifts off?

27. ThrustSSC, the world’s first supersonic car, accelerates from rest 
to 1000 km/h in 16 s. What’s its acceleration?

Section 2.4 Constant Acceleration
28. You’re driving at 70 km/h when you apply constant acceleration 

to pass another car. Six seconds later, you’re doing 80 km/h. How 
far did you go in this time?

29. Differentiate both sides of Equation 2.10, and show that you get 
Equation 2.7.

30. An X-ray tube gives electrons constant acceleration over a distance 
of 15 cm. If their final speed is 1.2 * 107 m/s, what are (a) the elec-
trons’ acceleration and (b) the time they spend accelerating?

31. A rocket rises with constant acceleration to an altitude of 85 km, 
at which point its speed is 2.8 km/s. (a) What’s its acceleration? 
(b) How long does the ascent take?

32. Starting from rest, a car accelerates at a constant rate, reaching 
88 km/h in 12 s. Find (a) its acceleration and (b) how far it goes 
in this time.

33. A car moving initially at 50 mi/h begins slowing at a constant 
rate 100 ft short of a stoplight. If the car comes to a full stop just 
at the light, what is the magnitude of its acceleration?

34. In a medical X-ray tube, electrons are accelerated to a velocity 
of 108 m/s and then slammed into a tungsten target. As they stop, 
the electrons’ rapid acceleration produces X rays. If the time for 
an electron to stop is on the order of 10-9 s, approximately how 
far does it move while stopping?

35. California’s Bay Area Rapid Transit System (BART) uses an au-
tomatic braking system triggered by earthquake warnings. The 
system is designed to prevent disastrous accidents involving 
trains traveling at a maximum of 112 km/h and carrying a total 
of some 45,000 passengers at rush hour. If it takes a train 24 s to 
brake to a stop, how much advance warning of an earthquake is 
needed to bring a 112-km/h train to a reasonably safe speed of  
42 km/h when the earthquake strikes?

36. You’re driving at speed v0 when you spot a stationary moose on the 
road, a distance d ahead. Find an expression for the magnitude of 
the acceleration you need if you’re to stop before hitting the moose.

Section 2.5 The Acceleration of Gravity
37. You drop a rock into a deep well and 4.4 s later hear a splash. 

How far down is the water? Neglect the travel time of sound.
38. Your friend is sitting 6.5 m above you on a tree branch. How fast 

should you throw an apple so it just reaches her?
39. A model rocket leaves the ground, heading straight up at 49 m/s. 

(a) What’s its maximum altitude? Find its speed and altitude at 
(b) 1 s, (c) 4 s, and (d) 7 s.

40. A foul ball leaves the bat going straight up at 23 m/s. (a) How 
high does it rise? (b) How long is it in the air? Neglect the dis-
tance between bat and ground.

41. A Frisbee is lodged in a tree 6.5 m above the ground. A rock 
thrown from below must be going at least 3 m/s to dislodge the 
Frisbee. How fast must such a rock be thrown upward if it leaves 
the thrower’s hand 1.3 m above the ground?

42. Space pirates kidnap an earthling and hold him on one of the so-
lar system’s planets. With nothing else to do, the prisoner amuses 
himself by dropping his watch from eye level (170 cm) to the 
floor. He observes that the watch takes 0.95 s to fall. On what 
planet is he being held? (Hint: Consult Appendix E.)

Problems
43. You allow 40 min to drive 25 mi to the airport, but you’re caught 

in heavy traffic and average only 20 mi/h for the first 15 min. 
What must your average speed be on the rest of the trip if you’re 
to make your flight?

44. A base runner can get from first to second base in 3.4 s. If he 
leaves first as the pitcher throws a 90 mi/h fastball the 61-ft dis-
tance to the catcher, and if the catcher takes 0.45 s to catch and 
rethrow the ball, how fast does the catcher have to throw the ball 
to second base to make an out? Home plate to second base is the 
diagonal of a square 90 ft on a side.

45. You can run 9.0 m/s, 20% faster than your brother. How much 
head start should you give him in order to have a tie race over 
100 m?

46. A jetliner leaves San Francisco for New York, 4600 km away. 
With a strong tailwind, its speed is 1100 km/h. At the same time, 
a second jet leaves New York for San Francisco. Flying into 
the wind, it makes only 700 km/h. When and where do the two 
planes pass?

47. An object’s  posit ion is  given by x = bt + ct3,  where 
b = 1.50 m/s, c = 0.640 m/s3, and t is time in seconds. To 
study the limiting process leading to the instantaneous velocity, 
calculate the object’s average velocity over time intervals from 
(a) 1.00 s to 3.00 s, (b) 1.50 s to 2.50 s, and (c) 1.95 s to 2.05 s.  
(d) Find the instantaneous velocity as a function of time by dif-
ferentiating, and compare its value at 2 s with your average ve-
locities.

48. An object’s position as a function of time t is given by x = bt4, 
with b a constant. Find an expression for the instantaneous 
 velocity, and show that the average velocity over the inter-
val from t = 0 to any time t is one-fourth of the instantaneous 
 velocity at t.

49. In a drag race, the position of a car as a function of time is given 
by x = bt2, with b = 2.000 m/s2. In an attempt to determine the 
car’s velocity midway down a 400-m track, two observers stand 
at the 180-m and 220-m marks and note when the car passes. (a) 
What value do the two observers compute for the car’s velocity 
over this 40-m stretch? Give your answer to four significant fig-
ures. (b) By what percentage does this observed value differ from 
the instantaneous value at x = 200 m?

50. Squaring Equation 2.7 gives an expression for v2. Equation 2.11 
also gives an expression for v2. Equate the two expressions, and 
show that the resulting equation reduces to Equation 2.10.

51. During the complicated sequence that landed the rover Curiosity on 
Mars in 2012, the spacecraft reached an altitude of 142 m above 
the Martian surface, moving vertically downward at 32.0 m/s. It 
then entered a so-called constant deceleration (CD) phase, during 
which its velocity decreased steadily to 0.75 m/s while it dropped 
to an altitude of 23 m. What was the magnitude of the space-
craft’s acceleration during this CD phase?

BIO
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52. The position of a car in a drag race is measured each second, and 
the results are tabulated below.

Time t (s) 0 1 2 3 4 5

Position x (m) 0 1.7 6.2 17 24 40

Assuming the acceleration is approximately constant, plot posi-
tion versus a quantity that should make the graph a straight line. 
Fit a line to the data, and from it determine the approximate ac-
celeration.

53. A fireworks rocket explodes at a height of 82.0 m, producing 
fragments with velocities ranging from 7.68 m/s downward to 
16.7 m/s upward. Over what time interval are fragments hitting 
the ground?

54. The muscles in a grasshopper’s legs can propel the insect upward 
at 3.0 m/s. How high can the grasshopper jump?

55. On packed snow, computerized antilock brakes can reduce a car’s 
stopping distance by 55%. By what percentage is the stopping 
time reduced?

56. A particle leaves its initial position x0 at time t = 0, moving in the 
positive x-direction with speed v0 but undergoing acceleration of 
magnitude a in the negative x-direction. Find expressions for (a) the 
time when it returns to x0 and (b) its speed when it passes that point.

57. A hockey puck moving at 32 m/s slams through a wall of snow 
35 cm thick. It emerges moving at 18 m/s. Assuming constant 
acceleration, find (a) the time the puck spends in the snow and  
(b) the thickness of a snow wall that would stop the puck entirely.

58. Amtrak’s 20th-Century Limited is en route from Chicago to New 
York at 110 km/h when the engineer spots a cow on the track. 
The train brakes to a halt in 1.2 min, stopping just in front of 
the cow. (a) What is the magnitude of the train’s acceleration? 
(b) What’s the direction of the acceleration? (c) How far was the 
train from the cow when the engineer applied the brakes?

59. A jetliner touches down at 220 km/h and comes to a halt 29 s 
later. What’s the shortest runway on which this aircraft can land?

60. A motorist suddenly notices a stalled car and slams on the 
brakes, negatively accelerating at 6.3 m/s2. Unfortunately, this 
isn’t enough, and a collision ensues. From the damage sustained, 
police estimate that the car was going 18 km/h at the time of the 
collision. They also measure skid marks 34 m long. (a) How 
fast was the motorist going when the brakes were first applied?  
(b) How much time elapsed from the initial braking to the collision?

61. A racing car undergoing constant acceleration covers 140 m in 
3.6 s. (a) If it’s moving at 53 m/s at the end of this interval, what 
was its speed at the beginning of the interval? (b) How far did it 
travel from rest to the end of the 140-m distance?

62. The maximum braking acceleration of a car on a dry road is 
about 8 m/s2. If two cars move head-on toward each other at 88 
km/h (55 mi/h), and their drivers brake when they’re 85 m apart, 
will they collide? If so, at what relative speed? If not, how far 
apart will they be when they stop? Plot distance versus time for 
both cars on a single graph.

63. After 35 min of running, at the 9-km point in a 10-km race, you 
find yourself 100 m behind the leader and moving at the same 
speed. What should your acceleration be if you’re to catch up by 
the finish line? Assume that the leader maintains constant speed.

64. You’re speeding at 85 km/h when you notice that you’re only 10 
m behind the car in front of you, which is moving at the legal 
speed limit of 60 km/h. You slam on your brakes, and your car 
negatively accelerates at 4.2 m/s2. Assuming the other car con-
tinues at constant speed, will you collide? If so, at what relative 
speed? If not, what will be the distance between the cars at their 
closest approach?

65. Airbags cushioned the Mars rover Spirit’s landing, and the rover 
bounced some 15 m vertically after its first impact. Assuming 
no loss of speed at contact with the Martian surface, what was 
Spirit’s impact speed?

66. Calculate the speed with which cesium atoms must be “tossed” 
in the NIST-F1 atomic clock so that their up-and-down travel 
time is 1.0 s. (See the Application on page 26.)

67. A falling object travels one-fourth of its total distance in the last 
second of its fall. From what height was it dropped?

68. You’re on a NASA team engineering a probe to land on Jupiter’s 
moon Io, and your job is to specify the impact speed the probe 
can tolerate without damage. Rockets will bring the probe to a 
halt 100 m above the surface, after which it will fall freely. What 
speed do you specify? (Consult Appendix E.)

69. You’re atop a building of height h, and a friend is poised to drop 
a ball from a window at h/2. Find an expression for the speed at 
which you should simultaneously throw a ball downward, so the 
two hit the ground at the same time.

70. A castle’s defenders throw rocks down on their attackers from a 
15-m-high wall, with initial speed 10 m/s. How much faster are 
the rocks moving when they hit the ground than if they were sim-
ply dropped?

71. Two divers jump from a 3.00-m platform. One jumps upward at 
1.80 m/s, and the second steps off the platform as the first passes 
it on the way down. (a) What are their speeds as they hit the  
water? (b) Which hits the water first and by how much?

72. A balloon is rising at 10 m/s when its passenger throws a ball 
straight up at 12 m/s relative to the balloon. How much later does 
the passenger catch the ball?

73. Landing on the Moon, a spacecraft fires its rockets and comes to 
a complete stop just 12 m above the lunar surface. It then drops 
freely to the surface. How long does it take to fall, and what’s its 
impact speed? (Hint: Consult Appendix E.)

74. You’re at mission control for a rocket launch, deciding whether to 
let the launch proceed. A band of clouds 5.3 km thick  extends up-
ward from 1.9 km altitude. The rocket will accelerate at 4.6 m/s2, 
and it isn’t allowed to be out of sight for more than 30 s. Should 
you allow the launch?

75. You’re an investigator for the National Transportation Safety 
Board, examining a subway accident in which a train going at 
80 km/h collided with a slower train traveling in the same direc-
tion at 25 km/h. Your job is to determine the relative speed of 
the collision, to help establish new crash standards. The faster 
train’s “black box” shows that its brakes were applied and it be-
gan slowing at the rate of 2.1 m/s2 when it was 50 m from the 
slower train, while the slower train continued at constant speed. 
What do you report?

76. You toss a book into your dorm room, just clearing a windowsill 
4.2 m above the ground. (a) If the book leaves your hand 1.5 m  
above the ground, how fast must it be going to clear the sill?  
(b) How long after it leaves your hand will it hit the floor, 0.87 m 
below the windowsill?

77. Consider an object traversing a distance L, part of the way at 
speed v1 and the rest of the way at speed v2. Find expressions for 
the object’s average speed over the entire distance L when the object 
moves at each of the two speeds v1 and v2 for (a) half the total 
time and (b) half the total distance. (c) In which case is the aver-
age speed greater?

78. A particle’s position as a function of time is given by 
x = x0 sinvt, where x0 and v are constants. (a) Find expressions 
for the velocity and acceleration. (b) What are the maximum val-
ues of velocity and acceleration? (Hint: Consult the table of de-
rivatives in Appendix A.)
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79. Ice skaters, ballet dancers, and basketball players executing verti-
cal leaps often give the illusion of “hanging” almost motionless 
near the top of the leap. To see why this is, consider a leap to 
maximum height h. Of the total time spent in the air, what frac-
tion is spent in the upper half (i.e., at y 7 1

2h)?
80. You’re staring idly out your dorm window when you see a water 

balloon fall past. If the balloon takes 0.22 s to cross the 1.3-m-high 
window, from what height above the window was it dropped?

81. A police radar’s effective range is 1.0 km, and your radar detec-
tor’s range is 1.9 km. You’re going 110 km/h in a 70 km/h zone 
when the radar detector beeps. At what rate must you negatively 
accelerate to avoid a speeding ticket?

82. An object starts moving in a straight line from position x0, at time 
t = 0, with velocity v0. Its acceleration is given by a = a0 + bt, 
where a0 and b are constants. Use integration to find expressions 
for (a) the instantaneous velocity and (b) the position, as func-
tions of time.

83. You’re a consultant on a movie set, and the producer wants a 
car to drop so that it crosses the camera’s field of view in time 
∆t. The field of view has height h. Derive an expression for the 
height above the top of the field of view from which the car 
should be released.

84. (a) For the ball in Example 2.6, find its velocity just before 
it hits the floor. (b) Suppose you had tossed a second ball 
straight down at 7.3 m/s (from the same place 1.5 m above the 
floor). What would its velocity be just before it hits the floor?  
(c) When would the second ball hit the floor? (Interpret any 
multiple answers.)

85. Your roommate is an aspiring novelist and asks your opinion on 
a matter of physics. The novel’s central character is kept awake 
at night by a leaky faucet. The sink is 19.6 cm below the faucet. 
At the instant one drop leaves the faucet, another strikes the sink 
below and two more are in between on the way down. How many 
drops per second are keeping the protagonist awake?

86. You and your roommate plot to drop water balloons on students 
entering your dorm. Your window is 20 m above the sidewalk. 
You plan to place an X on the sidewalk to mark the spot a student 
must be when you drop the balloon. You note that most students 
approach the dorm at about 2 m/s. How far from the impact point 
do you place the X?

87. Derive Equation 2.10 by integrating Equation 2.7 over time. 
You’ll have to interpret the constant of integration.

88. An object’s acceleration increases quadratically with time: 
a(t) = bt2, where b = 0.041 m/s4. If the object starts from rest, 
how far does it travel in 6.3 s?

89. An object’s  accelerat ion is  given by the expression  
a1t2 = -a0 cosvt, where a0 and v are positive constants.  
Find expressions for the object’s (a) velocity and (b) posi-
tion as functions of time. Assume that at time t = 0 it starts 
from rest at its greatest positive displacement from the origin.  
(c)  Determine the magnitudes of the object’s maximum velocity 
and maximum displacement from the origin.

90. An object’s acceleration decreases exponentially with time: 
a1t2 = a0 e

-bt, where a0 and b are constants. (a) Assuming the 
object starts from rest, determine its velocity as a function of 
time. (b) Will its speed increase indefinitely? (c) Will it travel 
indefinitely far from its starting point?

91. A ball is dropped from rest at a height h0 above the ground. At the 
same instant, a second ball is launched with speed v0 straight up 
from the ground, at a point directly below where the other ball is 
dropped. (a) Find a condition on v0 such that the two balls will col-
lide in mid-air. (b) Find an expression for the height at which they 
collide. 

Passage Problems
A wildlife biologist is studying the hunting patterns of tigers. She anesthe-
tizes a tiger and attaches a GPS collar to track its movements. The collar 
transmits data on the tiger’s position and velocity. Figure 2.16 shows the 
tiger’s velocity as a function of time as it moves on a one-dimensional path.

V
el

oc
ity

, v

0 A

B

C

D

E
F

G

HTime, t S

+, right

-, left

Figure 2.16 The tiger’s velocity (Passage Problems 92–96)

92. At which marked point(s) is the tiger not moving?
a. E only
b. A, E, and H
c. C and F
d. none of the points (it’s always moving)

93. At which marked point(s) is the tiger not accelerating?
a. E only
b. A, E, and H
c. C and F
d. all of the points (it’s never accelerating)

94. At which point does the tiger have the greatest speed?
a. B
b. C
c. D
d. F

95. At which point does the tiger’s acceleration have the greatest 
magnitude?
a. B
b. C
c. D
d. F

96. At which point is the tiger farthest from its starting position at 
t = 0?
a. C
b. E
c. F
d. H

answers to Chapter Questions

Answer to Chapter Opening Question
Although the ball’s velocity is zero at the top of its motion, its 
 acceleration is -9.8 m/s2, as it is throughout the toss.

Answers to GOT IT? Questions
 2.1 (a) and (b); average speed is greater for (c)
 2.2 (b) moves with constant speed; (a) reverses; (d) speeds up
 2.3 (b) downward
 2.4 (a) halfway between the times; because its acceleration is con-

stant, the police car’s speed increases by equal amounts in equal 
times. So it gets from 0 to half its final velocity—which is twice 
the car’s velocity—in half the total time.

 2.5 The dropped ball hits first; the thrown ball hits moving faster.
 2.6 (c)

CH

CH

CH

CH

CH

CH

CH

CH
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Motion in Two and Three Dimensions

3

How You’ll Use It
■ You’ll study Newton’s laws of motion 

in Chapters 4 and 5, and you’ll see 
how acceleration—involving change 
in motion—is a key concept in 
Newtonian mechanics.

■ Your understanding of accelerated 
motion developed here will set the 
stage for applying Newton’s laws 
of motion in multidimensional 
situations.

■ The language of vectors will serve 
you throughout the rest of this course 
because physical quantities ranging 
from forces to angular momentum 
to electric and magnetic fields are all 
vectors.

What You Know
■ You understand basic motion 

concepts: position, velocity, and 
acceleration.

■ You can interpret graphs of these 
quantities as functions of time.

■ You know how to analyze motion 
in one dimension under constant 
acceleration, including the 
acceleration of gravity near Earth.

What’s the speed of an orbiting satellite? How should I leap to win the long-jump com-
petition? How do I engineer a curve in the road for safe driving? These and many other 

questions involve motion in more than one dimension. In this chapter we extend the ideas of 
one-dimensional motion to these more complex—and more interesting—situations.

3.1 Vectors
We’ve seen that quantities describing motion have direction as well as magnitude. In 
Chapter 2, a simple plus or minus sign took care of direction. But now, in two or three 
dimensions, we need a way to account for all possible directions. We do this with 
mathematical quantities called vectors, which express both magnitude and direction. 
Vectors stand in contrast to scalars, which are quantities that have no direction.

Position and Displacement
The simplest vector quantity is position. Given an origin, we can characterize any po-
sition in space by drawing an arrow from the origin to that position. That arrow is a 
pictorial representation of a position vector, which we call r

!
. The arrow over the r 

indicates that this is a vector quantity, and it’s crucial to include the arrow whenever 
you’re dealing with vectors. Figure 3.1 shows a position vector in a two-dimensional 

What You’re Learning
■ You’ll learn to describe the richness of 

motion in two and three dimensions 
using the language of vectors.

■ You’ll develop vector expressions for 
position, velocity, and acceleration.

■ You’ll see how the analysis of 
multidimensional motion is based 
on the techniques of Chapter 2, now 
applied in mutually perpendicular 
directions.

■ You’ll learn about motion under the 
influence of gravity near Earth’s surface.

■ You’ll see how circular motion is a 
special case of accelerated motion, and 
you’ll see how to find the magnitude 
and direction of that acceleration.

At what angle should this penguin leave the 
water to maximize the range of its jump?
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3.1 Vectors 33

coordinate system; this vector describes a point a distance of 2 m from the origin, in a di-
rection 30° from the  horizontal axis.

Suppose you walk from the origin straight to the point described by the vector r
!
1 in 

Fig. 3.1, and then you turn right and walk another 1 m. Figure 3.2 shows how you can 
tell where you end up. Draw a second vector whose length represents 1 m and that points 
to the right; we’ll call this vector ∆r

!
 because it’s a displacement vector, representing 

a change in position. Put the tail of ∆r
!
 at the head of the vector r

!
1; then the head of ∆r

!
 

shows your ending position. The result is the same as if you had walked straight from the 
origin to this position. So the new position is described by a third vector r

!
2, as indicated 

in Fig. 3.2. What we’ve just described is vector addition. To add two vectors, put the sec-
ond vector’s tail at the head of the first; the sum is then the vector that extends from the 
tail of the first vector to the head of the second, as does r

!
2 in Fig. 3.2.

A vector has both magnitude and direction—but because that’s all the information it 
contains, it doesn’t matter where it starts. So you’re free to move a vector around to form 
vector sums. Figure 3.3 shows some examples of vector addition and also shows that vec-
tor addition obeys simple rules you know for regular arithmetic.

Multiplication
You and I jog in the same direction, but you go twice as far. Your displacement vector, B

S
, 

is twice as long as my displacement vector, A
S

; mathematically, B
S

= 2A
S

. That’s what it 
means to multiply a vector by a scalar; simply rescale the magnitude of the vector by that 
scalar. If the scalar is negative, then the vector direction reverses—and that provides a 
way to subtract vectors. In Fig. 3.2, for example, you can see that r

!
1 = r

!
2 + 1-12∆r

!
, or 

simply r
!
1 = r

!
2 - ∆r

!
. Later, we’ll see ways to multiply two vectors, but for now the only 

multiplication we consider is a vector multiplied by a scalar.

Vector Components
You can always add vectors graphically, as shown in Fig. 3.2, or you can use geometric 
relationships like the laws of sines and cosines to accomplish the same thing algebraically. 
In both these approaches, you specify a vector by giving its magnitude and direction. But 
often it’s more convenient instead to describe vectors using their components in a given 
coordinate system.

A coordinate system is a framework for describing positions in space. It’s a mathematical 
construct, and you’re free to choose whatever coordinate system you want. You’ve already 
seen Cartesian or rectangular coordinate systems, in which a pair of numbers 1x, y2 rep-
resents each point in a plane. You could also think of each point as representing the head of 
a position vector, in which case the numbers x and y are the vector components. The compo-
nents tell how much of the vector is in the x-direction and how much is in the y-direction. Not 
all vectors represent actual positions in space; for example, there are velocity, acceleration, 
and force vectors. The lengths of these vectors represent the magnitudes of the corresponding 
physical quantities. For an arbitrary vector quantity A

S
, we designate the components Ax and 

Ay (Fig. 3.4). Note that the components themselves aren’t vectors but scalars.

Figure 3.1 A position vector ru1.

r1

O is the
arbitrary
origin.

The vector r1
describes the
position of this 
point.

30°

2.0 m

O

u

u

Figure 3.2 Vectors ru1 and ∆ ru sum to ru2.

r1

r2

∆r

30°

u

u

u

Figure 3.3 Vector addition is commutative and associative.

C
S

Vector addition is commutative:  
A + B = B + A.

A
A AA

A + B A + B
B + A

B + C

B B B

B

SSSS

S

S
S

SS

S

S

S

S

S

S

S S

SS Vector addition is also associative:
1A + B2 + C = A + 1B + C2.SS SS S S

C
S

S

A + 1B + C2S S S1A + B2 + C
S SS

Figure 3.4 Magnitude/direction and 
 component representations of vector A

S
.

Here’s the y-
component 
of A.

Here’s the x-
component of A.

This is the
magnitude
of A.

This is A’s
direction.

Ay

Ax

A cos u

A sin u 

u

Ax
2  + Ay

2

A = 2
S

S

S S

A
S

PheT: Vector Addition
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34 Chapter 3 Motion in Two and Three Dimensions

In two dimensions it takes two quantities to specify a vector—either its magnitude and 
direction or its components. They’re related by the Pythagorean theorem and the defini-
tions of the trig functions, as shown in Fig. 3.4:

 A = 2Ax
2 + Ay

2 and tan u =
Ay

Ax
  1vector magnitude and direction2 (3.1)

Without the arrow above it, a vector’s symbol stands for the vector’s magnitude. Going the 
other way, we have

 Ax = A cos u and Ay = A sin u  1vector components2 (3.2)

If a vector A
S

 has zero magnitude, we write A
S

= 0
S

, where the vector arrow on the 
zero indicates that both components must be zero.

Unit Vectors
It’s cumbersome to say “a vector of magnitude 2 m at 30° to the x-axis” or, equivalently, 
“a vector whose x- and y-components are 1.73 m and 1.0 m, respectively.” We can express 
this more succinctly using the unit vectors in  (read as “i hat”) and jn . These unit vectors 
have magnitude 1, no units, and point along the x- and y-axes, respectively. In three dimen-
sions we add a third unit vector, kn, along the z-axis. Any vector in the x-direction can be 
written as some number—perhaps with units, such as meters or meters per second—times 
the unit vector in, and analogously in the y-direction using jn. That means any vector in a 
plane can be written as a sum involving the two unit vectors: A

S
= Ax in + Ayjn  (Fig. 3.5a). 

Similarly, any vector in space can be written with the three unit vectors (Fig. 3.5b).
The unit vectors convey only direction; the numbers that multiply them give size and 

units. Together they provide compact representations of vectors, including units. The dis-
placement vector r

!
1 in Fig. 3.1, for example, is r

!
1 = 1.7 in + 1.0jn m.

Figure 3.5 Vectors in (a) a plane and (b) space, 
expressed using unit vectors.

A = Ax
i + Ay

j

(a)

(b)

Ay

AxAxi

Ay j

x

z

Azk

y

Ay j

k

j
Axi

i

jn

n

n

n

n

n

n

in

A is the sum of the
vectors Axi and Ay jn

n

n

n

n

A
S

S

n

S

You drive to a city 160 km from home, going 35° north of east. Ex-
press your new position in unit vector notation, using an east–west/
north–south coordinate system.

Interpret We interpret this as a problem about writing a vector in 
unit vector notation, given its magnitude and direction.

Develop Unit vector notation multiplies a vector’s x- and y-compo-
nents by the unit vectors in  and jn  and sums the results; so we draw a 
sketch showing those components (Fig. 3.6). Our plan is to solve for 
the two components, multiply by the unit vectors, and then add. Equa-
tions 3.2 determine the components.

evaluate We have x = r cos u = 1160 km21cos 35°2 = 131 km 
and y = r sin u = 1160 km21sin 35°2 = 92 km. Then the position of 
the city is

r
!

= 131in + 92jn km

assess Make sense? Figure 3.6 suggests that the x-component 
should be longer than the y component, as our answer indicates. Our 

sketch shows the component values and the final answer. Note that 
we treat 131in + 92jn  as a single vector quantity, labeling it at the end 
with the appropriate unit, km.

ExaMPLE 3.1 Unit Vectors: Taking a Drive

■

Figure 3.6 Our sketch for Example 3.1.

The city’s position
is described by the
vector r.

u

M03_WOLF4752_03_SE_C03.indd   34 17/06/15   7:37 AM



3.2 Velocity and Acceleration Vectors 35

Vector arithmetic with Unit Vectors
Vector addition is simple with unit vectors: Just add the corresponding components. If 
A
S

= Ax in + Ayjn  and B
S

= Bx in + Byjn, for example, then their sum is

A
S

+ B
S

= 1Ax in + Ayjn2 + 1Bx in + Byjn2 = 1Ax + Bx2 in + 1Ay + By2jn
Subtraction and multiplication by a scalar are similarly straightforward.

GoT IT? 3.1 Which vector describes a displacement of 10 units in a direction 30° 
below the positive x-axis? (a) 10 in - 10jn; (b) 5.0 in - 8.7jn; (c) 8.7 in - 5.0jn; (d) 101 in + jn2

3.2 Velocity and acceleration Vectors
We defined velocity in one dimension as the rate of change of position. In two or three 
dimensions it’s the same thing, except now the change in position—displacement—is a 
vector. So we write

 v
!

=
∆r

!

∆t
 1average velocity vector2 (3.3)

for the average velocity, in analogy with Equation 2.1. Here division by ∆t simply means 
multiplying by 1/∆t. As before, instantaneous velocity is given by a limiting process:

 v
!

= lim
∆ tS0  
 

∆r
!

∆t
=

dr
!

dt
 1instantaneous velocity vector2 (3.4)

Again, that derivative dr
u
/dt is shorthand for the result of the limiting process, taking ever 

smaller time intervals ∆t and the corresponding displacements ∆r
!
. Another way to look at 

Equation 3.4 is in terms of components. If r
!

= xin + yjn, then we can write

v
!

=
dr

!

dt
=

dx

dt
in +

dy

dt
jn = vx in + vyjn

where the velocity components vx and vy are the derivatives of the position components.
Acceleration is the rate of change of velocity, so we write

 a
!

=
∆v

!

∆t
  1average acceleration vector2 (3.5)

for the average acceleration and

 a
!

= lim
∆tS0  
 

∆v
!

∆t
=

dv
!

dt
 1instantaneous acceleration vector2 (3.6)

for the instantaneous acceleration. We can also express instantaneous acceleration in 
 components, as we did for velocity:

a
!

=
dv

!

dt
=

dvx

dt
in +

dvy

dt
jn = ax in + ayjn

Velocity and acceleration in Two Dimensions
Motion in a straight line may or may not involve acceleration, but motion on curved 
paths in two or three dimensions is always accelerated motion. Why? Because moving 
in  multiple dimensions means changing direction—and any change in velocity,  including 
 direction, involves acceleration. Get used to thinking of acceleration as meaning more than 
“speeding up” or “slowing down.” It can equally well mean “changing direction,” whether 
or not speed is also changing. Whether acceleration results in a speed change, a direc-
tion change, or both depends on the relative orientation of the velocity and  acceleration 
 vectors.
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36 Chapter 3 Motion in Two and Three Dimensions

Suppose you’re driving down a straight road at speed v0 when you step on the gas 
to give a constant acceleration a

!
 for a time ∆t. Equation 3.5 shows that the change in 

your velocity is ∆v
!

= a
!
∆t. In this case the acceleration is in the same direction as your 

 velocity and, as Fig. 3.7a shows, the result is an increase in the magnitude of your veloc-
ity; that is, you speed up. Step on the brake, and your acceleration is opposite your veloc-
ity, and you slow down (Fig. 3.7b).

✓TIP Vectors Tell It All

Are you thinking there should be a minus sign in Fig. 3.7b because the speed is decreasing? 
Nope: Vectors have both magnitude and direction, and the vector addition v

!
= v

!
0 + a

!
∆t 

tells it all. In Fig. 3.7b, ∆v
!
 points to the left, and that takes care of the “subtraction.”

In two dimensions acceleration and velocity can be at any angle. In general, 
 acceleration then changes both the magnitude and the direction of the velocity (Fig. 
3.8). Particularly interesting is the case when a

!
 is perpendicular to v

!
; then only the 

direction of motion changes. If acceleration is constant—in both magnitude and direc-
tion—then the two vectors won’t stay perpendicular once the direction of v

!
 starts to 

change, and the magnitude will change, too. But in the special case where acceleration 
changes  direction so it’s always perpendicular to velocity, then it’s strictly true that only 
the direction of motion changes. Figure 3.9 illustrates this point, which we’ll soon ex-
plore  quantitatively.

GoT IT? 3.2 An object is accelerating downward. Which, if any, of the following 
must be true? (a) the object cannot be moving upward; (b) the object cannot be moving 
in a straight line; (c) the object is moving directly downward; (d) if the object’s motion is 
instantaneously horizontal, it can’t continue to be so

3.3 Relative Motion
You stroll down the aisle of a plane, walking toward the front at a leisurely 4 km/h. Mean-
while the plane is moving relative to the ground at 1000 km/h. Therefore, you’re moving 
at 1004 km/h relative to the ground. As this example suggests, velocity is meaningful only 
when we know the answer to the question, “Velocity relative to what?” That “what” is 
called a frame of reference. Often we know an object’s velocity relative to one frame 
of reference—for example, your velocity relative to the plane—and we want to know 
its velocity relative to some other reference frame—in this case the ground. In this one- 
dimensional case, we can simply add the two velocities. If you had been walking toward 
the back of the plane, then the two velocities would have opposite signs and you would be 
going at 996 km/h relative to the ground.

The same idea works in two dimensions, but here we need to recognize that velocity 
is a vector. Suppose that airplane is flying with velocity v

!
′ relative to the air. If a wind is 

blowing, then the air is moving with some velocity V
S

 relative to the ground. The plane’s 
velocity v

!
 relative to the ground is the vector sum of its velocity relative to the air and the 

air’s velocity relative to the ground:

 v
!

= v
!
′ + V

S
  1relative velocity2 (3.7)

Here we use lowercase letters for the velocities of an object relative to two different ref-
erence frames; we distinguish the two with the prime on one of the velocities. The capital V

S
 

is the relative velocity between the two frames. In general, Equation 3.7 lets us use the 
velocity of an object in one reference frame to find its velocity relative to another frame—
provided we know that relative velocity V

S
. Example 3.2 illustrates the application of this 

idea to aircraft navigation.

Figure 3.7 When vu and au are colinear, only the 
speed changes.

a

a

v0

v0

∆v = a∆t

∆v = a∆t

v = v0 + ∆v

v = v0 + a∆t

(a)

(b)

u

u

u

u

u

u

uuu

u

u

uu

u

Figure 3.8 In general, acceleration changes 
both the magnitude and the direction of 
velocity.

a

v0

v = v0 + ∆v

∆v = a∆t

u

uu

uuu

u

Figure 3.9 Acceleration that is always perpen-
dicular to velocity changes only the direction.

v0

v

v

∆v = a∆t

a

a

Initially a changes only
the direction of v, but
soon a and v are no longer
perpendicular, so 0v 0 changes,
too.

If a stays perpendicular
to v, then only direction
changes.

(a)

(b)

u

u

u

u

u

u

u

u

u

u

u

u

u

u
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3.4 Constant Acceleration 37

ExaMPLE 3.2 Relative Velocity: Navigating a Jetliner

A jetliner flies at 960 km/h relative to the air. It’s going from Houston 
to Omaha, 1290 km northward. At cruising altitude a wind is blowing 
eastward at 190 km/h. In what direction should the plane fly? How 
long will the trip take?

Interpret This is a problem involving relative velocities. We iden-
tify the given information: the plane’s speed, but not its direction, in 
the reference frame of the air; the plane’s direction, but not its speed, 
in the reference frame of the ground; and the wind velocity, both 
speed and direction.

Develop Equation 3.7, v
!

= v
!
′ + V

S
, applies, and we identify v

!
 as 

the plane’s velocity relative to the ground, v
!
′ as its velocity relative to 

the air, and V
S

 as the wind velocity. Equation 3.7 shows that v
!
′ and V

S
  

add vectorially to give v
!
 that, with the given information, helps us 

draw the situation (Fig. 3.10). Measuring the angle of v
!
′ and the 

length of v
!
 in the diagram would then give the answers. However, 

we’ll work the problem algebraically using vector components. Since 
the plane is flying northward and the wind is blowing eastward, a suit-
able coordinate system has x-axis eastward and y-axis northward. Our 

plan is to work out the vector components in these coordinates and 
then apply Equation 3.7.

evaluate Using Equations 3.2 for the vector components, we can 
express the three vectors as

v
!
′ = v′ cos u in + v′ sin ujn, V

S
= Vin, and v

!
= vjn

Here we know the magnitude v′ of the velocity v
!
′, but we don’t know 

the angle u. We know the magnitude V of the wind velocity V
S

, and we 
also know its direction—toward the east. So V

S
 has only an x-compo-

nent. Meanwhile we want the velocity v
!
 relative to the ground to be 

purely northward, so it has only a y-component—although we don’t 
know its magnitude v. We’re now ready to put the three velocities into 
Equation 3.7. Since two vectors are equal only if all their components 
are equal, we can express the vector Equation 3.7 as two separate sca-
lar equations for the x- and y-components:

 x@component:  v′ cos u + V = 0

 y@component:  v′ sin u + 0 = v

The rest is math, evaluating the unknowns u and v. Solving the x equa-
tion gives

u = cos-1 a-
V

v′
b = cos-1 a-

190 km/h

960 km/h
b = 101.4°

This angle is measured from the x-axis (eastward; see Fig. 3.10), so 
it amounts to a flight path 11° west of north. We can then evaluate v 
from the y equation:

v = v′ sin u = 1960 km/h21sin 101.4°2 = 941 km/h

That’s the plane’s speed relative to the ground. Going 1290 km will 
then take 11290 km2/1941 km/h2 = 1.4 h.

assess Make sense? The plane’s heading of 11° west of north seems 
reasonable compensation for an eastward wind blowing at 190 km/h, 
given the plane’s airspeed of 960 km/h. If there were no wind, the trip 
would take 1 h, 20 min (1290 km divided by 960 km/h), so our time of 
1 h, 24 min with the wind makes sense.Figure 3.10 Our vector diagram for Example 3.2. ■

GoT IT? 3.3 An airplane is making a 500-km trip directly north that 
is supposed to take exactly 1 h. For 100-km/h winds blowing in each of 
the directions (1), (2), and (3) shown, does the plane’s speed relative to 
the air need to be (a) less than, (b) equal to, or (c) greater than 500 km/h?

3.4 Constant acceleration
When acceleration is constant, the individual components of the acceleration vector are 
themselves constant. Furthermore, the component of acceleration in one direction has no 
effect on the motion in a perpendicular direction (Fig. 3.11, next page). Then with constant 
acceleration, the separate components of the motion must obey the constant-acceleration 
formulas we developed in Chapter 2 for one-dimensional motion. Using vector notation, 
we can then generalize Equations 2.7 and 2.10 to read

 v
!

= v
!
0 + a

!
t  1for constant acceleration only2 (3.8)

 r
!

= r
!
0 + v

!
0 t + 1

2 a
!
t2  1for constant acceleration only2 (3.9)

N

(1)

(2)

(3)
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38 Chapter 3 Motion in Two and Three Dimensions

where r
!
 is the position vector. In two dimensions, each of these vector equations rep-

resents a pair of scalar equations describing constant acceleration in two mutually per-
pendicular directions. Equation 3.9, for example, contains the pair x = x0 + vx0 t + 1

2ax t
2 

and y = y0 + vy0 t + 1
2ay t

2. (Remember that the components of the displacement vector 
r
!
 are just the coordinates x and y.) In three dimensions there would be a third equation for 

the z-component. Starting with these vector forms of the equations of motion, you can ap-
ply Problem-Solving Strategy 2.1 to problems in two or three dimensions.

Figure 3.11 Two marbles, one dropped and 
the other projected horizontally.

Vertical spacing is 
the same, showing
that vertical and 
horizontal motions
are independent.

ExaMPLE 3.3 acceleration in Two Dimensions: Windsurfing

You’re windsurfing at 7.3 m/s when a gust hits, accelerating your sail-
board at 0.82 m/s2 at 60° to your original direction. If the gust lasts 8.7 
s, what’s the board’s displacement during this time?

Interpret This is a problem involving constant acceleration in two 
dimensions. The key concept is that motion in perpendicular direc-
tions is independent, so we can treat the problem as involving two 
separate one-dimensional motions.

Develop Equation 3.9, r
!

= r
!
0 + v

!
0 t + 1

2 a
!
t2, will give the board’s 

displacement. We need a coordinate system, so we take the x-axis 
along the board’s initial motion, with the origin at the point where the 
gust first hits. Our plan is to find the components of the acceleration 
vector and then apply the two components of Equation 3.9 to get the 
components of the displacement. In Fig. 3.12 we draw the accelera-
tion vector to determine its components.

evaluate With the x-direction along the initial velocity, v
!
0 = 7.3in m/s.  

As Fig. 3.12 shows, the acceleration is a
!

= 0.41in + 0.71jn m/s2. Our 
choice of origin gives x0 = y0 = 0, so the two components of Equa-
tion 3.9 are

 x = vx0 t + 1
2 ax t

2 = 79.0 m

 y = 1
2 ay t

2 = 26.9 m

where we used the appropriate components of a
!
 and where t = 8.7 s. 

The new position vector is then r
!

= xin + yjn = 79.0in + 26.9jn m, 
giving a net displacement of r = 2x2 + y2 = 83 m.

assess Make sense? Figure 3.13 shows how the acceleration de-
flects the sailboard from its original path and also increases its speed 
somewhat. Since the acceleration makes a fairly large angle with the 
initial velocity, the change in direction is the greater effect.

Figure 3.12 Our sketch of the sailboard’s acceleration components.

Figure 3.13 Our sketch of the displacement r
!
, velocity v

!
, and acceleration a

!
 

at the end of the wind gust. The actual path of the sailboard during the gust 
is indicated by the dashed curve.

■
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3.5 Projectile Motion 39

GoT IT? 3.4 An object is moving initially in the +x-direction. Which of the follow-
ing accelerations, all acting for the same time interval, will cause the greatest change in 
its speed? In its direction? (a) 10 in m/s2; (b) 10jn m/s2; (c) 10 in + 5jn m/s2; (d) 2 in - 8jn m/s2

3.5 Projectile Motion
A projectile is an object that’s launched into the air and then moves predominantly un-
der the influence of gravity. Examples are numerous; baseballs, jets of water (Fig. 3.14), 
fireworks, missiles, ejecta from volcanoes, drops of ink in an ink-jet printer, and leaping 
dolphins are all projectiles.

To treat projectile motion, we make two simplifying assumptions: (1) We neglect any 
variation in the direction or magnitude of the gravitational acceleration, and (2) we ne-
glect air resistance. The first assumption is equivalent to neglecting Earth’s curvature, and 
is valid for projectiles whose displacements are small compared with Earth’s radius. Air 
resistance has a more variable effect; for dense, compact objects it’s often negligible, but 
for objects whose ratio of surface area to mass is large—like ping-pong balls and para-
chutes—air resistance dramatically alters the motion.

To describe projectile motion, it’s convenient to choose a coordinate system with the 
y-axis vertically upward and the x-axis horizontal. With the only acceleration provided by 
gravity, ax = 0 and ay = -g, so the components of Equations 3.8 and 3.9 become

  vx = vx0  (3.10)

  vy = vy0 - gt  (3.11)

  x = x0 + vx0 t  (3.12)

  y = y0 + vy0 t - 1
2 gt2 (3.13)

We take g to be positive, and account for the downward direction using minus signs. 
 Equations 3.10–3.13 tell us mathematically what Fig. 3.15 tells us physically: Projectile 
motion comprises two perpendicular and independent components—horizontal motion 
with constant velocity and vertical motion with constant acceleration.

Figure 3.14 Water droplets–each an individual 
projectile–combine to form graceful parabolic 
arcs in this fountain.

(for constant 
gravitational 
acceleration)

(+
+
)

++
*

Figure 3.15 Velocity and acceleration at five points on a projectile’s path. Also 
shown are horizontal and vertical components.
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40 Chapter 3 Motion in Two and Three Dimensions

problem-solvIng strategy 3.1 Projectile Motion

INTERPRET Make sure that you have a problem involving the constant acceleration of gravity 
near Earth’s surface, and that the motion involves both horizontal and vertical components. 
Identify the object or objects in question and whatever initial or final positions and velocities 
are given. Know what quantities you’re being asked to find.

DEVELoP Establish a horizontal/vertical coordinate system, and write the separate components 
of the equations of motion (Equations 3.10–3.13). The equations for different components will 
be linked by a common variable—namely, time. Draw a sketch showing the initial motion and 
a rough trajectory.

EVaLUaTE Solve your individual equations simultaneously for the unknowns of the problem.

assEss Check that your answer makes sense. Consider special cases, like purely vertical or 
horizontal initial velocities. Because the equations of motion are quadratic in time, you may 
have two answers. One answer may be the one you want, but you gain more insight into physics 
if you consider the meaning of the second answer, too.

ExaMPLE 3.4 Finding the Horizontal Distance: Washout!

A raging flood has washed away a section of highway, creating a gash 
1.7 m deep. A car moving at 31 m/s goes straight over the edge. How 
far from the edge of the washout does it land?

Interpret This is a problem involving projectile motion, and it asks 
for the horizontal distance the car moves after it leaves the road. We’re 
given the car’s initial speed and direction (horizontal) and the distance 
it falls.

Develop Figure 3.16a shows the situation, and we’ve sketched 
the essentials in Fig. 3.16b. Since there’s no horizontal acceleration, 
Equation 3.12, x = x0 + vx0 t, would determine the unknown dis-
tance if we knew the time. But horizontal and vertical motions are 
independent, so we can find the time until the car hits the ground 
from the vertical motion alone, as determined by Equation 3.13, 
y = y0 + vy0 t - 1

2gt2. So our plan is to get the time from Equation 
3.13 and then use that time in Equation 3.12 to get the horizontal 
distance. If we choose the origin as the bottom of the washout, then 
y0 = 1.7 m. Then we want the time when y = 0.

evaluate With vy0 = 0, we solve Equation 3.13 for t:

t = A2y0

g
= A12211.7 m2

19.8 m/s22
= 0.589 s

During this time the car continues to move horizontally at vx0 = 31 m/s, 
so Equation 3.12 gives x = vx0 t = 131 m/s210.589 s2 = 18 m.

Note that we carried three significant figures in our intermediate an-
swer for the time t to avoid roundoff error in our final two-significant-
figure answer. Alternatively, we could have kept the time in symbolic 
form, t = 22y0 /g. Often you can gain more physical insight from an 
answer that’s expressed symbolically before you put in the numbers.

assess Make sense? About half a second to drop 1.7 m or about 6 ft 
seems reasonable, and at 31 m/s an object will go somewhat farther 
than 15 m in this time.

Figure 3.16 (a) The highway and car, and (b) our sketch.

(a) (b)

1.7 m

■
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3.5 Projectile Motion 41

✓TIP Multistep Problems

Example 3.4 asked for the horizontal distance the car traveled. For that we needed the 
time—which we weren’t given. This is a common situation in all but the simplest phys-
ics problems. You need to work through several steps to get the answer—in this case 
solving first for the unknown time and then for the distance. In essence, we solved two 
problems in Example 3.4: the first involving vertical motion and the second horizontal 
motion.

Projectile Trajectories
We’re often interested in the path, or trajectory, of a projectile without the details of 
where it is at each instant of time. We can specify the trajectory by giving the height y as 
a function of the horizontal position x. Consider a projectile launched from the origin at 
some angle u0 to the horizontal, with initial speed v0. As Fig. 3.17 suggests, the compo-
nents of the initial velocity are vx0 = v0 cos u0 and vy0 = v0 sin u0. Then Equations 3.12 
and 3.13 become

x = v0 cos u0 t and y = v0 sin u0 t - 1
2 gt2

Solving the x equation for the time t gives

t =
x

v0 cos u0

Using this result in the y equation, we have

y = v0 sin u0 a x

v0 cos u0
b - 1

2 g a x

v0 cos u0
b

2

or

 y = x tan u0 -
g

2v0
2 cos2 u0

 x2  1projectile trajectory2 (3.14)

Equation 3.14 gives a mathematical description of the projectile’s trajectory. Since y is a 
quadratic function of x, the trajectory is a parabola.

Figure 3.17 Parabolic trajectory of a projectile.

u0

v0

Horizontal range

y

xvx0

vy0

u

aPPLICaTIoN  Pop Flies, Line 
Drives, and 
Hang Times

Although air resistance significantly influences 
baseball trajectories, to a first approximation 
baseballs behave like projectiles. For a given 
speed off the bat, this means a pop fly’s “hang 
time” is much greater than that of a nearly hori-
zontal line drive, and that makes the fly ball 
much easier to catch (see photo).

ExaMPLE 3.5 Finding the Trajectory: out of the Hole

A construction worker stands in a 2.6-m-deep hole, 3.1 m from the 
edge of the hole. He tosses a hammer to a companion outside the hole. 
If the hammer leaves his hand 1.0 m above the bottom of the hole at 
an angle of 35°, what’s the minimum speed it needs to clear the edge 
of the hole? How far from the edge of the hole does it land?

Interpret We’re concerned about where an object is but not when, 
so we interpret this as a problem about the trajectory—specifically, 
the minimum-speed trajectory that just grazes the edge of the hole.

Develop We draw the situation in Fig. 3.18. Equation 3.14 deter-
mines the trajectory, so our plan is to find the speed that makes the 
trajectory pass just over the edge of the hole at x = 3.1 m, y = 1.6 m, 
where Fig. 3.18 shows that we’ve chosen a coordinate system with its 
origin at the worker’s hand. Figure 3.18 Our sketch for Example 3.5.

We want v0 so that the hammer will
just clear the point x = 3.1 m, 
y = 1.6 m.

(continued)
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42 Chapter 3 Motion in Two and Three Dimensions

The Range of a Projectile
How far will a soccer ball go if I kick it at 12 m/s at 50° to the horizontal? If I can throw 
a rock at 15 m/s, can I get it across a 30-m-wide pond? How far off vertical can a rocket’s 
trajectory be and still land within 50 km of its launch point? As in these examples, we’re 
frequently interested in the horizontal range of a projectile—that is, how far it moves 
horizontally over level ground.

For a projectile launched on level ground, we can determine when the projectile will 
return to the ground by setting y = 0 in Equation 3.14:

0 = x tan u0 -
g

2v0
2 cos2 u0

 x2 = x atan u0 -
gx

2v0
2 cos2 u0

b

There are two solutions: x = 0, corresponding to the launch point, and

x =
2v0

2

g
 cos2 u0 tan u0 =

2v0
2

g
 sin u0 cos u0

But sin 2u0 = 2 sin u0 cos u0, so this becomes

 x =
v0

2

g
 sin 2u0  1horizontal range2 (3.15)

✓TIP Know Your Limits

We emphasize that Equation 3.15 gives the horizontal range—the distance a projectile 
travels horizontally before returning to its starting height. From the way it was de-
rived—setting y = 0—you can see that it does not give the horizontal distance when 
the projectile returns to a different height (Fig. 3.19).

The maximum range occurs when sin 2u = 1 in Equation 3.15, which occurs when 
u = 45°. As Fig. 3.20 suggests, the range for a given launch speed v0 is equal for angles 
equally spaced on either side of 45°—as you can prove in Problem 70.

Figure 3.19 Equation 3.15 applies in (a) but not 
in (b).

Here the particle returns to its
starting height, so Equation 3.15
applies.

Here the particle lands at a
different height, so Equation 3.15
doesn’t apply.

(a)

(b)

CoNCEPTUaL ExaMPLE 3.1 Projectile Flight Times

The ranges in Fig. 3.20 are equal for angles on either side of 45°. How 
do the flight times compare?

evaluate We’re being asked about the times projectiles spend on 
the trajectories shown. Since horizontal and vertical motions are in-
dependent, flight time depends on how high the projectile goes. So 

we can argue from the vertical motions that the trajectory with the 
higher launch angle takes longer. We can also argue from horizontal 
motions: Horizontal distances of the paired trajectories are the same, 
but the lower trajectory has a greater horizontal velocity component, 
so again the lower trajectory takes less time.

evaluate To find the minimum speed we solve Equation 3.14 for 
v0, using the coordinates of the hole’s edge for x and y:

v0 = B gx2

2 cos2 u0 1x tan u0 - y2 = 11 m/s

To find where the hammer lands, we need to know the horizontal position 
when y = 1.6 m. Rearranging Equation 3.14 into the standard form for 
a quadratic equation gives 1g/2v0

2 cos2 u02x2 - 1tan u02x + y = 0. 
Applying the quadratic formula (Appendix A) gives x = 3.1 m 

and x = 8.7 m; the second value is the one we want. That 8.7 m is 
the distance from our origin at the worker’s hand, and amounts to 
8.7 m - 3.1 m = 5.6 m from the hole’s edge.

assess Make sense? The other answer to the quadratic, x = 3.1 m, 
is a clue that we did the problem correctly. That 3.1 m is the distance 
to the edge of the hole. The fact that we get this position when we ask 
for a vertical height of 1.6 m confirms that the trajectory does indeed 
just clear the edge of the hole. ■
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✓TIP Know the Fundamentals

Equations 3.14 and 3.15 for a projectile’s trajectory and range are useful, but they’re 
not fundamental equations of physics. Both follow directly from the equations for con-
stant acceleration. If you think that specialized results like Equations 3.14 and 3.15 are 
on an equal footing with more fundamental equations and principles, then you’re see-
ing physics as a hodgepodge of equations and missing the big picture of a science with 
a few underlying principles from which all else follows.

assess Consider the extreme cases of near-vertical and near-hor-
izontal trajectories. The former goes nearly straight up and down, 
taking a relatively long time but returning essentially to its starting 
point. The latter hardly gets anywhere because it immediately hits the 
ground right at its starting point, so it takes just about no time!

makIng the ConneCtIon Find the flight times for the 30° and 60° 
trajectories in Fig. 3.20.

evaluate The range of Equation 3.15 is also equal to the  horizontal ve-
locity vx multiplied by the time: vx t = v 2

0  sin 2u0/g. Using vx0 = v0 cos u0 
and solving for t gives t = 2v0 sin u0/g. Using Fig. 3.20’s v0 = 50 m/s 
yields t30 = 5.1 s and t60 = 8.8 s. You can  explore this time difference 
more generally in Problem 65.Figure 3.20 Trajectories for a projectile launched at 50 m>s.
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ExaMPLE 3.6 Projectile Range: Probing the atmosphere

After a short engine firing, an atmosphere-probing rocket reaches 
4.6 km/s. If the rocket must land within 50 km of its launch site, 
what’s the maximum allowable deviation from a vertical trajectory?

Interpret Although we’re asked about the launch angle, the 50-km 
criterion is a clue that we can interpret this as a problem about the 
horizontal range. That “short engine firing” means we can neglect the 
distance over which the rocket fires and consider it a projectile that 
leaves the ground at v0 = 4.6 km/s.

Develop Equation 3.15, x = 1v0
2/g2 sin 2u0, determines the horizontal 

range, so our plan is to solve that equation for u0 with range x = 50 km.

evaluate We have sin 2u0 = gx/v0
2 = 0.0232. There are two 

 solutions, corresponding to 2u0 = 1.33° and 2u0 = 180° - 1.33°. The 
second is the one we want, giving a launch angle u0 = 90° - 0.67°. 
Therefore the launch angle must be within 0.67° of vertical.

assess Make sense? At 4.6 km/s, this rocket goes quite high, so with 
even a small deviation from vertical it will land far from its launch 
point. Again we’ve got two solutions. The one we rejected is like the 
low trajectories of Fig. 3.20; although it gives a 50-km range, it isn’t 
going to get our rocket high into the atmosphere. ■

GoT IT? 3.5 Two projectiles are launched simultaneously from the same point on a 
horizontal surface, one at 45° to the horizontal and the other at 60°. Their launch speeds 
are different and are chosen so that the two projectiles travel the same horizontal distance 
before landing. Which of the following statements is true? (a) A and B land at the same 
time; (b) B’s launch speed is lower than A’s and B lands sooner; (c) B’s launch speed 
is lower than A’s and B lands later; (d) B’s launch speed is higher than A’s and B lands 
sooner; or (e) B’s launch speed is higher than A’s and B lands later.

3.6 Uniform Circular Motion
An important case of accelerated motion in two dimensions is uniform circular  motion—
that of an object describing a circular path at constant speed. Although the speed is 
 constant, the motion is accelerated because the direction of the velocity is changing.

Uniform circular motion is common. Many spacecraft are in circular orbits, and the or-
bits of the planets are approximately circular. Earth’s daily rotation carries you around in 

PheT: Ladybug Motion 2D
PheT: Motion in 2D

Video Tutor Demo | Range of a Gun 
at Two Firing Angles
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44 Chapter 3 Motion in Two and Three Dimensions

uniform circular motion. Pieces of rotating machinery describe uniform circular motion, 
and you’re temporarily in circular motion as you drive around a curve. Electrons undergo 
circular motion in magnetic fields.

Here we derive an important relationship among the acceleration, speed, and radius of 
uniform circular motion. Figure 3.21 shows several velocity vectors for an object moving 
with speed v around a circle of radius r. Velocity vectors are tangent to the circle, indicating 
the instantaneous direction of motion. In Fig. 3.22a we focus on two nearby points described 
by position vectors r

!
1 and r

!
2, where the velocities are v

!
1 and v

!
2. Figures 3.22b and c show the 

corresponding displacement ∆r
!

= r
!
2 - r

!
1 and velocity difference ∆v

!
= v

!
2 - v

!
1.

Because v
!
1 is perpendicular to r

!
1, and v

!
2 is perpendicular to r

!
2, the angles u shown in 

all three parts of Fig. 3.22 are the same. Therefore, the triangles in Fig. 3.22b and c are 
similar, and we can write

∆v
v

=
∆r
r

Now suppose the angle u is small, corresponding to a short time interval ∆t for motion 
from position r

!
1 to r

!
2. Then the length of the vector ∆r

!
 is approximately the length of the 

circular arc joining the endpoints of the position vectors, as suggested in Fig. 3.22b. The 
length of this arc is the distance the object travels in the time ∆t, or v∆t, so ∆r ≃ v∆t. 
Then the relation between similar triangles becomes

∆v
v

≃
v ∆t

r

Rearranging this equation gives an approximate expression for the magnitude of the aver-
age acceleration:

a =
∆v

∆t
≃

v2

r

Taking the limit ∆t S 0 gives the instantaneous acceleration; in this limit the angle u ap-
proaches 0, the circular arc and ∆r

!
 become indistinguishable, and the relation ∆r ≃ v ∆t 

becomes exact. So we have

 a =
v2

r
  1uniform circular motion2 (3.16)

for the magnitude of the instantaneous acceleration of an object moving in a circle of 
radius r at constant speed v. What about its direction? As Fig. 3.22c suggests, ∆v

!
 is very 

nearly perpendicular to both velocity vectors; in the limit ∆t S 0, ∆v
!
 and the acceleration 

∆v
!
/∆t become exactly perpendicular to the velocity. The direction of the acceleration vec-

tor is therefore toward the center of the circle.
Our geometric argument would work for any point on the circle, so we conclude that 

the acceleration has constant magnitude v2/r and always points toward the center of the 
circle. Isaac Newton coined the term centripetal to describe this center-pointing accelera-
tion. However, we’ll use that term sparingly because we want to emphasize that centripetal 
acceleration is fundamentally no different from any other acceleration: It’s simply a vector 
describing the rate of change of velocity.

Does Equation 3.16 make sense? Yes. An increase in speed v means the time ∆t for a 
given change in direction of the velocity becomes shorter. Not only that, but the associated 
change ∆v

!
 in velocity is larger. These two effects combine to give an acceleration that de-

pends on the square of the speed. On the other hand, an increase in the radius with a fixed 
speed increases the time ∆t associated with a given change in velocity, so the acceleration 
is inversely proportional to the radius.

✓TIP Circular Motion and Constant Acceleration

The direction toward the center changes as an object moves around a circular path, so 
the acceleration vector is not constant, even though its magnitude is. Uniform circular 
motion is not motion with constant acceleration, and our constant-acceleration equa-
tions do not apply. In fact, we know that constant acceleration in two dimensions im-
plies a parabolic trajectory, not a circle.

Figure 3.21 Velocity vectors in circular motion 
are tangent to the circular path.

The velocities
are tangent to 
the circular path.

Figure 3.22 Position and velocity vectors for 
two nearby points on the circular path.
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Nonuniform Circular Motion
What if an object moves in a circular path but its speed changes? Then it has compo-
nents of acceleration both perpendicular and parallel to its velocity. The former, the radial 
acceleration ar, is what changes the direction to keep the object in circular motion. Its 
magnitude is still v2/r, with v now the instantaneous speed. The parallel component of ac-
celeration, also called tangential acceleration at because it’s tangent to the circle, changes 
the speed but not the direction. Its magnitude is therefore the rate of change of speed, or 
dv/dt. Figure 3.23 shows these two acceleration components for a car rounding a curve. 
We’ll explore these two components of acceleration further in Chapter 10, when we study 
rotational motion.

Finally, what if the radius of a curved path changes? At any point on a curve we can 
define a radius of curvature. Then the radial acceleration is still v2/r, and it can vary if ei-
ther v or r changes along the curve. The tangential acceleration is still tangent to the curve, 
and it still describes the rate of change of speed. So it’s straightforward to generalize the 
ideas of uniform circular motion to cases where the motion is nonuniform either because 
the speed changes, or because the radius changes, or both.

GoT IT? 3.6 An object moves in a horizontal plane 
with constant speed on the path shown. At which marked 
point is the magnitude of its acceleration greatest?

ExaMPLE 3.7 Uniform Circular Motion: The International space station

Find the orbital period (the time to complete one orbit) of the Interna-
tional Space Station in its circular orbit at altitude 400 km, where the 
acceleration of gravity is 89% of its surface value.

Interpret This is a problem about uniform circular motion.

Develop Given the radius and acceleration, we could use Equation 
3.16, a = v2/r, to determine the orbital speed. But we’re given the 
altitude, not the orbital radius, and we want the period, not the speed. 
So our plan is to write the speed in terms of the period and use the re-
sult in Equation 3.16. The orbital altitude is the distance from Earth’s 
surface, so we’ll need to add Earth’s radius to get the orbital radius r.

evaluate The speed v is the orbital circumference, 2pr, divided by 
the period T. Using this in Equation 3.16 gives

a =
v2

r
=

12pr/T22

r
=

4p2r

T2

Appendix E lists Earth’s radius as RE = 6.37 Mm, giving an orbital 
 radius r = RE + 400 km = 6.77 Mm. Solving our acceleration ex-
pression for the period then gives T = 24p2r/a = 5536 s = 92 min, 
where we used a = 0.89g.

assess Make sense? Astronauts orbit Earth in about an hour and a 
half, experiencing multiple sunrises and sunsets in a 24-hour day. Our 
answer of 92 min is certainly consistent with that. There’s no choice 
here; for a given orbital radius, Earth’s size and mass determine the 
period. Because astronauts’ orbits are limited to a few hundred kil-
ometers, a distance small compared with RE, variations in g and T are 
minimal. Any such “low Earth orbit” has a period of approximately  
90 min. At higher altitudes, gravity diminishes significantly and 
 periods lengthen; the Moon, for example, orbits in 27 days. We’ll 
 discuss orbits more in Chapter 8. ■

ExaMPLE 3.8 Uniform Circular Motion: Engineering a Road

An engineer is designing a flat, horizontal road for an 80 km>h speed 
limit (that’s 22.2 m/s). If the maximum acceleration of a vehicle on 
this road is 1.5 m/s2, what’s the minimum safe radius for curves in 
the road?

Interpret Even though a curve is only a portion of a circle, we can 
still interpret this problem as involving uniform circular motion.

Develop Equation 3.16, a = v2/r, gives the acceleration in terms of 
the speed and radius. Here we have the acceleration and speed, so our 
plan is to solve for the radius.

evaluate Using the given numbers, we have r = v2/a =
122.2 m/s22/1.5 m/s2 = 329 m.

assess Make sense? A speed of 80 km>h is pretty fast, so we need 
a wide curve to keep the required acceleration below its design value. 
If the curve is sharper, vehicles may slide off the road. We’ll see more 
clearly in subsequent chapters how vehicles manage to negotiate high-
speed curves. ■

Figure 3.23 Acceleration of a car that slows as it 
rounds a curve.
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its tangential acceleration at
is opposite its velocity.

u

v
u

A

B

C

D
E
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Chapter 3 Summary
Big Idea

Quantities characterizing motion in two and three dimensions have 
both magnitude and direction and are described by vectors. Position, 
velocity, and acceleration are all vector quantities, related as they are 
in one dimension:

Position Velocity

Rate of
change

Rate of
change

Acceleration

These vector quantities need not 
have the same direction. In par-
ticular, acceleration that’s per-
pendicular to velocity changes the 
direction but not the magnitude of 
the velocity. Acceleration that’s 
colinear changes only the mag-
nitude of the velocity. In general, 
both change.

a, v perpendicular

a, v colinear

arbitrary angle between a, v

a
u

v
u

∆vu

a
u

∆vuv
u

a
u

v
u

∆vu

y

y

x

x+= 

Key Concepts and Equations

Vectors can be described by magnitude and 
direction or by components. In two dimen-
sions these representations are related by

 A = 2Ax
2 + Ay

2  and  u = tan-1 
Ay

Ax

 Ax = A cos u  and  Ay = A sin u

in

jn

Ay

Ax

A cosu

A sinu 

u

Ax
2  + Ay

2

A = 
A = Ax

i + Ay
j

n

n

S

Ay jn

Axin

2

An important application of constant- 
acceleration motion in two dimensions is 
projectile motion under the influence of 
gravity.

Projectile trajectory:

y = x tan u0 -
g

2v2
0 cos2 u0

 x2

applications

When acceleration is constant, motion is described by vector equations that generalize the 
one-dimensional equations of Chapter 2:

v
!

= v
!
0 + a

!
t  r

!
= r

!
0 + v

!
0 t + 1

2 a
!
t2

x

y

u

v0
u

In uniform circular motion the magnitudes of 
velocity and acceleration remain constant, but 
their directions continually change. For an ob-
ject moving in a circular path of radius r, the 
magnitudes of a

!
 and v

!
 are related by a = v2/r.

r

a
u

a
u

v
u

v
u

Components of motion in two perpendicular directions are 
 independent. This reduces problems in two and three dimensions to 
sets of one-dimensional problems that can be solved with the methods 
of Chapter 2.

A compact way to express vectors involves 
unit vectors that have magnitude 1, have no 
units, and point along the coordinate axes:

A
S

= Ax in + Ayjn

Velocity is the rate of change of the position 
vector r

!
:

v
!

=
dr

!

dt

Acceleration is the rate of change of velocity:

a
!

=
dv

!

dt

M03_WOLF4752_03_SE_C03.indd   46 17/06/15   7:38 AM



Exercises and Problems 47

For homework assigned on MasteringPhysics, go to www.masteringphysics.com

BIO Biology and/or medicine-related problems DATA Data problems ENV Environmental problems CH Challenge problems Comp Computer problems

on the asteroid and fires it for 10 min, after which the asteroid is 
moving at 19 km/s at 28° to its original path. In a news confer-
ence, what do you report for the magnitude of the acceleration 
imparted to the asteroid?

21. An object is moving at 18 m/s at 220° counterclockwise from the 
x-axis. Find the x- and y-components of its velocity.

22. A car drives north at 40 mi/h for 10 min, then turns east and 
goes 5.0 mi at 60 mi/h. Finally, it goes southwest at 30 mi/h for  
6.0 min. Determine the car’s (a) displacement and (b) average 
velocity for this trip.

23. An object’s velocity is v
!

= ct3in + djn, where t is time and c and 
d are positive constants with appropriate units. What’s the direc-
tion of the object’s acceleration?

24. A car, initially going eastward, rounds a 90° curve and ends up 
heading southward. If the speedometer reading remains constant, 
what’s the direction of the car’s average acceleration vector?

25. What are (a) the average velocity and (b) the average acceleration 
of the tip of the 2.4-cm-long hour hand of a clock in the inter-
val from noon to 6 pm? Use unit vector notation, with the x-axis 
pointing toward 3 and the y-axis toward noon.

26. An ice skater is gliding along at 2.4 m/s, when she undergoes 
an acceleration of magnitude 1.1 m/s2 for 3.0 s. After that she’s 
moving at 5.7 m/s. Find the angle between her acceleration  vector 
and her initial velocity. Hint: You don’t need to do a  complicated 
calculation.

27. An object is moving in the x-direction at 1.3 m/s when it under-
goes an acceleration a

!
= 0.52jn m/s2. Find its velocity vector 

 after 4.4 s.

Section 3.3 Relative Motion
28. You’re a pilot beginning a 1500-km flight. Your plane’s speed is 

1000 km/h, and air traffic control says you’ll have to head 15° 
west of south to maintain a southward course. If the flight takes 
100 min, what’s the wind velocity?

29. You wish to row straight across a 63-m-wide river. You can row 
at a steady 1.3 m/s relative to the water, and the river flows at 
0.57 m/s. (a) What direction should you head? (b) How long will 
it take you to cross the river?

30. A plane with airspeed 370 km/h flies perpendicularly across the 
jet stream, its nose pointed into the jet stream at 32° from the per-
pendicular direction of its flight. Find the speed of the jet stream.

31. A flock of geese is attempting to migrate due south, but the wind 
is blowing from the west at 5.1 m/s. If the birds can fly at 7.5 m/s 
relative to the air, what direction should they head?

Section 3.4 Constant Acceleration
32. The position of an object as a function of time is given by 

r
!

= 13.2t + 1.8t22in + 11.7t - 2.4t22jn m, with t in seconds. 
Find the object’s acceleration vector.

33. You’re sailboarding at 6.5 m/s when a wind gust hits, lasting 6.3 s  
accelerating your board at 0.48 m/s2 at 35° to your original 
 direction. Find the magnitude and direction of your displacement 
during the gust.

Section 3.5 Projectile Motion
34. You toss an apple horizontally at 8.7 m/s from a height of 2.6 m. 

Simultaneously, you drop a peach from the same height. How 
long does each take to reach the ground?

For thought and Discussion
 1. Under what conditions is the magnitude of the vector sum 

A
S

+ B
S

 equal to the sum of the magnitudes of the two vectors?
 2. Can two vectors of equal magnitude sum to zero? How about two 

vectors of unequal magnitude?
 3. Repeat Question 2 for three vectors.
 4. Can an object have a southward acceleration while moving north-

ward? A westward acceleration while moving northward?
 5. You’re a passenger in a car rounding a curve. The driver claims 

the car isn’t accelerating because the speedometer reading is un-
changing. Explain why the driver is wrong.

 6. In what sense is Equation 3.8 really two (or three) equations?
 7. Is a projectile’s speed constant throughout its parabolic trajectory?
 8. Is there any point on a projectile’s trajectory where velocity and 

acceleration are perpendicular?
 9. How is it possible for an object to be moving in one direction but 

accelerating in another?
10. You’re in a bus moving with constant velocity on a level road 

when you throw a ball straight up. When the ball returns, does it 
land ahead of you, behind you, or back at your hand? Explain.

11. Which of the following are legitimate mathematical equa-
tions? Explain. (a) v = 5 in  m/s; (b) v

!
= 5 m/s; (c) a

!
= dv/dt;  

(d) a
!

= dv
!
/dt; (e) v

!
= 5 in  m/s.

12. You would probably reject as unscientific any claim that Earth is 
flat. Yet the assumption of Section 3.5 that leads to parabolic pro-
jectile trajectories is tantamount to assuming a flat Earth. Explain.

exercises and problems

Exercises

Section 3.1 Vectors
13. You walk west 220 m, then north 150 m. What are the magnitude 

and direction of your displacement vector?
14. An ion in a mass spectrometer follows a semicircular path of ra-

dius 15.2 cm. What are (a) the distance it travels and (b) the mag-
nitude of its displacement?

15. A migrating whale follows the west coast of Mexico and North 
America toward its summer home in Alaska. It first travels 360 
km northwest to just off the coast of northern California, and 
then turns due north and travels 400 km toward its destination. 
Determine graphically the magnitude and direction of its dis-
placement.

16. Vector A
S

 has magnitude 3.0 m and points to the right; vector B
S

 
has magnitude 4.0 m and points vertically upward. Find the mag-
nitude and direction of vector C

S
 such that A

S
+ B

S
+ C

S
= 0

S
.

17. Use unit vectors to express a displacement of 120 km at 29° 
counterclockwise from the x-axis.

18. Find the magnitude of the vector 34in + 13jn m and determine its 
angle to the x-axis.

19. (a) What’s the magnitude of in + jn? (b) What angle does it make 
with the x-axis?

Section 3.2 Velocity and Acceleration Vectors
20. You’re leading an international effort to save Earth from an as-

teroid heading toward us at 15 km/s. Your team mounts a rocket 

M03_WOLF4752_03_SE_C03.indd   47 17/06/15   7:38 AM



48 Chapter 3 Motion in Two and Three Dimensions

magnitudes of (a) the average velocity and (b) the average accel-
eration at the wheel’s rim, over a 5.00-min interval. (c) Compare 
your answer to (b) with the wheel’s instantaneous accelerations.

54. A ferryboat sails between towns directly opposite each other on a 
river, moving at speed v′ relative to the water. (a) Find an expres-
sion for the angle it should head at if the river flows at speed V. 
(b) What’s the significance of your answer if V 7 v′?

55. The sum of two vectors, A
S

+ B
S

, is perpendicular to their differ-
ence, A

S
- B

S
. How do the vectors’ magnitudes compare?

56. Write an expression for a unit vector at 45° clockwise from the 
x-axis.

57. An object is initially moving in the x-direction at 4.5 m/s, when it 
undergoes an acceleration in the y-direction for a period of 18 s.  
If the object moves equal distances in the x- and y-directions dur-
ing this time, what’s the magnitude of its acceleration?

58. A particle leaves the origin with its initial velocity given 
by v

!
0 = 11in + 14jn m/s, undergoing constant acceleration 

a
!

= -1.2in + 0.26jn m/s2. (a) When does the particle cross the 
y-axis? (b) What’s its y-coordinate at the time? (c) How fast is it 
moving, and in what direction?

59. A kid fires a squirt gun horizontally from 1.6 m above the 
ground. It hits another kid 2.1 m away square in the back, 0.93 m 
above the ground. What was the water’s initial speed?

60. A projectile has horizontal range R on level ground and reaches 
maximum height h. Find an expression for its initial speed.

61. You throw a baseball at a 45° angle to the horizontal, aiming at a 
friend who’s sitting in a tree a distance h above level ground. At 
the instant you throw your ball, your friend drops another ball. (a) 
Show that the two balls will collide, no matter what your ball’s 
initial speed, provided it’s greater than some minimum value. (b) 
Find an expression for that minimum speed.

62. In a chase scene, a movie stuntman runs horizontally off the flat 
roof of one building and lands on another roof 1.9 m lower. If the 
gap between the buildings is 4.5 m wide, how fast must he run to 
cross the gap?

63. Standing on the ground 3.0 m from a building, you want to throw 
a package from your 1.5-m shoulder level to someone in a win-
dow 4.2 m above the ground. At what speed and angle should 
you throw the package so it just barely clears the windowsill?

64. Derive a general formula for the horizontal distance covered by a 
projectile launched horizontally at speed v0 from height h.

65. Consider two projectiles launched on level ground with the same 
speed, at angles 45° { a. Show that the ratio of their flight times 
is tan1a + 45°2.

66. You toss a protein bar to your hiking companion located 8.6 m up 
a 39° slope, as shown in Fig. 3.24. Determine the initial  velocity 
vector so that when the bar reaches your friend, it’s moving 
 horizontally.

8.6 m

39°

Figure 3.24 Problem 66

67. The table below lists position versus time for an object moving 
in the x–y plane, which is horizontal in this case. Make a plot DATA

35. A carpenter tosses a shingle horizontally off an 8.8-m-high roof 
at 11 m/s. (a) How long does it take the shingle to reach the 
ground? (b) How far does it move horizontally?

36. An arrow fired horizontally at 41 m/s travels 23 m horizontally. 
From what height was it fired?

37. Droplets in an ink-jet printer are ejected horizontally at 12 m/s 
and travel a horizontal distance of 1.0 mm to the paper. How far 
do they fall in this interval?

38. Protons drop 1.2 μm over the 1.7-km length of a particle 
 accelerator. What’s their approximate average speed?

39. If you can hit a golf ball 180 m on Earth, how far can you hit it 
on the Moon? (Your answer will be an underestimate because it 
neglects air resistance on Earth.)

Section 3.6 Uniform Circular Motion
40. China’s high-speed rail network calls for a minimum turn radius 

of 7.0 km for 350-km/h trains. What’s the magnitude of a train’s 
acceleration in this case?

41. The minute hand of a clock is 7.50 cm long. Find the magnitude 
of the acceleration of its tip.

42. How fast would a car have to round a 75-m-radius turn for its 
 acceleration to be numerically equal to that of gravity?

43. Estimate the acceleration of the Moon, which completes a nearly 
circular orbit of 384.4 Mm radius in 27 days.

44. Global Positioning System (GPS) satellites circle Earth at 
 altitudes of approximately 20,000 km, where the gravitational 
acceleration has 5.8% of its surface value. To the nearest hour, 
what’s the orbital period of the GPS satellites?

Problems
45. Two vectors A

S
 and B

S
 have the same magnitude A and are at right 

angles. Find the magnitudes of (a) A
S

+ 2B
S

 and (b) 3A
S

- B
S

.
46. Vector A

S
 has magnitude 1.0 m and points 35° clockwise from 

the x-axis. Vector B
S

 has magnitude 1.8 m. Find the direction of B
S

 
such that A

S
+ B

S
 is in the y-direction.

47. Let A
S

= 15in - 40jn  and B
S

= 31jn + 18kn. Find C
S

 such that 
A
S

+ B
S

+ C
S

= 0
S

.
48. A biologist looking through a microscope sees a bacterium 

at r
!
1 = 2.2in + 3.7jn - 1.2kn µm. After 6.2 s, it’s located at 

r
!
2 = 4.6in + 1.9kn µm. Find (a) its average velocity, expressed in 

unit vectors, and (b) its average speed.
49. A particle’s position is r

!
= 1ct2 - 2dt32in + 12ct2 - dt32jn, 

where c and d are positive constants. Find expressions for times 
t 7 0 when the particle is moving in (a) the x-direction and (b) 
the y-direction.

50. For the particle in Problem 49, is there any time t 7 0 when the 
particle is (a) at rest and (b) accelerating in the x-direction? If 
either answer is “yes,” find the time(s).

51. You’re designing a “cloverleaf” highway interchange. Vehicles 
will exit the highway and slow to a constant 70 km/h before ne-
gotiating a circular turn. If a vehicle’s acceleration is not to ex-
ceed 0.40g (i.e., 40% of Earth’s gravitational acceleration), then 
what’s the minimum radius for the turn? Assume the road is flat, 
not banked (more on this in Chapter 5).

52. An object undergoes acceleration 2.3in + 3.6jn m/s2 for 10 s. At 
the end of this time, its velocity is 33in + 15jn m/s. (a) What was 
its velocity at the beginning of the 10-s interval? (b) By how 
much did its speed change? (c) By how much did its  direction 
change? (d) Show that the speed change is not given by the 
 magnitude of the acceleration multiplied by the time. Why not?

53. The New York Wheel is the world’s largest Ferris wheel. It’s 183 
meters in diameter and rotates once every 37.3 min. Find the 

BIO
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Exercises and Problems 49

of position y versus x to determine the nature of the object’s 
path. Then determine the magnitudes of the object’s velocity and 
 acceleration.

Time, t (s) x (m) y (m) Time, t (s) x (m) y (m)

0 0 0 0.70 2.41 3.15

0.10 0.65 0.09 0.80 2.17 3.75

0.20 1.25 0.33 0.90 1.77 4.27

0.30 1.77 0.73 1.00 1.25 4.67

0.40 2.17 1.25 1.10 0.65 4.91

0.50 2.41 1.85 1.20 0.00 5.00

0.60 2.50 2.50

68. A projectile launched at angle u to the horizontal reaches maxi-
mum height h. Show that its horizontal range is 4h>tan u.

69. As an expert witness, you’re testifying in a case involving a mo-
torcycle accident. A motorcyclist driving in a 60-km/h zone hit a 
stopped car on a level road. The motorcyclist was thrown from 
his bike and landed 39 m down the road. You’re asked whether he 
was speeding. What’s your answer?

70. Show that, for a given initial speed, the horizontal range of a pro-
jectile is the same for launch angles 45° + a and 45° - a.

71. A basketball player is 15 ft horizontally from the center of the 
basket, which is 10 ft off the ground. At what angle should the 
player aim the ball from a height of 8.2 ft with a speed of 26 ft/s?

72. Two projectiles are launched simultaneously from the same 
point, with different launch speeds and angles. Show that no 
combination of speeds and angles will permit them to land simul-
taneously and at the same point.

73. Consider the two projectiles in GOT IT? 3.5. Suppose the 45° 
projectile is launched with speed v and that it’s in the air for time 
t. Find expressions for (a) the launch speed and (b) the flight time 
of the 60° projectile, in terms of v and t.

74. The portion of a projectile’s parabolic trajectory in the vicinity 
of the peak can be approximated as a circle. If the projectile’s 
speed at the peak of the trajectory is v, formulate an argument to 
show that the curvature radius of the circle that approximates the 
parabola is r = v2/g.

75. A jet is diving vertically downward at 1200 km/h. If the pilot 
can withstand a maximum acceleration of 5g (i.e., 5 times Earth’s 
gravitational acceleration) before losing consciousness, at what 
height must the plane start a 90° circular turn, from vertical to 
horizontal, in order to pull out of the dive? See Fig. 3.25, assume 
the speed remains constant, and neglect gravity.

v

Figure 3.25

CH

76. Your alpine rescue team is using a slingshot to send an emer-
gency medical packet to climbers stranded on a ledge, as shown 
in Fig. 3.26; your job is to calculate the launch speed. What do 
you report?

270 m

390 m

70°

Figure 3.26 Problem 76

77. If you can throw a stone straight up to height h, what’s the maxi-
mum horizontal distance you could throw it over level ground?

78. In a conversion from military to peacetime use, a missile with 
maximum horizontal range 180 km is being adapted for studying 
Earth’s upper atmosphere. What is the maximum altitude it can 
achieve if launched vertically?

79. A soccer player can kick the ball 28 m on level ground, with its 
initial velocity at 40° to the horizontal. At the same initial speed 
and angle to the horizontal, what horizontal distance can the 
player kick the ball on a 15° upward slope?

80. A diver leaves a 3-m board on a trajectory that takes her 2.5 m 
above the board and then into the water 2.8 m horizontally from 
the end of the board. At what speed and angle did she leave the 
board?

81. Using calculus, you can find a function’s maximum or minimum 
by differentiating and setting the result to zero. Do this for Equa-
tion 3.15, differentiating with respect to u, and thus verify that 
the maximum range occurs for u = 45°.

82. You’re a consulting engineer specializing in athletic facilities, 
and you’ve been asked to help design the Olympic ski jump pic-
tured in Fig. 3.27. Skiers will leave the jump at 28 m/s and 9.5° 
below the horizontal, and land 55 m horizontally from the end of 
the jump. Your job is to specify the slope of the ground so skiers’ 
trajectories make an angle of only 3.0° with the ground on land-
ing, ensuring their safety. What slope do you specify?

3°

9.5°

55 m

Figure 3.27 Problem 82

83. Differentiate the trajectory Equation 3.14 to find its slope, 
tan u = dy/dx, and show that the slope is in the direction of the 
projectile’s velocity, as given by Equations 3.10 and 3.11.

84. Your medieval history class is constructing a trebuchet, a 
 catapult-like weapon for hurling stones at enemy castles. The 
plan is to launch stones off a 75-m-high cliff, with initial speed 

CH

CH
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50 Chapter 3 Motion in Two and Three Dimensions

36 m/s. Some members of the class think a 45° launch angle will 
give the maximum range, but others claim the cliff height makes 
a difference. What do you give for the angle that will maximize 
the range?

85. Generalize Problem 84 to find an expression for the angle that 
will maximize the range of a projectile launched with speed v0 
from height h above level ground.

86. (a) Show that the position of a particle on a circle of radius R 
with its center at the origin is r

!
= R1cos u in + sin ujn2, where 

u is the angle the position vector makes with the x-axis. (b) If 
the particle moves with constant speed v starting on the x-axis at 
t = 0, find an expression for u in terms of time t and the period T  
to complete a full circle. (c) Differentiate the position vector 
twice with respect to time to find the acceleration, and show that 
its magnitude is given by Equation 3.16 and its direction is to-
ward the center of the circle.

87. In dealing with nonuniform circular motion, as shown in Fig. 
3.23, we should write Equation 3.16 as ar = v2/r, to show that 
this is only the radial component of the acceleration. Recogniz-
ing that v is the object’s speed, which changes only in the pres-
ence of tangential acceleration, differentiate this equation with 
respect to time to find a relation between the magnitude of the 
tangential acceleration and the rate of change of the magnitude of 
the radial acceleration. Assume the radius stays constant.

88. Repeat Problem 87, now generalizing to the case where not only 
the speed but also the radius may be changing.

Passage Problems
Alice (A), Bob (B), and Carrie (C) all start from their dorm and head 
for the  library for an evening study session. Alice takes a straight path, 
while the paths Bob and Carrie follow are portions of circular arcs, as 
shown in Fig. 3.28. Each student walks at a constant speed. All three 
leave the dorm at the same time, and they arrive simultaneously at the 
library.

Library

Dorm

B

C

A

Figure 3.28 Passage Problems 89–92

89. Which statement characterizes the distances the students travel?
a. They’re equal.
b. C 7 A 7 B
c. C 7 B 7 A
d. B 7 C 7 A

90. Which statement characterizes the students’ displacements?
a. They’re equal.
b. C 7 A 7 B
c. C 7 B 7 A
d. B 7 C 7 A

91. Which statement characterizes their average speeds?
a. They’re equal.
b. C 7 A 7 B
c. C 7 B 7 A
d. B 7 C 7 A

92. Which statement characterizes their accelerations while walking 
(not starting and stopping)?
a. They’re equal.
b. None accelerates.
c. A 7 B 7 C
d. C 7 B 7 A
e. B 7 C 7 A
f. There’s not enough information to decide.

answers to Chapter Questions

answer to Chapter opening Question
Assuming negligible air resistance, the penguin should leave the water 
at a 45° angle.

answers to GoT IT? Questions
 3.1 (c)
 3.2 (d) only
 3.3 (1) (c); (2) (c); (3) (a)
 3.4  (c) gives the greatest change in speed; (b) gives the greatest 

change in direction
 3.5 (e)
 3.6 (c)

CH

CH

CH
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Force and Motion

4

What You Know
■ You can express motion quantities 

as vectors in one, two, or three 
dimensions.

■ You can describe motion quantitatively  
when acceleration is constant.

■ You’re especially familiar with 
projectile motion under the influence 
of gravity near Earth’s surface.

■ You understand that circular motion is 
a case of accelerated motion, and you 
can find the acceleration given speed 
and radius of the circle.

An interplanetary spacecraft moves effortlessly, yet its engines shut down years ago. Why 
does it keep moving? A baseball heads toward the batter. The batter swings, and sud-

denly the ball is heading toward left field. Why did its motion change?
Questions about the “why” of motion are the subject of dynamics. Here we develop the 

 basic laws that answer those questions. Isaac Newton first stated these laws more than 300 
years ago, yet they remain a vital part of physics and engineering today, helping us guide 
spacecraft to distant planets, develop better cars, and manipulate the components of 
 individual cells.

4.1 The Wrong Question
We began this chapter with two questions: one about why a spacecraft moved and the  
other about why a baseball’s motion changed. For nearly 2000 years following the 
work of Aristotle (384–322 bce), the first question—Why do things move?—was  
the crucial one. And the answer seemed obvious: It took a force—a push or a pull—to 
keep something moving. This idea makes sense: Stop exerting yourself when  jogging, 
and you stop moving; take your foot off the gas pedal, and your car soon stops. 
 Everyday experience seems to suggest that Aristotle was right, and most of us carry in 
our heads the  Aristotelian idea that motion requires a cause—something that pushes or 
pulls on a moving object to keep it going.

What You’re Learning
■ Here you’ll learn to adopt the Newtonian 

paradigm that the laws governing 
motion are about change in motion.

■ You’ll explore Newton’s three laws of 
motion and see how together they 
provide a consistent picture of motion 
from microscopic to cosmic scales.

■ You’ll learn the concept of force and its 
relation to acceleration.

■ You’ll be introduced to the fundamental 
forces of nature.

■ You’ll see how the force of gravity acts 
on objects near Earth’s surface.

■ You’ll learn to distinguish weight from 
apparent weight.

■ You’ll see how springs provide a 
convenient means of measuring force.

How You’ll Use It
■ Chapter 4 is largely restricted to 

one-dimensional motion. But the 
principles you learn here work 
in Chapter 5, where you’ll apply 
Newton’s laws in multiple dimensions.

■ In Chapters 6 and 7 you’ll see how 
Newton’s second law leads to the 
fundamental concepts of energy and 
energy conservation.

■ You’ll apply Newtonian ideas to 
gravity in Chapter 8.

■ In Chapter 9 you’ll see how the 
interplay of Newton’s second and 
third laws underlies the behavior of 
complex systems.

■ Newton’s laws will continue to govern 
the more complex motions you’ll study 
in Part 2 of the book and beyond.

What forces did engineers have to consider when 
they developed the Mars Curiosity rover’s “sky 
crane” landing system?
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Actually, “What keeps things moving?” is the wrong question. In the early 1600s, 
Galileo Galilei did experiments that convinced him that a moving object has an intrinsic 
“quantity of motion” and needs no push to keep it moving (Fig. 4.1). Instead of answering 
“What keeps things moving?,” Galileo declared that the question needs no answer. In so 
doing, he set the stage for centuries of progress in physics, beginning with the achieve-
ments of Issac Newton and culminating in the work of Albert Einstein.

The Right Question
Our first question—about why the spacecraft keeps moving—is the wrong question. So 
what’s the right question? It’s the second one, about why the baseball’s motion changed. 
Dynamics isn’t about what causes motion itself; it’s about what causes changes in  motion. 
Changes include starting and stopping, speeding up and slowing down, and changing 
 direction. Any change in motion begs an explanation, but motion itself does not. Get used 
to this important idea and you’ll have a much easier time with physics. But if you remain a 
“closet Aristotelian,” secretly looking for causes of motion itself, you’ll find it difficult to 
understand and apply the simple laws that actually govern motion.

Galileo identified the right question about motion. But it was Isaac Newton who formu-
lated the quantitative laws describing how motion changes. We use those laws today for 
everything from designing antilock braking systems, to building skyscrapers, to guiding 
spacecraft.

4.2 Newton’s First and Second Laws
What caused the baseball’s motion to change? It was the bat’s push. The term force 
 describes a push or a pull. And the essence of dynamics is simply this:

Force causes change in motion.

We’ll soon quantify this idea, writing equations and solving numerical problems. But the 
 essential point is in the simple sentence above. If you want to change an object’s motion, you 
need to apply a force. If you see an object’s motion change, you know there’s a force acting. 
Contrary to Aristotle, and probably to your own intuitive sense, it does not take a force to 
keep something in unchanging motion; force is needed only to change an object’s motion.

The Net Force
You can push a ball left or right, up or down. Your car’s tires can push the car forward or 
backward, or make it round a curve. Force has direction and is a vector quantity. Further-
more, more than one force can act on an object. We call the individual forces on an object 
interaction forces because they always involve other objects interacting with the object in 
question. In Fig. 4.2a, for example, the interaction forces are exerted by the people push-
ing the car. In Fig. 4.2b, the interaction forces include the force of air on the plane, the 
engine force from the hot exhaust gases, and Earth’s gravitational force.

We now explore in more detail the relation between force and change in motion. 
 Experiment shows that what matters is the net force, meaning the vector sum of all 
 individual interaction forces acting on an object. If the net force on an object isn’t zero, 
then the object’s motion must be changing—in direction or speed or both (Fig. 4.2a). If 
the net force on an object is zero—no matter what individual interaction forces contribute 
to the net force—then the object’s motion is unchanging (Fig. 4.2b).

Newton’s First Law
The basic idea that force causes change in motion is the essence of Newton’s first law:

Newton’s first law of motion: A body in uniform motion remains in uniform 
 motion, and a body at rest remains at rest, unless acted on by a nonzero net force.

Figure 4.1 Galileo considered balls rolling 
on inclines and concluded that a ball on a 
 horizontal surface should roll forever.

cit always
rises to its
starting height c

If a ball is
released here c

cso if the
surface is made
horizontal, the ball
should roll forever.

Figure 4.2 The net force determines the 
change in an object’s motion.

Here there’s a nonzero
net force acting on the
car, so the car’s motion
is changing.

The three forces sum to zero,
so the plane moves in a straight
line with constant speed.

(a)

(b)

Fnet
S

F1
S

F2
S

Fair
S Fnet = 0

SS

Fengine
S

Fg
S
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4.2 Newton’s First and Second Laws 53

The word “uniform” here is essential; uniform motion means unchanging motion—that 
is, motion in a straight line at constant speed. The phrase “a body at rest” isn’t really 
necessary because rest is just the special case of uniform motion with zero speed, but we 
include it for consistency with Newton’s original statement.

The first law says that uniform motion is a perfectly natural state, requiring no explana-
tion. Again, the word “uniform” is crucial. The first law does not say that an object moving 
in a circle will continue to do so without a nonzero net force; in fact, it says that an object 
moving in a circle—or in any other curved path—must be subject to a nonzero net force 
because its motion is changing.

GoT IT? 4.1 A curved barrier lies on a horizontal tabletop, as 
shown. A ball rolls along the barrier, and the barrier exerts a force 
that guides the ball in its curved path. After the ball leaves the barrier, 
which of the dashed paths shown does it follow?

Newton’s first law is simplicity itself, but it’s counter to our Aristotelian preconcep-
tions; after all, your car soon stops when you take your foot off the gas. But because the 
motion changes, that just means—as the first law says—that there must be a nonzero net 
force acting. That force is often a “hidden” one, like friction, that isn’t as obvious as the 
push or pull of muscle. Watch an ice show or hockey game, where frictional forces are 
minimal, and the first law becomes a lot clearer.

Newton’s Second Law
Newton’s second law quantifies the relation between force and change in motion. Newton 
reasoned that the product of mass and velocity was the best measure of an object’s “quan-
tity of motion.” The modern term is momentum, and we write

 p
!

= mv
!
  1momentum2 (4.1)

for the momentum of an object with mass m and velocity v
!
. As the product of a scalar 

(mass) and a vector (velocity), momentum is itself a vector quantity. Newton’s second law 
relates the rate of change of an object’s momentum to the net force acting on that object:

Newton’s second law of motion: The rate at which a body’s momentum changes 
is equal to the net force acting on the body:

 F
S

net =
d  p

!

dt
  1Newton>s 2nd law2 (4.2)

When a body’s mass remains constant, we can use the definition of momentum, 
p
!

= mv
!
, to write

F
S

net =
dp

!

dt
=

d1mv
!2

dt
= m 

dv
!

dt
But dv

!>dt is the acceleration a
!
, so

 F
S

net = ma
!
  1Newton>s 2

nd
 law, constant mass2 (4.3)

We’ll be using the form given in Equation 4.3 almost exclusively in the next few  chapters. 
But keep in mind that Equation 4.2 is Newton’s original expression of the second law, 
that it’s more general than Equation 4.3, and that it embodies the fundamental concept of 
momentum. We’ll return to Newton’s law in the form of Equation 4.3, and elaborate on 
momentum, when we consider many-particle systems in Chapter 9.

(a)

(b)
(c)

Video Tutor Demo | Cart with Fan and Sail

Video Tutor Demo | Ball Leaves Circular Track
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Newton’s second law includes the first law as the special case F
S

net = 0
S

. In this case 
Equation 4.3 gives a

!
= 0

S
, so an object’s velocity doesn’t change.

✓TIp Understanding Newton

To apply Newton’s law successfully, you have to understand the terms, summarized in 
Fig. 4.3. On the left is the net force F

S
net—the vector sum of all real, physical interac-

tion forces acting on an object. On the right is ma
!
—not a force but the product of the 

object’s mass and acceleration. The equal sign says that they have the same value, not 
that they’re the same thing. So don’t go adding an extra force ma

!
 when you’re applying 

Newton’s second law.

Mass, Inertia, and Force
Because it takes force to change an object’s motion, the first law implies that objects nat-
urally resist changes in motion. The term inertia describes this resistance, and for that 
reason the first law is also called the law of inertia. Just as we describe a sluggish person 
as having a lot of inertia, so an object that is hard to start moving—or hard to stop once 
started—has a lot of inertia. If we solve the second law for the acceleration a

!
, we find that 

a
!

= F
S

/m—showing that a given force is less effective in changing the motion of a more 
massive object (Fig. 4.4). The mass m that appears in Newton’s laws is thus a measure of 
an object’s inertia and determines the object’s response to a given force.

By comparing the acceleration of a known and an unknown mass in response to the 
same force, we can determine the unknown mass. From Newton’s second law for a force 
of magnitude F,

F = mknownaknown and F = munknownaunknown

where we’re interested only in magnitudes so we don’t use vectors. Equating these two 
expressions for the same force, we get

 
munknown

mknown
=

aknown

aunknown
 (4.4)

Equation 4.4 is an operational definition of mass; it shows how, given a known mass and 
force, we can determine other masses.

The force required to accelerate a 1-kg mass at the rate of 1 m/s2 is defined to be  
1 newton (N). Equation 4.3 shows that 1 N is equivalent to 1 kg # m/s2. Other common 
force units are the English pound (lb, equal to 4.448 N) and the dyne, a metric unit equal 
to 10-5 N. A 1-N force is rather small; you can readily exert forces measuring hundreds of 
newtons with your own body.

Figure 4.3 Meaning of the terms in Newton’s 
second law.

Product of object’s mass
and its acceleration;
not a force

Net force: the vector 
sum of all real, 
physical forces
acting on an object

Fnet = mau
S

Equal sign indicates that 
the two sides are 
mathematically equal —
but that doesn’t mean 
they’re the same 
physically.  Only Fnet 
involves physical forces.

S

Figure 4.4 The loaded truck has greater 
mass—more inertia—so its acceleration is 
smaller when the same force is applied.

a
u

a
u

F
S

F
S

ExAMpLE 4.1   Force from Newton: A Car Accelerates
A 1200-kg car accelerates from rest to 20 m/s in 7.8 s, moving in a 
straight line with constant acceleration. (a) Find the net force acting 
on the car. (b) If the car then rounds a bend 85 m in radius at a steady 
20 m/s, what net force acts on it?

Interpret In this problem we’re asked to evaluate the net force on a 
car (a) when it undergoes constant acceleration and (b) when it rounds 
a turn. In both cases the net force is entirely horizontal, so we need to 
consider only the horizontal component of Newton’s law.

Develop Figure 4.5 shows the horizontal force acting on the car in 
each case; since this is the net force, it’s equal to the car’s mass mul-
tiplied by its acceleration. We aren’t actually given the acceleration 
in this problem, but for (a) we know the change in speed and the time 

involved, so we can write a = ∆v/∆t. For (b) we’re given the speed 
and the radius of the turn; since the car is in uniform circular motion, 
Equation 3.16 applies, and we have a = v2/r.

Figure 4.5 Our sketch of the net force on the car in Example 4.1.

(a) (b)

Video Tutor Demo | Suspended Balls: 
Which String Breaks?

Essential University Physics 3e
Wolfson
Benjamin Cummings
Pearson Education
qrc_vtd_video10
Fig qrc_vtd_video10
Pickup: qrc_vtd_video10
Rolin Graphics
mc    8/14/14    3p0 x 3p0  

M04_WOLF4752_03_SE_C04.indd   54 16/06/15   9:05 AM

https://mediaplayer.pearsoncmg.com/assets/secs-vtd10_inertiaballs


4.3 Forces 55

GoT IT? 4.2 A nonzero net force acts on an object. Which of the following is true? 
(a) the object necessarily moves in the same direction as the net force; (b) under some 
circumstances the object could move in the same direction as the net force, but in other 
situations it might not; (c) the object cannot move in the same direction as the net force

Inertial Reference Frames
Why don’t flight attendants serve beverages when an airplane is accelerating down the 
runway? For one thing, their beverage cart wouldn’t stay put, but would accelerate toward 
the back of the plane even in the absence of a net force. So is Newton’s first law wrong? 
No, but Newton’s laws don’t apply in an accelerating airplane. With respect to the ground, 
in fact, the beverage cart is doing just what Newton says it should: It remains in its original 
state of motion, while all around it plane and passengers accelerate toward takeoff.

In Section 3.3 we defined a reference frame as a system against which we meas-
ure  velocities; more generally, a reference frame is the “background” in which we study 
 physical reality. Our airplane example shows that Newton’s laws don’t work in all reference 
frames; in particular, they’re not valid in accelerating frames. Where they are valid is in 
reference frames undergoing uniform motion—called inertial reference frames because 
only in these frames does the law of inertia hold. In a noninertial frame like an accelerat-
ing airplane, a car rounding a curve, or a whirling merry-go-round, an object at rest doesn’t 
remain at rest, even when no force is acting. A good test for an inertial frame is to check 
whether Newton’s first law is obeyed—that is, whether an object at rest remains at rest, and 
an object in uniform motion remains in uniform motion, when no force is acting on it.

Strictly speaking, our rotating Earth is not an inertial frame, and therefore Newton’s 
laws aren’t exactly valid on Earth. But Earth’s rotation has an insignificant effect on most 
motions of interest, so we can usually treat Earth as an inertial reference frame. An impor-
tant exception is the motion of oceans and atmosphere; here, scientists must take Earth’s 
rotation into account.

If Earth isn’t an inertial frame, what is? That’s a surprisingly subtle question, and it 
pointed Einstein toward his general theory of relativity. The law of inertia is intimately 
related to questions of space, time, and gravity—questions whose answers lie in Einstein’s 
theory. We’ll look briefly at that theory in Chapter 33.

4.3 Forces
The most familiar forces are pushes and pulls you apply yourself, but passive objects can 
apply forces, too. A car collides with a parked truck and comes to a stop. Why? Because 
the truck exerts a force on it. The Moon circles Earth rather than moving in a straight line. 
Why? Because Earth exerts a gravitational force on it. You sit in a chair and don’t fall to 
the floor. Why not? Because the chair exerts an upward force on you, countering gravity.

Some forces, like those you apply with your muscles, can have values that you choose. 
Other forces take on values determined by the situation. When you sit in the chair shown 
in Fig. 4.6, the downward force of gravity on you causes the chair to compress slightly. 

evaluate We solve for the unknown acceleration and evaluate the 
numerical answers for both cases:

(a)  Fnet = ma = m 
∆v

∆t
= 11200 kg2 a20 m/s

7.8 s
b = 3.1 kN

(b)  Fnet = ma = m 
v2

r
= 11200 kg2 

120 m/s22

85 m
= 5.6 kN

assess First, the units worked out; they were actually kg # m/s2,  
but that defines the newton. The answers came out in thousands 

of N, but we moved the decimal point three places and changed to 
 kilonewtons (kN) for convenience. And the numbers seem to make 
sense; we mentioned that 1 newton is a rather small force, so it’s not 
surprising to find forces on cars measured in kN.

Note that Newton’s law doesn’t distinguish between forces 
that change an object’s speed, as in (a), and forces that change its 
 direction, as in (b). Newton’s law relates force, mass, and acceleration 
in all cases.  ■

Figure 4.6 A compression force.

Fc
S

Fg
S

When you sit in a chair,
the chair compresses and
exerts an upward force that
balances gravity.
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The chair acts like a spring and exerts an upward force. When the chair compresses enough 
that the upward force is equal in magnitude to the downward force of gravity, there’s no 
net force and you sit without accelerating. The same thing happens with tension forces 
when objects are suspended from ropes or cables—the ropes stretch until the force they 
exert balances the force of gravity (Fig. 4.7).

Forces like the pull you exert on your rolling luggage, the force of a chair on your body, 
and the force a baseball exerts on a bat are contact forces because the force is exerted 
through direct contact. Other forces, like gravity and electric and magnetic forces, are 
 action-at-a-distance forces because they seemingly act between distant objects, like Earth 
and the Moon. Actually, the distinction isn’t clear-cut; at the microscopic level, contact 
forces involve action-at-a-distance electric forces between molecules. And the action-at-a-
distance concept itself is troubling. How can Earth “reach out” across empty space and pull 
on the Moon? Later we’ll look at an approach to forces that avoids this quandary.

The Fundamental Forces
Gravity, tension forces, compression forces, contact forces, electric forces, friction 
forces—how many kinds of forces are there? At present, physicists identify three basic 
forces: the gravitational force, the electroweak force, and the strong force.

Gravity is the weakest of the fundamental forces, but because it acts attractively be-
tween all matter, gravity’s effect is cumulative. That makes gravity the dominant force 
in the large-scale universe, determining the structure of planets, stars, galaxies, and the 
universe itself.

The electroweak force subsumes electromagnetism and the weak nuclear force. Vir-
tually all the nongravitational forces we encounter in everyday life are electromagnetic, 
including contact forces, friction, tension and compression forces, and the forces that bind 
atoms into chemical compounds. The weak nuclear force is less obvious, but it’s crucial in 
the Sun’s energy production—providing the energy that powers life on Earth.

The strong force describes how particles called quarks bind together to form protons, 
neutrons, and a host of less-familiar particles. The force that joins protons and neutrons 
to make atomic nuclei is a residue of the strong force between their constituent quarks. 
Although the strong force isn’t obvious in everyday life, it’s ultimately responsible for the 
structure of matter. If its strength were slightly different, atoms more complex than helium 
couldn’t exist, and the universe would be devoid of life!

Unifying the fundamental forces is a major goal of physics. Over the centuries we’ve 
come to understand seemingly disparate forces as manifestations of a more fundamental 
underlying force. Figure 4.8 suggests that the process continues, as physicists attempt first 
to unify the strong and electroweak forces, and then ultimately to add gravity to give a 
“Theory of Everything.”

4.4 The Force of Gravity
Newton’s second law shows that mass is a measure of a body’s resistance to changes in 
motion—its inertia. A body’s mass is an intrinsic property; it doesn’t depend on location. 
If my mass is 65 kg, it’s 65 kg on Earth, in an orbiting spacecraft, or on the Moon. That 
means no matter where I am, a force of 65 N gives me an acceleration of 1 m/s2.

We commonly use the term “weight” to mean the same thing as mass. In physics, 
though, weight is the force that gravity exerts on a body. Near Earth’s surface, a freely 
falling body accelerates downward at 9.8 m/s2; we designate this acceleration vector by g

!
.

Newton’s second law, F
S

= ma
!
, then says that the force of gravity on a body of mass m is 

mg
!
; this force is the body’s weight:

 w
!

= mg
!
  1weight2. (4.5)

With my 65-kg mass, my weight near Earth’s surface is then 165 kg219.8 m/s22 or 640 N. 
On the Moon, where the acceleration of gravity is only 1.6 m/s2, I would weigh only 100 N.  
And in the remote reaches of intergalactic space, far from any gravitating object, my 
weight would be essentially zero.

Figure 4.7 The climbing rope exerts an upward 
tension force T

S
 that balances the force of 

gravity.

Fg
S

T
S

Figure 4.8 Unification of forces is a major 
theme in physics.

Electromagnetism

Electricity Magnetism

Theory of Everything

Weak

Grand Uni�ed Force

ElectroweakStrongGravity
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One reason we confuse mass and weight is the common use of the SI unit kilogram 
to describe “weight.” At the doctor’s office you may be told that you “weigh” 55 kg.  
You don’t; you have a mass of 55 kg, so your weight is 155 kg219.8 m/s22 or 540 N. The 
unit of force in the English system is the pound, so giving your weight in pounds is correct.

That we confuse mass and weight at all results from the remarkable fact that the gravi-
tational acceleration of all objects is the same. This makes a body’s weight, a gravitational 
property, proportional to its mass, a measure of its inertia in terms that have nothing to 
do with gravity. First inferred by Galileo from his experiments with falling bodies, this 
relation between gravitation and inertia seemed a coincidence until the early 20th century. 
Finally Albert Einstein showed how that simple relation reflects the underlying geometry 
of space and time in a way that intimately links gravitation and acceleration.

Weightlessness
Aren’t astronauts “weightless”? Not according to our definition. At the altitude of the 
 International Space Station, the acceleration of gravity has about 89% of its value at 
Earth’s surface, so the gravitational forces mg

!
 on the station and its occupants are almost 

as large as on Earth. But the astronauts seem weightless, and indeed they feel weightless 
(Fig. 4.9). What’s going on?

Imagine yourself in an elevator whose cable has broken and is dropping freely down-
ward with the gravitational acceleration g. In other words, the elevator and its occupant are 
in free fall, with only the force of gravity acting. If you let go of a book, it too falls freely 
with acceleration g. But so does everything else around it—and therefore the book stays 

ExAMpLE 4.2 Mass and Weight: Exploring Mars

The rover Curiosity that landed on Mars in 2012 weighed 8.82 kN on 
Earth. What were its mass and weight on Mars?

Interpret Here we’re asked about the relation between mass and 
weight, and the object we’re interested in is the Curiosity rover.

Develop Equation 4.5 describes the relation between mass and 
weight. Writing this equation in scalar form because we’re interested 
only in magnitudes, we have w = mg.

evaluate First we want to find mass from weight, so we solve for m 
using the Earth weight and Earth’s gravity:

m =
w

g
=

8.82 kN

9.81 m/s2 = 899 kg

This mass is the same everywhere, so the weight on Mars is given 
by w = mgMars = 1899 kg213.71 m/s22 = 3.34 kN. Here we found  
the acceleration of gravity on Mars in Appendix E. We used 
g = 9.81 m/s2 in this calculation because we were given other infor-
mation to three significant figures.

assess Make sense? Sure: Mars’s gravitational acceleration is lower 
than Earth’s, and so is the spacecraft’s weight on Mars.

 
■

Figure 4.9 These astronauts only seem weightless.
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put relative to you (Fig. 4.10a). To you, the book seems “weightless,” since it doesn’t seem 
to fall when you let go of it. And you’re “weightless” too; if you jump off the elevator’s 
floor, you float to the ceiling rather than falling back. You, the book, and the elevator are 
all falling, but because all have the same acceleration that isn’t obvious to you. The gravi-
tational force is still acting; it’s making you fall. So you really do have weight, and your 
condition is best termed apparent weightlessness.

A falling elevator is a dangerous place; your state of apparent weightlessness would end 
with a deadly smash caused by nongravitational contact forces when you hit the ground. 
But apparent weightlessness occurs permanently in a state of free fall that doesn’t intersect 
Earth—as in an orbiting spacecraft (Fig. 4.10b). It’s not being in outer space that makes 
astronauts seem weightless; it’s that they, like our hapless elevator occupant, are in free 
fall—moving under the influence of the gravitational force alone. The condition of appar-
ent weightlessness in orbiting spacecraft is sometimes called “microgravity.”

GoT IT? 4.3 A popular children’s book explains the weightlessness astronauts expe-
rience by saying there’s no gravity in space. If there were no gravity in space, what would 
be the motion of a space shuttle, a satellite, or, the Moon? (a) a circular orbit; (b) an ellipti-
cal orbit; (c) a straight line

4.5 Using Newton’s Second Law
The interesting problems involving Newton’s second law are those where more than one 
force acts on an object. To apply the second law, we then need the net force. For an object 
of constant mass, the second law relates the net force and the acceleration:

F
S

net = ma
!

Using Newton’s second law with multiple forces is easier if we draw a free-body  diagram, 
a simple diagram that shows only the object of interest and the forces acting on it.

Figure 4.10 Objects in free fall appear 
 weightless because they all experience the 
same acceleration.
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In a freely falling elevator you
and your book seem weightless
because both fall with the same
acceleration as the elevator.

Like the elevator in (a), an orbiting
spacecraft is falling toward Earth,
and because its occupants also fall
with the same acceleration, they
experience apparent weightlessness.

(a)

(b)

Earth

Earth

tactIcs 4.1 Drawing a Free-Body Diagram

Drawing a free-body diagram, which shows the forces acting on an object, is the key to solving problems 
with Newton’s laws. To make a free-body diagram:

1. Identify the object of interest and all the forces acting on it.
2. Represent the object as a dot.
3. Draw the vectors for only those forces acting on the object, with their tails all starting on the dot.

Figure 4.11 shows two examples where we reduce physical scenarios to free-body diagrams. We often add 
a coordinate system to the free-body diagram so that we can express force vectors in components.

Figure 4.11 Free-body diagrams. (a) A one-dimensional situation like those we discuss in this chapter.  
(b) A two-dimensional situation. We’ll deal with such cases in Chapter 5.
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Identify all
forces acting 
on the object.

Cable
tension

Physical
situation

Free-body
diagram

Physical
situation

Free-body
diagram

(a) (b)
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Our IDEA strategy applies to Newton’s laws as it does to other physics problems. For 
the second law, we can elaborate on the four IDEA steps:

problem-solvIng strategy 4.1 Newton’s Second Law

INTERpRET Interpret the problem to be sure that you know what it’s asking and that Newton’s 
second law is the relevant concept. Identify the object of interest and all the individual interac-
tion forces acting on it.

DEvELop Draw a free-body diagram as described in Tactics 4.1. Develop your solution plan by 
writing Newton’s second law, F

S
net = ma

!
, with F

S
net expressed as the sum of the forces you’ve 

identified. Then choose a coordinate system so you can express Newton’s law in components.

EvALUATE At this point the physics is done, and you’re ready to execute your plan by solving 
Newton’s second law and evaluating the numerical answer(s), if called for. Even in the one- 
dimensional problems of this chapter, remember that Newton’s law is a vector equation; that will 
help you get the signs right. You need to write the components of Newton’s law in the coordinate 
system you chose, and then solve the resulting equation(s) for the quantity(ies) of interest.

ASSESS Assess your solution to see that it makes sense. Are the numbers reasonable? Do the 
units work out correctly? What happens in special cases—for example, when a mass, force, or 
acceleration becomes very small or very large, or an angle becomes 0° or 90°?

ExAMpLE 4.3 Newton’s Second Law: In the Elevator

A 740-kg elevator accelerates upward at 1.1 m/s2, pulled by a cable of 
negligible mass. Find the tension force in the cable.

Interpret In this problem we’re asked to evaluate one of the forces 
on an object. First we identify the object of interest. Although the 
problem asks about the cable tension, it’s the elevator on which that 
tension acts, so the elevator is the object of interest. Next, we identify 
the forces acting on the elevator. There are two: the downward force of 
gravity F

S
g and the upward cable tension T

S
.

Develop Figure 4.12a shows the elevator accelerating upward; 
Fig. 4.12b is a free-body diagram representing the elevator as a dot 
with the two force vectors acting on it. The applicable equation is 
 Newton’s second law, F

S
net = ma

!
, with F

S
net given by the sum of the 

forces we’ve identified:

 F
S

net = T
S

+ F
S

g = ma
!
 (4.6)

✓TIp Vectors Tell it All

Are you tempted to put a minus sign in this equation because one 
force is downward? Don’t! A vector contains all the information 
about its direction. You don’t have to worry about signs until you 
write the components of a vector equation in the coordinate system 
you chose.

Now we need to choose a coordinate system. Here all the forces 
are vertical, so we’ll choose our y-axis pointing upward.

evaluate Now we’re ready to rewrite Newton’s second law— 
Equation 4.6 in this case—in our coordinate system. Formally, we re-
move the vector signs and add coordinate subscripts—just y in this case:

 Ty + Fgy = may (4.7)

Still no need to worry about signs. Now, what is Ty? Since the tension 
points upward and we’ve chosen that to be the positive direction, the 
component of tension in the y-direction is its magnitude T. What about 
Fgy? Gravity points downward, so this component is negative. Further-
more, we know that the magnitude of the gravitational force is mg.  
So Fgy = -mg. Then our Newton’s law equation becomes

T - mg = may

so

 T = may + mg = m1ay + g2 (4.8)

For the numbers given, this equation yields

T = m1ay + g2 = 1740 kg211.1 m/s2 + 9.8 m/s22 = 8.1 kN

assess We can see that this answer makes sense—and learn a lot more 
about physics—from the algebraic form of the answer in Equation 4.8. 
Consider some special cases: If the acceleration ay were zero, then the 
net force on the elevator would have to be zero. In that case Equation 
4.8 gives T = mg. Makes sense: The cable is then supporting the eleva-
tor’s weight mg but not exerting any additional force to accelerate it.Figure 4.12 The forces on the elevator are the cable tension T

S
 and gravity F

S
g.

a
u

(a) (b)

(continued)
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60 Chapter 4 Force and Motion

GoT IT? 4.4 For each of the following situations, would the cable tension in Example 
4.3 be (a) greater than, (b) less than, or (c) equal to the elevator’s weight? (1) elevator starts 
moving upward, accelerating from rest; (2) elevator decelerates to a stop while moving up-
ward; (3) elevator starts moving downward, accelerating from rest; (4) elevator slows to a 
stop while moving downward; (5) elevator is moving upward with constant speed

On the other hand, if the elevator is accelerating upward, then the 
cable has to provide an extra force in addition to the weight; that’s why 
the tension becomes may + mg. Numerically, our answer of 8.1 kN is 
greater than the elevator’s weight—and the cable had better be strong 
enough to handle the extra force.

Finally, if the elevator is accelerating downward, then ay is 
negative, and the cable tension is less than the weight. In free fall, 
ay = -g, and the cable tension would be zero.

You might have reasoned out this problem in your head. But we 
did it very thoroughly because the strategy we followed will let you 
solve all problems involving Newton’s second law, even if they’re 
much more complicated. If you always follow this strategy and don’t 
try to find shortcuts, you’ll become confident in using Newton’s 
 second law. ■

CoNCEpTUAL ExAMpLE 4.1 At the Equator

When you stand on a scale, the scale pushes up to support you, and the 
scale reading shows the force with which it’s pushing. If you stand on a 
scale at Earth’s equator, is the reading greater or less than your weight?

evaluate The question asks about the force the scale exerts on you, in 
comparison to your weight (the gravitational force on you).  Figure 4.13 
is our sketch, showing the scale force upward and the  gravitational force 
downward, toward Earth’s center. You’re in  circular motion about Earth’s 
center, so the direction of your  acceleration is toward the center (down-
ward). According to Newton’s second law, the net force and accelera-
tion are in the same direction. The only two forces acting on you are the 

 downward force of gravity and the  upward force of the scale. For them to 
sum to a net force that’s downward, the force of gravity—your weight—
must be larger. Therefore, the scale reading must be less than your weight.

assess Make sense? Yes: If the two forces had equal magnitudes, 
the net force would be zero—inconsistent with the fact that you’re ac-
celerating. And if the scale force were greater, you’d be accelerating 
in the wrong direction! The same effect occurs everywhere except at 
the poles, but its analysis is more complicated because the accelera-
tion is toward Earth’s axis, not the center.

makIng the connectIon By what percentage is your apparent 
weight (the scale reading) at the equator less than your actual weight?

evaluate Using Earth’s radius RE from Appendix E, and its  24-hour 
rotation period, you can find your acceleration: From Equation 
3.16, it’s v2/RE. Following Problem-Solving Strategy 4.1 and work-
ing in a coordinate system with the vertical direction upward, you’ll 

find that Newton’s second law becomes Fscale - mg = -m 
v2

RE
, or 

Fscale = mg - mv2/RE. So the scale reading differs from your weight 
mg by mv2/RE. Working the numbers shows that’s a difference of only 
0.34%. Note that this result doesn’t depend on your mass m.Figure 4.13 Our sketch for Conceptual Example 4.1.

4.6 Newton’s Third Law
Push your book across your desk, and you feel the book push back (Fig. 4.14a). Kick a 
ball with bare feet, and your toes hurt. Why? You exert a force on the ball, and the ball 
exerts a force back on you. A rocket engine exerts forces that expel hot gases out of its 
nozzle—and the hot gases exert a force on the rocket, accelerating it forward (Fig. 4.14b).

Figure 4.14 Newton’s third law says that forces 
always come in pairs. With objects in contact, 
both forces act at the contact point. To empha-
size that the two forces act on different objects, 
we draw them slightly displaced.

Rocket pushes
on gases.

Gases push
on rocket.

(b)

(a)

FBA
S

Book pushes
on hand
with force
FBA.
S

Hand pushes on
book with force FAB.

S

FAB
S

F2
S

F1
S

Rocket pushes
on gases.

Gases push
on rocket.

(b)

(a)

FBA
S

Book pushes
on hand
with force
FBA.
S

Hand pushes on
book with force FAB.

S

FAB
S

F2
S

F1
S
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4.6 Newton’s Third Law 61

Whenever one object exerts a force on a second object, the second object also exerts 
a force on the first. The two forces are in opposite directions, but they have equal magni-
tudes. This fact constitutes Newton’s third law of motion. The familiar expression “for 
every action there is an equal and opposite reaction” is Newton’s 17th-century language. 
But there’s really no distinction between “action” and “reaction”; both are always present. 
In modern language, the third law states:

Newton’s third law of motion: If object A exerts a force on object B, then object B  
exerts an oppositely directed force of equal magnitude on A.

Newton’s third law is about forces between objects. It says that such forces always occur 
in pairs—that it’s not possible for object A to exert a force on object B without B exerting 
a force back on A. You can now see why we coined the term “interaction forces”—when 
there’s force between two objects, it’s always a true interaction, with both objects exert-
ing forces and both experiencing forces. We’ll use the terms interaction force pair and 
 third-law pair for the two forces described by Newton’s third law.

It’s crucial to recognize that the forces of a third-law pair act on different objects; the force 
F
S

AB of object A acts on object B, and the force F
S

BA of B acts on A. The forces have equal 
magnitudes and opposite directions, but they don’t cancel to give zero net force  because they 
don’t act on the same object. In Fig. 4.14a, for example, F

S
AB is the force the hand exerts on 

the book. There’s no other horizontal force acting on the book, so the net force on the book 
is nonzero and the book accelerates. Failure to recognize that the two forces of a third-law 
pair act on different objects leads to a contradiction, embodied in the famous horse-and-cart 
dilemma illustrated in Fig. 4.15.

Figure 4.15 The horse-and-cart dilemma: The 
horse pulls on the cart, and the cart pulls back 
on the horse with a force of equal magnitude. 
So how can the pair ever get moving? No 
problem: The net force on the horse involves 
forces from different third-law pairs. Their mag-
nitudes aren’t equal and the horse experiences 
a net force in the forward direction.

These forces constitute an equal but opposite
pair, but they don’t act on the same object so
they don’t cancel.

The force on the horse
arises as a reaction to
the horse pushing back
on the road.

The forward force from
the road is greater than
the backward force
from the cart so the net
force is forward.

AppLICATIoN Hollywood Goes Weightless

The film Apollo 13 shows Tom Hanks and his fellow actors floating  weightlessly 
around the cabin of their movie-set spacecraft. What special effects did  Hollywood 
use here? None. The actors’ apparent weightlessness was the real thing. But even 
Hollywood’s budget wasn’t enough to buy a space-shuttle flight. So the producers 
rented NASA’s weightlessness training aircraft, aptly dubbed the “vomit comet.” 
This airplane executes parabolic trajectories that mimic the free-fall motion of a 
projectile, so its occupants experience apparent weightlessness.

Movie critics marveled at how Apollo 13 “simulated the weightlessness of 
outer space.” Nonsense! The actors were in free fall just like the real astronauts 
on board the real Apollo 13, and they experienced exactly the same physical 
 phenomenon—apparent weightlessness when moving under the influence of 
gravity alone.

In contrast to Apollo 13, scenes of apparent weightlessness in the 2013 film 
Gravity were done with special effects. That’s one reason the film’s star,  Sandra 
Bullock, wears her hair short; it would be too difficult to simulate individual 
 free-floating strands of long hair.
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62 Chapter 4 Force and Motion

GoT IT? 4.5 The figure shows two blocks with two forces acting on the pair. Is the 
net force on the larger block (a) greater than 2 N, (b) equal to 2 N, or (c) less than 2 N?

1 kg

5 N 3 N
3 kg

A contact force such as the force between the books in Example 4.4 is called a normal 
force (symbol n

!
) because it acts at right angles to the surfaces in contact. Other examples 

of normal forces are the upward force that a table or bridge exerts on objects it supports, 
and the force perpendicular to a sloping surface supporting an object (Fig. 4.17).

ExAMpLE 4.4 Newton’s Third Law: pushing Books

On a frictionless horizontal surface, you push with force F
S

on a book 
of mass m1 that in turn pushes on a book of mass m2 (Fig. 4.16a). 
What force does the second book exert on the first?

Interpret This problem is about the interaction between two 
 objects, so we identify both books as objects of interest.

Develop In a problem with multiple objects, it’s a good idea to draw a 
separate free-body diagram for each object. We’ve done that in Fig. 4.16b 
and c, keeping very light images of the books themselves. Now, we’re 
asked about the force the second book exerts on the first. Newton’s third 
law would give us that force if we knew the force the first book exerts on 

the second. Since that’s the only horizontal force acting on book 2, we could 
get it from Newton’s second law if we knew the acceleration of book 2.  
So here’s our plan: (1) Find the acceleration of book 2; (2) use Newton’s 
second law to find the net force on book 2, which in this case is the single 
force F

S
12; and (3) apply Newton’s third law to get F

S
21, which is what we’re 

looking for.

evaluate (1) The total mass of the two books is m1 + m2, and 
the net force applied to the combination is F

S
. Newton’s second law, 

F
S

= ma
!
, gives

a
!

=
F
S

m
=

F
S

m1 + m2

for the acceleration of both books, including book 2. (2) Now that we 
know book 2’s acceleration, we use Newton’s second law to find F

S
12, 

which, since it’s the only horizontal force on book 2, is the net force 
on that book:

F
S

12 = m2 a
!

= m2
F
S

m1 + m2
=

m2

m1 + m2
F
S

(3) Finally, the forces the books exert on each other constitute a third-
law pair, so we have

F
S

21 = - F
S

12 = -
m2

m1 + m2
F
S

assess You can see that this result makes sense by considering the 
first book. It too undergoes acceleration a

!
= F

S
/1m1 + m22, but there 

are two forces acting on it: the applied force F
S

 and the force F
S

21 from 
the second book. So the net force on the first book is

F
S

+ F
S

21 = F
S

-
m2

m1 + m2
F
S

=
m1

m1 + m2
F
S

= m1a
!

consistent with Newton’s second law. Our result shows that New-
ton’s second and third laws are both necessary for a fully consistent 
 description of the motion. ■

Figure 4.16 Horizontal forces on the books of Example 4.4. Not shown 
are the vertical forces of gravity and the normal force from the surface 
 supporting the books.

F
S

(a)

(b)

(c)

m1

m2

F12
S

F21
S
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4.6 Newton’s Third Law 63

Newton’s third law also applies to forces like gravity that don’t involve direct contact. 
Since Earth exerts a downward force on you, the third law says that you exert an equal 
upward force on Earth (Fig. 4.18). If you’re in free fall, then Earth’s gravity causes you to 
accelerate toward Earth. Earth, too, accelerates toward you—but it’s so massive that this 
acceleration is negligible.

Measuring Force
Newton’s third law provides a convenient way to measure forces using the tension or com-
pression force in a spring. A spring stretches or compresses in proportion to the force 
exerted on it. By Newton’s third law, the force on the spring is equal and opposite to the 
force the spring exerts on whatever is stretching or compressing it (Fig. 4.19). The spring’s 
stretch or compression thus provides a measure of the force on whatever object is attached 
to the spring.

In an ideal spring, the stretch or compression is directly proportional to the force 
 exerted by the spring. Hooke’s law expresses this proportionality mathematically:

 Fs = -kx  1Hooke>s law, ideal spring2 (4.9)

Figure 4.17 Normal forces. Also shown in each case is the gravitational force.
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The normal force acts 
perpendicular to the 
surface.

The normal force and 
gravitational force
don’t balance, so the
block slides down 
the slope.

The upward normal force from the table supports the
block against gravity. These two forces act on the
same object, so they don’t constitute a third-law pair.
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The upward normal force from the table supports the
block against gravity. These two forces act on the
same object, so they don’t constitute a third-law pair.

Figure 4.18 Gravitational forces on you and on 
Earth form a third-law pair. Figure is obviously 
not to scale!

Figure 4.19 A spring responds to stretching or compression with an oppositely 
directed force.

A spring at its normal length 
does not exert a force.

A stretched spring pulls inward to oppose the 
stretch. It applies a rightward force on the wall
and a leftward force on the hand.

A compressed spring pushes outward. The 
spring’s force on the wall is to the left and
on the hand to the right.

(a)

(b)

(c)

x = 0

x 7 0

x 6 0

Video Tutor Demo | Weighing a Hovering Magnet

Essential University Physics 3e
Wolfson
Benjamin Cummings
Pearson Education
qrc_vtd_video11
Fig qrc_vtd_video11
Pickup: qrc_vtd_video11
Rolin Graphics
mc    8/14/14    3p0 x 3p0  

M04_WOLF4752_03_SE_C04.indd   63 16/06/15   9:06 AM

https://mediaplayer.pearsoncmg.com/assets/secs-vtd11_magneticallysuspend


64 Chapter 4 Force and Motion

Here Fs is the spring force, x is the distance the spring has been stretched or compressed 
from its normal length, and k is the spring constant, which measures the “stiffness” of the 
spring. Its units are N/m. The minus sign shows that the spring force is opposite the distor-
tion of the spring: Stretch it, and the spring responds with a force opposite the stretching 
force; compress it, and the spring pushes back against the compressing force. Real springs 
obey Hooke’s law only up to a point; stretch it too much, and a spring will deform and 
eventually break.

A spring scale is a spring with an indicator and a scale calibrated in force units  
(Fig. 4.20). Common examples include many bathroom scales, hanging scales in super-
markets, and laboratory spring scales. Even electronic scales are spring scales, with their 
“springs” materials that produce electrical signals when deformed by an applied force.

Hang an object on a spring scale, and the spring stretches until its force counters the 
gravitational force on the object. Or, with a stand-on scale, the spring compresses until 
it supports you against gravity. Either way, the spring force is equal in magnitude to the 
weight mg, and thus the spring indicator provides a measure of weight. Given g, this pro-
cedure also provides the object’s mass.

Be careful, though: A spring scale provides the true weight only if the scale isn’t ac-
celerating; otherwise, the scale reading is only an apparent weight. Weigh yourself in an 
accelerating elevator and you may be horrified or delighted, depending on the direction of 
the acceleration. Conceptual Example 4.1 made this point qualitatively, and Example 4.5 
does so quantitatively.

Figure 4.20 A spring scale.

F
S

F (newtons)

0 1 2 3 4

AppLICATIoN Accelerometers, MEMS, Airbags, and Smartphones

Hook one end of a spring to any part of an accelerating car, airplane, rocket, or what-
ever, and attach a mass m to the other end. The spring stretches until it provides the force 
needed to bring the mass along with the accelerating vehicle, sharing its  acceleration. If 
you measure the spring’s stretch and know its spring constant, you can get the force. If 
you know the mass m, you can then use F = ma to get the acceleration. You’ve made 
an accelerometer!

Accelerometers based on this simple principle are widely used in industrial, trans-
portation, robotics, and scientific applications. Often they’re three-axis devices, with 
three mutually perpendicular springs to measure all three components of the accel-
eration vector. The drawing shows a simplified two-axis accelerometer for measuring 
 accelerations in a horizontal plane.

Today’s accelerometers are miniature devices based on technology called MEMS, 
for microelectromechanical systems. They’re etched out of a tiny silicon chip that 
 includes electronics for measuring stretch and determining acceleration. Your car 
 employs a number of these accelerometers, including those that sense when to deploy 
the airbags.

Your smartphone contains a three-axis MEMS accelerometer (see photo, which is 
magnified some 700 times) that  determines the phone’s acceleration in three  mutually 
perpendicular directions. The components in a smartphone accelerometer are only 
a fraction of a millimeter across. Apps are available to record accelerometer data, 
 making your smartphone a useful  device for physics experiments. Problem 64 explores 
 smartphone accelerometer data.

m
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4.6 Newton’s Third Law 65

GoT IT? 4.6 (1) Would the answer to (a) in Example 4.5 change if the helicopter 
were not at rest but moving upward at constant speed? (2) Would the answer to (b) change 
if the helicopter were moving downward but still accelerating upward?

ExAMpLE 4.5 True and Apparent Weight: A Helicopter Ride

A helicopter rises vertically, carrying concrete for a ski-lift founda-
tion. A 35-kg bag of concrete sits in the helicopter on a spring scale 
whose spring constant is 3.4 kN/m. By how much does the spring 
compress (a) when the helicopter is at rest and (b) when it’s accelerat-
ing upward at 1.9 m/s2?

Interpret This problem is about concrete, a spring scale, and a heli-
copter. Ultimately, that means it’s about mass, force, and  acceleration—
the content of Newton’s laws. We’re interested in the spring and the 
concrete mass resting on it, which share the motion of the helicopter. We 
identify two forces acting on the concrete: gravity and the spring force F

S
s.

Develop As with any Newton’s law problem, we start with a free-
body diagram (Fig. 4.21). We then write Newton’s second law in its 
vector form

F
S

net = F
S

s + F
S

g = ma
!

Vectors tell it all; don’t worry about signs at this point. Our equation 
expresses all the physics of the situation, but before we can move on 
to the solution, we need to choose a coordinate system. Here it’s con-
venient to take the y-axis vertically upward.

evaluate The forces are in the vertical direction, so we’re concerned 
with only the y-component of Newton’s law: Fsy + Fgy = may. The 
spring force is upward and, from Hooke’s law, it has magnitude kx, so 
Fsy = kx. Gravity is downward with magnitude mg, so Fgy = -mg. 
The y-component of Newton’s law then becomes kx - mg = may, 
which we solve to get

x =
m1ay + g2

k

Putting in the numbers (a) with the helicopter at rest 1ay = 02 and  
(b) with ay = 1.9 m/s2 gives

(a)  x =
m1ay + g2

k
=

135 kg2 10 + 9.8 m/s22
3400 N/m

= 10 cm

(b)  x =
135 kg211.9 m/s2 + 9.8 m/s22

3400 N/m
= 12 cm

assess Why is the answer to (b) larger? Because, just as with the 
cable in Example 4.3, the spring needs to provide an additional force 
to accelerate the concrete upward. ■

Figure 4.21 Our drawings for Example 4.5.
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Chapter 4 Summary
Big Idea

The big idea of this chapter—and of all Newtonian mechanics—is that force causes change in motion, not motion itself. Uniform motion—straight 
line, constant speed—needs no cause or explanation. Any deviation, in speed or direction, requires a net force. This idea is the essence of  Newton’s 
first and second laws. Combined with Newton’s third law, these laws provide a consistent description of motion.

Newton’s First Law
A body in uniform motion remains in uni-
form motion, and a body at rest remains at 
rest,  unless acted on by a nonzero net force.

This law is implicit in Newton’s second law.

Newton’s Second Law
The rate at which a body’s momentum 
changes is equal to the net force acting on 
the body.

Here momentum is the “quantity of mo-
tion,” the product of mass and velocity.

Newton’s Third Law
If object A exerts a force on object B, then 
object B exerts an oppositely directed force 
of equal magnitude on A.

Newton’s third law says that forces come in 
pairs.

Solving problems with Newton’s Laws
INTERpRET Interpret the problem to be sure that you know what it’s asking 
and that Newton’s second law is the relevant concept. Identify the object of 
interest and all the individual interaction forces acting on it.

DEvELop Draw a free-body diagram as described in Tactics 4.1. Develop 
your solution plan by writing Newton’s second law, F

S
net = ma

!
, with F

S
net 

 expressed as the sum of the forces you’ve identified. Then choose a coordinate 
system so you can express Newton’s law in components.

EvALUATE At this point the physics is done, and you’re ready to execute your 
plan by solving Newton’s second law and evaluating the numerical answer(s), if 
called for. Remember that even in the one-dimensional problems of this chapter, 
Newton’s law is a vector equation; that will help you get the signs right. You 
need to write the components of Newton’s law in the coordinate system you 
chose, and then solve the resulting equation(s) for the quantity(ies) of interest.

ASSESS Assess your solution to see that it makes sense. Are the numbers reasonable? Do the units work out correctly? What happens in special 
cases—for example, when a mass, a force, an acceleration, or an angle gets very small or very large?

Fg
S

Fg
S

T
S

T
S

1
2

3
Identify all
forces acting 
on the object.

Both forces
act on the 
dot.

Elevator and
contents reduce
to dot.

Gravity

Cable
tension

Key Concepts and Equations

Mathematically, Newton’s second law is F
S

net = dp
!
/dt, where p

!
= mv

!
 is an object’s momentum, and 

F
S

net is the sum of all the individual forces acting on the object. When an object has constant mass, the 
second law takes the familiar form

F
S

net = ma
!
  1Newton>s second law2

Newton’s second law is a vector equation. To use it correctly, you must write the components of the 
equation in a chosen coordinate system. In one-dimensional problems the result is a single equation.

F1
S

F3
S

Fnet
S

F2
S

Fnet is the
vector sum
of F1, F2, 
and F3.

S S

S

S

Applications

The force of gravity on an object is its weight. Since all objects at a given location experience the 
same gravitational acceleration, weight is proportional to mass:

w
!

= mg
!
  1weight on Earth2

In an accelerated reference frame, an object’s apparent weight differs from its actual weight; in 
particular, an object in free fall experiences apparent weightlessness.

Springs are convenient force-measuring devices, stretching or compressing in response to the 
 applied force. For an ideal spring, the stretch or compression is directly proportional to the force:

Fs = -kx  1Hooke>s law2
where k is the spring constant, with units of N/m.

Fs
S Fapplied

S
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Exercises and Problems 67

For homework assigned on MasteringPhysics, go to www.masteringphysics.com

BIO Biology and/or medicine-related problems DATA Data problems ENV Environmental problems CH Challenge problems Comp Computer problems

20. Starting from rest and undergoing constant acceleration, a 940-kg  
racing car covers 400 m in 4.95 s. Find the force on the car.

21. In an egg-dropping contest, a student encases an 85-g egg in a 
large Styrofoam block. If the force on the egg can’t exceed 28 N,  
and if the block hits the ground at 12 m/s, by how much must 
the Styrofoam compress on impact? Note: The acceleration 
 associated with stopping the egg is so great that you can neglect 
gravity while the Styrofoam block is slowing due to contact with 
the ground.

22. In a front-end collision, a 1300-kg car with shock-absorbing bump-
ers can withstand a maximum force of 65 kN before damage occurs. 
If the maximum speed for a nondamaging collision is 10 km/h, by 
how much must the bumper be able to move relative to the car?

Section 4.4 The Force of Gravity
23. Show that the units of acceleration can be written as N/kg. Why 

does it make sense to give g as 9.8 N/kg when talking about mass 
and weight?

24. Your spaceship crashes on one of the Sun’s planets. Fortunately, 
the ship’s scales are intact and show that your weight is 532 N. If 
your mass is 60 kg, where are you? (Hint: Consult Appendix E.)

25. Your friend can barely lift a 35-kg concrete block on Earth. How 
massive a block could she lift on the Moon?

26. A cereal box says “net weight 340 grams.” What’s the actual 
weight (a) in SI units and (b) in ounces?

27. You’re a safety engineer for a bridge spanning the U.S.– Canadian 
border. U.S. specifications permit a maximum load of 10 tons. 
What load limit should you specify on the Canadian side, where 
“weight” is given in kilograms?

28. The gravitational acceleration at the International Space Station’s 
altitude is about 89% of its surface value. What’s the weight of a 
68-kg astronaut at this altitude?

Section 4.5 Using Newton’s Second Law
29. A 50-kg parachutist descends at a steady 40 km/h. What force 

does air exert on the parachute?
30. A 930-kg motorboat accelerates away from a dock at 2.3 m/s2. 

Its propeller provides a 3.9-kN thrust force. What drag force does 
the water exert on the boat?

31. An elevator accelerates downward at 2.4 m/s2. What force does 
the elevator’s floor exert on a 52-kg passenger?

32. At 560 metric tons, the Airbus A-380 is the world’s largest air-
liner. What’s the upward force on an A-380 when the plane is 
(a) flying at constant altitude and (b) accelerating upward at 
1.1 m/s2?

33. You’re an engineer working on Ares I, NASA’s replacement for 
the space shuttles. Performance specs call for a first-stage rocket 
capable of accelerating a total mass of 630 Mg vertically from 
rest to 7200 km/h in 2.0 min. You’re asked to determine the re-
quired engine thrust (force) and the force exerted on a 75-kg as-
tronaut during liftoff. What do you report?

34. You step into an elevator, and it accelerates to a downward speed 
of 9.2 m/s in 2.1 s. Quantitatively compare your apparent weight 
during this time with your actual weight.

Section 4.6 Newton’s Third Law
35. What upward gravitational force does a 5600-kg elephant exert 

on Earth?
36. Your friend’s mass is 65 kg. If she jumps off a 120-cm-high ta-

ble, how far does Earth move toward her as she falls?

For thought and Discussion
 1. Distinguish the Aristotelian and Galilean/Newtonian views of the 

natural state of motion.
 2. A ball bounces off a wall with the same speed it had before it hit 

the wall. Has its momentum changed? Has a force acted on the 
ball? Has a force acted on the wall? Relate your answers to New-
ton’s laws of motion.

 3. We often use the term “inertia” to describe human sluggishness. 
How is this usage related to the meaning of “inertia” in physics?

 4. Does a body necessarily move in the direction of the net force 
acting on it?

 5. A truck crashes into a stalled car. A student trying to explain the 
physics of this event claims that no forces are involved; the car 
was just “in the way” so it got hit. Comment.

 6. A barefoot astronaut kicks a ball, hard, across a space station. 
Does the ball’s apparent weightlessness mean the astronaut’s toes 
don’t hurt? Explain.

 7. The surface gravity on Jupiter’s moon Io is one-fifth that on 
Earth. What would happen to your weight and to your mass if 
you were on Io?

 8. In paddling a canoe, you push water backward with your paddle. 
What force actually propels the canoe forward?

 9. Is it possible for a nonzero net force to act on an object without 
the object’s speed changing? Explain.

10. As your plane accelerates down the runway, you take your keys 
from your pocket and suspend them by a thread. Do they hang 
vertically? Explain.

11. A driver tells passengers to buckle their seatbelts, invoking the 
law of inertia. What’s that got to do with seatbelts?

12. If you cut a spring in half, is the spring constant of each new spring 
less than, equal to, or greater than the spring constant of the original 
spring? (See Problem 50 for a quantitative look at this question.)

13. As you’re sitting on a chair, there’s a gravitational force down-
ward on you, and an upward normal force from the chair on you. 
Do these forces constitute a third-law pair? If not, what forces are 
paired with each of these?

exercises and problems

Exercises

Section 4.2 Newton’s First and Second Laws
14. A subway train’s mass is 1.5 * 106 kg. What force is required to 

accelerate the train at 2.5 m/s2?
15. A 61-Mg railroad locomotive can exert a 0.12-MN force. At what 

rate can it accelerate (a) by itself and (b) when pulling a 1.4-Gg 
train?

16. A small plane accelerates down the runway at 7.2 m/s2. If its pro-
peller provides an 11-kN force, what’s the plane’s mass?

17. A car leaves the road traveling at 110 km/h and hits a tree, com-
ing to a stop in 0.14 s. What average force does a seatbelt exert 
on a 60-kg passenger during this collision?

18. By how much does the force required to stop a car increase if the ini-
tial speed is doubled while the stopping distance remains the same?

19. Kinesin is a “motor protein” responsible for moving materials 
within living cells. If it exerts a 6.0-pN force, what acceleration 
will it give a molecular complex with mass 3.0 * 10-18 kg?

BIo
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68 Chapter 4 Force and Motion

37. What force is necessary to stretch a spring 48 cm, if its spring 
constant is 270 N/m?

38. A 35-N force is applied to a spring with spring constant 
k = 220 N/m. How much does the spring stretch?

39. A spring with spring constant k = 340 N/m is used to weigh a 
6.7-kg fish. How far does the spring stretch?

problems
40. A 1.25-kg object is moving in the x-direction at 17.4 m/s. Just 

3.41 s later, it’s moving at 26.8 m/s at 34.0° to the x-axis. Find the 
magnitude and direction of the force applied during this time.

41. An airplane encounters sudden turbulence, and you feel momen-
tarily lighter. If your apparent weight seems to be about 70% of 
your normal weight, what are the magnitude and direction of the 
plane’s acceleration?

42. A 74-kg tree surgeon rides a “cherry picker” lift to reach the up-
per branches of a tree. What force does the lift exert on the sur-
geon when it’s (a) at rest; (b) moving upward at a steady 2.4 m/s;  
(c) moving downward at a steady 2.4 m/s; (d) accelerating up-
ward at 1.7 m/s2; (e) accelerating downward at 1.7 m/s2?

43. A dancer executes a vertical jump during which the floor pushes 
up on his feet with a force 50% greater than his weight. What’s 
his upward acceleration?

44. Find expressions for the force needed to bring an object of mass 
m from rest to speed v (a) in time ∆t and (b) over distance ∆x.

45. An elevator moves upward at 5.2 m/s. What’s its minimum stop-
ping time if the passengers are to remain on the floor?

46. A 2.50-kg object is moving along the x-axis at 1.60 m/s. As it 
passes the origin, two forces F

S
1 and F

S
2 are applied, both in the  

y-direction (plus or minus). The forces are applied for 3.00 s, after 
which the object is at x = 4.80 m, y = 10.8 m. If F

S
1 = 15.0 N, 

what’s F
S

2?
47. Blocks of 1.0, 2.0, and 3.0 kg are lined up on a frictionless table, 

as shown in Fig. 4.22, with a 12-N force applied to the leftmost 
block. What’s the magnitude of the force that the rightmost block 
exerts on the middle one?

48. A child pulls an 11-kg wagon with a horizontal handle whose 
mass is 1.8 kg, accelerating the wagon and handle at 2.3 m/s2. 
Find the tension forces at each end of the handle. Why are they 
different?

49. Biophysicists use an arrangement of laser beams called opti-
cal tweezers to manipulate microscopic objects. In a particular 
experiment, optical tweezers exerting a force of 0.373 pN were 
used to stretch a DNA molecule by 2.30 μm. What was the spring 
constant of the DNA?

50. A force F is applied to a spring of spring constant k0, stretching 
it a distance x. Consider the spring to be made up of two smaller 
springs of equal length, with the same force F still applied. Use 
F = -kx to find the spring constant k1 of each of the smaller 
springs. Your result is a quantitative answer to Question 12.

51. A 2200-kg airplane pulls two gliders, the first of mass 310 kg and 
the second of mass 260 kg, down the runway with acceleration 
1.9 m/s2 (Fig. 4.23). Neglecting the mass of the two ropes and 

any frictional forces, determine the magnitudes of (a) the hori-
zontal thrust of the plane’s propeller; (b) the tension force in the 
first rope; (c) the tension force in the second rope; and (d) the net 
force on the first glider.

a
u

Figure 4.23 Problem 51

52.  A biologist is studying the growth of rats on the Space Station. 
To determine a rat’s mass, she puts it in a 320-g cage, attaches a 
spring scale, and pulls so that the scale reads 0.46 N. If rat and 
cage accelerate at 0.40 m/s2, what’s the rat’s mass?

53. An elastic towrope has spring constant 1300 N/m. It’s connected 
between a truck and a 1900-kg car. As the truck tows the car, the 
rope stretches 55 cm. Starting from rest, how far do the truck and 
the car move in 1 min? Assume the car experiences negligible 
friction.

54. A 2.0-kg mass and a 3.0-kg mass are on a horizontal friction-
less surface, connected by a massless spring with spring constant 
k = 140 N/m. A 15-N force is applied to the larger mass, as 
shown in Fig. 4.24. How much does the spring stretch from its 
equilibrium length?

F
S

2 kg 3 kg
15 N

Figure 4.24 Problem 54

55. You’re an automotive engineer designing the “crumple zone” 
of a new car—the region that compresses as the car comes to a 
stop in a head-on collision. If the maximum allowable force on 
a  passenger in a 70-km/h collision is 20 times the passenger’s 
weight, what do you specify for the amount of compression in 
the crumple zone?

56. Frogs’ tongues dart out to catch insects, with maximum tongue 
accelerations of about 250 m/s2. What force is needed to give a 
500-mg tongue such an acceleration?

57. Two large crates, with masses 640 kg and 490 kg, are connected 
by a stiff, massless spring 1k = 8.1 kN/m2 and propelled along 
an essentially frictionless factory floor by a horizontal force ap-
plied to the more massive crate. If the spring compresses 5.1 cm, 
what’s the applied force?

58. What force do the blades of a 4300-kg helicopter exert on the 
air when the helicopter is (a) hovering at constant altitude;  
(b) dropping at 21 m/s with speed decreasing at 3.2 m/s2; (c) rising at  
17 m/s with speed increasing at 3.2 m/s2; (d) rising at a steady  
15 m/s; (e) rising at 15 m/s with speed decreasing at 3.2 m/s2?

59. What engine thrust (force) is needed to accelerate a rocket of 
mass m (a) downward at 1.40g near Earth’s surface; (b) upward 
at 1.40g near Earth’s surface; (c) at 1.40g in interstellar space, far 
from any star or planet?

60. Your engineering firm is asked to specify the maximum load for 
the elevators in a new building. Each elevator has mass 490 kg 
when empty and maximum acceleration 2.24 m/s2. The eleva-
tor cables can withstand a maximum tension of 19.5 kN before 
breaking. For safety, you need to ensure that the tension never 
exceeds two-thirds of that value. What do you specify for the 
maximum load? How many 70-kg people is that?

BIo
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Figure 4.22 Problem 47

1 kg

12 N
2 kg 3 kg
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61. With its fuel tanks half full, an F-35A jet fighter has mass 18 Mg  
and engine thrust 191 kN. An Airbus A-380 has mass 560 Mg and 
total engine thrust 1.5 MN. Could either aircraft climb  vertically 
with no lift from its wings? If so, what vertical acceleration could 
it achieve?

62. Two springs have the same unstretched length but different spring 
constants, k1 and k2. (a) If they’re connected side by side and 
stretched a distance x, as shown in Fig. 4.25a, show that the force 
exerted by the combination is 1k1 + k22x. (b) If they’re con-
nected end to end (Fig. 4.25b) and the combination is stretched a 
distance x, show that they exert a force k1k2x/1k1 + k22.

(a) (b)

Figure 4.25 Problem 62

63. Although we usually write Newton’s second law for one-dimen-
sional motion in the form F = ma, which holds when mass is 

constant, a more fundamental version is F =
d1mv2

dt
. Consider

  an object whose mass is changing, and use the product rule 
for derivatives to show that Newton’s law then takes the form 

F = ma + v 
dm

dt
.

64. A railroad car is being pulled beneath a grain elevator that dumps 
grain at the rate of 450 kg/s. Use the result of Problem 63 to find 
the force needed to keep the car moving at a constant 2.0 m/s.

65. A block 20% more massive than you hangs from a rope that 
goes over a frictionless, massless pulley. With what acceleration 
must you climb the other end of the rope to keep the block from 
 falling?

66. You’re asked to calibrate a device used to measure vertical accel-
eration in helicopters. The device consists of a mass m hanging 
from a massless spring of constant k. Your job is to express the 
acceleration as a function of the position y of the mass relative to 
where it is when there’s no acceleration. Take the positive y-axis 
to point upward.

67. A spider of mass ms drapes a silk thread of negligible mass over a 
stick with its far end a distance h off the ground, as shown in Fig. 4.26.  
A drop of dew lubricates the stick, making friction negligible. The 
spider waits on the ground until a fly of mass mf 1mf 7 ms) lands 
on the other end of the silk and sticks to it. The spider  immediately 

 begins to climb her end of the silk. (a) With what acceleration must 
she climb to keep the fly from falling? If she climbs with  acceleration 
as, at what height y will she encounter the fly?

68. Figure 4.27 shows vertical accelerometer data from an iPhone 
that was dropped onto a pillow. The phone’s accelerometer, like 
all accelerometers, can’t distinguish gravity from acceleration, so 
it reads 1g when it’s not accelerating and 0g when it’s in free 
fall. Interpret the graph to determine (a) how long the phone was 
in free fall and therefore how far it fell, (b) how many times it 
bounced, (c) the maximum force the phone experienced, ex-
pressed in terms of its weight w, and (d) when it finally came 
completely to rest. (Note: The phone was held flat when dropped, 
with the screen up for protection. In that orientation, it recorded 
negative values for acceleration; the graph shows the correspond-
ing positive values that would have been recorded had it fallen 
screen side down.)
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Figure 4.27 Accelerometer data for Problem 68, taken with an iPhone. The 
accelerometer can’t distinguish gravity from acceleration, so what it actu-
ally measures is apparent weight divided by mass, expressed in units of g.

69. A hockey stick is in contact with a 165-g puck for 22.4 ms; dur-
ing this time, the force on the puck is given approximately by 
F1t2 = a + bt + ct2, where a = -25.0 N, b = 1.25 * 105 N/s, 
and c = -5.58 * 106 N/s2. Determine (a) the speed of the puck 
after it leaves the stick and (b) how far the puck travels while it’s 
in contact with the stick.

70. After parachuting through the Martian atmosphere, the Mars 
Science Laboratory executed a complex series of maneuvers 
that successfully placed the rover Curiosity on the surface of 
Mars in 2012. The final ∼22 s of the landing involved, in this 
order, firing rockets (1) to maintain a constant downward veloc-
ity of 32 m/s, (2) to achieve a constant deceleration that brought 
the downward speed to 0.75 m/s, and (3) to hold that constant 
velocity while the rover was lowered on cables from the rest of 
the spacecraft (see this chapter’s opening image). The rover’s 
touchdown was indicated by a sudden decrease in the rocket 
thrust needed to maintain constant velocity. Figure 4.28 shows 
the rocket thrust (upward force) as a function of time during 
these final 22 s of the flight and the first few seconds after 
touchdown. (a) Identify the two constant-velocity phases, the 
constant-deceleration phase, and the post-touchdown phase. 
(b) Find the magnitude of the spacecraft’s acceleration during 
the constant-deceleration phase. Finally, determine (c) the mass 
of the so-called powered descent vehicle (PDF), meaning the 
spacecraft with the rover attached and (d) the mass of the rover 
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Figure 4.26 Problem 67
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70 Chapter 4 Force and Motion

alone. Remember that all this happened at Mars, so you’ll need 
to consult Appendix E.
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Figure 4.28 Rocket thrust (upward force of rocket engines) during the final 
descent of the Mars rover Curiosity (Problem 70).

71. Your airplane is caught in a brief, violent downdraft. To your 
amazement, pretzels rise vertically off your seatback tray, and 
you estimate their upward acceleration relative to the plane at 
2 m/s2. What’s the plane’s downward acceleration?

72. You’re assessing the Engineered Material Arresting System 
(EMAS) at New York’s JFK airport. The system consists of a 
132-m-long bed of crushable cement blocks, designed to stop 
aircraft from sliding off the runway in emergencies. The EMAS 
can exert a 300-kN force on a 55-Mg jetliner that hits the system 
at 36 m/s. Can it stop the plane before it plows through all the 
blocks?

73. Two masses are joined by a massless string. A 30-N force applied 
vertically to the upper mass gives the system a constant upward 
acceleration of 3.2 m/s2. If the string tension is 18 N, what are the 
two masses?

74. A mass M hangs from a uniform rope of length L and mass m. 
Find an expression for the rope tension as a function of the dis-
tance y measured downward from the top of the rope.

75. “Jerk” is the rate of change of acceleration, and it’s what can 
make you sick on an amusement park ride. In a particular ride, a 
car and passengers with total mass M are subject to a force given 
by F = F0 sin vt, where F0 and v are constants. Find an expres-
sion for the maximum jerk.

Passage Problems
Laptop computers are equipped with accelerometers that sense when 
the device is dropped and then put the hard drive into a protective 
mode. Your computer geek friend has written a program that reads 
the accelerometer and calculates the laptop’s apparent weight. You’re 

amusing yourself with this program on a long plane flight. Your laptop 
weighs just 5 pounds, and for a long time that’s what the program 
reports. But then the “Fasten Seatbelt” light comes on as the plane 
 encounters turbulence. For the next 12 seconds, your laptop reports 
rapid changes in apparent weight, as shown in Fig. 4.29.
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Figure 4.29 The laptop’s apparent weight (Passage Problems 76–79).

76. At the first sign of turbulence, the plane’s acceleration
a. is upward.
b. is downward.
c. is impossible to tell from the graph.

77. The plane’s vertical acceleration has its greatest magnitude
a. during interval B.
b. during interval C.
c. during interval D.

78. During interval C, you can conclude for certain that the plane is
a. at rest.
b. accelerating upward.
c. accelerating downward.
d. moving with constant vertical velocity.

79. The magnitude of the greatest vertical acceleration the plane 
 undergoes during the time shown on the graph is approximately
a. 0.5 m/s2.
b. 1 m/s2.
c. 5 m/s2.
d. 10 m/s2.

answers to Chapter Questions

Answer to Chapter opening Question
The engineers needed to consider Martian gravity, the upward thrust 
of the sky crane’s rockets, and the tension in the cables used to lower 
the rover from the sky crane.

Answers to GoT IT? Questions
 4.1 (b)
 4.2 (b) (Look at Fig. 4.4.)
 4.3 (c) All would move in straight lines.
 4.4 (1) (a); (2) (b); (3) (b); (4) (a); (5) (c)
 4.5 (c) less than 2 N
 4.6 (1) No, because acceleration is still zero; (2) No, because the 

 direction of the velocity is irrelevant to the acceleration

CH
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Why does an airplane tip when it’s turning?

5
Using Newton’s Laws

What You Know
■ You’re a Newtonian, meaning you 

understand that forces cause change 
in motion.

■ You recognize how Newton’s second 
law, F

S
net = ma

!
, embodies a vector 

relation between force and change in 
motion.

■ You can work one-dimensional 
problems involving Newton’s second 
law, following a clear problem-solving 
strategy.

■ You’ve seen how Newton’s third 
law describes the forces between 
interacting objects as always coming 
in pairs.

Chapter 4 introduced Newton’s three laws of motion and used them in one-dimensional 
situations. Now we apply Newton’s laws in two dimensions. This material is at the heart 

of Newtonian physics, from textbook problems to systems that guide spacecraft to distant 
planets. The chapter consists largely of examples, to help you learn to apply Newton’s laws 
and also to appreciate their wide range of applicability. We also introduce frictional forces and 
elaborate on circular motion. As you study the diverse examples, keep in mind that they all 
follow from the underlying principles embodied in Newton’s laws.

5.1 Using Newton’s Second Law
Newton’s second law, F

S
net = ma

!
, is the cornerstone of mechanics. We can use it to 

 develop faster skis, engineer skyscrapers, design safer roads, compute a rocket’s thrust, 
and solve myriad other practical problems.

We’ll work Example 5.1 in great detail, applying Problem-Solving Strategy 4.1. 
Follow this example closely, and try to understand how our strategy is grounded in 
Newton’s basic statement that the net force on an object determines that object’s 
 acceleration.

What You’re Learning
■ You’ll learn to apply Newton’s second 

law in two dimensions, expanding the 
strategy you learned in Chapter 4.

■ You’ll practice choosing coordinate 
systems and using trigonometry to 
break force vectors into components.

■ You’ll learn about the force of friction 
and how to incorporate friction into 
problems involving Newton’s laws.

■ You’ll come out of the chapter able 
to analyze the richness of motion 
as it occurs throughout our three-
dimensional universe.

How You’ll Use It
■ Newton’s second law will help  

in developing energy concepts in 
Chapters 6 and 7.

■ In Chapter 8, you’ll see how Newton’s 
laws describe motion in response to 
gravity as it applies to space flight and 
the cosmos.

■ In Chapter 9, you’ll learn how Newton’s 
laws apply to systems of particles.

■ In Chapters 10 and 11, rotational 
analogs of Newton’s laws will help you 
understand rotational motion.

■ Newton’s laws will help you 
understand the motion of waves and 
fluids in Part 2, and the molecular 
motion that gives rise to temperature 
and pressure in Part 3.
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72 Chapter 5 Using Newton’s Laws

ExampLE 5.1 Newton’s Law in Two Dimensions: Skiing

A skier of mass m = 65 kg glides down a slope at angle u = 32°, as 
shown in Fig. 5.1. Find (a) the skier’s acceleration and (b) the force 
the snow exerts on the skier. The snow is so slippery that you can 
neglect friction.

Interpret This problem is about the skier’s motion, so we identify 
the skier as the object of interest. Next, we identify the forces acting 
on the object. In this case there are just two: the downward force of 
gravity and the normal force the ground exerts on the skier. As always, 
the normal force is perpendicular to the surfaces in contact—in this 
case perpendicular to the slope.

Develop Our strategy for using Newton’s second law calls for draw-
ing a free-body diagram that shows only the object and the forces 
acting on it; that’s Fig. 5.2. Determining the relevant equation is 
straightforward here: It’s Newton’s second law, F

S
net = ma

!
. We write 

Newton’s law explicitly for the forces we’ve identified:

F
S

net = n
!

+ F
S

g = ma
!

To apply Newton’s law in two dimensions, we need to choose a coor-
dinate system so that we can write this vector equation in components. 
Since the coordinate system is just a mathematical construct, you’re free 
to choose any coordinate system you like—but a smart choice can make 
the problem a lot easier. In this example, the normal force is perpen-
dicular to the slope and the skier’s acceleration is along the slope. If 
you choose a coordinate system with axes perpendicular and  parallel 
to the slope, then these two vectors will lie along the coordinate axes, 
and you’ll have only one vector—the gravitational force—that you’ll 

need to break into components. So a tilted coordinate system makes 
this problem easier, and we’ve sketched this system on the free-body 
diagram in Fig. 5.2. But, again, any coordinate system will do. In Prob-
lem 34, you can rework this example in a horizontal/vertical coordinate 
system—getting the same answer at the expense of a lot more algebra.

evaluate The rest is math. First, we write the components of 
 Newton’s law in our coordinate system. That means writing a version 
of the equation for each coordinate direction by removing the arrows 
indicating vector quantities and adding subscripts for the coordinate 
directions:

 x@component:   nx + Fgx = max

 y@component:   ny + Fgy = may

Don’t worry about signs until the next step, when we actually 
 evaluate the individual terms in these equations. Let’s begin with 
the x  equation. With the x-axis parallel and the y-axis perpendicular 
to the slope, the normal force has only a y-component, so nx = 0. 
 Meanwhile, the acceleration points downslope—that’s the positive  
x-direction—so ax = a, the magnitude of the acceleration. Only 
 gravity has two nonzero components and, as Fig. 5.2 shows, 
 trigonometry gives Fgx = Fg sin u. But Fg, the magnitude of the 
 gravitational force, is just mg, so Fgx = mg sin u. This component 
has a positive sign because our x-axis slopes downward. Then, with 
nx = 0, the x equation becomes

x@component: mg sin u = ma

On to the y equation. The normal force points in the positive y- direction, 
so ny = n, the magnitude of the normal force. The acceleration has no 
component perpendicular to the slope, so ay = 0. Figure 5.2 shows that 
Fgy = -Fg cos u = -mg cos u, so the y equation is

y@component: n - mg cos u = 0

Now we can evaluate to get the answers. The x equation solves 
 directly to give

a = g sin u = 19.8 m/s221sin 32°2 = 5.2 m/s2

which is the acceleration we were asked to find in (a). Next, we solve the y 
equation to get n = mg cos u. Putting in the numbers gives n = 540 N. 
This is the answer to (b), the force the snow exerts on the skier.

assess A look at two special cases shows that these results make 
sense. First, suppose u = 0°, so the surface is horizontal. Then the 
x equation gives a = 0, as expected. The y equation gives n = mg, 
showing that a horizontal surface exerts a force that just balances the 
skier’s weight. At the other extreme, consider u = 90°, so the slope 
is a vertical cliff. Then the skier falls freely with acceleration g, as 
expected. In this case n = 0 because there’s no contact between skier 
and slope. At intermediate angles, the slope’s normal force lessens 
the effect of gravity, resulting in a lower acceleration. As the x equa-
tion shows, that acceleration is independent of the skier’s mass—just 
as in the case of a vertical fall. The force exerted by the snow—here 
mg cos u, or 540 N—is less than the skier’s weight mg because the 
slope has to balance only the perpendicular component of the gravi-
tational force.

If you understand this example, you should be able to apply 
 Newton’s second law confidently in other problems involving motion 
with forces in two dimensions. ■

Figure 5.1 What’s the skier’s acceleration?

u = 32°

Figure 5.2 Our free-body diagram for the skier.

A coordinate system
with axes parallel 
and perpendicular 
to the slope is most
convenient here.

These angles are
the same.

These are the
x- and y-components
of the gravitational 
force, Fg.

S
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5.1 Using Newton’s Second Law 73

Sometimes we’re interested in finding the conditions under which an object won’t acceler-
ate. Examples are engineering problems, such as ensuring that bridges and buildings don’t fall 
down, and physiology problems involving muscles and bones. Next we give a wilder example.

ExampLE 5.2 Objects at Rest: Bear precautions

To protect her 17-kg pack from bears, a camper hangs it from ropes 
between two trees (Fig. 5.3). What’s the tension in each rope?

Interpret Here the pack is the object of interest. The only forces act-
ing on it are gravity and tension forces in the two halves of the rope. To 
keep the pack from accelerating, they must sum to zero net force.

Develop Figure 5.4 is our free-body diagram for the pack. The rel-
evant equation is again Newton’s second law, F

S
net = ma

!
—this time 

with a
!

= 0
S

. For the three forces acting on the pack, Newton’s law 
is then T

S
1 + T

S
2 + F

S
g = 0

S
. Next, we need a coordinate system. The 

two rope tensions point in different directions that aren’t perpendicu-
lar, so it doesn’t make sense to align a coordinate axis with either of 
them. Instead, a horizontal/vertical system is simplest.

evaluate First we need to write Newton’s law in components. For-
mally, we have T1x + T2x + Fgx = 0 and T1y + T2y + Fgy = 0 for the 
component equations. Figure 5.4 shows the components of the tension 
forces, and we see that Fgx = 0 and Fgy = -Fg = -mg. So our com-
ponent equations become

 x@component:  T1 cos u - T2 cos u = 0

 y@component:  T1 sin u + T2 sin u - mg = 0

The x equation tells us something that’s apparent from the symme-
try of the situation: Since the angle u is the same for both halves 

of the rope, the magnitudes T1 and T2 of the tension forces are the 
same. Let’s just call the magnitude T: T1 = T2 = T. Then the terms  
T1 sin u and T2 sin u in the y equation are equal, and the equation 
 becomes 2T sin u -  mg = 0, which gives

T =
mg

2 sin u
=

117 kg2 19.8 m/s22
2 sin 22°

= 220 N

assess Make sense? Let’s look at some special cases. With u = 90°, 
the rope hangs vertically, sin u = 1, and the tension in each half of 
the rope is 1

2 mg. That makes sense, because each piece of the rope 
supports half the pack’s weight. But as u gets smaller, the ropes be-
come more horizontal and the tension increases. That’s because the 
vertical tension components together still have to support the pack’s 
weight—but now there’s a horizontal component as well, increasing 
the overall tension. Ropes break if the tension becomes too great, and 
in this example that means the rope’s so-called breaking tension must 
be considerably greater than the pack’s weight. If u = 0, in fact, the 
tension would become infinite—demonstrating that it’s impossible to 
support a weight with a purely horizontal rope. ■

Figure 5.3 Bear precautions.

u = 22° u = 22°

Figure 5.4 Our free-body diagram for the pack.

The y components
of the two tension
forces are equal.

These are the x- and
y-components of the
tension T1.

S

T2 has the same magnitude
as T1, but its x-component
is opposite.

S

S

ExampLE 5.3 Objects at Rest: Restraining a Ski Racer

A starting gate acts horizontally to restrain a 62-kg ski racer on a fric-
tionless 30° slope (Fig. 5.5). What horizontal force does the starting 
gate apply to the skier?

Interpret Again, we want the skier to remain unaccelerated. The 
skier is the object of interest, and we identify three forces acting: 
 gravity, the normal force from the slope, and a horizontal restraining 
force F

S
h that we’re asked to find.

Develop Figure 5.6 is our free-body diagram. The applicable 
 equation is Newton’s second law. Again, we want a

!
= 0

S
, so with Figure 5.5 Restraining a skier.

u = 30°

(continued)

PheT: The Ramp
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GOT IT? 5.1 A roofer’s toolbox rests on an essentially 
frictionless metal roof with a 45° slope, secured by a horizon-
tal rope as shown. Is the rope tension (a) greater than, (b) less 
than, or (c) equal to the box’s weight?

5.2 multiple Objects
In the preceding examples there was a single object of interest. But often we have several 
objects whose motion is linked. Our Newton’s law strategy still applies, with extensions to 
handle multiple objects.

the forces we identified, F
S

net = ma
!
 becomes F

S
h + n

!
+ F

S
g = 0

S
. 

Developing our solution strategy, we choose a coordinate system. 
With two forces now either horizontal or vertical, a horizontal/vertical 
system makes the most sense; we’ve shown this coordinate system in 
Fig. 5.6.

evaluate As usual, the component equations follow directly 
from the vector form of Newton’s law: Fhx + nx + Fgx = 0 and 
Fhy + ny + Fgy = 0. Figure 5.6 gives the components of the nor-
mal force and shows that Fhx = -Fh, Fgy = -Fg = -mg,  and 
Fgx = Fhy = 0. Then the component equations become

x: -Fh + n sin u = 0  y: n cos u - mg = 0

There are two unknowns here—namely, the horizontal force Fh that 
we’re looking for and the normal force n. We can solve the y equation 
to get n = mg/cos u. Using this expression in the x equation and solv-
ing for Fh then give the answer:

Fh =
mg

cos u
 sin u = mg tan u = 162 kg219.8 m/s221tan 30°2 = 350 N

assess Again, let’s look at the extreme cases. With u = 0, we have 
Fh = 0, showing that it doesn’t take any force to restrain a skier on 
flat ground. But as the slope becomes more vertical, tan u S ∞ , and 
in the  vertical limit, it becomes impossible to restrain the skier with a 
purely  horizontal force. ■

Figure 5.6 Our free-body diagram for the restrained skier.

Horizontal/vertical
axes are best here.

Trig gives the
components of
the normal force.

How does the
rope tension compare
with the toolbox
weight?

45°

problem-solvIng strategy 5.1 Newton’s Second Law and multiple Objects

INTERpRET Interpret the problem to be sure that you know what it’s asking and that Newton’s 
second law is the relevant concept. Identify the multiple objects of interest and all the individual 
interaction forces acting on each object. Finally, identify connections between the objects and 
the resulting constraints on their motions.

DEvELOp Draw a separate free-body diagram showing all the forces acting on each object. 
 Develop your solution plan by writing Newton’s law, F

S
net = ma

!
, separately for each  object, with 

F
S

net expressed as the sum of the forces acting on that object. Then choose a  coordinate  system 
appropriate to each object, so you can express each Newton’s law equation in  components. The 
coordinate systems for different objects don’t need to have the same  orientation.

EvaLUaTE At this point the physics is done, and you’re ready to execute your plan by  solving 
the equations and evaluating the numerical answer(s), if called for. Write the components of 
Newton’s law for each object in the coordinate system you chose for each. You can then solve 
the resulting equations for the quantity(ies) you’re interested in, using the connections you 
identified to relate the quantities that appear in the equations for the different objects.

aSSESS Assess your solution to see whether it makes sense. Are the numbers reasonable? Do 
the units work out correctly? What happens in special cases—for example, when a mass, a 
force, an acceleration, or an angle gets very small or very large?
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5.2 Multiple Objects 75

ExampLE 5.4 multiple Objects: Rescuing a Climber

A 73-kg climber finds himself dangling over the edge of an ice cliff, 
as shown in Fig. 5.7. Fortunately, he’s roped to a 940-kg rock located 
51 m from the edge of the cliff. Unfortunately, the ice is frictionless, 
and the climber accelerates downward. What’s his acceleration, and 
how much time does he have before the rock goes over the edge? 
 Neglect the rope’s mass.

Interpret We need to find the climber’s acceleration, and from that 
we can get the time before the rock goes over the edge. We identify 
two objects of interest, the climber and the rock, and we note that the 
rope connects them. There are two forces on the climber: gravity and 
the upward rope tension. There are three forces on the rock: gravity, the 
normal force from the surface, and the rightward-pointing rope tension.

Develop Figure 5.8 shows a free-body diagram for each object. 
Newton’s law applies to each, so we write two vector equations:

cli mber:  T
S

c + F
S

gc = mc a
u

c

 rock:  T
S

r + F
S

gr + n
u = mr a

u

r

where the subscripts c and r stand for climber and rock, respectively. 
All forces are either horizontal or vertical, so we can use the same 
horizontal/vertical coordinate system for both objects, as shown in 
Fig. 5.8.

evaluate Again, the component equations follow directly from the 
vector forms. There are no horizontal forces on the climber, so only the y 
equation is significant. We’re skilled enough now to skip the intermediate 
step of writing the components without their actual expressions, and we 
see from Fig. 5.8a that the y-component of Newton’s law for the climber 
becomes Tc - mc g = mcac. For the rock, the only horizontal force 
is the tension, pointing to the right or positive x-direction, so the rock’s 
x equation is Tr = mr ar. Since it’s on a horizontal surface, the rock has 
no vertical acceleration, so its y equation is n - mr g = 0. In  writing 
these equations, we haven’t added the subscripts x and y because each 
vector has only a single nonzero component. Now we need to consider 
the connection between rock and climber. That’s the rope, and its pres-
ence means that the magnitude of both accelerations is the same. Calling 
that magnitude a, we can see from Fig. 5.8 that ar = a and ac = -a. 
The value for the rock is positive because T

S
r points to the right, which 

we defined as the positive x-direction; the value for the climber is nega-
tive because he’s accelerating downward, which we defined as the  
negative y-direction. The rope, furthermore, has negligible mass, so  
the tension throughout it must be the same (more on this point just after 
the example). Therefore, the tension forces on rock and climber have equal 
magnitude T, so Tc = Tr = T. Putting this all together gives us three 
equations:

cli mber, y:   T - mc g = -mc a

 rock, x:  T = mr a

 rock, y:  n - mr g = 0

The rock’s x equation gives the tension, which we can substitute into 
the climber’s equation to get mr a - mc g = -mc a. Solving for a then 
gives the answer:

a =
mc g

mc + mr
=

173 kg219.8 m/s22
173 kg + 940 kg2 = 0.71 m/s2

We didn’t need the rock’s y equation, which just says that the normal 
force supports the rock’s weight.

assess Again, let’s look at special cases. Suppose the rock’s mass 
is zero; then our expression gives a = g. In this case there’s no rope 
tension and the climber plummets in free fall. Also, acceleration de-
creases as the rock’s mass increases, so with an infinitely massive 
rock, the climber would dangle without accelerating. You can see 
physically why our expression for acceleration makes sense. The 
gravitational force mc g acting on the climber has to accelerate both 
rock and climber—whose combined mass is mc + mr. The result is an 
acceleration of mc g/1mc + mr2.

We’re not quite done because we were also asked for the time until 
the rock goes over the cliff, putting the climber in real trouble. We 
interpret this as a problem in one-dimensional motion from Chapter 2, 
and we determine that Equation 2.10, x = x0 + v0 t + 1

2 at2, applies. 
With x0 = 0 and v0 = 0, we have x = 1

2 at2. We evaluate by solving 
for t and using the acceleration we found along with x = 51 m for the 
distance from the rock to the cliff edge:

t = A2x

a
= A (2)(51 m)

0.71 m/s2 = 12 s

Figure 5.7 A climber in trouble.

The rope connects
climber and rock,
so they have the
same acceleration.

51 m

Figure 5.8 Our free-body diagrams for (a) the climber and (b) the rock.

The rope tension
and gravity are
the only forces
acting on the 
climber.

There are three
forces on the
rock.

■
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76 Chapter 5 Using Newton’s Laws

✓TIp Ropes and Tension Forces

Tension forces can be confusing. In Example 5.4, the rock pulls on one end of the 
rope and the climber pulls on the other. So why isn’t the rope tension the sum of these 
forces? And why is it important to neglect the rope’s mass? The answers lie in the 
meaning of tension.

Figure 5.9 shows a situation similar to Example 5.4, with two people pulling on 
 opposite ends of a rope with forces of 1 N each. You might think the rope tension is 
then 2 N, but it’s not. To see why, consider the part of the rope that’s highlighted in  
Fig. 5.9b. To the left is the hand pulling leftward with 1 N. The rope isn’t accelerating, 
so there must be a 1-N force pulling to the right on the highlighted piece. The remain-
der of the rope provides that force. We could have divided the rope anywhere, so we 
conclude that every part of the rope exerts a 1-N force on the adjacent rope. That 1-N 
force is what we mean by the rope tension.

As long as the rope isn’t accelerating, the net force on it must be zero, so the forces 
at the two ends have the same magnitude. That conclusion would hold even if the rope 
were accelerating—provided it had negligible mass. That’s often a good approxima-
tion in situations involving tension forces. But if a rope, cable, or chain has significant 
mass and is accelerating, then the tension force differs at the two ends. That difference, 
 according to Newton’s second law, is the net force that accelerates the rope.

GOT IT? 5.2 In the figure below we’ve replaced one of the hands from Fig. 5.9 with 
a hook attaching the rope to a wall. On the right, the hand still pulls with a 1-N force. How 
do the forces now differ from what they were in Fig. 5.9? (a) there’s no difference; (b) the 
force exerted by the hook is zero; (c) the rope tension is now 0.5 N

1 N

5.3 Circular motion
A car rounds a curve. A satellite circles Earth. A proton whirls around a giant particle 
 accelerator. Since they’re not going in straight lines, Newton tells us that a force acts on 
each (Fig. 5.10). We know from Section 3.6 that the acceleration of an object moving with 
constant speed v in a circular path of radius r has magnitude v2/r and points toward the 
center of the circle. Newton’s second law then tells us that the magnitude of the net force 
on an object of mass m in circular motion is

 Fnet = ma =
mv2

r
  1uniform circular motion2 (5.1)

The force is in the same direction as the acceleration—toward the center of the circular 
path. For that reason it’s sometimes called the centripetal force, meaning center-seeking 
(from the Latin centrum, “center,” and petere, “to seek”).

✓TIp Look for Real Forces

Centripetal force is not some new kind of force. It’s just the name for any forces that 
keep an object in circular motion—which are always real, physical forces. Common 
examples of forces involved in circular motion include the gravitational force on a 
 satellite, friction between tires and road, magnetic forces, tension forces, normal forces, 
and combinations of these and other forces.

Figure 5.9 Understanding tension forces.

The hand pulls the
highlighted section
of the rope with a
1-N force to the left.

The dividing point could be anywhere,
so there’s a 1-N tension force
throughout the rope.

The net force on the
highlighted section is
zero, so the rest of the
rope must exert a 1-N
force to the right.

1 N 1 N

1 N 1 N1 N

(b)

(a)

Figure 5.10 A car rounds a turn on the 
 Trans-Sahara highway.

F
S

A net force is necessary to
change the direction of motion.
The force points toward the
center of the curve.

Video Tutor Demo | Tension in String between 
Hanging Weights
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Newton’s second law describes circular motion exactly as it does any other motion: by 
relating net force, mass, and acceleration. Therefore, we can analyze circular motion with 
the same strategy we’ve used in other Newton’s law problems.

ExampLE 5.5 Circular motion: Whirling a Ball on a String

A ball of mass m whirls around in a horizontal circle at the end of a 
massless string of length L (Fig. 5.11). The string makes an angle u 
with the horizontal. Find the ball’s speed and the string tension.

Interpret This problem is similar to other Newton’s law problems 
we’ve worked involving force and acceleration. The object of interest is 
the ball, and only two forces are acting on it: gravity and the string tension.

Develop Figure 5.12 is our free-body diagram showing the two 
forces we’ve identified. The relevant equation is Newton’s second 
law, which becomes

T
S

+ F
S

g = ma
!

The ball’s path is in a horizontal plane, so its acceleration is hori-
zontal. Then two of the three vectors in our problem—F

S
g and a

!
—are 

horizontal or vertical, so in developing our strategy, we choose a hori-
zontal/vertical coordinate system.

✓TIp Real Forces Only!

Were you tempted to draw a third force in Fig. 5.12,  perhaps point-
ing outward to balance the other two? Don’t! Because the ball is 
accelerating, the net force is nonzero and the  individual forces 
do not balance. Or maybe you were tempted to draw an inward-
pointing force, mv2/r. Don’t! The quantity mv2/r is not another 
force; it’s just the product of mass and acceleration that appears 
in Newton’s law (recall Fig. 4.3 and the associated tip). Students 
often complicate problems by introducing forces that aren’t there. 
That makes physics seem harder than it is!

evaluate We now need the x- and y-components of Newton’s 
law. Figure 5.12 shows that Fgy = -Fg = -mg and also gives 
 tension components in terms of trig functions. The acceleration is 
purely  horizontal, so ay = 0, and since the ball is in circular motion, 
ax = v2/r. But what’s r? It’s the radius of the circular path and, as 
Fig. 5.11 shows, that’s not the string length L but L cos u. With all 
these expressions, the components of Newton’s law become

x: T cos u =
mv2

L cos u
  y: T sin u - mg = 0

We can get the tension directly from the y equation: T = mg/sin u. 
Using this result in the x equation lets us solve for the speed v:

v = ATL cos2 u

m
= A1mg/sin u2L cos2 u 

m
= AgL cos2 u

sin u

assess In the special case u = 90°, the string hangs vertically; 
here cos u = 0, so v = 0. There’s no motion, and the string tension 
equals the ball’s weight. But as the string becomes increasingly 
horizontal, both speed and tension increase. And, just as in Exam-
ple 5.2, the tension becomes very great as the string approaches 
horizontal. Here the string tension has two jobs to do: Its vertical 
component supports the ball against gravity, while its horizontal 
component keeps the ball in its circular path. The vertical compo-
nent is always equal to mg, but as the string approaches horizontal, 
that becomes an insignificant part of the overall tension—and thus 
the tension and speed grow very large. ■

Figure 5.11 A ball whirling on 
a string.

u

u

The radius is L cosu.

r = L cosu

L

Figure 5.12 Our free-body diagram for the whirling ball.

ExampLE 5.6 Circular motion: Engineering a Road

Roads designed for high-speed travel have banked curves to give the 
normal force a component toward the center of the curve. That lets 
cars turn without relying on friction between tires and road. At what 
angle should a road with 350-m curvature radius be banked for travel 
at 90 km/h (25 m/s)?

Interpret This is another example involving circular motion and 
Newton’s second law. Although we’re asked about the road, a car on 
the road is the object we’re interested in, and we need to design the 
road so the car can round the curve without needing a frictional force. 
That means the only forces on the car are gravity and the normal force.
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78 Chapter 5 Using Newton’s Laws

ExampLE 5.7 Circular motion: Looping the Loop

The “Great American Revolution” roller coaster at Valencia, Califor-
nia, includes a loop-the-loop section whose radius is 6.3 m at the top. 
What’s the minimum speed for a roller-coaster car at the top of the 
loop if it’s to stay on the track?

Interpret Again, we have circular motion described by Newton’s 
second law. We’re asked about the minimum speed for the car to 
stay on the track. What does it mean to stay on the track? It means 
there must be a normal force between car and track; otherwise, the 
two aren’t in contact. So we can identify two forces acting on the car: 
gravity and the normal force from the track.

Develop Figure 5.15 shows the physical situation. Things are espe-
cially simple at the top of the track, where both forces point in the 
same direction. We show this in our free-body diagram, Fig. 5.16 
(next page). Since that common direction is downward, it makes sense 
to choose a coordinate system with the positive y-axis downward. The 
applicable equation is Newton’s second law, and with the two forces 
we’ve identified, that becomes n

!
+ F

S
g = ma

!
.

evaluate With both forces in the same direction, we need only the 
y-component of Newton’s law. With the downward direction positive, 
ny = n and Fgy = mg. At the top of the loop, the car is in circular 

motion, so its acceleration is toward the center—downward—and has 
magnitude v2/r. So ay = v2/r, and the y-component of Newton’s law 
becomes

n + mg =
mv2

r

Solving for the speed gives v = 11nr/m2 + gr. Now, the minimum 
possible speed for contact with the track occurs when n gets arbitrarily 

Figure 5.15 Forces on the roller-coaster car.

n
u

n
uFg

S

Fg
S

At the top, both forces
point downward and the
car is momentarily in
uniform circular 
motion. Gravity is always downward,

but at this point the normal
force is horizontal.  The net
force isn’t toward the center,
and the car is slowing as well
as changing direction.

Develop Figure 5.13 shows the physical situation, and Fig. 5.14 
is our free-body diagram for the car. Newton’s second law is the 
 applicable equation, and here it becomes n

!
+ F

S
g = ma

!
. Unlike the 

skier of Example 5.1, the car isn’t accelerating down the slope, so a 
horizontal/vertical coordinate system makes the most sense.

evaluate First we write Newton’s law in components. Gravity has 
only a vertical component, Fgy = -mg in our coordinate system, and 
Fig. 5.14 shows the two components of the normal force. The accel-
eration is purely horizontal and points toward the center of the curve; 
in our coordinate system that’s the positive x-direction. Since the car 
is in circular motion, the magnitude of the acceleration is v2/r. So the 
components of Newton’s law become

x: n sin u =
mv2

r
  y:  n cos u - mg = 0

where the 0 on the right-hand side of the y equation reflects the fact that 
we don’t want the car to accelerate in the vertical direction.  Solving the 
y equation gives n = mg/cos u. Then using this result in the x equation 

gives mg sin u/cos u = mv2/r, or g tan u = v2/r. The mass canceled, 
which is good news because it means our banked road will work for a 
vehicle of any mass. Now we can solve for the banking angle:

u = tan-1 av2

gr
b = tan-1 a 125 m/s22

19.8 m/s221350 m2 b = 10°

assess Make sense? At low speed v or large radius r, the car’s motion 
changes gently and it doesn’t take a large force to keep it on its circular 
path. But as v increases or r decreases, the required force increases and 
so does the banking angle. That’s because the horizontal component 
of the normal force is what keeps the car in circular motion, and the 
steeper the angle, the greater that component. A similar thing happens 
when an airplane banks to turn; then the force of the air perpendicular 
to the wings acquires a horizontal component, and that’s what turns the 
plane (see this chapter’s opening photo and Problem 43). ■

Figure 5.13 Car on a banked curve.

r
u

Figure 5.14 Our free-body diagram for the car on a banked curve.

The horizontal component
of the normal force holds
the car in its circular
path.

The center of the
curve is this way.

The vertical
component of the
normal force
balances gravity.
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5.3 Circular Motion 79

What’s wrong with this cartoon showing riders on a loop-the-loop 
roller coaster (Fig. 5.17)?

evaluate Our objects of interest are the riders near the top of the roller 
coaster. We need to know the forces on them; one is obviously gravity. If 
the roller coaster is moving faster than Example 5.7’s minimum speed—
and it better be, for safety—then there are also normal forces from the seats 
as well as internal forces acting to accelerate parts of the riders’ bodies.

Newton’s law relates net force and acceleration: F
S

= ma
!
. This 

equation implies that the net force and acceleration must be in the 
same direction. At the top of the loop that direction is downward. 
Every part of the riders’ bodies must therefore experience a net 
 downward force. Again, Example 5.7 shows that the minimum force 

is that of gravity alone; for safety, there must be additional downward 
forces.

Now focus on the riders’ hair, shown hanging downward. Forces 
on an individual hair are gravity and tension, and our safety argument 
shows that they should both point in the same direction—namely, 
downward—to provide a downward force stronger than gravity 
alone. How, then, can the riders’ hair hang downward? That implies 
an  upward tension force, inconsistent with our argument. The artist 
should have drawn the hair “hanging” upward.

assess Make sense? Yes: To the riders, it feels like up is down! They 
feel the normal force of the seat pushing down, and their hairs experi-
ence a downward-pointing tension force. Even though the riders wear 
seatbelts, they don’t need them: If the speed exceeds Example 5.7’s  
minimum, then they feel tightly bound to their seats. Is there some 
mysterious new force that pushes them against their seats and that 
pulls their hair up? No! Newton’s second law says the net force on 
the riders is in the direction of their acceleration—namely, downward. 
And for safety, that net force must be greater than gravity. It’s those 
additional downward forces—the normal force from the seat and the 
tension force in the hair—that make up feel like down.

makIng the ConneCtIon Suppose the riders feel like they weigh 
50% of what they weigh at rest on the ground. How does the roller 
coaster’s speed compare with Example 5.7’s minimum?

evaluate In Example 5.7, we found the speed in terms of the 
normal force n and other quantities: v = 11nr/m2 + gr. An ap-
parent weight 50% of normal implies that n = mg/2. Then 
v = 11gr/22 + gr = 13/21gr. Example 5.7 shows that the mini-
mum speed is 1gr, so our result is 13/2 ≃ 1.22 times the minimum 
speed. And that 50% apparent weight the riders feel is upward!

✓TIp Force and Motion

We’ve said this before, but it’s worth noting again: Force doesn’t cause motion but rather 
change in motion. The direction of an object’s motion need not be the  direction of the force 
on the object. That’s true in Example 5.7, where the car is moving  horizontally at the top of 
the loop while subject to a downward force. What is in the same direction as the force is the 
change in motion, here embodied in the center-directed acceleration of circular motion.

small right at the top of the track, so we find this minimum limit by 
setting n = 0. Then the answer is

vmin = 1gr = 219.8 m/s2216.3 m2 = 7.9 m/s

assess Do you see what’s happening here? With the minimum 
speed, the normal force vanishes at the top of the loop, and gravity 
alone provides the force that keeps the object in its circular path. Since 
the motion is circular, that force must have magnitude mv2/r. But the 
force of gravity alone is mg, and vmin = 1gr follows directly from 
equating those two quantities. A car moving any slower than vmin 
would lose contact with the track and go into the parabolic  trajectory 
of a projectile. For a car moving faster, there would be a nonzero 
normal force contributing to the downward acceleration at the top 
of the loop. In the “Great American Revolution,” the actual speed at 
the loop’s top is 9.7 m/s to provide a margin of safety. As with most 
 problems involving gravity, the mass cancels. That’s a good thing 
 because it means the safe speed doesn’t depend on the number or 
mass of the riders. ■

Figure 5.16 Our free-body diagram at the top of the loop.

CONCEpTUaL ExampLE 5.1 Bad Hair Day

Figure 5.17 Conceptual Example 5.1.
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GOT IT? 5.3 You whirl a bucket of water around in a vertical circle and the  water 
doesn’t fall out. A Newtonian explanation of why the water doesn’t fall out is that  
(a) the centripetal force mv2/r balances the gravitational force; (b) there’s a centrifugal 
force pushing the water upward; (c) the normal force plus the gravitational force together 
 provide the downward acceleration needed to keep the water in its circular path; or (d) an 
upward normal force balances gravity.

5.4 Friction
Your everyday experience of motion seems inconsistent with Newton’s first law. Slide a 
book across the table, and it stops. Take your foot off the gas, and your car coasts to a stop. 
But Newton’s law is correct, so these examples show that some force must be acting. That 
force is friction, a force that opposes the relative motion of two surfaces in contact.

On Earth, we can rarely ignore friction. Some 20% of the gasoline burned in your car 
is used to overcome friction inside the engine. Friction causes wear and tear on machinery 
and clothing. But friction is also useful; without it, you couldn’t drive or walk.

The Nature of Friction
Friction is ultimately an electrical force between molecules in different surfaces. When two 
surfaces are in contact, microscopic irregularities adhere, as shown in Fig. 5.18a. At the 
macroscopic level, the result is a force that opposes any relative movement of the surfaces.

Experiments show that the magnitude of the frictional force depends on the normal 
force between surfaces in contact. Figure 5.18b shows why this makes sense: As the 
 normal forces push the surfaces together, the actual contact area increases. There’s more 
adherence, and this increases the frictional force.

At the microscopic level, friction is complicated. The simple equations we’ll  develop 
here provide approximate descriptions of frictional forces. Friction is important in 
 everyday life, but it’s not one of the fundamental physical interactions.

Frictional Forces
Try pushing a heavy trunk across the floor. At first nothing happens. Push harder; still 
nothing. Finally, as you push even harder, the trunk starts to slide—and you may notice 
that once it gets going, you don’t have to push quite so hard. Why is that?

With the trunk at rest, microscopic contacts between trunk and floor solidify into 
 relatively strong bonds. As you start pushing, you distort those bonds without  breaking 
them; they respond with a force that opposes your applied force. This is the force of static 
friction, f

S
s. As you increase the applied force, static friction increases equally, as shown 

in Fig. 5.19, and the trunk remains at rest.  Experimentally, we find that the maximum 
static-friction force is proportional to the  normal force between surfaces, and we write

 fs … ms n  1static friction2 (5.2)

Here the proportionality constant ms (lowercase Greek mu, with the subscript s for 
“static”) is the coefficient of static friction, a quantity that depends on the two surfaces.  
The …  sign indicates that the force of static friction ranges from zero up to the maximum 
value on the right-hand side.

Eventually you push hard enough to break the bonds between trunk and floor, and the 
trunk begins to move; this is the point in Fig. 5.19 where the frictional force suddenly 
drops. Now the microscopic bonds don’t have time to strengthen, so the force needed to 
overcome them isn’t so great. In Fig. 5.19 we’re assuming you then push with just enough 
force to overcome friction, so the trunk now moves with constant speed.

The weaker frictional force between surfaces in relative motion is the force of kinetic 
friction, f

S
k. Again, it’s proportional to the normal force between the surfaces:

 fk = mk n  1kinetic friction2 (5.3)

where now the proportionality constant is mk, the coefficient of kinetic friction.   
Because kinetic friction is weaker, the coefficient of kinetic friction for a given pair of 

Figure 5.18 Friction originates in the contact 
between two surfaces.
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Figure 5.19 Behavior of frictional forces.
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 surfaces is less than the coefficient of static friction. Cross-country skiers exploit that fact 
by using waxes that provide a high coefficient of static friction for pushing against the 
snow and for climbing hills, while the lower kinetic friction permits effortless gliding.

Equations 5.2 and 5.3 give only the magnitudes of the frictional forces. The direction of 
the frictional force is parallel to the two surfaces, in the direction that opposes any applied 
force (Fig. 5.20a) or the surfaces’ relative motion (Fig. 5.20b).

Since they describe proportionality between the magnitudes of two forces, the 
 coefficients of friction are dimensionless. Typical values of mk range from less than 
0.01 for smooth or  lubricated surfaces to about 1.5 for very rough ones. Rubber on dry 
 concrete—vital in driving an automobile—has mk about 0.8 and ms can exceed 1. A waxed 
ski on dry snow has mk ≈ 0.04, while the synovial fluid that lubricates your body’s joints 
reduces mk to a low 0.003.

If you push a moving object with a force equal to the opposing force of kinetic friction, 
then the net force is zero and, according to Newton, the object moves at constant speed. 
Since friction is nearly always present, but not as obvious as the push of a hand or the 
pull of a rope, you can see why it’s so easy to believe that force is needed to make things 
move—rather than, as Newton recognized, to make them accelerate.

We emphasize that the equations describing friction are empirical expressions that ap-
proximate the effects of complicated but more basic interactions at the microscopic level. Our 
friction equations have neither the precision nor the fundamental character of Newton’s laws.

applications of Friction
Static friction plays a vital role in everyday activities such as walking and driving. As 
you walk, your foot contacting the ground is momentarily at rest, pushing back against 
the ground. By Newton’s third law, the ground pushes forward, accelerating you forward  
(Fig. 5.21). Both forces of the third-law pair arise from static friction between foot and 
ground. On a frictionless surface, walking is impossible.

Similarly, the tires of an accelerating car push back on the road. If they aren’t slipping, 
the bottom of each tire is momentarily at rest (more on this in Chapter 10). Therefore the 
force is static friction. The third law then requires a frictional force of the road pushing 
forward on the tires; that’s what accelerates the car. Braking is the opposite: The tires push 
forward, and the road pushes back to decelerate the car (Fig. 5.22). The brakes affect only 
the wheels; it’s friction between tires and road that stops the car. You know this if you’ve 
applied your brakes on an icy road!

Figure 5.20 Direction of frictional forces.
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Figure 5.21 Walking.
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Figure 5.22 Friction stops the car.
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ExampLE 5.8 Frictional Forces: Stopping a Car

The kinetic- and static-friction coefficients between a car’s tires and a 
dry road are 0.61 and 0.89, respectively. The car is initially traveling at 
90 km/h (25 m/s) on a level road. Determine (a) the minimum stopping 
distance, which occurs when the brakes are applied so that the wheels 
keep rolling as they slow and therefore static friction applies, and (b) the 
stopping distance with the wheels fully locked and the car skidding.

Interpret Since we’re asked about the stopping distance, this is ul-
timately a question about accelerated motion in one dimension—the 
subject of Chapter 2. But here friction causes that acceleration, so we 
have a Newton’s law problem. The car is the object of interest, and we 
identify three forces: gravity, the normal force, and friction.

Develop Figure 5.23 is our free-body diagram. We have a two-part 
problem here: First, we need to use Newton’s second law to find the ac-
celeration, and then we can use Equation 2.11, v2 = v0

 2 + 2a ∆x, to 
relate distance and acceleration. With the three forces acting on the car, 
Newton’s law becomes F

S
g + n

!
+ f

S
f = ma

!
. A horizontal/vertical co-

ordinate system is most appropriate for the components of Newton’s law.

evaluate The only horizontal force is friction, which points in 
the -x-direction and has magnitude mn, where m can be either the 
 kinetic- or the static-friction coefficient. The normal force and gravity 
act in the vertical direction, so the component equations are

x: -mn = max  y: -mg + n = 0

Figure 5.23 Our free-body  
diagram for the braking car.

(continued)
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82 Chapter 5 Using Newton’s Laws

Solving the y equation for n and substituting in the x equation gives the 
acceleration: ax = -mg. We then use this result in Equation 2.11 and 
solve for the stopping distance ∆x. With final speed v = 0, this gives

∆x =
v0

 2

-2ax
=

v0
2

2mg

Using the numbers given, we get (a) ∆x = 36 m for the minimum 
stopping distance (no skid; static friction) and (b) 52 m for the car 
skidding with its wheels locked (kinetic friction). The difference could 
well be enough to prevent an accident.

assess Our result ax = -mg shows that a higher friction coeffi-
cient leads to a larger acceleration; this makes sense because friction 
is what causes the acceleration. What happened to the car’s mass? A 
more massive car requires a larger frictional stopping force for the 
same acceleration—but friction depends on the normal force, and 
the latter is greater in proportion to the car’s mass. Thus the stopping 
 distance doesn’t depend on mass.

This example shows that stopping distance increases as the square 
of the speed. That’s one reason high speeds are dangerous: Doubling 
your speed quadruples your stopping distance! ■

ExampLE 5.9 Frictional Forces: Steering

A level road makes a 90° turn with radius 73 m. What’s the maximum 
speed for a car to negotiate this turn when the road is dry 1ms = 0.882 
and when the road is snow covered 1ms = 0.212?

Interpret This example is similar to Example 5.8, but now the fric-
tional force acts perpendicular to the car’s motion, keeping it in a cir-
cular path. Because the car isn’t moving in the direction of the force, 
we’re dealing with static friction. The car is the object of interest, and 
again the forces are gravity, the normal force, and friction.

Develop Figure 5.24 is our free-body diagram. Newton’s law is 
the applicable equation, and we’re dealing with the acceleration v2/r 

that occurs in circular motion. With the three forces acting on the car, 
Newton’s law is F

S
g + n

!
+ f

S
s = ma

!
. A horizontal/vertical coordi-

nate system is most appropriate, and now it’s most convenient to take 
the x-axis in the direction of the acceleration—namely, toward the 
center of the curve.

evaluate Again, the only horizontal force is friction, with magni-
tude ms n. Here it points in the positive x-direction, as does the ac-
celeration of magnitude v2/r. So the x-component of Newton’s law 
is ms n = mv2/r. There’s no vertical acceleration, so the y-component 
is -mg + n = 0. Solving for n and using the result in the x equation 
give ms mg = mv2/r. Again the mass cancels, and we solve for v to get

v = 1ms gr

Putting in the numbers, we get v = 25 m/s (90 km/h) for the dry road 
and 12 m/s (44 km/h) for the snowy road. Exceed these speeds, and 
your car inevitably moves in a path with a larger radius—and that 
means going off the road!

assess Once again, it makes sense that the car’s mass doesn’t mat-
ter. A more massive car needs a larger frictional force, and it gets 
what it needs because its larger mass results in a larger normal force. 
The safe speed increases with the curve radius r, and that, too, makes 
sense: A larger radius means a gentler turn, with less acceleration at a 
given speed. So less frictional force is needed. ■Figure 5.24 Our free-body  

diagram for the cornering car.

The frictional 
force points 
toward the
curve’s center.The dot

represents
the car,
whose direction
of motion is
out of the page.

Today’s cars have computer-controlled antilock braking systems (ABS). These 
systems exploit the fact that static friction is greater than kinetic friction. Slam 
on the brakes of a non-ABS car and the wheels lock and skid without turning. 
The force between tires and road is then kinetic friction (part a in the figure). 
But if you pump the brakes to keep the wheels from skidding, then it’s the 
greater force of static friction (part b).

ABS improves on this brake-pumping strategy with a computer that inde-
pendently controls the brakes at each wheel, keeping each just on the verge of 
slipping. Drivers of ABS cars should slam the brakes hard in an emergency; 
the ensuing clatter indicates the ABS is working.

Although ABS can reduce the stopping distance, its real significance is in 
preventing vehicles from skidding out of control as can happen when you  apply 
the brakes with some wheels on ice and others on pavement.  Increasingly, 
 today’s cars incorporate their computer-controlled brakes into sophisticated 
systems that enhance stability during emergency maneuvers.

appLICaTION antilock Brakes
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ExampLE 5.10 Friction on a Slope: avalanche!

A storm dumps new snow on a ski slope. The coefficient of static 
 friction between the new snow and the older snow underneath is 0.46. 
What’s the maximum slope angle to which the new snow can adhere?

Interpret The problem asks about an angle, but it’s friction that 
holds the new snow to the old, so this is really a problem about the 
maximum possible static friction. We aren’t given an object, but we 
can model the new snow as a slab of mass m resting on a slope of 
unknown angle u. The forces on the slab are gravity, the normal force, 
and static friction f

S
s.

Develop Figure 5.25 shows the model, and Fig. 5.26 is our free-body 
diagram. Newton’s second law is the applicable equation, here with 
a
!

= 0
S

, giving F
S
g + n

!
+ f

S
s = 0

S
. We also need the maximum static-

friction force, given in Equation 5.2, fs max = ms n. As in Example 5.1, a 
tilted coordinate system is simplest and is shown in Fig. 5.26.

evaluate With the positive x-direction downslope, Fig. 5.26 
shows that the x-component of gravity is Fg sin u = mg sin u, while 
the frictional force acts upslope ( -x-direction) and has maximum 
magnitude ms n; therefore, fsx = -ms n. So the x-component of New-
ton’s law is mg sin u - ms n = 0. We can read the y- component 

from Fig. 5.26: -mg cos u + n = 0. Solving the y  equation 
gives n = mg cos u. Using this result in the x equation then yields 
mg sin u - ms mg cos u = 0. Both m and g cancel, and we have 
sin u = ms cos u or, since tan u = sin u/cos u,

tan u = ms

For the numbers given in this example, the result becomes  
u = tan-1 ms = tan-110.462 = 25°.

assess Make sense? Sure: The steeper the slope, the greater the fric-
tion needed to keep the snow from sliding. Two effects are at work 
here: First, as the slope steepens, so does the component of gravity 
along the slope. Second, as the slope steepens, the normal force gets 
smaller, and that reduces the frictional force for a given friction coef-
ficient. Note here that the normal force is not simply the weight mg of 
the snow; again, that’s because of the sloping surface.

The real avalanche danger comes at angles slightly smaller than 
our answer tan u = ms, where a thick snowpack can build up. Changes 
in the snow’s composition with temperature may decrease the friction 
coefficient and unleash an avalanche. ■Figure 5.25 A layer of snow, modeled as a slab on a sloping surface.

u

m

Figure 5.26 Our free-body diagram for the snow slab.

ExampLE 5.11 Friction: Dragging a Trunk

You drag a trunk of mass m across a level floor using a massless rope 
that makes an angle u with the horizontal (Fig. 5.27). Given a kinetic-
friction coefficient mk, what rope tension is required to move the trunk 
at constant speed?

Interpret Even though the trunk is moving, it isn’t accelerating, so 
here’s another problem involving Newton’s law with zero accelera-
tion. The object is the trunk, and now four forces act: gravity, the nor-
mal force, friction, and the rope tension.

Develop Figure 5.28 is our free-body diagram showing all four 
forces acting on the trunk. The relevant equation is Newton’s law. 

Figure 5.27 Dragging a trunk.

u

Figure 5.28 Our free-body diagram for the trunk.
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GOT IT? 5.4 The figure shows a logging vehicle pulling a redwood log. Is the fric-
tional force in this case (a) less than, (b) equal to, or (c) greater than the weight multiplied 
by the coefficient of friction?

5.5 Drag Forces
Friction isn’t the only “hidden” force that robs objects of their motion and obscures New-
ton’s first law. Objects moving through fluids like water or air experience drag forces that 
oppose the relative motion of object and fluid. Ultimately, drag results from collisions be-
tween fluid molecules and the object. The drag force depends on several factors, including 
fluid density and the object’s cross-sectional area and speed.

Terminal Speed
When an object falls from rest, its speed is initially low and so is the velocity-dependent 
drag force. It therefore accelerates downward with nearly the gravitational acceleration g. 
But as the object gains speed, the drag force increases—until eventually the drag force and 
gravity have equal magnitudes. At that point the net force on the object is zero, and it falls 
with constant speed, called its terminal speed.

Because the drag force depends on an object’s area and the gravitational force depends 
on its mass, the terminal speed is lower for lighter objects with large areas. A parachute, 
for example, is designed specifically to have a large surface area that results, typically, in 
a terminal speed around 5 m/s. A ping-pong ball and a golf ball have about the same size 
and therefore the same area, but the ping-pong ball’s much lower mass leads to a terminal 
speed of about 10 m/s compared with the golf ball’s 50 m/s. For an irregularly shaped 
object, the drag and thus the terminal speed depend on how large a surface area the object 
presents to the air. Skydivers exploit this effect to vary their rates of fall.

Drag and projectile motion
In Chapter 3, we consistently neglected air resistance—the drag force of air—in projectile 
motion. Determining drag effects on projectiles is not trivial and usually requires com-
puter calculations. The net effect, though, is that air resistance decreases the range of a 
projectile (Fig. 5.29). Despite the physicist’s need for computer calculations, others— 
especially  athletes—have a feel for drag forces that lets them play their sports by judging 
correctly the trajectory of a projectile under the influence of drag forces. You can explore 
drag forces further in Problems 70 and 71.

With no acceleration, it reads F
S

g + n
!

+ f
S

k + T
S

= 0
S

, with the 
magnitude of kinetic friction given by fk = mk n. All vectors  except 
the tension force are horizontal or vertical, so the most sensible 
 coordinate system has horizontal and vertical axes.

evaluate From Fig. 5.28, we can write the components of Newton’s 
law: T cos u - mk n = 0 in the x-direction and T sin u - mg + n = 0 
in the y-direction. This time the unknown T appears in both equations. 
Solving the y equation for n gives n = mg - T sin u. Putting this n in 
the x equation then yields T cos u-mk1mg - T sin u2 = 0. Factoring 
terms involving T and solving, we arrive at the answer:

T =
mk mg

cos u + mk sin u

assess Make sense? Without friction, we wouldn’t need any force 
to move the trunk at constant speed, and indeed our expression gives 
T = 0 in this case. On the other hand, if there is friction but u = 0, 
then sin u = 0 and we get T = mk mg. In this case the normal force 
equals the weight, so the frictional force is mk mg. Since the frictional 
force is horizontal and with u = 0 we’re pulling horizontally, this is also 
the magnitude of the tension force. At intermediate angles, two effects 
come into play: First, the upward component of tension helps support 
the trunk’s weight, and that means less normal force is needed. With less 
normal force, there’s less friction—making the trunk easier to pull. But 
as the angle increases, less of the tension is horizontal, and that means a 
larger tension force is needed to overcome friction. In combination, these 
two effects mean there’s an optimum angle at which the rope tension is a 
minimum. Problem 68 explores this point further. ■

Figure 5.29 Projectile trajectories (a) without 
air resistance and (b) with substantial air 
resistance. Note that (b) not only achieves less 
height and range but that the trajectory is no 
longer a symmetric parabola.

(a)

(b)
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Chapter 5 Summary
Big Idea

The big idea here is the same as in Chapter 4—namely, that Newton’s laws are a universal description of 
motion, in which force causes not motion itself but change in motion. Here we focus on Newton’s second 
law, extended to the richer and more complex examples of motion in two dimensions. To use Newton’s 
law, we now sum forces that may point in different directions, but the result is the same: The net force 
determines an object’s acceleration.

Common forces include gravity, the normal force from surfaces, tension forces, and a force introduced 
here: friction. Important examples are those where an object is accelerating, including in circular motion, 
and those where there’s no acceleration and therefore the net force is zero.
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a banked turn.  
The forces on
it don’t sum to
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car is accelerating
toward the center
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A block sits at rest
on a slope.  The three
forces—gravity, normal
force, and friction—
sum to zero.

Solving Problems with Newton’s Laws
The problem-solving strategy in this chapter is exactly the same as in Chapter 4, except that in two dimensions the choice of coordinate system and 
the division of forces into components become crucial steps. You usually need both component equations to solve a problem.

A skier on a frictionless slope

n
u
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S

Free-body diagram
showing the two 
forces acting
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x
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Coordinate system and vector components

u
u

Fgy = -mg cosu
Fgx = mg sinu

F
S

= ma
! S n

!
+ F

S
g = ma

! S enx + Fgx = max

ny + Fgy = may

S emg sin u = max

n - mg cos u = 0

Key Concepts and Equations

Newton’s second law, F
S

net = ma
!
, is the key equation in this chapter. It’s crucial to remember that it’s 

a vector equation, representing a pair of scalar equations for its two components in two  dimensions.

applications

Friction acts between surfaces to oppose their relative motion, and its strength depends on the  normal 
force n

!
 acting perpendicular to them. When surfaces aren’t actually in relative motion, the force is 

static friction, whose value ranges from zero to a maximum value ms n as needed to oppose any 
 applied force: fs … ms n. Here ms is the coefficient of static friction, which depends on the nature 
of the two surfaces. For surfaces in relative motion, the force is kinetic friction, given by fk = mk n, 
where the coefficient of kinetic friction is less than the coefficient of static friction.

n
u

v
u

Fg
S

f
u

A block moving to the right 
experiences a frictional force f
to the left.

Here the frictional
force is a little less
than the normal force,
so m is a little less than 1.

The magnitude of
the frictional force
depends on the
normal force:
f = mn.
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15. At what angle should you tilt an air table to simulate free fall at 
the surface of Mars, where g = 3.71 m/s2?

16. A skier starts from rest at the top of a 24° slope 1.3 km long. 
 Neglecting friction, how long does it take to reach the bottom?

17. A tow truck is connected to a 1400-kg car by a cable that makes 
a 25° angle to the horizontal. If the truck accelerates at 0.57 m/s2, 
what’s the magnitude of the cable tension? Neglect friction and 
the cable’s mass.

18. Studies of gymnasts show that their high rate of injuries to the 
Achilles tendon is due to tensions in the tendon that typically 
reach 10 times body weight. That force is provided by a pair of 
muscles, each exerting a force at 25° to the vertical, with their 
horizontal components opposite. For a 55-kg gymnast, find the 
force in each of these muscles. 

25°

Achilles
tendon

25°

F2
S

F1
S

Figure 5.31 

19. Find the minimum slope angle for which the skier in Question 12 
can safely traverse the snow bridge.

Section 5.2 Multiple Objects
20. Your 12-kg baby sister pulls on the bottom of the tablecloth with 

all her weight. On the table, 60 cm from the edge, is a 6.8-kg 
roast turkey. (a) What’s the turkey’s acceleration? (b) From the 
time your sister starts pulling, how long do you have to intervene 
before the turkey goes over the edge? Neglect friction.

21. If the left-hand slope in Fig. 5.30 makes a 60° angle with the hor-
izontal, and the right-hand slope makes a 20° angle, how should 
the masses compare if the objects are not to slide along the fric-
tionless slopes?

22. Suppose the angles shown in Fig. 5.30 are 60° and 20°. If the 
left-hand mass is 2.1 kg, what should the right-hand mass be so 
that it accelerates (a) downslope at 0.64 m/s2 and (b) upslope at 
0.76 m/s2?

23. Two unfortunate climbers, roped together, are sliding freely down 
an icy mountainside. The upper climber (mass 75 kg) is on a 
slope at 12° to the horizontal, but the lower climber (mass 63 kg)  
has gone over the edge to a steeper slope at 38°. (a) Assuming 
frictionless ice and a massless rope, what’s the acceleration of the 
pair? (b) The upper climber manages to stop the slide with an ice 
ax. After the climbers have come to a complete stop, what force 
must the ax exert against the ice?

Section 5.3 Circular Motion
24. Suppose the Moon were held in its orbit not by gravity but by 

tension in a massless cable. Estimate the magnitude of the cable 
tension. (Hint: See Appendix E.)

25. Show that the force needed to keep a mass m in a circular path of 
radius r with period T is 4p2mr/T2.

BIo

For thought and Discussion
 1. Compare the net force on a heavy trunk when it’s (a) at rest 

on the floor; (b) being slid across the floor at constant speed;  
(c)  being pulled upward in an elevator whose cable tension 
equals the combined weight of the elevator and trunk; and  
(d) sliding down a frictionless ramp.

 2. The force of static friction acts only between surfaces at rest. Yet 
that force is essential in walking and in accelerating or braking a 
car. Explain.

 3. A jet plane flies at constant speed in a vertical circular loop. At 
what point in the loop does the seat exert the greatest force on the 
pilot? The least force?

 4. In cross-country skiing, skis should easily glide forward but 
should remain at rest when the skier pushes back against the 
snow. What frictional properties should the ski wax have to 
achieve this goal?

 5. Why do airplanes bank when turning?
 6. Why is it easier for a child to stand nearer the inside of a rotating 

merry-go-round?
 7. Gravity pulls a satellite toward Earth’s center. So why doesn’t the 

satellite actually fall to Earth?
 8. Explain why a car with ABS brakes can have a shorter stopping 

distance.
 9. A fishing line has a 20-lb breaking strength. Is it possible to 

break the line while reeling in a 15-lb fish? Explain.
 10. Two blocks rest on slopes of unequal angles, connected by a 

rope passing over a pulley (Fig. 5.30). If the blocks have equal 
masses, will they remain at rest? Why? Neglect friction.

Figure 5.30 For Thought and Discussion 10; Exercises 21 and 22

11. You’re on a plane undergoing a banked turn, so steep that out the 
window you see the ground below. Yet your pretzels stay put on 
the seatback tray, rather than sliding downward. Why?

12. A backcountry skier weighing 700 N skis down a steep slope, 
unknowingly crossing a snow bridge that spans a deep, hidden 
crevasse. If the bridge can support 580 N—meaning that’s the 
maximum normal force it can sustain without collapsing—is 
there any chance the mountaineer can cross safely? Explain.

exercises and problems
Exercises

Section 5.1 Using Newton’s Second Law
13. Two forces, both in the x@y plane, act on a 3.25-kg mass that ac-

celerates at 5.48 m/s2 in a direction 38.0° counterclockwise from 
the x-axis. One force has magnitude 8.63 N and points in the +x- 
direction. Find the other force.

14. Two forces act on a 3.1-kg mass that undergoes acceleration 
a
u = 0.91in - 0.27jn m/s2. If one force is -1.2in - 2.5jn N, what’s 
the other?
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26. A 940-g rock is whirled in a horizontal circle at the end of a 
1.30-m-long string. (a) If the breaking strength of the string 
is 120 N, what’s the minimum angle the string can make with 
the horizontal? (b) At this minimum angle, what’s the rock’s 
speed?

27. You’re investigating a subway accident in which a train derailed 
while rounding an unbanked curve of radius 150 m, and you’re 
asked to estimate whether the train exceeded the 35-km/h speed 
limit for this curve. You interview a passenger who had been 
standing and holding onto a strap; she noticed that an unused 
strap was hanging at about a 15° angle to the vertical just before 
the accident. What do you conclude?

28. A tetherball on a 1.55-m rope is struck so that it goes into  circular 
motion in a horizontal plane, with the rope making a 12.0° angle 
to the horizontal. What’s the ball’s speed?

29. An airplane goes into a turn 3.6 km in radius. If the banking  angle 
required is 28° from the horizontal, what’s the plane’s speed?

Section 5.4 Friction
30. Movers slide a 73-kg file cabinet along a floor where the coeffi-

cient of kinetic friction is 0.81. What’s the frictional force on the 
cabinet?

31. A hockey puck is given an initial speed of 14 m/s. If it comes to 
rest in 56 m, what’s the coefficient of kinetic friction?

32. Starting from rest, a skier slides 100 m down a 28° slope. How 
much longer does the run take if the coefficient of kinetic friction 
is 0.17 instead of 0?

33. A car moving at 40 km/h negotiates a 130-m-radius banked turn 
designed for 60 km/h. What coefficient of friction is needed to 
keep the car on the road?

problems
34. Repeat Example 5.1, this time using a horizontal/vertical coordi-

nate system.
35. A block is launched with initial speed 2.2 m/s up a 35° friction-

less ramp. How far up the ramp does it slide?
36. In the process of mitosis (cell division), two motor proteins pull 

on a spindle pole, each with a 7.3-pN force. The two force vec-
tors make a 65° angle. What’s the magnitude of the force the two 
motor proteins exert on the spindle pole?

37. A 14.6-kg monkey hangs from the middle of a massless rope, 
each half of which makes an 11.0° angle with the horizontal. 
What’s the rope tension? Compare with the monkey’s weight.

38. A camper hangs a 26-kg pack between two trees using separate 
ropes of different lengths, as shown in Fig. 5.32. Find the tension 
in each rope.

71°
28°

Figure 5.32 Problem 38

39. A mass m1 undergoes circular motion of radius R on a horizontal 
frictionless table, connected by a massless string through a hole 
in the table to a second mass m2 (Fig. 5.33). If m2 is stationary, 

find expressions for (a) the string tension and (b) the period of 
the circular motion.

m2

R m1

Figure 5.33 Problem 39

40. Patients with severe leg breaks are often placed in traction, with 
an external force countering muscles that would pull too hard 
on the broken bones. In the arrangement shown in Fig. 5.34, the 
mass m is 4.8 kg, and the pulleys can be considered massless and 
frictionless. Find the horizontal traction force applied to the leg.

u1 = 70°

u2 = 20°

m

Figure 5.34 Problem 40

41. Riders on the “Great American Revolution” loop-the-loop roller 
coaster of Example 5.7 wear seatbelts as the roller coaster ne-
gotiates its 6.3-m-radius loop at 9.7 m/s. At the top of the loop, 
what are the magnitude and direction of the force exerted on a 
60-kg rider (a) by the roller-coaster seat and (b) by the seatbelt? 
(c) What would happen if the rider unbuckled at this point?

42. A 45-kg skater rounds a 5.0-m-radius turn at 6.3 m/s. (a) What 
are the horizontal and vertical components of the force the ice ex-
erts on her skate blades? (b) At what angle can she lean without 
falling over?

43. When a plane turns, it banks as shown in Fig. 5.35 to give the wings’ 
lifting force F

S
w a horizontal component that turns the plane. If a 

plane is flying level at 950 km/h and the banking angle u is not to 
exceed 40°, what’s the minimum curvature radius for the turn?

Fw
S

Fg
S

u

Figure 5.35 Problem 43

44. You whirl a bucket of water in a vertical circle of radius 85 cm. 
What’s the minimum speed that will keep the water from fall-
ing out?

45. A child sleds down an 8.5° slope at constant speed. What’s the 
frictional coefficient between slope and sled?

46. The handle of a 22-kg lawnmower makes a 35° angle with the 
horizontal. If the coefficient of friction between lawnmower and 
ground is 0.68, what magnitude of force, applied in the direction 
of the handle, is required to push the mower at constant velocity? 
Compare with the mower’s weight.

47. Repeat Example 5.4, now assuming that the coefficient of kinetic 
friction between rock and ice is 0.057.

BIO

BIO
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61. In a loop-the-loop roller coaster, show that a car moving too 
slowly would leave the track at an angle f given by cos f = v2/rg,  
where f is the angle made by a vertical line through the center of 
the circular track and a line from the center to the point where the 
car leaves the track.

62. Find an expression for the minimum frictional coefficient needed 
to keep a car with speed v on a banked turn of radius R designed 
for speed v0.

63. An astronaut is training in an earthbound centrifuge that consists 
of a small chamber whirled horizontally at the end of a 5.1-m-
long shaft. The astronaut places a notebook on the vertical wall 
of the chamber and it stays in place. If the coefficient of static 
friction is 0.62, what’s the minimum rate at which the centrifuge 
must be revolving?

64. You stand on a spring scale at the north pole and again at the 
equator. Which scale reading will be lower, and by what percent-
age will it be lower than the higher reading? Assume g has the 
same value at pole and equator.

65. Driving in thick fog on a horizontal road, you spot a tractor-
trailer truck jackknifed across the road. To avert a collision, you 
could brake to a stop or swerve in a circular arc, as suggested in 
Fig. 5.37. Which option offers the greater margin of safety? As-
sume that there is the same coefficient of static friction in both 
cases, and that you maintain constant speed if you swerve.

Figure 5.37 Problem 65

66. A block is projected up an incline at angle u. It returns to its ini-
tial position with half its initial speed. Show that the coefficient 
of kinetic friction is mk = 3

5  

tan u.
67. A 2.1-kg mass is connected to a spring with spring constant 

k = 150 N/m and unstretched length 18 cm. The two are 
mounted on a frictionless air table, with the free end of the spring 
attached to a frictionless pivot. The mass is set into circular mo-
tion at 1.4 m/s. Find the radius of its path.

68. Take mk = 0.75 in Example 5.11, and plot the tension force 
in units of the trunk’s weight, as a function of the rope angle u 
(that is, plot T/mg versus u). Use your plot to determine (a) the 
 minimum tension necessary to move the trunk and (b) the angle 
at which this minimum tension should be applied.

69. Repeat the preceding problem for an arbitrary value of mk, by us-
ing calculus to find the minimum force needed to move the trunk 
with constant speed.

70. Moving through a liquid, an object of mass m experiences a resis-
tive drag force proportional to its velocity, Fdrag = -bv, where b is 
a constant. (a) Find an expression for the object’s speed as a func-
tion of time, when it starts from rest and falls vertically through the 
liquid. (b) Show that it reaches a terminal velocity mg/b.

71. Suppose the object in Problem 70 had an initial velocity in the hor-
izontal direction equal to the terminal speed, vx0 = mg/b. Show 
that the horizontal distance it can go is limited to xmax = mvx0/b, 
and find an expression for its trajectory (y as a function of x).

72. A block is launched with speed v0 up a slope making an angle 
u with the horizontal; the coefficient of kinetic friction is mk.  
(a) Find an expression for the distance d the block travels along the 
slope. (b) Use calculus to determine the angle that minimizes d.

CH

CH

CH

CH

CH

CH

48. A bat crashes into the vertical front of an accelerating subway 
train. If the frictional coefficient between bat and train is 0.86, 
what’s the minimum acceleration of the train that will allow the 
bat to remain in place?

49. The coefficient of static friction between steel train wheels and 
steel rails is 0.58. The engineer of a train moving at 140 km/h 
spots a stalled car on the tracks 150 m ahead. If he applies the 
brakes so the wheels don’t slip, will the train stop in time?

50. A bug crawls outward from the center of a CD spinning at 200 
revolutions per minute. The coefficient of static friction between 
the bug’s sticky feet and the disc surface is 1.2. How far does the 
bug get from the center before slipping?

51. A 310-g paperback book rests on a 1.2-kg textbook. A force is ap-
plied to the textbook, and the two books accelerate together from rest 
to 96 cm/s in 0.42 s. The textbook is then brought to a stop in 0.33 s, 
during which time the paperback slides off. Within what range does 
the coefficient of static friction between the two books lie?

52. Children sled down a 41-m-long hill inclined at 25°. At the bot-
tom, the slope levels out. If the coefficient of friction is 0.12, how 
far do the children slide on the level ground?

53. In a typical front-wheel-drive car, 70% of the car’s weight rides 
on the front wheels. If the coefficient of friction between tires 
and road is 0.61, what’s the car’s maximum acceleration?

54. A police officer investigating an accident estimates that a moving 
car hit a stationary car at 25 km/h. Before the collision, the car 
left 47-m-long skid marks as it braked. The officer determines 
that the coefficient of kinetic friction was 0.71. What was the ini-
tial speed of the moving car?

55. A slide inclined at 35° takes bathers into a swimming pool. With 
water sprayed onto the slide to make it essentially frictionless, a 
bather spends only one-third as much time on the slide as when 
it’s dry. What’s the coefficient of friction on the dry slide?

56. You try to move a heavy trunk, pushing down and forward at an 
angle of 50° below the horizontal. Show that, no matter how hard 
you push, it’s impossible to budge the trunk if the coefficient of 
static friction exceeds 0.84.

57. A block is shoved up a 22° slope with an initial speed of 1.4 m/s. 
The coefficient of kinetic friction is 0.70. (a) How far up the slope 
will the block get? (b) Once stopped, will it slide back down?

58. At the end of a factory production line, boxes start from rest and 
slide down a 30° ramp 5.4 m long. If the slide can take no more 
than 3.3 s, what’s the maximum allowed frictional coefficient?

59. You’re in traffic court, arguing against a speeding citation. You 
entered a 210-m-radius banked turn designed for 80 km/h, which 
was also the posted speed limit. The road was icy, yet you stayed 
in your lane, so you argue that you must have been going at the 
design speed. But police measurements show there was a fric-
tional coefficient m = 0.15 between tires and road. Is it possible 
you were speeding, and if so by how much?

60. A space station is in the shape of a hollow ring, 450 m in diam-
eter (Fig. 5.36). At how many revolutions per minute should it 
rotate in order to simulate Earth’s gravity—that is, so the normal 
force on an astronaut at the outer edge would equal the astro-
naut’s weight on Earth?

450 m

Figure 5.36 Problem 60

CH
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m1 (g) m2 (g) a (m/s2)

10.0 170 0.521
10.0 270 0.376
10.0 370 0.274
20.0 170 1.06
20.0 270 0.652
20.0 370 0.534

Passage Problems
A spiral is an ice-skating posi-
tion in which the skater glides 
on one foot with the other foot 
held above hip level. It’s a re-
quired element in women’s 
singles figure skating com-
petition and is related to the 
arabesque performed in ballet. 
Figure 5.40 shows skater Sarah  
Hughes executing a spiral dur-
ing her gold-medal perfor-
mance at the Winter Olympics 
in Salt Lake City.

77. From the photo, you can conclude that the skater is
a. executing a turn to her left.
b. executing a turn to her right.
c. moving in a straight line out of the page.

78. The net force on the skater
a. points to her left.
b. points to her right.
c. is zero.

79. If the skater were to execute the same maneuver but at higher 
speed, the tilt evident in the photo would be
a. less.
b. greater.
c. unchanged.

80. The tilt angle u that the skater’s body makes with the  vertical 
is given approximately by u = tan-1(0.5). From this you 
can  conclude that the skater’s centripetal acceleration has 
 approximate magnitude
a. 0.
b. 0.5 m/s2.
c. 5 m/s2.
d. can’t be determined without knowing the skater’s speed

answers to Chapter Questions
answer to Chapter Opening Question
The airplane tips, or banks, so there’s a horizontal component of the 
aerodynamic force on the wings. That component provides the mv2/r 
force that keeps the plane in its circular path. The vertical component 
of the aerodynamic force is what balances the gravitational force, 
keeping the plane aloft.

answers to GOT IT? Questions
 5.1  (c) Equal—but only because of the 45° slope. At larger angles, the 

tension would be greater than the weight; at smaller angles, less.
 5.2  (a) The left hand in Fig. 5.9 and the hook in this figure play ex-

actly the same role, balancing the 1-N tension force in the rope.
 5.3  (c)
 5.4  (c) Greater because the chain is pulling downward, making the 

normal force greater than the log’s weight.

73. A florist asks you to make a window display with two hanging 
pots as shown in Fig. 5.38. The florist is adamant that the strings 
be as invisible as possible, so you decide to use fishing line but 
want to use the thinnest line you can. Will fishing line that can 
withstand 100 N of tension work?

68.0°54.0°

13.9°

3.85 kg

9.28 kg

Figure 5.38 Problem 73

74. You’re at the state fair. A sideshow barker claims that the star of 
the show can throw a 7.3-kg Olympic-style hammer “faster than 
a speeding bullet.” You recall that bullets travel at several hun-
dreds of meters per second. The burly hammer thrower whirls the 
hammer in a circle that you estimate to be 2.4 m in diameter. You 
guess the chain holding the hammer makes an angle of 10° with 
the horizontal. When the hammer flies off, is it really moving 
faster than a bullet?

75. One of the limiting factors in high-performance aircraft is the ac-
celeration to which the pilot can be subjected without blacking 
out; it’s measured in “gees,” or multiples of the gravitational ac-
celeration. The F-22 Raptor fighter can achieve Mach 1.8 (1.8 
times the speed of sound, which is about 340 m/s). Suppose a 
pilot dives in a circle and pulls up. If the pilot can’t exceed 6g, 
what’s the tightest circle (smallest radius) in which the plane  
can turn?

76. Figure 5.39 shows an apparatus used to verify Newton’s second 
law. A “pulling mass” m1 hangs vertically from a string of negli-
gible mass that passes over a pulley, also of negligible mass and 
with nearly frictionless bearings. The other end of the string is at-
tached to a glider of mass m2 riding on an essentially frictionless, 
horizontal air track. Both m1 and m2 may be varied by placing 
additional masses on the pulling mass and glider. The experiment 
consists of starting the glider from rest and letting the pulling 
mass accelerate it down the track. Three photogates are used to 
time the glider over two distance intervals, and an experimen-
tal value for its acceleration is determined from these data, using 
constant-acceleration equations from Chapter 2. The table in the 
next column lists the measured acceleration for a number of mass 
combinations. (a) Determine a quantity that, when plotted on the 
horizontal axis of a graph, should result in a straight line of slope 
g when acceleration is plotted on the vertical axis. (b) Make your 
plot, fit a line to the plotted data, and report the experimentally 
determined value of g.

m1

m2

Figure 5.39 Problem 76

DATA

Figure 5.40 Passage Problems 77–80
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6

What You Know
■ You understand Newton’s second law 

and how it relates force to change in 
motion.

■ You’re familiar with the terms energy 
and work, although not necessarily in 
their precise physics sense.

■ Depending on your calculus 
background, you may or may not 
have seen integration—a calculus 
procedure that’s the inverse of 
differentiation.

Figure 6.1a shows a skier starting from rest at the top of a uniform slope. What’s the skier’s 
speed at the bottom? You can solve this problem by applying Newton’s second law to find 

the skier’s constant acceleration and then the speed. But what about the skier in Fig. 6.1b? 
Here the slope is continuously changing and so is the acceleration. Constant-acceleration 
equations don’t apply, so solving for the details of the skier’s motion would be difficult.

There are many cases where motion involves changing forces and accelerations. In this 
chapter, we introduce the important physical concepts of work and energy. These powerful 
concepts enable us to “shortcut” the detailed application of Newton’s law to analyze these 

What You’re Learning
■ Here you’re introduced to the 

fundamental concept of energy—
ultimately, one of the two kinds of 
“stuff” our universe is made of.

■ You’ll learn how work means the 
transfer of energy by exerting forces.

■ You’ll see how to calculate work in 
both simple and complex situations.

■ You’ll have a quick introduction to 
integral calculus.

■ You’ll learn the vector dot product—
one of two ways to multiply vectors.

■ You’ll see how applying Newton’s 
second law in the context of work 
leads to the concept of kinetic energy.

■ You’ll come to appreciate the 
distinction between power and 
energy.

How You’ll Use It
■ In Chapter 7 you’ll use the ideas 

developed here to formulate a 
statement about the conservation of 
energy.

■ You’ll see how energy conservation 
provides a “shortcut” to solving 
problems that would otherwise be 
very difficult.

■ Energy will continue to play an 
important role as you explore 
Newtonian physics further in Parts  
1 and 2, and as you expand your 
physics knowledge to encompass 
thermodynamics in Part 3 and 
electromagnetism in Part 4.

■ You’ll see how energy remains at the 
heart of your understanding of physical 
reality even when you move past 
Newtonian physics and into the realms 
of relativity and quantum physics.

Climbing a mountain, these cyclists do work 
against gravity. Does that work depend on the 
route chosen?

Figure 6.1 Two skiers.

This skier’s acceleration
is constant.

This skier’s acceleration
varies as the slope changes.

(a) (b)
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more complex situations. But these new concepts have significance far  beyond their  practical 
applications in problem solving. Energy, in particular, is a  fundamental aspect of the universe—a 
“substance” akin to, and every bit as real as, matter itself. In fact, as you’ll see when you explore 
relativity in Chapter 33, energy and matter are really both aspects of a single “substance,” linked 
by Einstein’s equation E = mc2.

6.1 Energy
“Energy” is a word you hear every day. You buy energy when you fill your car’s gas tank. 
You use energy to heat your home and cook your food. You experience the awesome 
 energy of a hurricane, a tornado, or an explosion. You sense the energy inherent in a truck 
barreling down the highway, or the energy generated by an airplane’s engines as it surges 
down the runway. A power line crosses the countryside and, even though you can’t see 
anything but the wires, you know that the line is carrying energy to a distant city. Your 
cellphone dies, its battery discharged, and you know that it needs to be replenished with 
energy. Your own body produces energy, which you sense as you climb a mountain,  cycle, 
walk, or even think. You may have helped insulate or weatherize a home to reduce its 
energy loss. And the colossal rate at which humankind consumes energy is much on our 
minds as we become increasingly aware of the impact energy consumption has on our 
planet.

Actually, words like “consume,” “generate,” “produce,” and “loss,” although widely 
used in the context of energy, are misleading. That’s because energy is conserved— 
meaning that it can change forms but cannot be created or destroyed. Much of your study 
of energy will involve ways to transform energy from one form to another or transfer it 
from place to place—all the while conserving the total amount of energy. Conservation of 
energy is a profound idea in physics, one whose richness we’ll explore throughout the rest 
of this book.

Here in Part 1 of the book, we’ll focus on mechanical energy, associated with motions 
and configurations of macroscopic objects such as cars, planets, baseballs, people, and 
springs. This chapter introduces kinetic energy, the energy of motion, as applied to such 
macroscopic objects. You’ll see how the act of doing work is one way to transfer energy 
to an object. Chapter 7 will add the idea of potential energy and will develop a statement 
of energy conservation as it applies to mechanical energy. We’ll also need to consider 
 so-called internal energy, associated with random motions and configuration changes at 
the molecular level. In Part 3 (thermodynamics), we’ll explore internal energy and show 
how it’s incorporated into a broader statement of energy conservation. In Part 3, you’ll 
also see how heat describes another way of transferring energy. In Part 4, on electricity 
and magnetism, we’ll introduce forms of electromagnetic energy and associated energy-
transfer processes. In Part 6, you’ll see that energy concepts survive even into the realm 
of quantum physics—no mean feat given that many other ideas from classical physics 
become meaningless or even nonsensical in the quantum realm.

Energy and Systems
What’s got energy? A moving car does. So does a whole highway full of cars. A warm 
house has energy. So does a stretched spring. A hurricane has energy, and so does our 
whole planet. When we’re accounting for energy and studying energy flows and transfor-
mations, we need to have in mind a system whose energy we’re interested in. Typically 
the system contains one or more objects, and it’s defined by a closed boundary. Every-
thing within the boundary is part of the system, whereas everything outside comprises the 
environment that surrounds the system. Like coordinate axes, a system is something you 
define for your convenience. Once you’ve defined a system, then you can talk about the 
system’s energy and what forms it takes; about energy transformations within the system; 
and about any transfers of energy into or out of the system. Figure 6.2 shows conceptually 
how to think about energy in the context of a system, while the Application shows how the 
idea behind Fig. 6.2 is applied in the important case of climate modeling.
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92 Chapter 6 Energy, Work, and Power

Figure 6.2 Diagram showing energy flows both within a system and across its boundaries, as well as 
 transformations between different types of energy within the system. We show four common forms of 
 energy:  Kinetic energy (K) and potential energy (U), subjects of this chapter and the next; internal or 
 thermal energy (Eint), a subject of Part 3; and electromagnetic energy, covered in Part 4.

Energy in Energy out

System

K U

Eint EEM

The boundary separates the system from its surroundings.

Energy can �ow into and out of the system, as mechanical energy, as heat, or as electromagnetic energy.

Energy �ows within the system, and 
transforms from one form to another. Absent 
in�ows and out�ows, the total energy in the 
system wouldn’t change.

AppLICAtIon Climate Modeling

Figure 6.2 isn’t just a pedagogical aid to understand-
ing energy and systems concepts; it’s a framework for 
realistic models used to characterize energy-related 
systems ranging from biological organisms to nuclear 
power plants to Earth’s climate. The figure here shows 
the energy–systems concept as climate scientists use it. 
The system comprises Earth and its atmosphere. Many 
of the arrows represent energy flows and transforma-
tions between Earth and atmosphere—that is, within 
the system. These involve electromagnetic energy 
emitted in the form of infrared radiation, as well as en-
ergy associated with warm air and water vapor rising 
into the atmosphere. The three arrows at the top show 
energy exchanges with the planet’s surroundings—that 
is, energy crossing the system boundary. As you’ll see 
in Chapter 16, the incoming and outgoing flows must 
balance for climate to remain stable.

In this chapter, we’ll often choose our system to coincide with a single object, and in 
that case we’ll use the term “object” interchangeably with “system.” But in Chapter 7, 
we’ll need to consider systems comprising at least two interacting objects, and when we 
get to Chapter 9, we’ll be dealing with systems of many particles. In these more complex 
situations we’ll have to decide carefully what’s in our system and what’s outside it, and 
we’ll need to make more use of systems terminology.

6.2 Work
One way to transfer energy to a system is to act on the system with an external force—a 
force applied by an entity that isn’t part of the system. In this case we say that the force 
does work on the system. Doing work is an inherently mechanical process, involving the 
concept of force that you’re already familiar with from Newtonian mechanics.

Imagine carrying a piece of furniture upstairs. You have to apply an upward force on 
the furniture as you climb the stairs. Define the furniture as your system, and the force you 
apply is an external force that does work on the system. Thus you transfer energy from 
your body to the furniture by doing mechanical work.

PheT: The Ramp

Re�ected 
sunlight

Incoming 
sunlight

Outgoing 
infrared

Emitted by
atmosphere

Convection and
evaporation

Greenhouse
gases
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6.2 Work 93

You’ve already got an intuitive sense of work and how it’s quantified. Make that  furniture 
heavier, or the stairs higher, and you do more work. Or try pushing a stalled car: The harder 
you push, or the farther you push, the more work you do. The precise definition of work 
reflects your intuition:

For an object moving in one dimension, the work W done on the object by constant 
applied force F

S
 is

 W = Fx ∆x (6.1)

where Fx is the component of the force in the direction of the object’s motion and ∆x 
is the object’s displacement.

The force F
S

 need not be the net force. If you’re interested, for example, in how much 
work you must do to drag a heavy box across the floor, then F

S
 is the force you apply and 

W is the work you do.
Equation 6.1 shows that the SI unit of work is the newton-meter 1N #  m2. One 

 newton-meter is given the name joule, in honor of the 19th-century British physicist and 
brewer James Joule.

Our definition of work involves an object’s displacement. What that means is clear in 
the case of a rigid object like a block or a ball. But what about a spring, which can stretch 
or compress in response to an applied force? Or your own body, whose configuration al-
ters as you lift, run, jump, dance, or swim? Or a more complex system of many parts, 
with a force applied to just one part? In all these cases our definition of work still applies, 
provided we interpret “displacement” to mean the displacement of the point at which the 
force is applied. For a system consisting of a rigid object, that’s the same as the object’s 
displacement. For a system consisting of a flexible object or many independent particles, 
it’s not necessarily the same as the system’s overall displacement.

Figure 6.3 considers several cases of work done on rigid objects. According to Equa-
tion 6.1, the person pushing the car in Fig. 6.3a does work equal to the force he applies 
times the distance the car moves. But the person pulling the suitcase in Fig. 6.3b does 
work equal to only the horizontal component of the force she applies times the distance 
the suitcase moves. Furthermore, by our definition, the waiter of Fig. 6.3c does no work on 
the tray. Why not? Because the force on the tray is vertical while the tray’s displacement is 
horizontal; there’s no component of force in the direction of the tray’s motion.

Work can be positive or negative (Fig. 6.4). When a force acts in the same general 
 direction as the motion, it does positive work. A force acting at 90° to the motion does no 
work. And when a force acts to oppose motion, it does negative work.

Figure 6.3 Work depends on the orientation of force and displacement.

F
S

F
S

F
S

Force and displacement
are in the same direction,
so work W = F∆x.

Force and displacement 
are not in the same direction;
here W = Fx∆x.

Force and displacement 
are perpendicular;
no work is done.

Fx

Fy

∆x ∆x
∆x

(a) (b) (c)
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F
S

F
S

F
S

F
S

A force acting in the same direction as an
object’s motion does positive work.

A force acting at right angles to the motion
does no work. A force acting opposite the motion does

negative work.

A force acting with a component in the 
same direction as the object’s motion does
positive work.

(a)

(c) (d)

(b)

W 7 0 W 7 0

W = 0 W 6 0

∆r ∆r

∆r ∆r

uu

u u

Figure 6.4 The sign of the work depends on 
the relative directions of force and motion. We 
use ∆r

!
 here to indicate that the displacement 

can be any vector.

ExAMpLE 6.1 Calculating Work: pushing a Car

The person in Fig. 6.3a pushes with a force of 650 N, moving the car a 
distance of 4.3 m. How much work does he do?

Interpret This problem is about work. We identify the car as the 
object on which the work is done and the person as the agent doing 
the work.

Develop Figure 6.3a is our drawing. Equation 6.1, W = Fx ∆x, 
is the relevant equation, so our plan is to apply that equation. The 

force is in the same direction as the displacement, so 650 N is the 
 component we need.

evaluate We apply Equation 6.1 to get

W = Fx ∆x = 1650 N214.3 m2 = 2.8 kJ

assess Make sense? The units work out, with newtons times meters 
giving joules—here expressed in kilojoules for convenience. ■

ExAMpLE 6.2 Calculating Work: pulling a Suitcase

The airline passenger in Fig. 6.3b exerts a 60-N force on her  suitcase, 
pulling at 35° to the horizontal. How much work does she do in 
 pulling the suitcase 45 m on a level floor?

Interpret Again, this example is about work—here done by the 
passenger on the suitcase.

Develop Equation 6.1, W = Fx ∆x, applies here, but because the 
displacement is horizontal while the force isn’t, we need to find 
the horizontal force component. We’ve redrawn the force vector in  
Fig. 6.5 to determine Fx.

evaluate Applying Equation 6.1 to the x-component from Fig. 6.5, 
we get

W = Fx ∆x = 3160 N21cos 35°24145 m2 = 2.2 kJ

assess The answer of 2.2 kJ is less than the product of 60 N and  
45 m, and that makes sense because only the x-component of that 
60-N force contributes to the work. ■

Figure 6.5 Our sketch for Example 6.2.

Work and the Scalar product
Work is a scalar quantity; it’s specified completely by a single number and has no 
 direction. But Fig. 6.3 shows clearly that work involves a relation between two vectors: the 
force F

S
and the displacement, designated more generally by ∆r

!
. If u is the angle  between 

these two vectors, then the component of the force along the direction of motion is F cos u, 
and the work is

 W = 1F cos u21∆r2 = F ∆r cos u (6.2)

This equation is a generalization of our definition 6.1. If we choose the x-axis along ∆r
!
, 

then ∆r = ∆x and F cos u = Fx, so we recover Equation 6.1.
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Equation 6.2 shows that work is the product of the magnitudes of the vectors F
S

 and ∆r
!
 

and the cosine of the angle between them. This combination occurs so often that it’s given 
a special name: the scalar product of two vectors.

The scalar product of any two vectors A
S

 and B
S

 is defined as

 A
S # B

S
= AB cos u (6.3)

where A and B are the magnitudes of the vectors and u is the angle between them.

The term scalar product should remind you that A
S # B

S
is itself a scalar, even though 

it’s formed from two vectors. A centered dot designates the scalar product; for this reason, 
it’s also called the dot product. Figure 6.6 gives a geometric interpretation.

The scalar product is commutative: A
S # B

S
= B

S # A
S

, and it’s also distributive:
A
S # 1B

S
+ C

S2 = A
S # B

S
+ A

S # C
S

.  With vectors expressed in unit vector notation, 
 Problem 48 shows how the distributive law gives a simple form for the scalar product. If 
A
S

= Ax in + Ay jn + Az kn  and B
S

= Bx in + By jn + Bz kn, then

 A
S # B

S
= A xB x + A yB y + A zB z (6.4)

Comparing Equation 6.2 with Equation 6.3 shows that the work done by a constant 
force F

S
moving an object through a straight-line displacement ∆r

!
 can be expressed using 

the dot product:

 W = F
S # ∆r

!
 (6.5)

As the examples below show, either Equation 6.3 or Equation 6.4 can be used in  evaluating 
the dot product in this expression for work.

Figure 6.6 Geometric interpretation of the 
scalar product.

A
S

B
S

u

The component of B in the
direction of A is B cosu.

The scalar product is the 
magnitude of A multiplied by
the component of B in the 
direction of A.

B cosu

A

A # B = AB cosu
S S

S

S

S

S

S

ExAMpLE 6.3 Work and the Scalar product: A tugboat

A tugboat pushes a cruise ship with force F
S

= 1.2 in + 2.3 jn MN, 
moving the ship along a straight path with displacement 
∆r

!
= 380in + 460jn m. Find (a) the work done by the tugboat and (b) 

the angle between the force and displacement.

Interpret Part (a) is about calculating work given force and dis-
placement in unit vector notation. Part (b) is less obvious, but knowing 
that work involves the angle between force and displacement provides 
a clue, suggesting that the answer to (a) may lead us to (b).

Develop Figure 6.7 is a sketch of the two vectors, which will serve 
as a check on our final answer. For (a), we want to use Equation 6.5, 
W = F

S # ∆r
!
, with the scalar product in unit vector notation given by 

Equation 6.4. That will give us the work W. We also have the vectors 
F
S

 and ∆r
!
, so we can find their magnitudes. That suggests a  strategy 

for (b): Given the work and the vector magnitudes, we can write Equa-
tion 6.3 with a single unknown, the angle u that we’re asked to find.

evaluate For (a), we use Equations 6.5 and 6.4, respectively, to 
write

W = F
S # ∆r

!
= Fx ∆x + Fy ∆y

 = 11.2 MN21380 m2 + 12.3 MN21460 m2 = 1510 MJ

The first equality is from Equation 6.5; the second gives the sca-
lar product in unit vector form from Equation 6.4. ∆x and ∆y are the 
components of the displacement ∆r

!
. Now that we have the work, 

we can get the angle. The magnitude of a vector comes from the 
Pythagorean theorem, as expressed in Equation 3.1. So we have 
F = 2Fx

2 + Fy
2 = 2(1.2 MN)2 + (2.3 MN)2 = 2.59 MN; a sim-

ilar calculation gives ∆r = 597 m. Now we solve Equation 6.3 for u:

u = cos-1 a W

F ∆r
b = cos-1 a 1510 MJ

12.59 MN21597 m2 b = 12°

assess This small angle is consistent with our sketch in Fig. 6.7. 
And it makes good physical sense: A tugboat is most efficient when 
pushing in the direction the ship is supposed to go. Note how the units 
work out in that last calculation: MJ in the numerator and MN #  m in 
the denominator. But 1 N #  m is 1 J, so that’s MJ in the denominator, 
too, giving the dimensionless cosine. ■

Figure 6.7 Our sketch of the vectors in Example 6.3.

In the drawing of
F, each space on
the graph paper 
represents 1 MN;  
for ∆r, it’s 100 m.

u

S
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Got It? 6.1 Two objects are each displaced the same distance, one by a force 
F pushing in the direction of motion and the other by a force 2F  pushing at 45° to 
the  direction of motion. Which force does more work? (a) F; (b) 2F; (c) they do 
equal work

6.3 Forces that Vary
Often the force applied to an object varies with position. Important examples include elec-
tric and gravitational forces, which vary with the distance between interacting objects. The 
force of a spring that we encountered in Chapter 4 provides another example; as the spring 
stretches, the force increases.

Figure 6.8 is a plot of a force F that varies with position x. We want to find the 
work done as an object moves from x1 to x2. We can’t simply write F1x2 - x12; since 
the force varies, there’s no single value for F. What we can do, though, is divide 
the region into rectangles of width ∆x, as shown in Fig. 6.9a. If we make ∆x small 
enough, the force will be nearly constant over the width of each rectangle (Fig. 6.9b). 
Then the work ∆W  done in moving the width ∆x of one such rectangle is approxi-
mately F1x2 ∆x, where F1x2 is the force at the midpoint x of that rectangle. We write 
F1x2 to show explicitly that the force is a function of position. Note that the quan-
tity F1x2 ∆x is the area of the rectangle expressed in the appropriate units (N #m, or, 
equivalently, J).

Suppose there are N rectangles. Let xi be the midpoint of the ith rectangle. Then the to-
tal work done in moving from x1 to x2 is given approximately by the sum of the individual 
amounts of work ∆Wi associated with each rectangle, or

 W ≃ a
N

i = 1
∆Wi = a

N

i = 1
F1xi2 ∆x (6.6)

How good is this approximation? That depends on how small we make the rectangles. 
 Suppose we let them get arbitrarily small. Then the number of rectangles must grow 
 arbitrarily large. In the limit of infinitely many infinitesimally small rectangles, the 
 approximation in Equation 6.6 becomes exact (Fig. 6.9c). Then we have

 W = lim
∆xS0

 a
i

F1xi2 ∆x (6.7)

where the sum is over all the infinitesimal rectangles between x1 and x2. The quantity 
on the right-hand side of Equation 6.7 is the definite integral of the function F1x2 over 
the interval from x1 to x2. We introduce special symbolism for the limiting process of 
 Equation 6.7:

 W = L
x

2

x1

 F1x2 dx  awork done by a varying
force in one dimension b  (6.8)

Equation 6.8 means exactly the same thing as Equation 6.7: It tells us to divide the 
interval from x1 to x2 into many small rectangles of width ∆x, to multiply the value of the 
function F1x2 at each rectangle by the width ∆x, and to sum those products. As we take 
arbitrarily many arbitrarily small rectangles, the result of this process gives us the value of 
the definite integral. You can think of the symbol1 in Equation 6.8 as standing for “sum” 
and the symbol dx as a limiting case of arbitrarily small ∆x. The definite integral has a 
simple geometric interpretation: It’s the area under the curve F1x2 between the limits x1 
and x2 (Fig. 6.9c).

Computers approximate the infinite sum implied in Equation 6.8 using a large number 
of very small rectangles. But calculus often provides a better way.

Figure 6.8 A varying force.

The force F(x) varies with
position x.
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Figure 6.9 Work done by a varying force.

The work done in moving this
distance ∆x is approximately c
cthis force
times ∆x.
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approximation more accurate.
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under the force-versus-position curve.
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6.3 Forces That Vary 97

Stretching a Spring
A spring provides an important example of a force that varies with position. We’ve seen that an 
ideal spring exerts a force proportional to its displacement from equilibrium: F = -kx, where 
k is the spring constant and the minus sign shows that the spring force is opposite the direction 
of the displacement. It’s not just coiled springs that we’re interested in here; many physical 
 systems, from molecules to skyscrapers to stars, behave as though they contain springs. The 
work and energy considerations we develop here apply to those systems as well.

The force exerted by a stretched spring is -kx, so the force exerted on the spring by the 
 external stretching force is +kx. If we let x = 0 be one end of the spring at equilibrium and if 
we hold the other end fixed and pull the spring until its free end is at a new position x, as shown 
in Fig. 6.10, then Equation 6.8 shows that the work done on the spring by the external force is

 W = L
x

0
 F1x2 dx = L

x

0
 kx dx = 1

2 kx2 2 x
0

= 1
2 kx2 - 1

2 k1022 = 1
2 kx2 (6.10)

where we used Equation 6.9 to evaluate the integral. The more we stretch the spring, the 
greater the force we must apply—and that means we must do more work for a given amount 
of additional stretch. Figure 6.11 shows graphically why the work depends quadratically on 
the displacement. Although we used the word stretch in developing Equation 6.10, the result 
applies equally to compressing a spring a distance x from equilibrium. Note here that we’re 
explicitly using the displacement of the force application point—the end of the spring—which 
in this case of this flexible system isn’t the same as the displacement of the whole spring.

tactIcs 6.1 Integrating

In your calculus course you’ve learned, or will soon learn, that integrals and derivatives are inverses. In 
Section 2.2, you saw that the derivative of xn is nxn-1; therefore, the integral of xn is 1xn+12/1n + 12, as 
you can verify by differentiating. We determine the value of a definite integral by evaluating this  expression 
at upper and lower limits and subtracting:

 L
x

2

x1

 xn dx =
xn+1

n + 1
 2 x2

x1

=
x2

 n+1

n + 1
-

x1
 n+1

n + 1
 (6.9)

where the middle term, with the vertical bar and the upper and lower limits, is a shorthand notation for the differ-
ence given in the rightmost term. Appendix A includes a review of integration and a table of common integrals.

Figure 6.10 Stretching a spring.
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spring, stretching
it a distance x.
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Both forces have
magnitude kx.(a)
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Figure 6.11 Work done in 
stretching a spring.

This is the force
when the spring
is fully stretched.

Force increases with
stretch c

kx2

kx

x0
Distance, x

Fo
rc

e,
 F

1
2

cso the work is
half of (kx)(x), or
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ExAMpLE 6.4 the Spring Force: Bungee Jumping

An elastic cord used in bungee jumping is normally 11 m long and has 
spring constant k = 250 N/m. At the lowest point in a jump, the cord 
length has doubled. How much work has been done on the cord?

Interpret The bungee cord behaves like a spring—as we can tell 
because we’re given its spring constant. So this example is about the 
work done in stretching a spring. We’re told the 11-m-long cord length 
doubles in length, so it’s stretched another 11 m.

Develop Equation 6.10 gives the work done in stretching the cord a 
distance x from its unstretched configuration.

evaluate Applying Equation 6.10 gives

W = 1
2 kx2 = 11

221250 N/m2111 m22 = 15 kN #m = 15 kJ

assess As you’ll see shortly, that’s just about equal to the work done 
by gravity on a 70-kg person dropping the 22-m distance from the 
 attachment point of the cord to its full stretched extent. You’ll see in 
the next chapter why this is no coincidence. ■
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ConCEptUAL ExAMpLE 6.1 Bungee Details

Figure 6.12 Conceptual Example 6.1.

The area under the
curve is much larger
on the right than on
the left, showing that
it takes much more
work for the last
meter of stretch.

In Example 6.4, is the work done as the cord stretches its final meter 
greater than, less than, or equal to the work done in the first meter of 
stretch?

evaluate We’re asked to compare the work done during the 
 beginning and end of the bungee cord’s stretch. We know that work 

is the area under the force–distance curve. We’ve sketched the force–
distance curve in Fig. 6.12, highlighting the first and last meters. The 
figure makes it clear that the area associated with the last meter of 
stretch is much larger. Therefore, the work is greater.

assess Makes sense! Once the cord has stretched 10 m, it exerts a 
large force. That makes it much harder to stretch farther—and thus 
the final meter requires a lot of work. The first meter takes much less 
work because at first the cord exerts very little force.

MakIng the connectIon Find the work involved in stretching 
during the first and last meters, and compare.

evaluate We can use Equation 6.10, but instead of the limits 0 and 
x, we’ll use 0 and 1 m for the first meter of stretch, and 10 m and 11 m 
for the last meter. The results are 125 J and 2.6 kJ. Stretching the final 
meter takes more than 20 times the work required for the first meter!

ExAMpLE 6.5 A Varying Friction Force: Rough Sliding

Workers pushing a 180-kg trunk across a level floor encounter a 
10-m-long region where the floor becomes increasingly rough. The 
coefficient of kinetic friction here is given by mk = m0 + ax2, where 
m0 = 0.17, a = 0.0062 m-2, and x is the distance from the beginning 
of the rough region. How much work does it take to push the trunk 
across the region?

Interpret This example asks for the work needed to push the trunk. 
To move the trunk at constant speed, the workers must apply a force 
equal in magnitude to the frictional force. That force varies with posi-
tion, so we’re dealing with a varying force.

Develop Our drawing, the force–position curve in Fig. 6.13, 
 emphasizes that we have a varying force. Therefore, we have to 

 integrate using Equation 6.8, W = L
x

2

x1

 F1x2 dx. And we need to know 

the frictional force, which is given by Equation 5.3: fk = mkn. On a 
level floor, the normal force is equal in magnitude to the weight, mg, so 

Equation 6.8 becomes W = L
x

2

x1

 mkmg dx = L
x2

x1

 mg1m0 + ax22 dx.

evaluate We evaluate the integral using Equation 6.9. Actually, 
we have two integrals here: one of dx alone and the other of x2 dx. 
 According to Equation 6.9, the former gives x and the latter x3/3. So 
the result is

W = L
x

2

x1

 mg1m0 + ax22 dx = mg1m0 x + 1
3 ax32 2 x2

x1

 =  mg31m0 x2 + 1
3 ax2

32 - 1m0 x1 + 1
3 ax1

324
Putting in the values given for m0, a, and m, using g = 9.8 m/s2, and 
taking x1 = 0 and x2 = 10 m for the endpoints of the rough interval, 
we get 6.6 kJ for our answer.

assess Is this answer reasonable? Figure 6.13 shows that the maxi-
mum force is approximately 1.3 kN. If this force acted over the entire 
10-m interval, the work would be about 13 kJ. But it’s approximately 
half that because the coefficient of kinetic friction and therefore the 
force start out quite low. You can see that the area under the curve in 
Fig. 6.13 is about half the area of the full rectangle, so our answer of 
6.6 kJ makes sense. ■

Figure 6.13 Force versus position 
for Example 6.5.

This area gives the
work done in crossing
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✓tIp Don’t Just Multiply!

When force depends on position, there’s no single value for the force, so you can’t just 
multiply force by distance to get work. You need either to integrate, as in Example 6.5, 
or to use a result that’s been derived by integration, as with the equation W = 1

2 kx2 
used in Example 6.4.
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Force and Work in two and three Dimensions
Sometimes a force varies in both magnitude and direction or an object moves on a curved 
path; either way, the angle between force and motion may vary. Then we have to take the 
scalar products of the force F

S
with small displacements ∆r

!
, writing ∆W = F

S # ∆r
!
 for 

the work involved in one such small displacement. Adding them all gives the total work, 
which in the limit of very small displacements becomes a line integral:

 W = L
r
!
2

r
!
1

 F
S # dr

!
 (6.11)

where the integral is taken over a specific path between positions r
!
1 and r

!
2. We won’t 

 pursue line integrals further here, but they’ll be useful in later chapters.

Work Done against Gravity
When an object moves upward or downward on an arbitrary path, the angle between its 
displacement and the gravitational force varies. But here we don’t really need the line in-
tegral of Equation 6.11 because we can consider any path as consisting of small horizontal 
and vertical steps (Fig. 6.14). Only the vertical steps contribute to the work, which then 
becomes simply W = mgh, where h is the total height the object rises—a result that’s 
independent of the particular path taken. (As in our earlier work with gravity, this result 
holds only near Earth’s surface, where we can neglect the variation in gravity with height.)

Got It? 6.2 Three forces have magnitudes in newtons that are numerically equal to 
these quantities: (a) x, (b) x2, and (c) 1x, where x is the position in meters. Each force acts 
on an object as it moves from x = 0 to x = 1 m. Notice that all three forces have the same 
values at the two endpoints—namely, 0 N and 1 N. Which of the forces (a), (b), or (c) does 
the most work? Which does the least?

6.4 Kinetic Energy
Doing work on a system by applying a force is the mechanical way to transfer energy to the 
system. How does that energy manifest itself? Under some conditions it shows up as kinetic 
energy—energy of the system’s motion. Here we develop a relation between the net work done 
by all forces acting on a system that consists of a single rigid object and the resulting change 
in the object’s kinetic energy. In the process we’ll develop a simple formula for kinetic energy.

We’ll start by evaluating the net work done on the object and then apply Newton’s 
second law. With our single object, the net work is the work done by the sum of all forces 
acting on the object—that is, by the net force. So we’ll use the net force in our expression 
for work. (That wouldn’t do for a more complicated system, with different forces acting 
on different points that might undergo different displacements; there we’d have to calcu-
late the work associated with each force, and then sum.) We’ll consider the simple case of 
one-dimensional motion, with force and displacement along the same line. In that case, 
Equation 6.8 gives the net work:

Wnet = LFnet dx

But the net force can be written in terms of Newton’s second law: Fnet = ma, or 
Fnet = m dv/dt, so

Wnet = Lm 
dv

dt
 dx

The quantities dv, dt, and dx arose as the limits of small numbers ∆v, ∆t, and ∆x. In 
calculus, you’ve seen that the limit of a product or quotient is the product or quotient of 

Figure 6.14 A car climbs a hill with varying slope.

Since gravity is vertical,
only the y-component 
contributes to the work.
That contribution is
∆W = mg ∆y.

All the y-components
add up to the total 
height h, so the total
work is mgh.

h

∆x

∆y
∆ru
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100 Chapter 6 Energy, Work, and Power

the individual terms involved. For these reasons, we can rearrange the symbols dv, dt, and 
dx to rewrite our expression in the form

Wnet = Lm dv 
dx

dt

But dx/dt = v, so we have

Wnet = Lmv dv

The integral here is like 1x dx, which we evaluate by raising the exponent and dividing by 
the new exponent. What about the limits? Suppose our object starts at some speed v1 and 
ends at v2. Then we have

 Wnet = L
v2

v1

 mv dv = 1
2 mv2 2 v2

v1

= 1
2 mv2

 2 - 1
2 mv1

2 (6.12)

Equation 6.12 shows that an object has associated with it a quantity 12 mv2 that changes 
when, and only when, net work is done on the object. This quantity is the object’s kinetic 
energy:

The kinetic energy K of an object of mass m moving at speed v is

 K = 1
2 mv2 (6.13)

Like velocity, kinetic energy is a relative term; its value depends on the reference frame 
in which it’s measured. But unlike velocity, kinetic energy is a scalar. And since it de-
pends on the square of the velocity, kinetic energy is never negative. All moving objects 
possess kinetic energy.

Equation 6.12 equates the change in an object’s kinetic energy with the net work done 
on the object, a result known as the work–kinetic energy theorem:

Work–kinetic energy theorem: The change in an object’s kinetic energy is equal to 
the net work done on the object:

 ∆K = Wnet (6.14)

Equations 6.12 and 6.14 are equivalent statements of the work–kinetic energy theorem.
We’ve seen that work can be positive or negative; the work-kinetic energy theorem 

(Equation 6.14) therefore shows that changes in kinetic energy are correspondingly  positive 
or negative. If I stop a moving object, for example, I reduce its kinetic energy from 12 mv2 to 
zero—a change ∆K = -1

2 mv2. So I do negative work by applying a force directed oppo-
site to the motion. By Newton’s third law, the object exerts an equal but  oppositely directed 
force on me, therefore doing positive work 12 mv2 on me. So an object of mass m moving at 
speed v can do work equal to its initial kinetic energy, 12 mv2, if it’s brought to rest.

ExAMpLE 6.6 Work and Kinetic Energy: passing Zone

A 1400-kg car enters a passing zone and accelerates from 70 to 
95 km/h. (a) How much work is done on the car? (b) If the car then 
brakes to a stop, how much work is done on it?

Interpret Here we’re asked about work, but we aren’t given any forces 
as we were in previous examples. However, we now know the  work– kinetic 

energy theorem. Kinetic energy depends on speed, which we’re given. So 
this is a problem involving the work–kinetic energy theorem.

Develop The relevant equation is Equation 6.14 or its more explicit 
form, Equation 6.12. Since we’re given speeds, it’s easiest to work 
with Equation 6.12.
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6.5 Power 101

Got It? 6.3 For each situation, tell whether the net work done on a soccer ball is (a) 
positive, (b) negative, or (c) 0. (1) You carry the ball out to the field, walking at constant 
speed. (2) You kick the stationary ball, starting it flying through the air. (3) The ball rolls 
along the field, gradually coming to a halt.

Energy Units
Since work is equal to the change in kinetic energy, the units of energy are the same as 
those of work. In SI, the unit of energy is therefore the joule, equal to 1 newton-meter. 
In science, engineering, and everyday life, though, you’ll encounter other energy units. 
 Scientific units include the erg, used in the centimeter-gram-second system of units and 
equal to 10-7 J; the electronvolt, used in nuclear, atomic, and molecular physics; and 
the calorie, used in thermodynamics and to describe the energies of chemical reactions. 
 English units include the foot-pound and the British thermal unit (Btu); the latter is 
commonly used in engineering of heating and cooling systems. Your electric company 
charges you for energy use in kilowatt-hours 1kW #h2; we’ll see in the next section how 
this unit relates to the SI joule. Appendix C contains an extensive table of energy units and 
conversion factors as well as the energy contents of common fuels.

6.5 power
Climbing a flight of stairs requires the same amount of work no matter how fast you go. 
But it’s harder to run up the stairs than to walk. Harder in what sense? In the sense that 
you do the same work in a shorter time; the rate at which you do the work is greater. We 
define power as the rate of doing work:

evaluate For (a), Equation 6.12 gives

Wnet = 1
2 mv2

2 - 1
2 mv1

2 = 1
2 m1v2

2 - v1
22

 = 11
2211400 kg23126.4 m/s22 - 119.4 m/s224 = 220 kJ

where we converted the speeds to meters per second before doing the 
calculation. The work–kinetic energy theorem applies equally to the 
braking car in (b), for which v1 = 26.4 m/s and v2 = 0. Here we have

Wnet = 1
2 m1v2

2 - v1
22 = 11

2211400 kg2302 - 126.4 m/s224
 = -490 kJ

assess Make sense? Yes: There’s a greater change in speed and thus 
in kinetic energy in the braking case, so the magnitude of the work in-
volved is greater. Our second answer is negative because stopping the 
car means applying a force that opposes its motion—and that means 
negative work is done on the car. ■

If an amount of work ∆W  is done in time ∆t, then the average power P is

 P =
∆W

∆t
  1average power2 (6.15)

Often the rate of doing work varies with time. Then we define the instantaneous power 
as the average power taken in the limit of an arbitrarily small time interval ∆t:

 P = lim
∆tS0

 
∆W

∆t
=

dW

dt
  1instantaneous power2 (6.16)

Equations 6.15 and 6.16 both show that the units of power are joules/second. One J/s 
is given the name watt (W) in honor of James Watt, a Scottish engineer and inventor 
who was instrumental in developing the steam engine as a practical power source. Watt 
himself defined another unit, the horsepower. One horsepower (hp) is about 746 J/s or 
746 W.
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102 Chapter 6 Energy, Work, and Power

When power is constant, so the average power and instantaneous power are the same, 
Equation 6.15 shows that the amount of work W done in time ∆t is

 W = P ∆t (6.17)

When power isn’t constant, we can consider small amounts of work ∆W, each taken over 
so small a time interval ∆t that the power is nearly constant. Adding all these amounts of 
work and taking the limit as ∆t becomes arbitrarily small, we have

 
W = lim

∆tS0
 aP ∆t = L

t2

t1

P dt (6.18)

where t1 and t2 are the beginning and end of the time interval over which we calculate the work.

ExAMpLE 6.7 power: Climbing Mount Washington

A 55-kg hiker ascends New Hampshire’s Mount Washington, making 
the vertical rise of 1300 m in 2 h. A 1500-kg car drives up the Mount 
Washington Auto Road, taking half an hour. Neglecting energy lost to 
friction, what’s the average power output for each?

Interpret This example is about power, which we identify as the 
rate at which hiker and car expend energy. So we need to know the 
work done by each and the corresponding time.

Develop Equation 6.15, P = ∆W/∆t, is relevant, since we want the 
average power. To use this equation we’ll need to find the work done 
in climbing the mountain. As you learned in Section 6.2, work done 
against gravity is independent of the path taken and is given by mgh, 
where h is the total height of the climb.

evaluate We apply Equation 6.15 in the two cases:

 Phiker =
∆W

∆t
=

155 kg219.8 m/s2211300 m2
12.0 h213600 s/h2 = 97 W

 Pcar =
∆W

∆t
=

11500 kg219.8 m/s2211300 m2
10.50 h213600 s/h2 = 11 kW

assess Do these values make sense? A power of 97 W is typical of 
the sustained long-term output of the human body, as you can  confirm 
by considering a typical daily diet of 2000 “calories” ( actually 
 kilocalories; see Exercise 31). The car’s output amounts to 14 hp, 
which you may find low, given that the car’s engine is probably rated 
at several hundred horsepower. But cars are notoriously inefficient 
machines, with only a small fraction of the rated horsepower available 
to do useful work. Most of the rest is lost to friction and heating. ■

ExAMpLE 6.8 Energy and power: Yankee Stadium

Each of the 884 floodlights at Yankee Stadium uses electrical energy 
at the rate of 1650 W. How much does it cost to run these lights  during 
a 5-h night game, if electricity costs 21./kW #h?

Interpret We’re given a single floodlight’s power consumption 
and the cost of electricity per kilowatt-hour, a unit of energy. So this 
 problem is about calculating energy given power and time, with a little 
economics thrown in.

Develop Since the power is constant, we can calculate the energy 
used over time with Equation 6.17, W = P ∆t.

evaluate At 1.65 kW each, all 884 floodlights use energy at the 
rate 1884211.65 kW2 = 1459 kW. Then the total for a 5-h game is

W = P ∆t = 11459 kW215 h2 = 7295 kW #h
The cost is then 17295 kW #h21+0.21/kW #h2 = +1532.

assess Do we have the right units here? Yes: With power in 
 kilowatts and time in hours, the energy comes out immediately in 
 kilowatt-hours. ■

AppLICAtIon Energy and Society

Humankind’s rate of energy consumption is a matter of concern, especially 
given our dependence on fossil fuels whose carbon dioxide emissions threaten 
global climate change. Just how rapidly are we using energy?

Example 6.7 suggests that the average power output of the human body 
is approximately 100 W. Before our species harnessed fire and domesticated 
animals, that was all the power available to each of us. But in today’s high-
energy societies, we use energy at a much greater rate. For the average citizen 
of the United States in the early 21st century, for example, the rate of energy 

consumption is about 11 kW—the equivalent of more than a hundred human 
bodies. The rate is lower in most other industrialized countries, but it still 
amounts to many tens of human bodies’ worth.

What do we do with all that energy? And where does it come from? The 
first pie chart shows that most of the United States’s energy consumption goes 
for industry and transportation, with lesser amounts used in the residential and 
commercial sectors. The second chart is a stark reminder that our energy sup-
ply is neither diversified nor renewable, with some 81% coming from the fossil 
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6.5 Power 103

✓tIp Don’t Confuse Energy and Power

Is that 11-kW per-capita energy consumption per year, per day, or what? That question 
reflects a common confusion of energy and power. Power is the rate of energy use; it 
doesn’t need any “per time” attached to it. It’s just 11 kW, period.

power and Velocity
We can derive an expression relating power, applied force, and velocity by noting that 
the work dW done by a force F

S
acting on an object that undergoes an infinitesimal 

 displacement dr
!
 follows from Equation 6.5:

dW = F
S # dr

!

Dividing both sides by the associated time interval dt gives the power:

P =
dW

dt
= F

S # dr
!

dt

But dr
!
/dt is the velocity v

!
, so

P = F
S # v!

fuels coal, oil, and natural gas. That’s going to have to change in the coming 
decades, as a result of both limited fossil-fuel resources and the environmental 
consequences of fossil-fuel combustion—especially climate change. Much of 

what you learn in an introductory physics course has direct relevance to the 
energy challenges we face today.

Transportation
28%

Residential
21%

Commercial
19%

Industrial
32%

Coal
18%

Gas
27%Oil

36%

Nuclear
9%

Hydro
3%

Biomass
5%

Wind, solar,
geothermal

2%

ExAMpLE 6.9 power and Velocity: Bicycling

Riding your 9.0-kg bicycle at a steady 16 km/h 14.4 m/s2, you experi-
ence an 8.2-N force from air resistance. If your mass is 66 kg, what 
power must you supply on level ground and going up a 5° incline?

Interpret This example asks about power in two different situa-
tions: one with air resistance alone and the other when climbing. We 
identify the forces involved as air resistance and gravity. You need to 
exert forces of equal magnitude to overcome them.

Develop Given that we have force and velocity, Equation 6.19, 
P = F

S # v
!
, applies. The force you apply to propel the bicycle is in the 

same direction as its motion, so F
S # v

!
 in that equation becomes just Fv.

evaluate On level ground, we have P = Fv = 18.2 N214.4 m/s2 =
36 W. Climbing the hill, you have to exert an additional force to 

 overcome the downslope component of gravity, which in Example 5.1 
we found to be mg sin u. So here we have

 P = Fv = 1Fair + mg sin u2v

 = 38.2 N + 175 kg219.8 m/s221sin 5°2414.4 m/s2 = 320 W

where we used your combined mass, body plus bicycle.

assess Both numbers make sense. The values go from consider-
ably less than to a lot more than your body’s average power output 
of around 100 W, and as you’ve surely experienced, even a modest 
slope takes much more cycling effort than level ground. Top cyclists 
on mountain sections of the Tour de France can sustain power outputs 
of close to 500 W for extended periods. ■

Got It? 6.4 A newspaper reports that a new power plant will produce “50 mega-
watts per hour.” What’s wrong with this statement?
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Energy and work are the big ideas here. Doing work is a mechanical means 
of transferring energy. A force acting on a system does work when the 
 system (here a single object) undergoes a displacement and the force has a 
component in the direction of that displacement. A force at right angles to 
the displacement does no work, and a force with a component opposite the 
displacement does negative work.

Kinetic energy is the energy associated with an object’s motion. An object’s 
kinetic energy changes only when net work is done on the object.

Chapter 6 Summary
Big Idea

F
S

F
S

F
S

F
S

Positive work

Zero work Negative work

Positive work less than at left

W 7 0 W 7 0

W = 0 W 6 0

∆ru

∆ru∆ru

∆ru

Key Concepts and Equations

Work is the product of force and displacement, but only the component of force in the direction of displacement counts toward the work.

For a constant force and displacement in the x-direction,

W = Fx ∆x  1constant force only2
More generally, for a constant force F

S
and arbitrary displacement ∆r

!
, the work is

W = F
S # ∆r

!
= F ∆r cos u  1constant force only2

Here F and ∆r are the magnitudes of the force and displacement vectors, and u is 
the angle between them. We’ve written work here using the shorthand notation of 
the  scalar product, defined for any two vectors A

S
 and B

S
 as the product of their 

 magnitudes and the cosine of the angle between them:

A
S # B

S
= AB cos u  1scalar product2

When force varies with position, calculating the work 
 involves integrating. In one dimension:

Work is the
area under
the force-versus-
position curve.

Position, x

W = F1x2 dx
Fo

rc
e,

 F
1x2

x1 x2

L
x2

x1

Most generally, work is the line integral of a varying 

force over an arbitrary path: W = L F
S # dr

!

Kinetic energy is a scalar quantity that depends on an  object’s mass and speed:

K = 1
2 mv2

The work–kinetic energy theorem states that the change 
in an object’s kinetic energy is equal to the net work done 
on it:

∆K = Wnet  1work9kinetic energy theorem2
The unit of energy and work is the joule (J), equal to 1 
newton-meter.

Fnet
S

After it has
undergone 
displacement ∆x,
the block has 
kinetic energy
   mv2 = Fnet ∆x.

A block is subject
to a net force Fnet.
It starts from rest.

∆x

m m

1
2

S

Power is the rate at which work is done 
or energy is used. The unit of power is 
the watt (W), equal to 1 joule/second.

P =
dW

dt
= F

S # v
!

Applications

Common applications of work done against everyday forces are the work mgh 
needed to raise an object of mass m a distance h against gravity, and the work 
1
2 kx2 needed to stretch or compress a spring of spring constant k a distance x 
from its equilibrium length.

1
2

m

m

x

W =   kx2

W = mgh
h
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For homework assigned on MasteringPhysics, go to www.masteringphysics.com

BIO Biology and/or medicine-related problems DATA Data problems ENV Environmental problems CH Challenge problems Comp Computer problems

Section 6.3 Forces That Vary
22. Find the total work done by the force shown in Fig. 6.15 as the 

object on which it acts moves (a) from x = 0 to x = 3 km and 
(b) from x = 3 km to x = 4 km.

Distance (km)
10

10

0

Fo
rc

e 
(N

)

2 3 4

20

30

40

50

 Figure 6.15 Exercise 22

23. How much work does it take to stretch a spring with k = 200 N/m 
(a) 10 cm from equilibrium and (b) from 10 cm to 20 cm from 
equilibrium?

24. Uncompressed, the spring for an automobile suspension is 45 cm 
long. It needs to be fitted into a space 32 cm long. If the spring 
constant is 3.8 kN/m, how much work does a mechanic have to 
do to fit the spring?

25. You do 8.5 J of work to stretch a spring with k = 190 N/m,  starting 
with the spring unstretched. How far does the spring stretch?

26. Spider silk is a remarkable elastic material. A particular strand 
has spring constant 70 mN/m, and it stretches 9.6 cm when a fly 
hits it. How much work did the fly’s impact do on the silk strand?

Section 6.4 Kinetic Energy
27. What’s the kinetic energy of a 2.4 *105@kg airplane cruising at 

900 km/h?
28. A cyclotron accelerates protons from rest to 21 Mm/s. How much 

work does it do on each proton?
29. At what speed must a 950-kg subcompact car be moving to have 

the same kinetic energy as a 3.2 *104@kg truck going 20 km/h?
30. A 60-kg skateboarder comes over the top of a hill at 5.0 m/s and 

reaches 10 m/s at the bottom. Find the total work done on the 
skateboarder between the top and bottom of the hill.

31. After a tornado, a 0.50-g drinking straw was found embedded  
4.5 cm in a tree. Subsequent measurements showed that the tree 
 exerted a stopping force of 70 N on the straw. What was the 
straw’s speed?

32. From what height would you have to drop a car for its impact to 
be equivalent to a 20-mi/h collision?

Section 6.5 Power
33. A typical human diet is “2000 calories” per day, where the 

“ calorie” describing food energy is actually 1 kilocalorie. 
 Express 2000 kcal/day in watts.

34. A horse plows a 200-m-long furrow in 5.0 min, exerting a 
750-N force. Find its power output, measured in watts and in 
 horsepower.

35. A typical car battery stores about 1 kW #h of energy. What’s its 
power output if it drains completely in (a) 1 minute, (b) 1 hour, 
and (c) 1 day?

36. A sprinter completes a 100-m dash in 10.6 s, doing 22.4 kJ of 
work. What’s her average power output?

37. How much work can a 3.5-hp lawnmower engine do in 1 h?
38. A 75-kg long-jumper takes 3.1 s to reach a prejump speed of  

10 m/s. What’s his power output?
39. Estimate your power output as you do deep knee bends at the rate 

of one per second.

BIO

For thought and Discussion
 1. Give two examples of situations in which you might think you’re 

doing work but in which, in the technical sense, you do no work.
 2. If the scalar product of two nonzero vectors is zero, what can you 

conclude about their relative directions?
 3. Must you do work to whirl a ball around on the end of a string? 

Explain.
 4. If you pick up a suitcase and put it down, how much total work 

have you done on the suitcase? Does your answer change if you 
pick up the suitcase and drop it?

 5. You want to raise a piano a given height using a ramp. With a 
fixed, nonzero coefficient of friction, will you have to do more 
work if the ramp is steeper or more gradual? Explain.

 6. Does the gravitational force of the Sun do work on a planet in a 
circular orbit? On a comet in an elliptical orbit? Explain.

 7. A pendulum bob swings back and forth on the end of a string, describ-
ing a circular arc. Does the tension force in the string do any work?

 8. Does your car’s kinetic energy change if you drive at constant 
speed for 1 hour?

 9. A watt-second is a unit of what quantity? Relate it to a more 
standard SI unit.

10. A truck is moving northward at 55 mi/h. Later, it’s moving east-
ward at the same speed. Has its kinetic energy changed? Has work 
been done on the truck? Has a force acted on the truck? Explain.

11. A news article reports that a new solar farm will produce 143 
kilowatt-hours of electricity. Criticize this statement. What did 
the writer probably mean?

12. Is it possible for you to do work on an object without changing 
the object’s kinetic energy? Explain.

exercises and problems
Exercises

Sections 6.1 and 6.2 Energy and Work
13. How much work do you do as you exert a 75-N force to push a 

shopping cart through a 12-m-long supermarket aisle?
14. If the coefficient of kinetic friction is 0.21, how much work do 

you do when you slide a 50-kg box at constant speed across a 
4.8-m-wide room?

15. A crane lifts a 650-kg beam vertically upward 23 m and then 
swings it eastward 18 m. How much work does the crane do? Ne-
glect friction, and assume the beam moves with constant speed.

16. The world’s highest waterfall, the Cherun-Meru in Venezuela, 
has a total drop of 980 m. How much work does gravity do on a 
cubic meter of water dropping down the Cherun-Meru?

17. A meteorite plunges to Earth, embedding itself 75 cm in the 
ground. If it does 140 MJ of work in the process, what average 
force does the meteorite exert on the ground?

18. An elevator of mass m rises a vertical distance h with upward ac-
celeration equal to one-tenth g. Find an expression for the work 
the elevator cable does on the elevator.

19. Show that the scalar product obeys the distributive law: 
A
S # 1B

S
+ C

S2 = A
S # B

S
+ A

S # C
S

.
20. Find the work done by a force F

S
= 1.8 in + 2.2 jn N as it acts on 

an object moving from the origin to the point 56 in + 31 jn m.
21. To push a stalled car, you apply a 470-N force at 17° to the car’s 

motion, doing 860 J of work in the process. How far do you push 
the car?
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54. A force with magnitude F = a1x acts in the x-direction, where 
a = 9.5 N/m1/2. Calculate the work this force does as it acts on an 
object moving from (a) x = 0 to x = 3.0 m; (b) 3.0 m to 6.0 m;  
and (c) 6.0 m to 9.0 m.

55. The force exerted by a rubber band is given approximately by

F = F0 c 
L0 - x

L0
-

L 2
0

1L0 + x22 d

  where L0 is the unstretched length, x is the stretch, and F0 is a 
constant. Find an expression for the work needed to stretch the 
rubber band a  distance x.

56. You put your little sister (mass m) on a swing whose chains 
have length L and pull slowly back until the swing makes 
an angle f with the vertical. Show that the work you do is 
mgL11 - cos f2.

57. Two unknown elementary particles pass through a detection 
chamber. If they have the same kinetic energy and their mass ra-
tio is 4: 1, what’s the ratio of their speeds?

58. A tractor tows a plane from its airport gate, doing 8.7 MJ of 
work. The link from the plane to the tractor makes a 22° angle 
with the plane’s motion, and the tension in the link is 0.41 MN. 
How far does the tractor move the plane?

59. E. coli bacteria swim by means of flagella that rotate about 100 
times per second. A typical E. coli bacterium swims at 22 μm/s, 
its flagella exerting a force of 0.57 pN to overcome the resistance 
due to its liquid environment. (a) What’s the bacterium’s power 
output? (b) How much work would it do in traversing the 25-mm 
width of a microscope slide?

60. On February 15, 2013, an asteroid moving at 19 km/s entered 
Earth’s atmosphere over Chelyabinsk, Russia, and exploded 
at an altitude of more than 20 km. This was the largest object 
known to have entered the atmosphere in over a century. The 
asteroid’s kinetic energy just before entering the atmosphere 
was estimated as the energy equivalent of 500 kilotons of the 
explosive TNT. (Kilotons [kt] and megatons [Mt] are energy 
units used to describe the explosive yields of nuclear weap-
ons, and you’ll find the energy equivalent of 1 Mt in Appen-
dix C).What was the  approximate mass of the Chelyabinsk 
asteroid?

61. An elevator ascends from the ground floor to the 10th floor, a 
height of 41 m, in 35 s. If the mass of the elevator and passengers 
is 840 kg, what’s the power necessary to lift the elevator? (Your 
answer is greater than the actual power needed because eleva-
tors are counterweighted, thus reducing the work the motor needs  
to do.)

62. You’re asked to assess the reliability of a nuclear power plant, as 
measured by the capacity factor—the ratio of the energy it actu-
ally produces to what it could produce if it operated all the time. 
The plant is rated at 840 MW of electrical power output, and in a 
full year it produces 6.8 * 109 kW #  h of electrical energy. What’s 
its capacity factor?

63. A force pointing in the x-direction is given by F = F01x/x022, 
where F0 and x0 are constants and x is position. Find an expres-
sion for the work done by this force as it acts on an object mov-
ing from x = 0 to x = x0.

64. A force pointing in the x-direction is given by F = ax3/2, where 
a = 0.75 N/m3/2. Find the work done by this force as it acts on 
an object moving from x = 0 to x = 14 m.

65. Two vectors have equal magnitude, and their scalar product is 
one-third the square of their magnitude. Find the angle between 
them.

66. At what rate can a half-horsepower well pump deliver water to a 
tank 60 m above the water level in the well? Give your answer in 
kg/s and gal/min.
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40. In midday sunshine, solar energy strikes Earth at the rate of 
about 1 kW/m2. How long would it take a perfectly efficient so-
lar  collector of 15@m2 area to collect 40 kW #  h of energy? (Note: 
This is roughly the energy content of a gallon of gasoline.)

41. It takes about 20 kJ to melt an ice cube. A typical microwave 
oven produces 900 W of microwave power. How long will it take 
a typical microwave to melt the ice cube?

42. Which consumes more energy, a 1.2-kW hair dryer used for  
10 min or a 7-W night-light left on for 24 h?

problems
43. You slide a box of books at constant speed up a 30° ramp, ap-

plying a force of 200 N directed up the slope. The coefficient of 
sliding friction is 0.18. (a) How much work have you done when 
the box has risen 1 m vertically? (b) What’s the mass of the box?

44. Two people push a stalled car at its front doors, each applying a 
280-N force at 25° to the forward direction, as shown in Fig. 6.16. 
How much work does each person do in pushing the car 5.6 m?

25°

25°

 Figure 6.16 Problem 44

45. You’re at the gym, doing arm raises. With each rep, you lift a 
20-N weight 55 cm. (a) How many raises must you do before 
you’ve expended 200 kcal of work (see Exercise 33)? (b) If your 
workout takes 1.0 min, what’s your average power output?

46. A locomotive does 7.9 * 1011 J of work in pulling a 3.4 *106@kg 
train 180 km. Find the average force in the coupling between the 
locomotive and the rest of the train.

47. You pull a box 23 m horizontally, using the rope shown in Fig. 6.17. 
If the rope tension is 120 N, and if the rope does 2500 J of work on 
the box, what angle u does the rope make with the horizontal?

u = ?

 Figure 6.17 Problem 47

48. (a) Find the scalar products  in #  in ,  jn #  jn , and  kn #  kn . (b) 
Find  in #  jn,  jn #  kn , and  kn #  in . (c) Use the distributive law 
to multiply out the scalar product of two arbitrary vectors 
A
S

= Ax in + Ay jn + Az kn and B
S

= Bx in + By jn + Bz kn, and use 
the results of (a) and (b) to verify Equation 6.4.

49. (a) Find the scalar product of the vectors ain + bjn and bin - ajn,  
where a and b are arbitrary constants. (b) What’s the angle be-
tween the two vectors?

50. Looking to cut costs, the airline you work for asks you to investi-
gate the efficiency of the tractors that push aircraft away from the 
gates. One model is supposed to do no more than 10 MJ of work 
in pushing a 747 aircraft 25 m. If the tractor exerts a 0.42-MN 
force, does it meet its specifications?

51. How much work does a force F
S

= 67in + 23jn + 55kn N do as it 
acts on a body moving in a straight line from r

!
1 = 16in + 31jnm 

to r
!
2 = 21in + 10jn + 14kn m?

52. A force F
S

acts in the x-direction, its magnitude given by F = ax2,  
where x is in meters and a = 5.0 N/m2. Find the work done by 
this force as it acts on a particle moving from x = 0 to x = 6.0 m.

53. A certain amount of work is required to stretch spring A a certain 
distance. Twice as much work is required to stretch spring B half 
that distance. Compare the spring constants of the two.
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Exercises and Problems 107

82. You’re assisting a cardiologist in planning a stress test for a  75-kg 
patient. The test involves rapid walking on an inclined treadmill, 
and the patient is to reach a peak power output of 350 W. If the 
patient’s maximum walking speed is 8.0 km/h, what should be 
the treadmill’s inclination angle?

83. You’re an engineer for a company that makes bungee-jump cords,  
and you’re asked to develop a formula for the work involved in 
stretching cords to double their length. Your cords have force- 
distance relations described by F = -1kx + bx2 + cx3 + dx42,  
where k, b, c, and d are constants. (a) Given a cord with un-
stretched length L0, what’s your formula? (b) Evaluate the work 
done in doubling the stretch of a 10-m cord with k = 420 N/m, 
b = -86 N/m2, c = 12 N/m3, and d = -0.50 N/m4.

84. You push an object of mass m slowly, partway up a loop-the-loop 
track of radius R, starting from the bottom, and ending at a height 
h 6 R above the bottom. The coefficient of friction between the 
object and the track is a constant m. Show that the work you do 
against friction is mmg22hR - h2.

85. A particle moves from the origin to the point x = 3 m, y = 6 m 
along the curve y = ax2 - bx, where a = 2 m-1 and b = 4. It’s 
subject to a force cxyin + djn, where c = 10 N/m2 and d = 15 N. 
Calculate the work done by the force.

86. Repeat Problem 85 for the following cases: (a) the particle moves 
first along the x-axis from the origin to the point (3 m, 0) and 
then parallel to the y-axis until it reaches (3 m, 6 m); (b) it moves 
first along the y-axis from the origin to the point (0, 6 m) and 
then parallel to the x-axis until it reaches (3 m, 6 m).

87. The world’s fastest elevator, in Taiwan’s Taipei 101 skyscraper  
(Fig. 6.18),  ascends at the rate of 1010 m/min. Counterweights bal-
ance the weight of the elevator car, so the motor doesn’t have to lift the 
car’s weight. If the motor produces 330 kW of power, what’s the max-
imum number of 67-kg people the elevator can accommodate? (Your 
answer somewhat overestimates the actual rated load of 24 people.)

Controller

Governor

Traction
machine

Aerodynamic
capsule

Airtight
soundproo�ng car
(atmospheric
pressure control)

Safety

Buffer

Figure 6.18 Problem 87
88. An experimental measurement of the force required to stretch a 

slingshot is given in the table below. Plot the force–distance curve 
for this slingshot and use graphical integration to determine the 
work done in stretching the slingshot the full 40-cm distance.

Stretch (cm) Force (N)

0 0

5.00 0.885

10.0 1.89

15.0 3.05

20.0 4.48

25.0 6.44

30.0 8.22

35.0 9.95

40.0 12.7
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67. The rate at which the United States imports oil, expressed 
in terms of the energy content of the imported oil, is about  
600 GW. Using the “Energy Content of Fuels” table in Appendix 
C,  convert this figure to gallons per day.

68. By measuring oxygen uptake, sports physiologists have found 
that long-distance runners’ power output is given approximately 
by P = m1bv - c2, where m and v are the runner’s mass and 
speed, and b and c are constants given by b = 4.27 J/kg #  m and 
c = 1.83 W/kg. Determine the work done by a 54-kg runner 
who runs a 10-km race at 5.2 m/s.

69. You’re writing performance specifications for a new car model. 
The 1750-kg car delivers energy to its drive wheels at the rate of 
35 kW. Neglecting air resistance, what do you list for the greatest 
speed at which it can climb a 4.5° slope?

70. A 1400-kg car ascends a mountain road at a steady 60 km/h, 
against a 450-N force of air resistance. If the engine supplies en-
ergy to the drive wheels at the rate of 38 kW, what’s the slope 
angle of the road?

71. You do 2.2 kJ of work pushing a 78-kg trunk at constant speed 
3.1 m along a ramp inclined upward at 22°. What’s the frictional 
coefficient between trunk and ramp?

72. (a) Find the work done in lifting 1 L of blood (mass 1 kg) from 
the foot to the head of a 1.7-m-tall person. (b) If blood circulates 
through the body at the rate of 5.0 L/min, estimate the heart’s 
power output. (Your answer underestimates the power by a factor 
of about 5 because it neglects fluid friction and other factors.)

73. (a) What power is needed to push a 95-kg crate at 0.62 m/s along 
a horizontal floor where the coefficient of friction is 0.78? (b) 
How much work is done in pushing the crate 11 m?

74. You mix flour into bread dough, exerting a 45-N force on the 
spoon, which you move at 0.29 m/s. (a) What power do you sup-
ply? (b) How much work do you do if you stir for 1.0 min?

75. A machine does work at a rate given by P = ct2, where 
c = 18 W/s2 and t is time. Find the work done between t = 10 s 
and t = 20 s.

76. A typical bumblebee has mass 0.25 mg. It beats its wings 100 
times per second, and the wings undergo an average displace-
ment of about 1.5 mm. When the bee is hovering over a flower, 
the average force between wings and air must support the bee’s 
weight. Estimate the average power the bee expends in hovering.

77. You’re trying to decide whether to buy an energy-efficient 225-W 
refrigerator for $1150 or a standard 425-W model for $850. The 
standard model will run 20% of the time, but better insulation 
means the energy-efficient model will run 11% of the time. If 
electricity costs 9.5./kW #h, how long would you have to own the 
energy-efficient model to make up the difference in cost? Neglect 
interest you might earn on your money.

78. Your friend does five reps with a barbell, on each rep lifting  
45 kg 0.50 m. She claims the work done is enough to “burn off” 
a chocolate bar with energy content 230 kcal (see Exercise 33). Is 
that true? If not, how many lifts would it take?

79. A machine delivers power at a decreasing rate P = P0 t
2
0 /1t + t022,  

where P0 and t0 are constants. The machine starts at t = 0 and 
runs forever. Show that it nevertheless does only a finite amount 
of work, equal to P0 t0.

80. A locomotive accelerates a freight train of total mass M from 
rest, applying constant power P. Determine the speed and posi-
tion of the train as functions of time, assuming all the power goes 
to increasing the train’s kinetic energy.

81. A force given by F = b/1x acts in the x-direction, where b is a 
constant with the units N #m1/2. Show that even though the force 
becomes arbitrarily large as x approaches zero, the work done in 
moving from x1 to x2 remains finite even as x1 approaches zero. 
Find an expression for that work in the limit x1 S 0.
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108 Chapter 6 Energy, Work, and Power

93. The force on the ball is greatest approximately
a. at 185 ms.
b. at the peak in Fig. 6.19.
c. before the peak in Fig. 6.19.
d. after the peak in Fig. 6.19 but before 185 ms.

answers to Chapter Questions

Answer to Chapter opening Question
No. The work done against gravity in climbing a particular height is 
independent of the path. A rider on a bicycle with a combined mass 
of 80 kg does roughly 400 kilojoules or 100 kilocalories of work 
against gravity regardless of the path up a 500-m mountain. To climb 
such a mountain in 20 minutes, the rider’s power output must exceed  
300 watts.

Answers to Got It? Questions
 6.1  (b) 2F does 12 more work than F does. That’s because 2F’s  

component along the direction of motion is 2F cos 45°, or 
2F12/2 = F12.

 6.2  (c) 1x does the most work. (b) x2 does the least. You can see 
this by plotting these two functions from x = 0 to x = 1 and 
 comparing the areas under each. The case of x is intermediate.

 6.3  (1) (c): Kinetic energy doesn’t change, so the net work done on 
the ball is zero. (2) (a): Kinetic energy increases, so the net work 
is positive. (3) (b): Kinetic energy decreases, so the net work is 
negative.

 6.4  The megawatt is a unit of power; the “per time” is already built 
in. A correct statement would be that the power plant will  produce 
“energy at the rate of 50 megawatts.”

89. You’re an expert witness in a medical malpractice lawsuit. A 
hospital patient’s leg slipped off a stretcher and his heel hit the 
floor. The defense attorney for the hospital claims the leg, with 
mass 8 kg, hit the floor with a force equal to the weight of the 
leg—about 80 N—and any damage was due to a prior injury. You 
argue that the leg and heel dropped freely for 0.7 m, then hit the 
floor and stopped in 2 cm. What do you tell the jury about the 
force on the heel?

Passage Problems
The energy in a batted baseball comes from the power delivered 
while the bat is in contact with the ball. The most powerful  hitters 
can supply some 10 horsepower during the brief contact time, 
 propelling the ball to over 100 miles per hour. Figure 6.19 shows 
data taken from a particular hit, giving the power the bat delivers to 
the ball as a function of time.

0 0.05 0.1 0.15 0.2
Time (s)

4

2

0

6

Po
w

er
 (

kW
)

Figure 6.19 Passage Problems 90–93

90. Which of the following is greatest at the peak of the curve?
a. the ball’s kinetic energy
b. the ball’s speed
c. the rate at which the bat supplies energy to the ball
d. the total work the bat has done on the ball

91. The ball has its maximum speed at about
a. 85 ms.
b. 145 ms.
c. 185 ms.
d. whenever the force is greatest.

92. As a result of being hit, the ball’s kinetic energy increases by 
about
a. 550 J.
b. 1.3 kJ.
c. 7.0 kJ.
d. You can’t tell because you don’t know its speed coming from 

the pitcher.
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5
Using Newton’s 

Laws

6
Energy, Work, and 

Power

8
Gravity

9
Systems of Particles

109

Conservation of Energy

7

What You Know
■ You understand the concept of 

energy.

■ You know how to define a system so 
you can consider energy flows into 
and out of the system.

■ You’ve seen how work involves a 
transfer of mechanical energy.

■ You recognize kinetic energy and 
understand how the work–kinetic 
energy theorem relates the net work 
done on a system to the change in its 
kinetic energy.

What You’re Learning
■ You’ll see how forces come in 

two types: conservative forces and 
nonconservative forces.

■ You’ll learn that energy transferred 
as a result of work done against 
conservative forces ends up stored as 
potential energy.

■ You’ll learn expressions for potential 
energy associated with gravitational 
and elastic forces.

■ You’ll learn to treat the sum of kinetic 
energy and potential energy as a 
system’s total mechanical energy.

■ You’ll see that mechanical energy 
is conserved in the absence of 
nonconservative forces.

■ You’ll learn to use the conservation-of-
mechanical-energy principle to solve 
problems that would otherwise be 
difficult because they involve varying 
acceleration.

■ You’ll see how to evaluate situations 
where nonconservative forces result in 
a loss of mechanical energy.

■ You’ll see how potential energy curves 
describe a wide variety of systems, 
including molecules.

How You’ll Use It
■ In Chapter 8, you’ll use the calculus 

expression for potential energy 
to explore the potential energy 
associated with the gravitational force 
over distances significant in space 
flight and astronomy.

■ You’ll also see how conservation of 
energy leads you to understand the 
physics of simple orbits and how 
energy conservation leads to the 
concept of escape speed.

■ In Chapter 9, you’ll apply conservation 
of mechanical energy to so-called 
elastic collisions, which conserve 
mechanical energy.

■ Energy will continue to play an important 
role as you explore Newtonian physics 
further in Parts 1 and 2.

■ In Part 3, you’ll see how to extend the 
conservation-of-energy principle to 
account for heat as well as mechanical 
work.

■ In Part 4, you’ll see that electric and 
magnetic fields are repositories of 
potential energy.

How many different energy conversions take place as the Yellowstone River  
plunges over Yellowstone Falls?
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110 Chapter 7 Conservation of Energy

The rock climber of Fig. 7.1a does work as she ascends the vertical cliff. So does the mover 
of Fig. 7.1b, as he pushes a heavy chest across the floor. But there’s a  difference. If the rock 

climber lets go, down she goes, gaining kinetic energy as she falls. If the mover lets go of the 
chest, though, he and the chest stay right where they are.

This contrast highlights a distinction between two types of forces, called conservative and 
 nonconservative. That distinction will help us develop one of the most important principles in 
physics: conservation of energy. The introduction to Chapter 6 briefly mentioned three forms 
of energy: kinetic energy, potential energy, and internal energy—although there we worked 
 quantitatively only with kinetic energy. Here we’ll develop the concept of potential energy 
and show how it’s associated with conservative forces. Nonconservative forces, in contrast, are 
 associated with irreversible transformations of mechanical energy into internal energy. We’ll take 
a brief look at such transformations here and formulate a broad statement of energy  conservation. 
In Chapters 16–19 we’ll elaborate on internal energy and see how it’s related to temperature, and 
we’ll expand our statement of energy conservation to include not only work but also heat as 
means of energy transfer.

7.1 Conservative and Nonconservative Forces
Both the climber and the mover in Fig. 7.1 are doing work against forces—gravity for 
the climber and friction for the mover. The difference is this: If the climber lets go, the 
 gravitational force “gives back” the energy she supplied by doing work, which then 
 manifests itself as the kinetic energy of her fall. But the frictional force doesn’t “give 
back” the energy supplied by the mover, in the sense that this energy can’t be recovered as 
kinetic energy.

A conservative force is a force like gravity or a spring that “gives back” energy that 
was transferred by doing work. A more precise description of what it means for a force 
to be conservative follows from considering the work involved as an object moves over 
a closed path—one that ends where it started. Suppose our rock climber ascends a cliff 
of height h and then descends to her starting point. As she climbs, the gravitational force 
is directed opposite to her motion, so gravity does negative work -mgh (recall Fig. 6.4). 
When she descends, the gravitational force is in the same direction as her motion, so 
the gravitational work is +mgh. The total work that gravity does on the climber as she 
 traverses the closed path up and down the cliff is therefore zero.

Now consider the mover in Fig. 7.1b. Suppose he pushes the chest across a room, 
 discovers it’s the wrong room, and pushes it back to the door. Like the climber, the mover 
and chest describe a closed path. But the frictional force always acts to oppose the  motion 
of the chest. The mover needs to apply a force to oppose friction—that is, in the same 
 direction as the chest’s motion—so he ends up doing positive work as he crosses the room 
in both directions. Therefore, the total work he does is positive even when he moves the 
chest over a closed path. That’s the nature of the frictional force, and, in contrast to the 
conservative gravitational force the climber had to deal with, this makes the frictional 
force nonconservative.

You’ll notice that we didn’t talk here about the work done by friction but rather the 
work done by the mover in opposing friction. That’s because frictional work is a rather 
subtle concept, which we’ll touch on later in the chapter. Nevertheless, our two examples 
make the distinction between conservative and nonconservative forces quite clear: Only 
for  conservative forces is the work done in moving over a closed path equal to zero. That 
property provides a precise mathematical definition of a conservative force:

Figure 7.1 Both the rock climber and the 
mover do work, but only the climber can 
recover that work as kinetic energy.

(a)

(b)

When the total work done by a force F
S

 acting as an object moves over any closed 
path is zero, the force is conservative. Mathematically,

 C F
S # dr

!
= 0  1conservative force2 (7.1)

The expression given in Equation 7.1 comes from the most general formula for work, 

Equation 6.11: W = L
r
!
2

r
!
1

F
S # d r

!
. The circle on the integral sign indicates that the  integral 

is to be taken over a closed path.
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7.2 Potential Energy 111

Equation 7.1 suggests a related property of conservative forces. Suppose a conservative 
force acts on an object in the region shown in Fig. 7.2. Move the object along the straight path 
from point A to point B, and designate the work done by the conservative force as WAB. Since 
the work done over any closed path is zero, the work WBA done in moving back from B to A 
must be -WAB, whether we return along the straight path, the curved path, or any other path. 
So, going from A to B involves work WAB, regardless of the path taken. In other words:

Figure 7.2 The work done by a conservative 
force is independent of path.

B

A

The force does work WAB
as the object moves from A to B
on this path c

cso it must do work –WAB
as the object moves back 
along the curved path—or 
any other path.

The work done by a conservative force in moving between two points is independent 
of the path taken; mathematically, 1A

B
F
S # dr

!
 depends only on the endpoints A and B, 

not on the path between them.

Important examples of conservative forces include gravity and the static electric force. 
The force of an ideal spring—fundamentally an electric force—is also conservative. 
 Nonconservative forces include friction, drag forces, and the electric force in the presence 
of time-varying magnetic effects, which we’ll encounter in Chapter 27.

GoT IT? 7.1 Suppose it takes the same amount of work to push a trunk straight 
across a rough floor as it does to lift a weight the same distance straight upward. If both 
trunk and weight are moved instead on identically shaped curved paths between the same 
two points as before, is the work (a) still the same for both, (b) greater for the weight, or 
(c) greater for the trunk?

7.2 Potential Energy
The climber in Fig. 7.1a did work ascending the cliff, and the energy transferred as she did 
that work was somehow stored, in that she could get it back in the form of kinetic energy. 
She’s acutely aware of that stored energy, since it gives her the potential for a dangerous 
fall. Potential is an appropriate word here: The stored energy is potential energy, in the 
sense that it has the potential to be converted into kinetic energy.

We’ll give potential energy the symbol U, and we begin by defining changes in  potential 
energy. Specifically:

The change ∆UAB in potential energy associated with a conservative force is the 
 negative of the work done by that force as it acts over any path from point A to point B:

 ∆UAB = - L
B

A
F
S # dr

!
  1potential energy2 (7.2)

Here L
B

A
F
S # dr

!
 is the work done by the force F

S
, as defined in Equation 6.11. But why 

the minus sign? Because, if a conservative force does negative work (as does gravity on 
a weight being lifted), then energy is stored and ∆U must be positive. Another way to 
think about this is to consider the work you would have to do in order to just counter 
a  conservative force like gravity. If F

S
is the conservative force (e.g., gravity, pointing 

down), then you’d have to apply a force -F
S

 (e.g., upward), and the work you do would be 

L
B

A
1- F

S2 # dr
!
 or - L

B

A
F
S # dr

!
, which is the right-hand side of Equation 7.2. Your work 

represents a transfer of energy, which here ends up stored as potential energy. So another 
way of interpreting Equation 7.2 is to say that the change in potential energy is equal to the 
work an external agent would have to do in just countering a conservative force.

Changes in potential energy are all that ever matter physically; the actual value of  potential 
energy is meaningless. Often, though, it’s convenient to establish a reference point at which 
the potential energy is defined to be zero. When we say “the potential energy U,” we really 
mean the potential-energy difference ∆U between that reference point and whatever other 
point we’re considering. Our rock climber, for example, might find it convenient to take the 
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112 Chapter 7 Conservation of Energy

zero of potential energy at the base of the cliff. But the choice is purely for convenience; only 
potential-energy differences really matter. We’ll often drop the subscript AB and write simply 
∆U for a potential-energy difference. Keeping the  subscript is important, though, when we 
need to be clear about whether we’re going from A to B or from B to A.

Equation 7.2 is a completely general definition of potential energy, applicable in all 
circumstances. Often, though, we can consider a path where force and displacement are 
parallel (or antiparallel). Then Equation 7.2 simplifies to

 ∆U = - L
x

2

x1

F1x2 dx (7.2a)

where x1 and x2 are the starting and ending points on the x-axis, taken to coincide with the 
path. When the force is constant, this equation simplifies further to

 ∆U = -F1x2 - x12 (7.2b)

✓TIP Understand Your Equations

Equation 7.2b provides a very simple expression for potential-energy changes, but it 
applies only when the force is constant. Equation 7.2b is a special case of Equation 7.2a 
that follows because a constant force can be taken outside the integral.

Gravitational Potential Energy
We’re frequently moving things up and down, causing changes in potential energy. Figure 7.3  
shows two possible paths for a book that’s lifted from the floor to a shelf of height h. 
Since the gravitational force is conservative, we can use either path to calculate the 
 potential-energy change. It’s easiest to use the path consisting of straight segments. 
No work or potential-energy change is associated with the horizontal motion, since the 
 gravitational force is perpendicular to the motion. For the vertical lift, the force of  gravity 
is constant and Equation 7.2b gives immediately ∆U = mgh, where the minus sign in 
Equation 7.2b cancels with the minus sign associated with the downward direction of 
gravity. This  result is quite general: When a mass m undergoes a vertical displacement ∆y 
near Earth’s  surface, gravitational potential energy changes by

 ∆U = mg ∆y  1gravitational potential energy2 (7.3)

The quantity ∆y can be positive or negative, depending on whether the object moves up or 
down; correspondingly, the potential energy can either increase or decrease. We  emphasize 
that Equation 7.3 applies near Earth’s surface—that is, for distances small compared with 
Earth’s radius. That assumption allows us to treat the gravitational force as constant over 
the path. We’ll explore the more general case in Chapter 8.

We’ve found the change in potential energy associated with raising the book, but what 
about the potential energy itself? That depends on where we define the zero of potential 
energy. If we choose U = 0 at the floor, then U = mgh on the shelf. But we could just as 
well take U = 0 at the shelf; then potential energy when the book is on the floor would 
be -mgh. Negative potential energies arise frequently, and that’s OK because only differ-
ences in potential energy really matter. Figure 7.4 shows a plot of potential energy versus 
height with U = 0 taken at the floor. The linear increase in potential energy with height 
reflects the constant gravitational force.

Figure 7.3 A good choice of path makes 
it  easier to calculate the potential-energy 
change.

The potential energy (PE) change
is the same along either path, but
it's calculated more easily for
the straight path.

There’s no PE change on
the horizontal segments.

The PE change
on the vertical
segment is mgh.

h

Figure 7.4 Gravitational force is constant, so 
potential energy increases linearly with height.

mgh

h

Potential energy, U

Height, y

ExamPLE 7.1 Gravitational Potential Energy: Riding the Elevator
A 55-kg engineer leaves her office on the 33rd floor of a skyscraper and takes an elevator up to 
the 59th floor. Later she descends to street level. If the engineer chooses the zero of potential 
energy at her  office and if the distance from one floor to the next is 3.5 m, what’s the potential 
energy when the engineer is (a) in her office, (b) on the 59th floor, and (c) at street level?
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7.2 Potential Energy 113

Elastic Potential Energy
When you stretch or compress a spring or other elastic object, you do work against the 
spring force, and that work ends up stored as elastic potential energy. For an ideal spring, 
the force is F = -kx, where x is the distance the spring is stretched from equilibrium, and 
the minus sign shows that the force opposes the stretching or compression. Since the force 
varies with position, we use Equation 7.2a to evaluate the potential energy:

∆U = - L
x

2

x1

 F1x2 dx = - L
x

2

x1

 1-kx2 dx = 1
2 kx2

2 - 1
2 kx1

2

where x1 and x2 are the initial and final values of the stretch. If we take U = 0 when 
x = 0  (that is, when the spring is neither stretched nor compressed) then we can use this 
result to write the potential energy at an arbitrary stretch (or compression) x as

 U = 1
2 kx2  1elastic potential energy2 (7.4)

Comparison with Equation 6.10, W = 1
2 kx2, shows that this is equal to the work done in 

stretching the spring. Thus the energy transferred by doing work gets stored as potential 
energy. Figure 7.5 shows potential energy as a function of the stretch or compression of a 
spring. The parabolic shape of the potential-energy curve reflects the linear change of the 
spring force with stretch or compression.

Interpret This is a problem about gravitational potential energy relative to a specified point of 
zero energy—namely, the engineer’s office.

Develop Equation 7.3, ∆U = mg ∆y, gives the change in gravitational energy associated with 
a change ∆y in vertical position. We’re given positions in floors, not meters, so we need to con-
vert using the given factor 3.5 m per floor.

evaluate (a) When the engineer is in her office, the potential energy is zero, since she defined 
it that way. (b) The 59th floor is 59 - 33 = 26 floors higher, so the potential energy when she’s 
there is

 U59 = mg ∆y = 155 kg219.8 m/s22126 floors213.5 m/floor2 = 49 kJ

Here we can write U rather than ∆U because we’re calculating the potential-energy change from 
the place where U = 0. (c) The street level is 32 floors below the engineer’s office, so

 Ustreet = mg ∆y = 155 kg219.8 m/s221-32 floors213.5 m/floor2 = -60 kJ

assess Makes sense: When the engineer goes up, the potential energy relative to her office 
is positive; when she goes down, it’s negative. And the distance down is a bit farther, so the 
 magnitude of the change is greater going down. ■

aPPLICaTIoN Pumped Storage

Electricity is a wonderfully versatile form of energy, but it’s not easy to store. Large elec-
tric power plants are most efficient when operated continuously, yet the demand for power 
fluctuates. Renewable energy sources like wind and solar vary, not necessarily with demand. 
Energy storage can help in both cases. Today, the only practical way to store large amounts of 
excess electrical energy is to convert it to gravitational potential energy. In so-called pumped-
storage facilities, surplus electric power pumps water from a lower reservoir to a higher one, 
thereby increasing gravitational potential energy. When power demand is high, water runs back 
down, turning the pump motors into generators that produce electricity. The map here shows 
the Northfield Mountain Pumped Storage Project in Massachusetts, including the mountaintop 
 reservoir, the location of the power station 214 m below on the Deerfield River, and the pen-
stock, the pipe that conveys water in both directions between the power station and the reser-
voir. You can explore this facility quantitatively in Problem 29.

Power
station

M
ou

nta
int

op

res
erv

oir

Penstock

Figure 7.5 The potential-energy curve for a 
spring is a parabola.

x = 0

EquilibriumCompression Stretch

x

Potential energy, U
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114 Chapter 7 Conservation of Energy

ExamPLE 7.2 Energy Storage: Springs versus Gasoline

A car’s suspension consists of springs with an overall effective spring 
constant of 120 kN/m. How much would you have to compress the 
springs to store the same amount of energy as in 1 gram of gasoline?

Interpret This problem is about the energy stored in a spring, as 
compared with the chemical energy of gasoline.

Develop Equation 7.4, U = 1
2 kx2, gives a spring’s stored energy 

when it’s been compressed a distance x. Here we want that energy to 
equal the energy in 1 gram of gasoline. We can get that value from the 
“Energy Content of Fuels” table in Appendix C, which lists 44 MJ/kg 
for gasoline.

evaluate At 44 MJ/kg, the energy in 1 g of gasoline is 44 kJ.  Setting 
this equal to the spring energy 12 kx2 and solving for x, we get

x = A2U

k
= C122144 kJ2

120 kN/m
= 86 cm

assess This answer is absurd. A car’s springs couldn’t compress 
anywhere near that far before the underside of the car hit the ground. 
And 1 g isn’t much gasoline. This example shows that springs, though 
useful energy-storage devices, can’t possibly compete with chemical 
fuels. ■

Ropes used in rock climbing are “springy” so that they cushion a fall. 
A particular rope exerts a force F = -kx + bx2, where k = 223 N/m, 
b =  4.10 N/m2, and x is the stretch. Find the potential energy stored 
in this rope when it’s been stretched 2.62 m, taking U = 0 at x = 0.

Interpret Like Example 7.2, this one is about elastic potential  energy. 
But this one isn’t so easy because the rope isn’t a simple F = -kx  
spring for which we already have a potential-energy formula.

Develop Because the rope force varies with stretch, we’ll have to 
integrate. Since force and displacement are in the same direction, we

can use Equation 7.2a, ∆U = - L
x

2

x1

 F1x2 dx. But that’s not so much 

a formula as a strategy for deriving one.

evaluate Applying Equation 7.2 to this particular rope, we have

 U = - L
x

2

x1

F1x2 dx = -L
x

0
1-kx + bx22 dx = 1

2 kx2 - 1
3 bx3 2 x

0

 = 1
2  kx2 - 1

3  bx3

 = 11
221223 N/m212.62 m22 - 11

3214.1 N/m2212.62 m23

 = 741 J

assess This result is about 3% less than the potential energy 
U = 1

2 kx2 of an ideal spring with the same spring constant. This 
shows the effect of the extra term +bx2, whose positive sign 
 reduces the restoring force and thus the work needed to stretch the 
spring. ■

ExamPLE 7.3 Elastic Potential Energy: a Climbing Rope

GoT IT? 7.2 Gravitational force actually decreases with height, but that decrease 
is negligible near Earth’s surface. To account for the decrease, would the exact value for 
the potential-energy change associated with a height change h be (a) greater than, (b) less 
than, or (c) equal to mgh, where g is the gravitational acceleration at Earth’s surface?

Where’s the Stored Energy and What’s the System?
In discussing the climber of Fig. 7.1a, the book of Fig. 7.3, and the engineer of Example 7.1,  
we were careful not to use phrases like “the climber’s potential energy,” “the potential en-
ergy of the book,” or “the engineer’s potential energy.” After all, the climber herself hasn’t 
changed in going from the bottom to the top of the cliff; nor is the book any different after 
you’ve returned it to the shelf. So it doesn’t make a lot of sense to say that potential energy 
is somehow a property of these objects. Indeed, the idea of potential energy requires that 
two (or more) objects interact via a force. In the examples of the climber, the book, and the 
engineer, that force is gravity—and the pairs of interacting objects are, correspondingly, the 
climber and Earth, the book and Earth, and the engineer and Earth. So to characterize poten-
tial energy, we need in each case to consider a system consisting of at least two objects. In 
each example the configuration of that system changes, because the relative positions of the 
objects making up the system are altered. In each case, one member of the system—climber, 
book, or engineer—has moved relative to Earth. So potential energy is energy associated 
with the configuration of a system. It really makes no sense to talk about the potential energy 
of a single, structureless object. That’s in contrast with kinetic energy, which is associated 
with the motion of a system that might be as simple as a single object.

So where is potential energy stored? In the system of interacting objects. Potential 
 energy is inherently a property of a system and can’t be assigned to individual objects.  
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7.3 Conservation of Mechanical Energy 115

In the case of gravity, we can go further and say that the energy is stored in the gravita-
tional field—a concept that we’ll introduce in the next chapter. It’s the gravitational field 
that changes, not the individual objects, when we change the configuration of a system 
whose components interact via gravity.

What about a spring? We can talk about “the potential energy of a spring” because 
any flexible object, including a spring, necessarily comprises a system of interacting 
parts. In the case of a spring, the individual molecules in the spring ultimately interact via 
electric forces, and the associated electric field is what changes as the spring stretches or 
compresses. And, as we’ll see quantitatively in Chapter 23, it’s in the electric field that 
the potential energy resides. When we talk about “elastic potential energy” we’re really 
 describing potential energy stored in molecular electric fields.

7.3 Conservation of mechanical Energy
The work–kinetic energy theorem, developed in Section 6.3, shows that the change ∆K in 
an object’s kinetic energy is equal to the net work done on it:

∆K = Wnet

Here we’ll consider the case where the only forces acting are conservative; then, as our 
interpretation of Equation 7.2 shows, the work done is the negative of the potential-energy 
change: Wnet = - ∆U. As a result, we have ∆K = - ∆U, or

∆K + ∆U = 0

What does this equation tell us? It says that any change ∆K  in kinetic energy K must 
be compensated by an opposite change ∆U in potential energy U in order that the two 
changes sum to zero. If kinetic energy goes up, then potential energy goes down by the 
same amount, and vice versa. In other words, the total mechanical energy, defined as the 
sum of kinetic and potential energy, does not change.

Remember that at this point we’re considering the case where only conservative forces 
act. For that case, we’ve just shown that mechanical energy is conserved. This  principle, 
called conservation of mechanical energy, is expressed mathematically in the two 
 equivalent ways we’ve just discussed:

 ∆K + ∆U = 0 (7.5)

 and, equivalently,          a conservation of
mechanical energyb

 K + U = constant = K0 + U0 (7.6)

Here K0 and U0 are the kinetic and potential energy when an object is at some point, and 
K and U are their values when it’s at any other point. Equations 7.5 and 7.6 both say the 
same thing: In the absence of nonconservative forces, the total mechanical energy K + U 
doesn’t change. Individually, K and U can change, as energy is transformed from kinetic 
to potential and vice versa—but when only conservative forces are acting, then the total 
mechanical energy remains unchanged.

The work–kinetic energy theorem—which itself follows from Newton’s second law—
is what lies behind the principle of mechanical energy conservation. Although we derived 
the work–kinetic energy theorem by considering a single object, the principle of mechani-
cal energy conservation holds for any isolated system of macroscopic objects, no matter 
how complex, as long as its constituents interact only via conservative forces. Individual 
constituents of a complex system may exchange kinetic energy as, for example, they un-
dergo collisions. Furthermore, the system’s potential energy may change as the configura-
tion of the system changes—but add all the constituents’ kinetic energies and the potential 
energy contained in the entire system, and you’ll find that the sum remains unchanged.

Keep in mind that we’re considering here only isolated systems. If energy is transferred 
to the system from outside, by external forces doing work, then the system’s mechanical 
energy increases. And if the system does work on its environment, then its mechanical 
energy decreases. Ultimately, however, energy is always conserved, and if you make the 
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116 Chapter 7 Conservation of Energy

system large enough to encompass all interacting objects, and if those objects interact only 
via conservative forces, then the system’s mechanical energy will be strictly conserved.

Conservation of mechanical energy is a powerful principle. Throughout physics, from 
the subatomic realm through practical problems in engineering and on to astrophysics, 
the principle of energy conservation is widely used in solving problems that would be 
 intractable without it. Here we consider its use in macroscopic systems subject only to 
conservative forces; later we’ll expand the principle to more general cases.

problem-solvIng strategy 7.1 Conservation of mechanical Energy

When you’re using energy conservation to solve problems, Equation 7.6 basically tells it all. 
Our IDEA problem-solving strategy adapts well to such problems.

INTERPRET First, interpret the problem to be sure that conservation of mechanical energy 
 applies. Are all the forces conservative? If so, mechanical energy is conserved. Next, identify 
a point at which you know both the kinetic and the potential energy; then you know the total 
mechanical energy, which is what’s conserved. If the problem doesn’t do so and it’s not implicit 
in the equations you use, you may need to identify the zero of potential energy—although that’s 
your own arbitrary choice. You also need to identify the quantity the problem is asking for, and 
the situation in which it has the value you’re after. The quantity may be the energy itself or a 
related quantity like height, speed, or spring compression. In some situations, you may have to 
deal with several types of potential energy—such as gravitational and elastic potential energy—
appearing in the same problem.

DEvELoP Draw your object first in the situation where you know the energies and then in the 
situation that contains the unknown. It’s helpful to draw simple bar charts suggesting the  relative 
sizes of the potential- and kinetic-energy terms; we’ll show you how in several  examples. Then 
you’re ready to set up the quantitative statement of mechanical energy  conservation, Equation 7.6:  
K + U = K0 + U0. Consider which of the four terms you know or can calculate from the 
given information. You’ll probably need secondary equations like the expressions for kinetic 
energy and for various forms of potential energy. Consider how the quantity you’re  trying to 
find is related to an energy.

EvaLUaTE Write Equation 7.6 for your specific problem, including expressions for kinetic or 
potential energy that contain the quantity you’re after. Solving is then a matter of algebra.

aSSESS As usual, ask whether your answer makes physical sense. Does it have the right units? 
Are the numbers reasonable? Do the signs make sense? Is your answer consistent with the bar 
charts in your drawing?

A biologist uses a spring-loaded gun to shoot tranquilizer darts into 
an elephant. The gun’s spring has k = 940 N/m and is compressed 
a distance x0 = 25 cm before firing a 38-g dart. Assuming the gun 
is pointed horizontally, at what speed does the dart leave the gun?

Interpret We’re dealing with a spring, assumed ideal, so 
 conservation of mechanical energy applies. We identify the initial 
state—dart at rest, spring fully compressed—as the point where 
we know both kinetic and potential energy. The state we’re then 
 interested in is when the dart just leaves the gun, when potential 
energy has been converted to kinetic energy and before gravity has 
changed its vertical position.

Develop In Fig. 7.6 we’ve sketched the two states, giving 
the  potential and kinetic energy for each. We’ve also sketched 
bar graphs showing the relative sizes of the energies. To use the 
 statement of energy conservation, Equation 7.6, we also need 
 expressions for the kinetic energy 11

2  mv22 and the spring  potential 
energy (1

2 kx2; Equation 7.4). Incidentally, using Equation 7.4 
 implicitly sets the zero of elastic potential energy when the spring 

ExamPLE 7.4 Energy Conservation: Tranquilizing an Elephant

Initially
all energy
is in the
spring;
U0 =   kx2.

Now all
the energy 
is kinetic;
K =   mv2.1

2

1
2

There’s no
energy in the
spring;
U = 0.

Initially there’s
no kinetic energy;
K0 = 0.

Figure 7.6 Our sketches for Example 7.4, showing bar charts for the initial and 
final states.
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7.3 Conservation of Mechanical Energy 117

Example 7.4 shows the power of the conservation-of-energy principle. If you had tried 
to find the answer using Newton’s law, you would have been stymied by the fact that the 
spring force and thus the acceleration of the dart vary continuously. But you don’t need to 
worry about those details; all you want is the final speed, and energy conservation gets you 
there, shortcutting the detailed application of F

S
= ma

!
.

is in its equilibrium position. We might as well set the zero of gravi-
tational energy at the height of the gun, since there’s no change in the 
dart’s vertical position between our initial and final states.

evaluate We’re now ready to write Equation 7.6, K + U = K0 + U0.  
We know three of the terms in this equation: The initial kinetic energy 
K0 is 0, since the dart is initially at rest. The initial potential energy is 
that of the compressed spring, U0 = 1

2  kx0
2. The final potential energy 

is U = 0 because the spring is now in its equilibrium position and 
we’ve taken the gravitational potential energy to be zero. What we 
don’t know is the final kinetic energy, but we do know that it’s given 

by K = 1
2  mv2. So Equation 7.6 becomes 1

2 mv2 + 0 = 0 + 1
2  kx2, 

which solves to give

v = A k

m
 x0 = aA940 N/m

0.038 kg
b10.25 m2 = 39 m/s

assess Take a look at the answer in algebraic form; it says that a 
stiffer spring or a greater compression will give a higher dart speed. 
Increasing the dart mass, on the other hand, will decrease the speed. 
All this makes good physical sense. And the outcome shows quantita-
tively what our bar charts suggest—that the dart’s energy starts out all 
potential and ends up all kinetic. ■

ExamPLE 7.5 Conservation of Energy: a Spring and Gravity

The spring in Fig. 7.7 has k = 140 N/m. A 50-g block is placed 
against the spring, which is  compressed 11 cm. When the block is re-
leased, how high up the slope does it rise? Neglect friction.

Interpret This example is similar to Example 7.4, but now we have 
changes in both elastic and gravitational potential energy. Since fric-
tion is negligible, we can consider that only conservative forces act, 
in which case we can apply conservation of mechanical energy. We 
identify the initial state as the block at rest against the compressed 
spring; the final state is the block momentarily at rest at its topmost 

point on the slope. We’ll take the zero of gravitational potential energy 
at the bottom.

Develop Figure 7.7 shows the initial and final states, along with 
bar charts for each. We’ve drawn separate bars for the spring and 
gravitational potential energies, Us and Ug. Now apply Equation 7.6, 
K + U = K0 + U0.

evaluate In both states the block is at rest, so kinetic energy is zero. 
In the initial state we know the potential energy U0: It’s the spring 
 energy 1

2 kx2. We don’t know the final-state potential energy, but we 
do know that it’s gravitational energy—and with the zero of potential 
energy at the bottom, it’s U = mgh. With K = K0 = 0, U0 = 1

2 kx2, 
and U = mgh, Equation 7.6 reads 0 + mgh = 0 + 1

2 kx2. We then 
solve for the unknown h to get

h =
kx2

2mg
=

1140 N/m210.11 m22

12210.050 kg219.8 m/s22 = 1.7 m

assess Again, the answer in algebraic form makes sense; the stiffer 
the spring or the more it’s compressed, the higher the block will go. 
But if the block is more massive or gravity is stronger, then the block 
won’t get as far.

✓TIP Save Steps

You might be tempted to solve first for the block’s speed when it 
leaves the spring and then equate 1

2 mv2 to mgh to find the height. 
You could—but conservation of mechanical energy shortcuts all 
the details, getting you right from the initial to the final state. As 
long as energy is conserved, you don’t need to worry about what 
happens in between.

Figure 7.7 Our sketches for Example 7.5.

■
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118 Chapter 7 Conservation of Energy

GoT IT? 7.3 A bowling ball is tied to the end of a long rope and suspended from 
the ceiling. A student stands at one side of the room and holds the ball to her nose, then 
releases it from rest. Should she duck as it swings back? Explain.

7.4 Nonconservative Forces
In the examples in Section 7.3, we assumed that mechanical energy was strictly conserved. 
In the everyday world of friction and other nonconservative forces, however, conservation 
of mechanical energy is sometimes a reasonable approximation and sometimes not. When 
it’s not, we have to consider energy transformations associated with nonconservative forces.

Friction is a nonconservative force. Recall from Chapter 5 that friction is actually a com-
plex phenomenon, involving the making and breaking of microscopic bonds between 
two surfaces in contact (review Fig. 5.18). Associated with these bonds are myriad force 
 application points, and different points may undergo different displacements depending on 
the strengths of the temporary bonds. For these reasons it’s difficult to calculate, or even to 
define unambiguously, the work done by friction.

What friction and other nonconservative forces do, however, is unambiguous: They 
convert the kinetic energy of macroscopic objects into kinetic energy associated with the 
random motions of individual molecules. Although we’re still talking about kinetic energy, 
there’s a huge difference between the kinetic energy of a macroscopic object like a mov-
ing car, with all its parts participating in a common motion, versus the random motions 
of molecules going helter-skelter in every direction with a range of speeds. We’ll explore 
that difference in Chapter 19, where we’ll find that, among other profound implications, it 
places serious constraints on our ability to extract energy from fuels.

You’ll also see, in Chapter 18, that molecular energy may include potential energy associ-
ated with stretching of spring-like molecular bonds. The combination of molecular kinetic 
and potential energy is called internal energy or thermal energy, and we give it the symbol 
E

int
. Here “internal” implies that this energy is contained within an object and that it isn’t as 

obvious as the kinetic energy associated with overall motion of the entire object. The alterna-
tive term “thermal” hints that internal energy is associated with temperature, heat, and related 
phenomena. We’ll see in Chapters 16–19 that temperature is a measure of the internal energy 
per molecule, and that what you probably think of as “heat” is actually internal energy. In 
physics, “heat” has a very specific meaning: It designates another way of transferring energy 
to a system, in addition to the mechanical work we’ve considered in Chapters 6 and 7.

So friction and other nonconservative forces convert mechanical energy into internal 
energy. How much internal energy? Both theory and experiment give a simple answer: 
The amount of mechanical energy converted to internal energy is given by the product of 
the nonconservative force with the distance over which it acts. With friction, that means 
∆Eint = fkd, where d is the distance over which the frictional force acts. (Here we write 
kinetic friction fk explicitly because static friction fs does not convert mechanical energy 

Video Tutor Demo | Chin Basher?
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7.5 Conservation of Energy 119

to internal energy because there’s no relative motion involved.) Since the increase in inter-
nal energy comes at the expense of mechanical energy K + U, we can write

 ∆K + ∆U = - ∆Eint = - fkd (7.7)

Example 7.6 describes a system in which friction converts mechanical energy to internal energy.

ExamPLE 7.6 Nonconservative Forces: a Sliding Block

A block of mass m is launched from a spring of constant k that’s ini-
tially compressed a distance x0. After leaving the spring, the block 
slides on a horizontal surface with frictional coefficient m. Find an 
expression for the distance the block slides before coming to rest.

Interpret The presence of friction means that mechanical energy 
isn’t conserved. But we can still identify the kinetic and potential en-
ergy in the initial state: The kinetic energy is zero and the potential 
energy is that of the spring. In the final state, there’s no mechanical 
energy at all. The nonconservative frictional force converts the block’s 
mechanical energy into internal energy of the block and the surface 
it’s sliding on. The block comes to rest when all its mechanical energy 
has been converted.

Develop Figure 7.8 shows the situation. With K0 = 0, we determine 
the total initial energy from Equation 7.4, U0 = 1

2 kx0
2. As the block 

slides a distance d, Equation 7.7 shows that the frictional force con-
verts mechanical energy equal to fkd into internal energy. All the me-
chanical energy will be gone, therefore, when fkd = 1

2 kx 2
0 . Here the 

frictional force has magnitude fk = mn = mmg, where in this case 
of a horizontal surface the normal force n has the same magnitude as 
the weight mg. So our statement that all the mechanical energy gets 
converted to internal energy becomes 12 kx 2

0 = mmgd.

evaluate We solve this equation for the unknown distance d to get 
d = kx0

2/2mmg. Since we weren’t given numbers, there’s nothing 
further to evaluate.

assess Make sense? The stiffer the spring or the more it’s com-
pressed, the farther the block goes. The greater the friction or the 
normal force mg, the sooner the block stops. If m = 0, mechanical 
energy is once again conserved; then our result shows that the block 
would slide forever. ■

Figure 7.8 Intermediate bar charts show gradual conversion of mechanical 
energy into internal energy.
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GoT IT? 7.4 For which of the following systems is (1) mechanical energy  conserved 
and (2) total energy conserved? (a) the system is isolated, and all forces among its 
 constituents are conservative; (b) the system is not isolated, and work is done on it by 
external forces; (c) the system is isolated, and some forces among its constituents are not 
conservative

7.5 Conservation of Energy
We often speak of energy being “lost” due to friction, or to air resistance, or to electrical 
resistance in power transmission. But that energy isn’t really lost; instead, as we’ve just 
seen for friction, it’s converted to internal energy. Physically, the internal energy manifests 
itself by warming the system. So the energy really is still there; it’s just that we can’t get it 
back as the kinetic energy of macroscopic objects.

Accounting for internal energy leads to a broader statement of energy conservation. 
Rearranging the first equality of Equation 7.7 lets us write

∆K + ∆U + ∆Eint = 0

This equation shows that the sum of the kinetic, potential, and internal energy of an 
 isolated system doesn’t change even though energy may be converted among these three 
different forms. You can see this conservation of energy graphically in Fig. 7.8, which 
plots all three forms of energy for the situation of Example 7.6.
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120 Chapter 7 Conservation of Energy

So far we’ve considered only isolated systems, in which all forces are internal to the sys-
tem. For Example 7.6 to be about an isolated system, for instance, that system had to include 
the spring, the block, and the surface on which the block slides. What if a system isn’t isolated? 
Then external forces may do work on it, increasing its energy. Or the system may do work on 
its environment, decreasing its energy. In that case we can generalize Equation 7.7 to read

 ∆K + ∆U + ∆Eint = Wext (7.8)

where Wext is the work done on the system by forces acting from outside. If Wext is  positive, 
then this external work adds energy to the system; if it’s negative, then the system does 
work on its surroundings, and its total energy decreases. Recall that doing work is the 
 mechanical means of transferring energy; in Chapters 16–18 we’ll introduce heat as a non-
mechanical energy-transfer mechanism, and we’ll develop a statement like Equation 7.8  
that includes energy transfers by both work and heat.

Energy Conservation: The Big Picture
So far we’ve considered kinetic energy, potential energy, and internal energy, and we’ve 
explored energy transfer by mechanical work and by dissipative forces like friction. We’ve 
also hinted at energy transfer by heat, to be defined in Chapter 16. But there are other 
forms of energy, and other energy-transfer mechanisms. In Part 3, you’ll explore electro-
magnetism, and you’ll see how energy can be stored in both electric and magnetic fields; 
their combination into electromagnetic waves results in energy transfer by electromagnetic 
radiation—the process that delivers life-sustaining energy from Sun to Earth and that also 
carries your cell phone conversations and data. Electromagnetic fields interact with matter, 
so energy transfers among electromagnetic, mechanical, and internal energy are important 
processes in the everyday physics of both natural and technological systems. But again, 
for any isolated system, such transfers only interchange types of energy and don’t change 
the total amount of energy. Energy, it seems, is strictly conserved.

In Newtonian physics, conservation of energy stands alongside the equally fundamental 
principle of conservation of mass (the statement that the total mass of an isolated  system 
can’t change). A closer look, however, shows that neither principle stands by itself. If you 
measure precisely enough the mass of a system before it emits energy, and again afterward, 
you’ll find that the mass has decreased. Einstein’s equation E = mc2 describes this effect, 
which ultimately shows that mass and energy are interchangeable. So Einstein replaces the 
separate conservation laws for mass and energy with a single statement:  conservation of 
mass–energy. You’ll see how mass–energy interchangeability arises when we study rela-
tivity in Chapter 33. Until then, we’ll be dealing in the realm of Newtonian physics, where 
it’s an excellent approximation to assume that energy and mass are separately conserved.

GoT IT? 7.5 Consider Earth and its atmosphere as a system. Which of the  following 
processes conserves the total energy of this system? (a) a volcano erupts, spewing hot gases 
and particulate matter high into the atmosphere; (b) a small asteroid plunges into Earth’s 
atmosphere, heating and exploding high over the planet; (c) over geologic time, two con-
tinents collide, and the one that is subducted under the other heats up and  undergoes melt-
ing; (d) a solar flare delivers high-energy particles to Earth’s upper  atmosphere,  lighting 
the atmosphere with colorful auroras; (e) a hurricane revs up its winds, extracting energy 
from water vapor evaporated from warm tropical seas; (f) coal burns in numerous power 
plants, and uranium fissions in nuclear reactors, with both processes sending electrical en-
ergy into the world’s power grids and dumping warmed water into the environment

7.6 Potential-Energy Curves
Figure 7.9 shows a frictionless roller-coaster track. How fast must a car be coasting at 
point A if it’s to reach point D? Conservation of mechanical energy provides the an-
swer. To get to D, the car must clear peak C. Clearing C requires that the total energy PheT: Energy Skate Park

PheT: Calculus Grapher
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7.6 Potential-Energy Curves 121

exceed the potential energy at C; that is, 1
2 mvA

2 + mghA 7 mghC, where we’ve taken 
the zero of potential energy with the car at the bottom of the track. Solving for vA gives 

vA 7 22g1hC - hA2. If vA satisfies this inequality, the car will reach C with some kinetic 
energy remaining and will coast over the peak.

Figure 7.9 is a drawing of the actual roller-coaster track. But because gravitational 
 potential energy is directly proportional to height, it’s also a plot of potential energy versus 
position: a potential-energy curve. Conceptual Example 7.1 shows how we can study the 
car’s motion by plotting total energy on the same graph as the potential-energy curve.

Figure 7.9 A roller-coaster track.
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CoNCEPTUaL ExamPLE 7.1 Potential-Energy Curves

Figure 7.10 Potential and total energy for a roller coaster.
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Figure 7.10 plots potential energy for our roller-coaster system, along 
with three possible values for the total mechanical energy. Since 
mechanical energy is conserved in the absence of nonconservative 
forces, the total-energy curve is a horizontal line. Use these graphs 
to describe the motion of a roller-coaster car, initially at point A and 
moving to the right.

evaluate We’re assuming there are no nonconservative forces 
(an  approximation for a real roller coaster), so mechanical energy is 
 conserved. In each figure, the sum of kinetic and potential energy there-
fore remains equal to the value set by the line indicating the total energy. 
When the roller-coaster car rises, potential energy increases and kinetic 
energy consequently decreases. But as long as potential energy remains 
below the total energy, the car still has kinetic energy and is still moving. 
Anywhere potential energy equals the total energy, the car has no kinetic 
energy and is momentarily at rest.

In Fig. 7.10a the car’s total energy exceeds the maximum potential 
energy. Therefore, it can move anywhere from its initial position at A. 
Since it’s initially moving to the right, it will clear peaks B and C and will 
end up at D still moving to the right—and, since D is lower than A, it 
will be moving faster than it was at A.

In Fig. 7.10b the highest peak in the potential-energy curve exceeds 
the total energy; so does the very leftmost portion of the curve. There-
fore, the car will move rightward from A, clearing peak B, but will come 
to a stop just before peak C, a so-called turning point where poten-
tial energy equals the total  energy. Then it will roll back down to the 
left, again clearing peak B and climbing to another turning point where 
the potential-energy curve and total-energy line again intersect. Absent 
 friction, it will run back and forth between the two turning points.

In Fig. 7.10c the total energy is lower, and the car can’t clear peak 
B. So now it will run back and forth between the two turning points 
we’ve marked.

assess Make sense? Yes: The higher the total energy, the larger 
the extent of the car’s allowed motion. That’s because, for a given 
 potential energy, the car it has more energy available in the form of 
kinetic energy.

makIng the ConneCtIon Find a condition on the speed at A that 
will allow the car to move beyond peak B.

evaluate With total energy equal to UB, the car could just barely 
clear peak B. The initial energy is 1

2 mv 2
A + mghA, where vA and hA 

are the car’s speed and height at A, and where we’ve taken the zero 
of potential energy at the bottom of the curve. Requiring that this 
 quantity exceed UB = mghB then gives vA 7 22g1hB - hA2.

Even though the car in Figs. 7.10b and c can’t get to D, the total energy still exceeds the 
potential energy at D. But the car is blocked from reaching D by the potential barrier of 
peak C. We say that it’s trapped in a potential well between its turning points.

Potential-energy curves are useful even with nongravitational forces where there’s 
no direct correspondence with hills and valleys. The terminology used here—potential 
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 barriers, wells, and trapping—remains appropriate in such cases and indeed is widely used 
throughout physics.

Figure 7.11 shows the potential energy of a system comprising a pair of  hydrogen 
 atoms, as a function of their separation. This energy is associated with attractive and 
 repulsive electrical forces involving the electrons and the nuclei of the two atoms. The 
 potential-energy curve exhibits a potential well, showing that the atoms can form a 
bound system in which they’re unable to separate fully. That bound system is a  hydrogen 
  molecule 1H22. The minimum energy, -7.6 *10-19 J, corresponds to the molecule’s 
 equilibrium separation of 0.074 nm. It’s convenient to define the zero of potential energy 
when the atoms are infinitely far apart; Fig. 7.11 then shows that any total energy less than 
zero results in a bound system. But if the total energy is greater than zero, the atoms are 
free to move arbitrarily far apart, so they don’t form a molecule.

Figure 7.11 Potential-energy curve for two hydrogen atoms.
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ExamPLE 7.7 molecular Energy: Finding atomic Separation
Very near the bottom of the potential well in Fig. 7.11, the po-
tential energy of the two-atom system given approximately by 
U = U0 + a1x - x022,  w h e r e  U0 = -0.760 aJ, a = 286 aJ/nm2, 
and x0 = 0.0741 nm is the equilibrium separation. What range of 
atomic separations is allowed if the total energy is -0.717 aJ?

Interpret This problem sounds complicated, with strange units and 
talk of molecular energies. But it’s about just what’s shown in Figs. 7.10 
and 7.11. Specifically, we’re given the total energy and asked to find the 
turning points—the points where the line representing total energy inter-
sects the potential-energy curve. If the units look strange, remember the 
SI prefixes (there’s a table inside the front cover), which we use to avoid 
writing large powers of 10. Here 1 aJ = 10-18 J and 1 nm = 10-9 m.

Develop Figure 7.12 is a plot of the potential-energy curve from the 
function we’ve been given. The straight line represents the total energy E.  
The turning points are the values of atomic separation where the two 
curves intersect. We could read them off the graph, or we can solve 
algebraically by setting the total energy equal to the potential energy.

evaluate With the potential energy given by U = U0 + a1x - x022 
and the total energy E, the two turning points occur when  
E = U0 +  a1x - x022. We could solve directly for x, but then we’d 
have to use the quadratic formula. Solving for x - x0 is easier:

 x - x0 = {BE - U0

a
= {B-0.717 aJ - 1-0.760 aJ2

286 aJ/nm2

 = {0.0123 nm

Then the turning points are at x0 { 0.0123 nm—namely, 0.0864 nm 
and 0.0618 nm.

assess Make sense? A look at Fig. 7.12 shows that we’ve correctly 
located the turning points. The fact that its potential-energy curve is 
parabolic (like a spring’s U = 1

2 kx2) shows that the molecule can be 
modeled approximately as two atoms joined by a spring. Chemists 
frequently use such models and even talk of the “spring constant” of 
the bond joining atoms into a molecule. ■

Figure 7.12 Analyzing the hydrogen molecule.
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7.6 Potential-Energy Curves 123

Force and Potential Energy
The roller-coaster track in Fig. 7.9 traces the potential-energy curve for a car on the track. 
But it also shows the force acting to accelerate the car: Where the graph is steep—that is, 
where the potential energy is changing rapidly—the force is greatest. At the peaks and 
 valleys, the force is zero. So it’s the slope of the potential-energy curve that tells us about 
the force (Fig. 7.13).

Just how strong is this force? Consider a small change ∆x, so small that the force 
is essentially constant over this distance. Then we can use Equation 7.2b to write 
∆U = -Fx ∆x, or Fx = - ∆U/∆x. In the limit ∆x S 0, ∆U/∆x becomes the derivative, 
and we have

 Fx = -
dU

dx
 (7.9)

This equation makes mathematical as well as physical sense. We’ve already written 
 potential energy as the integral of force over distance, so it’s no surprise that force is the 
derivative of potential energy. Equation 7.9 gives the force component in the x-direction 
only. In a three-dimensional situation, we’d have to take derivatives of potential energy 
with respect to y and z to find the full force vector.

Why the minus sign in Equation 7.9? You can see the answer in the molecular  energy 
curve of Fig. 7.11, where pushing the atoms too close together—moving to the left of 
 equilibrium—results in a repulsive force to the right, and pulling them apart— moving 
to the right—gives an attractive force to the left. You can see the same thing for the roller 
coaster in Fig. 7.13. In both cases the forces tend to drive the system back toward a 
 minimum-energy state. We’ll explore such minimum-energy equilibrium states further in 
Chapter 12.

GoT IT? 7.6 The figure shows the potential energy associated with an electron in 
a microelectronic device. From among the labeled points, find (1) the point where the 
force on the electron is greatest, (2) the rightmost position possible if the electron has total 
energy E1, (3) the leftmost position possible if the electron has total energy E2 and starts 
out to the right of D, (4) a point where the force on the electron is zero, and (5) a point 
where the force on the electron points to the left. In some cases there may be more than 
one  answer.
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Figure 7.13 Force depends on the slope of the 
potential-energy curve.
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Chapter 7 Summary
Big Ideas

The big idea here is conservation of energy. This chapter emphasizes the special case of systems subject only to conservative forces, in which case 
the total mechanical energy—the sum of kinetic and potential energy—cannot change. Energy may change from kinetic to potential, and vice 
versa, but the total remains constant. Applying conservation of mechanical energy requires the concept of potential energy—energy stored in a 
system as a result of work done against conservative forces.

v
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A block is against a 
compressed spring;
the system’s energy 
is all potential.

Later, the block is moving.
The total energy is still the
same, but now it’s all kinetic.
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If nonconservative forces act in a system, then mechanical energy isn’t conserved; instead, mechanical energy gets converted to internal energy.

Key Concepts and Equations

The important new concept here is 
potential energy, defined as the nega-
tive of the work done by a conserva-
tive force. Only the change ∆U  has 
physical significance. Expressions for 
potential energy include:

This one is the most general, but it’s
mathematically involved.  The force
can vary over an arbitrary path
between points A and B.

This is a special case, when force
and displacement are in the same
direction and force may vary with
position.

This is the most specialized case,
where the force is constant.

L
x2

x1

∆U = - F1x2dx ∆U = -F 1x2 - x12L
B

A
∆UAB = - F # druS

Given the concept of potential energy, the principle of conservation of 
 mechanical energy follows from the work–kinetic energy theorem of 
Chapter 6. Here’s the mathematical statement of mechanical energy 
conservation:

K and U are the
kinetic and potential
energy at some point
where we don’t know
one of these
quantities.

The total mechanical
energy is conserved, 
as indicated by the
equal sign.

K0 and U0 are 
the kinetic and
potential energy
at some point 
where both are 
known. K0 + U0
is the total 
mechanical energy.

K + U = K0 + U0

We can describe a wide range of systems—from molecules to roller 
coasters to planets—in terms of potential-energy curves. Knowing 
the total energy then lets us find turning points that determine the 
range of motion available to the system.
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With a little more
energy, the ball could
clear this potential
barrier.

A ball with
total energy E
is trapped between
two turning points.

applications

Two important cases of potential energy 
are the elastic potential energy of a spring, 
U = 1

2 kx2, and the gravitational potential 
energy change, ∆U = mgh, associated with 
lifting an object of mass m through a height h.

The former is limited to ideal springs for 
which F = -kx, the latter to the proxim-
ity of Earth’s surface, where the variation 
of gravity with height is negligible.

1
2

x

x

m

m

h

Unstretched spring de�nes U = 0.

Lifting an object
a height h increases
potential energy
by ∆U = mgh.

Compression or stretch by a
distance x gives the spring
potential energy U =   kx2.
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Exercises and Problems 125

For homework assigned on MasteringPhysics, go to www.masteringphysics.com

BIO Biology and/or medicine-related problems DATA Data problems ENV Environmental problems CH Challenge problems Comp Computer problems

Section 7.2 Potential Energy
12. Rework Example 7.1, now taking the zero of potential energy at 

street level.
13. Find the potential energy associated with a 70-kg hiker (a) atop 

New Hampshire’s Mount Washington, 1900 m above sea level, 
and (b) in Death Valley, California, 86 m below sea level. Take 
the zero of potential energy at sea level.

14. You fly from Boston’s Logan Airport, at sea level, to Denver, 
 altitude 1.6 km. Taking your mass as 65 kg and the zero of 
 potential energy at Boston, what’s the gravitational potential 
 energy when you’re (a) at the plane’s 11-km cruising altitude and 
(b) in Denver?

15. The potential energy associated with a 60-kg hiker ascending 
1250-m-high Camel’s Hump mountain in Vermont is -240 kJ; 
the zero of potential energy is taken at the mountaintop. What’s 
her altitude?

16. How much energy can be stored in a spring with k = 320 N/m if 
the maximum allowed stretch is 18 cm?

17. How far would you have to stretch a spring with k = 1.4 kN/m 
for it to store 210 J of energy?

18. A biophysicist grabs the ends of a DNA strand with optical twee-
zers and stretches it 26 µm. How much energy is stored in the 
stretched molecule if its spring constant is 0.046 pN/µm?

Section 7.3 Conservation of Mechanical Energy
19. A skier starts down a frictionless 32° slope. After a vertical drop 

of 25 m, the slope temporarily levels out and then slopes down at 
20°, dropping an additional 38 m vertically before leveling out 
again. Find the skier’s speed on the two level stretches.

20. A 10,000-kg Navy jet lands on an aircraft carrier and snags a 
cable to slow it down. The cable is attached to a spring with 
k = 40 kN/m. If the spring stretches 25 m to stop the plane, what 
was its landing speed?

21. A 120-g arrow is shot vertically from a bow whose effective 
spring constant is 430 N/m. If the bow is drawn 71 cm before 
shooting, to what height does the arrow rise?

22. In a railroad yard, a 35,000-kg boxcar moving at 7.5 m/s is 
stopped by a spring-loaded bumper mounted at the end of the 
level track. If k = 2.8 MN/m, how far does the spring compress 
in stopping the boxcar?

23. You work for a toy company, and you’re designing a spring-
launched model rocket. The launching apparatus has room for a 
spring that can be compressed 14 cm, and the rocket’s mass is 65 g.  
If the rocket is to reach an altitude of 35 m, what should you 
specify for the spring constant?

Section 7.4 Nonconservative Forces
24. A 54-kg ice skater pushes off the wall of the rink, giving herself 

an initial speed of 3.2 m/s. She then coasts with no further effort. 
If the frictional coefficient between skates and ice is 0.023, how 
far does she go?

25. You push a 33-kg table across a 6.2-m-wide room. In the process, 
1.5 kJ of mechanical energy gets converted to internal energy of 
the table/floor system. What’s the coefficient of kinetic friction 
between table and floor?

BIO

For thought and Discussion
 1. Figure 7.14 shows force vectors at different points in space for two 

forces. Which is conservative and which nonconservative? Explain.

(a) (b)

Figure 7.14 For Thought and Discussion 1; Problem 30

 2. Is the conservation-of-mechanical-energy principle related to New-
ton’s laws, or is it an entirely separate physical principle? Discuss.

 3. Why can’t we define a potential energy associated with friction?
 4. Can potential energy be negative? Can kinetic energy? Can total 

mechanical energy? Explain.
 5. If the potential energy is zero at a given point, must the force also 

be zero at that point? Give an example.
 6. If the force is zero at a given point, must the potential energy also 

be zero at that point? Give an example.
 7. If the difference in potential energy between two points is zero, 

does that necessarily mean that an object moving between those 
points experiences no force?

 8. A tightrope walker follows an essentially horizontal rope be-
tween two mountain peaks of equal altitude. A climber descends 
from one peak and climbs the other. Compare the work done by 
the gravitational force on the tightrope walker and the climber.

 9. If conservation of energy is a law of nature, why do we have pro-
grams—like mileage requirements for cars or insulation stand-
ards for buildings—designed to encourage energy conservation?

exercises and problems
Exercises

Section 7.1 Conservative and Nonconservative Forces
10. Determine the work you would have to do to move a block of mass 

m from point 1 to point 2 at constant speed over the two paths 
shown in Fig. 7.15. The coefficient of friction has the constant value 
m over the surface. Note: The diagram lies in a horizontal plane.

(b)

(a)
2

L

L

1

Figure 7.15 Exercises 10 and 11

11. Now take Fig. 7.15 to lie in a vertical plane, and find the work 
done by the gravitational force as an object moves from point 1 
to point 2 over each of the paths shown.
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126 Chapter 7 Conservation of Energy

k = 220 N/m and c = 3.1 N/m3. Find the stored energy when 
it’s been compressed 15 cm.

36. The force on a particle is given by F
S

= A in/x2, where A is a pos-
itive constant. (a) Find the potential-energy difference between 
two points x1 and x2, where x1 7 x2. (b) Show that the potential-
energy difference remains finite even when x1 S ∞ .

37. A particle moves along the x-axis under the influence of a force 
F = ax2 + b, where a and b are constants. Find the potential 
energy as a function of position, taking U = 0 at x = 0.

38. As a highway engineer, you’re asked to design a runaway truck 
lane on a mountain road. The lane will head uphill at 30° and 
should be able to accommodate a 16,000-kg truck with failed 
brakes entering the lane at 110 km/h. How long should you make 
the lane? Neglect friction.

39. A spring of constant k, compressed a distance x, is used to launch 
a mass m up a frictionless slope at angle u. Find an expression for 
the maximum distance along the slope that the mass moves after 
leaving the spring.

40. A child is on a swing whose 3.2-m-long chains make a maxi-
mum angle of 50° with the vertical. What’s the child’s maximum 
speed?

41. With x - x0 = h and a = g, Equation 2.11 gives the speed of an 
object thrown downward with initial speed v0 after it’s dropped 
a distance h: v = 2v2

0 + 2gh. Use conservation of mechanical 
energy to derive the same result.

42. The nuchal ligament is a cord-like structure that runs along 
the back of the neck and supports much of the head’s weight 
in animals like horses and cows. The ligament is extremely 
stiff for small stretches, but loosens as it stretches further, 
thus functioning as a biological shock absorber. Figure 7.17 
shows the force–distance curve for a particular nuchal liga-
ment; the curve can be modeled approximately by the expres-
sion F1x2 = 0.43x - 0.033x2 + 0.00086x3, with F in kN and 
x in cm. Find the energy stored in the ligament when it’s been 
stretched (a) 7.5 cm and (b) 15 cm.
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Figure 7.17 Problem 42

43. A 200-g block slides back and forth on a frictionless surface be-
tween two springs, as shown in Fig. 7.18. The left-hand spring 
has k = 130 N/m and its maximum compression is 16 cm. The 
right-hand spring has k = 280 N/m. Find (a) the maximum com-
pression of the right-hand spring and (b) the speed of the block as 
it moves between the springs.

Figure 7.18 Problem 43

44. Automotive standards call for bumpers that sustain essentially 
no damage in a 4-km/h collision with a stationary object. As 
an  automotive engineer, you’d like to improve on that. You’ve 
 developed a spring-mounted bumper with effective spring 

BIO

Section 7.6 Potential-Energy Curves
26. A particle slides along the frictionless track shown in Fig. 7.16, 

starting at rest from point A. Find (a) its speed at B, (b) its speed 
at C, and (c) the approximate location of its right-hand turning 
point.

0 1 2 3 4 5 6 7 8 9 10 11 12
Position, x (m)

3.8 m
2.6 m

1.3 m

A

B

C

Figure 7.16 Exercise 26

27. A particle slides back and forth on a frictionless track whose 
height as a function of horizontal position x is y = ax2, where 
a = 0.92 m-1. If the particle’s maximum speed is 8.5 m/s, find 
its turning points.

28. A particle is trapped in a potential well described by 
U1x2 = 16x2 - b, with U in joules, x in meters, and b = 4.0 J. 
Find the force on the particle when it’s at (a) x = 2.1 m,  
(b) x = 0, and (c) x = -1.4 m.

Problems
29. The reservoir at Northfield Mountain Pumped Storage Project 

is 214 m above the pump/generators and holds 2.1 * 1010 kg of 
water (see Application on p. 113). The generators can produce 
electrical energy at the rate of 1.08 GW. Find (a) the gravitational 
potential energy stored, taking zero potential energy at the gen-
erators, and (b) the length of time the station can generate power 
before the reservoir is drained.

30. The force in Fig. 7.14a is given by F
S

a = F0 jn, where F0 is a con-
stant. The force in Fig. 7.14b is given by F

S
b = F01x/a2 jn, where 

the origin is at the lower left corner of the box, a is the width of 
the square box, and x increases horizontally to the right. Deter-
mine the work you would have to do to move an object around 
the perimeter of each each box, going clockwise at constant 
speed, starting at the lower left corner.

31. A 1.50-kg brick measures 20.0 cm * 8.00 cm * 5.50 cm. Tak-
ing the zero of potential energy when the brick lies on its broad-
est face, what’s the potential energy (a) when the brick is standing 
on end and (b) when it’s balanced on its 8-cm edge? (Note: You 
can treat the brick as though all its mass is concentrated at its 
center.)

32. A carbon monoxide molecule can be modeled as a carbon atom 
and an oxygen atom connected by a spring. If a displacement of 
the carbon by 1.46 pm from its equilibrium position relative to the 
oxygen increases the molecule’s potential energy by 0.0125 eV,  
what’s the spring constant?

33. A more accurate expression for the force law of the rope in 
 Example 7.3 is F = -kx + bx2 - cx3, where k and b have the 
values given in Example 7.3 and c = 3.1 N/m3. Find the energy 
stored in stretching the rope 2.62 m. By what percentage does 
your result differ from that of Example 7.3?

34. For small stretches, the Achilles tendon can be modeled as an 
ideal spring. Experiments using a particular tendon showed that 
it stretched 2.66 mm when a 125-kg mass was hung from it. (a) 
Find the spring constant of this tendon. (b) How much would it 
have to stretch to store 50.0 J of energy?

35. The force exerted by an unusual spring when it’s compressed 
a distance x from equilibrium is F = -kx - cx3, where 
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Exercises and Problems 127

55. A 190-g block is launched by compressing a spring of constant 
k = 200 N/m by 15 cm. The spring is mounted horizontally, 
and the surface directly under it is frictionless. But beyond the 
equilibrium position of the spring end, the surface has frictional 
coefficient m = 0.27.. This frictional surface extends 85 cm, 
 followed by a frictionless curved rise, as shown in Fig. 7.21. 
After it’s launched, where does the block finally come to rest? 
Measure from the left end of the frictional zone.

Frictionless Frictionlessm = 0.27

Figure 7.21 Problem 55

56. A block slides down a frictionless incline that terminates in a 45° 
ramp, as shown in Fig. 7.22. Find an expression for the horizontal 
range x shown in the figure as a function of the heights h1 and h2.

45°
h1

h2

x

Figure 7.22 Problem 56

57. An 840-kg roller-coaster car is launched from a giant spring 
with k = 31 kN/m into a frictionless loop-the-loop track of 
 radius 6.2 m, as shown in Fig. 7.23. What’s the minimum spring 
 compression that will ensure the car stays on the track?

Figure 7.23 Problem 57

58. A particle slides back and forth in a frictionless bowl whose height is 
given by h = 0.18x2, with x and h in meters. Find the x coordinates 
of its turning points if the particle’s maximum speed is 47 cm/s.

59. A child sleds down a frictionless hill whose vertical drop is  
7.2 m. At the bottom is a level but rough stretch where the coef-
ficient of kinetic friction is 0.51. How far does she slide across 
the level stretch?

60. A bug lands on top of the frictionless, spherical head of a bald 
man. It begins to slide down his head (Fig. 7.24). Show that the 
bug leaves the head when it has dropped a vertical distance one-
third of the head’s radius.

Figure 7.24 Problem 60

CH

CH

CH

 constant 1.3 MN/m. The springs can compress up to 5.0 cm be-
fore damage occurs. For a 1400-kg car, what do you claim as the 
maximum collision speed?

45. A block slides on the frictionless loop-the-loop track shown in 
Fig. 7.19. Find the minimum height h at which it can start from 
rest and still make it around the loop.

Rh

Figure 7.19 Problem 45

46. The maximum speed of the pendulum bob in a grandfather clock 
is 0.55 m/s. If the pendulum makes a maximum angle of 8.0° 
with the vertical, what’s the pendulum’s length?

47. A mass m is dropped from height h above the top of a spring of 
constant k mounted vertically on the floor. Show that the spring’s 
maximum compression is given by 1mg/k211 + 11 + 2kh/mg2.

48. A particle with total energy 3.5 J is trapped in a potential well 
described by U = 7.0 - 8.0x + 1.7x2, where U is in joules and 
x in meters. Find its turning points.

49. (a) Derive an expression for the potential energy of an ob-
ject subject to a force Fx = ax - bx3, where a = 5 N/m and 
b = 2 N/m3, taking U = 0 at x = 0. (b) Graph the potential-
energy curve for x 7 0 and use it to find the turning points for an 
object whose total energy is -1 J.

50. In ionic solids such as NaCl (salt), the potential energy of a pair 
of ions takes the form U = b/rn - a/r, where r is the separation 
of the ions. For NaCl, a and b have the SI values 4.04 *10-28 and 
5.52 * 10-98, respectively, and n = 8.22. Find the equilibrium 
separation in NaCl.

51. Repeat Exercise 19 for the case when the coefficient of kinetic 
friction on both slopes is 0.11, while the level stretches remain 
frictionless.

52. As an energy-efficiency consultant, you’re asked to assess a 
pumped-storage facility. Its reservoir sits 140 m above its gen-
erating station and holds 8.5*109 kg of water. The power plant 
generates 330 MW of electric power while draining the reser-
voir over an 8.0-h period. Its efficiency is the percentage of the 
stored potential energy that gets converted to electricity. What ef-
ficiency do you report?

53. A spring of constant k = 340 N/m is used to launch a 1.5-kg block 
along a horizontal surface whose coefficient of sliding friction is 
0.27. If the spring is compressed 18 cm, how far does the block slide?

54. A bug slides back and forth in a bowl 15 cm deep, starting from 
rest at the top, as shown in Fig. 7.20. The bowl is frictionless 
except for a 1.4-cm-wide sticky patch on its flat bottom, where 
the coefficient of friction is 0.89. How many times does the bug 
cross the sticky region?

1.4 cm

15 cm

Figure 7.20 Problem 54
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128 Chapter 7 Conservation of Energy

for the short-range nuclear force to bind them into a single nucleus. 
Figure 7.25 shows the potential-energy curve for fusion of two deu-
terons (heavy hydrogen nuclei). The energy is measured in million 
electron volts (MeV), a unit commonly used in nuclear physics, and 
the separation is in femtometers 11 fm = 10-15 m2.
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Figure 7.25 Potential energy for two deuterons (Passage Problems 68–71)

68. The force between the deuterons is zero at approximately
a. 3 fm.
b. 4 fm.
c. 5 fm.
d. the force is never zero.

69. In order for initially two widely separated deuterons to get close 
enough to fuse, their kinetic energy must be about
a. 0.1 MeV.
b. 3 MeV.
c. -3 MeV.
d. 0.3 MeV.

70. The energy available in fusion is the energy difference between 
that of widely separated deuterons and the bound deutrons after 
they’ve “fallen” into the deep potential well shown in the figure. 
That energy is about
a. 0.3 MeV.
b. 1 MeV.
c. 3.3 MeV.
d. 3.6 MeV.

71. When two deuterons are 4 fm apart, the force acting on them
a. is repulsive.
b. is attractive.
c. is zero.
d. can’t be determined from the graph.

answers to Chapter Questions

answer to Chapter opening Question
Potential energy turns into kinetic energy, sound, and internal energy.

answers to GoT IT? Questions
 7.1  (c) On the curved paths, the work is greater for the trunk. The 

gravitational force is conservative, so the work is independ-
ent of path. But the frictional force isn’t conservative, and the 
longer path means more work needs to be done.

 7.2  (b) The potential-energy change will be slightly less because at 
greater heights, the gravitational force is lower and so, there-
fore, is the work done in traversing a given distance.

 7.3  No. Mechanical energy is conserved, so if the ball is released 
from rest, it cannot climb higher than its initial height.

 7.4  (1) (a) only; (2) (a) and (c)
 7.5  (a), (c), (e), (f)
 7.6  (1) B; (2) E; (3) C; (4) A or D; (5) B or E

61. A particle of mass m is subject to a force F
S

= 1a1x2 in, where 
a is a constant. The particle is initially at rest at the origin and is 
given a slight nudge in the positive x-direction. Find an expres-
sion for its speed as a function of position x.

62. A block of weight 4.5 N is launched up a 30° inclined plane 2.0 m 
long by a spring with k = 2.0 kN/m and maximum compression  
10 cm. The coefficient of kinetic friction is 0.50. Does the block 
reach the top of the incline? If so, how much kinetic energy does it 
have there? If not, how close to the top, along the incline, does it get?

63. Your engineering department is asked to evaluate the perfor-
mance of a new 370-hp sports car. You know that 27% of the 
engine’s power can be converted to kinetic energy of the  
1200-kg car, and that the power delivered is independent of  
the car’s velocity. What do you report for the time it will take to  
accelerate from rest to 60 mi/h on a level road?

64. Your roommate is writing a science fiction novel and asks your 
advice about a plot point. Her characters are mining ore on the 
Moon and launching it toward Earth. Bins with 1500 kg of ore 
will be launched by a large spring, to be compressed 17 m. It 
takes a speed of 2.4 km/s to escape the Moon’s gravity. What do 
you tell her is an appropriate spring constant?

65. You have a summer job at your university’s zoology department, 
where you’ll be working with an animal behavior expert. She’s as-
signed you to study videos of different animals leaping into the air. 
Your task is to compare their power outputs as they jump. You’ll 
have the mass m of each animal from data collected in the field. 
From the videos, you’ll be able to measure both the vertical dis-
tance d over which the animal accelerates when it pushes off the 
ground and the maximum height h it reaches. Your task is to find 
an algebraic expression for power in terms of these parameters.

66. Biomechanical engineers developing artificial limbs for pros-
thetic and robotic applications have developed a two-spring de-
sign for their replacement Achilles tendon. The first spring has 
constant k and the second ak, where a 7 1. When the artificial 
tendon is stretched from x = 0 to x = x1, only the first spring 
is engaged. For x 7 x1, a mechanism engages the second spring, 
giving a configuration like that described in part (a) of Chapter 4’s  
Problem 62. Find an expression for the energy stored in the artifi-
cial tendon when it’s stretched a distance 2x1.

67. Blocks with different masses are pushed against a spring one at 
a time, compressing it different amounts. Each is then launched 
onto an essentially frictionless horizontal surface that then curves 
upward, still frictionless (like Fig. 7.21 but without the frictional 
part). The table below shows the masses, spring compressions, 
and maximum vertical height each block achieves. Determine a 
quantity that, when you plot h against it, should yield a straight 
line. Plot the data, determine a best-fit line, and use its slope to 
determine the spring constant.

Mass m (g) 50.0 85.2 126 50.0 85.2

Compression x (cm) 2.40 3.17 5.40 4.29 1.83

Height h (cm) 10.3 11.2 19.8 35.2 3.81

Passage Problems
Nuclear fusion is the process that powers the Sun. Fusion occurs 
when two low-mass atomic nuclei fuse together to make a larger 
nucleus, in the process releasing substantial energy. This is hard to 
achieve because atomic nuclei carry positive electric charge, and 
their electrical repulsion makes it difficult to get them close enough 
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Gravity

8

What You Know
■ You understand Newton’s second law.

■ You know how to find the potential 
energy associated with a conservative 
force.

■ You know that finding potential 
energy for position-dependent forces 
requires integration.

■ You understand the principle of 
conservation of mechanical energy.

■ You know how to use energy 
conservation to solve for velocities or 
positions.

■ You know how to describe 
acceleration in circular motion.

Gravity is the most obvious of nature’s fundamental forces. Theories of gravity have 
brought us new understandings of the nature and evolution of the universe. We’ve used 

our knowledge of gravity to explore the solar system and to engineer a host of space-based 
technologies. In nearly all applications we still use the theory of gravity that Isaac Newton 
developed in the 1600s. Only in the most extreme astrophysical situations or where—as with 
Global Positioning System satellites—we need exquisite precision do we use the successor to 
Newtonian gravitation, namely, Einstein’s general theory of relativity.

8.1 Toward a Law of Gravity
Newton’s theory of gravity was the culmination of two centuries of scientific  revolution 
that began in 1543 with Polish astronomer Nicolaus Copernicus’s radical suggestion 
that the planets orbit not Earth but the Sun. Fifty years after Copernicus’s work was 

What You’re Learning
■ You’ll see how planetary motion 

was historically important in the 
development of Newtonian physics.

■ You’ll learn Newton’s law of universal 
gravitation with its inverse-square 
dependence of gravitational force on 
distance.

■ You’ll see how to find potential energy 
changes over distances so large that 
gravity varies significantly with position.

■ You’ll learn to describe circular orbits 
quantitatively.

■ You’ll see how space technologies, 
including communications and GPS 
satellites, exploit the physics of orbits.

■ You’ll learn to describe all orbital types 
in terms of total mechanical energy.

■ You’ll learn about escape speed.

■ You’ll have a brief introduction to the 
gravitational field.

How You’ll Use It
■ Whether or not you make practical 

use of the material you learn in 
Chapter 8, knowing the physics of our 
solar system and the broader cosmos 
will give you a greater appreciation for 
the universe and your place in it.

■ You’ll also come away from Chapter 
8 with a deeper understanding 
of technologies like satellite 
communications, GPS, space-based 
weather observations, and other 
Earth-observing systems.

■ The concept of gravitational field 
introduced here will be echoed in 
Part 3, where the electric field and the 
magnetic field are introduced.

■ In Part 6 you’ll see how early models 
of the atom were based on an  electric-
force analog of the solar system.

In 2012, 35 years after launch, Voyager 1 became the first human artifact to 
leave the solar system. What condition on Voyager’s total energy ensures 
that it will never return to the Sun’s vicinity?
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130 Chapter 8 Gravity

published, the Danish noble Tycho Brahe began a program of accurate planetary observa-
tions. After Tycho’s death in 1601, his assistant Johannes Kepler worked to make sense 
of the observations. Success came when Kepler took a radical step: He gave up the long-
standing idea that the planets moved in perfect circles. Kepler summarized his new insights 
in three laws, described in Fig. 8.1. Kepler based his laws solely on observation and gave no 
theoretical  explanation. So Kepler knew how the planets moved, but not why.

Shortly after Kepler published his first two laws, Galileo trained his first telescopes 
on the heavens. Among his discoveries were four moons orbiting Jupiter, sunspots that 
 blemished the supposedly perfect sphere of the Sun, and the phases of Venus (Fig. 8.2). 
His observations called into question the notion that all celestial objects were perfect 
and also lent credence to the Copernican view of the Sun as the center of planetary 
 motion.

By Newton’s time the intellectual climate was ripe for the culmination of the revolution  
that had begun with Copernicus. Legend has it that Newton was sitting under an apple 
tree when an apple struck him on the head, causing him to discover gravity. That story 
is probably a myth, but if it were true the other half would be that Newton was staring at 
the Moon when the apple struck. Newton’s genius was to recognize that the motion of the 
apple and the motion of the Moon were the same, that both were “falling” toward Earth 
under the influence of the same force. Newton called this force gravity, from the Latin 
gravitas, “heaviness.” In one of the most sweeping syntheses in human thought, Newton 
inferred that everything in the universe, on Earth and in the celestial realm, obeys the same 
physical laws.

8.2 Universal Gravitation
Newton generalized his new understanding of gravity to suggest that any two particles in 
the universe exert attractive forces on each other, with magnitude given by

 F =
Gm1m2

r2   1universal gravitation2 (8.1)

Here m1 and m2 are the particle masses, r the distance between them, and G the  constant 
of universal gravitation, whose value—which was determined after Newton’s time—is 
6.67 * 10-11 N #m2/kg2. The constant G is truly universal; observation and theory suggest 
that it has the same value throughout the universe.

The force of gravity acts between two particles; that is, m1 exerts an attractive force on 
m2, and m2 exerts an equal but oppositely directed force on m1. The two forces therefore 
obey Newton’s third law.

Newton’s law of universal gravitation applies strictly only to point particles that have 
no extent. But, as Newton showed using his newly developed calculus, it also holds for 
spherically symmetric objects of any size if the distance r is measured from their centers. 
It also applies approximately to arbitrarily shaped objects provided the distance between 
them is large compared with their sizes. For example, the gravitational force of Earth on 
the International Space Station is given accurately by Equation 8.1 because (1) Earth is 
essentially spherical and (2) the station, though irregular in shape, is vastly smaller than its 
distance from Earth’s center.

Figure 8.1 Kepler’s laws.

First law: The orbit
is elliptical, with the
Sun at one focus.

Third law: The square
of the orbital period is
proportional to the cube
of the semimajor axis.

Second law: If the
shaded areas are equal,
so are the times to go
from A to B and from
C to D.

C

D

B

Semimajor axis

A

Figure 8.2 Phases of Venus. In an  Earth-centered 
system, Venus would always appear the same 
size because of its constant distance from Earth.

ExampLE 8.1 The acceleration of Gravity: On Earth and in Space

Use the law of universal gravitation to find the acceleration of gravity 
at Earth’s surface, at the 380-km altitude of the International Space 
Station, and on the surface of Mars.

Interpret The problem statement tells us this is about universal 
gravitation, but what’s that got to do with the acceleration of  gravity? 
The gravitational force is what causes that acceleration, so we can 

 interpret this problem as being about the force between Earth (or 
Mars) and some arbitrary mass.

Develop Since the problem involves universal gravitation, 
 Equation 8.1 applies. But we’re asked about acceleration, not force. 
 Newton’s second law, F = ma, relates the two. So our plan is to use   
Equation 8.1, F = Gm1m2/r

2, to find the gravitational force on an 
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8.2 Universal Gravitation 131

✓TIp G and g

Don’t confuse G and g! Both quantities are associated with gravity, but G is a universal 
constant, while g describes the gravitational acceleration at a particular place—namely, 
Earth’s surface—and its value depends on Earth’s size and mass.

The variation of gravitational acceleration with distance from Earth’s center provided 
Newton with a clue that the gravitational force should vary as the inverse square of the 
distance. Newton knew the Moon’s orbital period and distance from Earth; from these he 
could calculate its orbital speed and thus its acceleration v2/r. Newton found—as you can 
in Exercise 12—that the Moon’s acceleration is about 1/3600 the gravitational accelera-
tion g at Earth’s surface. The Moon is about 60 times farther from Earth’s center than is 
Earth’s surface; since 602 = 3600, the decrease in gravitational acceleration with distance 
from Earth’s center is consistent with a gravitational force that varies as 1/r2.

 arbitrary mass and then use Newton’s second law to get the accelera-
tion. There’s another bit of planning: We need to find the masses of 
Earth and Mars and their radii. Astrophysical data like these are in 
Appendix E.

evaluate Equation 8.1 gives the force a planet of mass M  exerts 
on an arbitrary mass m a distance r from the planet’s center: 
F = GM m/r2. (Here we set m1 in Equation 8.1 to the large planetary 
mass M, and m2 to the smaller mass m.) But Newton’s second law 
says that this force is equal to the product of mass and acceleration 
for a body in free fall, so we can write ma = GM m/r2. The mass m 
cancels, and we’re left with the acceleration:

 a =
GM

r2  (8.2)

The distance r is measured from the center of the object providing 
the gravitational force, so to find the acceleration at Earth’s surface we 
use RE, the radius of the Earth, for r. Taking RE and ME from Appendix E,  
we have

 a =
GME

RE
2

 =
16.67 * 10-11 N #m2/kg2215.97 * 1024 kg2

16.37 * 106 m22 = 9.81 m/s2

Our result here is the value of g—the acceleration due to gravity at 
Earth’s surface.

At the space station’s altitude, we have r = RE + 380 km, so

 a =
GME

r2

 =
16.67 * 10-11 N #m2/kg2215.97 * 1024 kg2

16.37 * 106 m + 380 * 103 m22 = 8.74 m/s2

A similar calculation using Appendix E data yields 3.75 m/s2 for 
the acceleration of gravity at the surface of Mars.

assess As we’ve seen, our result for Earth is just what we expect. 
The acceleration at the space station is lower but still about 90% of 
the surface value. This confirms Chapter 4’s point that weightlessness 
doesn’t mean the absence of gravity. Rather, as Equation 8.2 shows, 
an object’s gravitational acceleration is independent of its mass—so 
all objects “fall” together. Finally, our answer for Mars is lower than 
for Earth, as befits its lower mass—although not as much lower as 
mass alone would imply. That’s because Mars is also smaller, so r in 
the denominator of Equation 8.2 is a smaller number. ■

tactIcs 8.1 Understanding “Inverse Square”

Newton’s universal gravitation is the first of several 
inverse-square force laws you’ll encounter, and it’s 
important to understand what this term means. In 
Equation 8.1 the distance r between the two masses is 
squared, and it occurs in the denominator; hence the 
force depends on the inverse square of the distance. 
Double the distance and the force drops to 1/22, or 
1/4 of its original value. Triple the distance and the 
force drops to 1/32, or 1/9. Although you can always 
grind through the arithmetic of Equation 8.1, you 
should use these simple ratio calculations whenever 
possible. The same considerations apply to gravita-
tional acceleration, since it’s proportional to force 
(Fig. 8.3).

Figure 8.3 Meaning of the inverse-square law.
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132 Chapter 8 Gravity

GOT IT? 8.1 Suppose the distance between two objects is cut in half. Is the gravita-
tional force between them (a) quartered, (b) halved, (c) doubled, or (d) quadrupled?

The Cavendish Experiment: Weighing the Earth
Given Earth’s mass and radius and the measured value of g, we could use Equation 8.1 
to determine the universal constant G. Unfortunately, the only way to determine Earth’s 
mass accurately is to measure its gravitational effect and then use Equation 8.1. But that 
requires knowing G.

To determine G, we need to measure the gravitational force of a known mass. Given 
the weak gravitational force of normal-size objects, this is a challenging task. It was 
accomplished in 1798 through an ingenious experiment by the British physicist Henry 
Cavendish. Cavendish mounted two 5-cm-diameter lead spheres on the ends of a rod sus-
pended from a thin fiber. He then brought two 30-cm lead spheres nearby (Fig. 8.4). Their 
gravitational attraction caused a slight movement of the small spheres, twisting the fiber. 
Knowing the properties of the fiber, Cavendish could determine the force. With the known 
masses and their separation, he then used Equation 8.1 to calculate G. His result deter-
mined Earth’s mass; indeed, his published paper was entitled “On Weighing the Earth.”

Gravity is the weakest of the fundamental forces, and, as the Cavendish experiment 
suggests, the gravitational force between everyday objects is negligible. Yet gravity shapes 
the large-scale structure of matter and indeed the entire universe. Why, if it’s so weak? 
The answer is that gravity, unlike the stronger electric force, is always attractive; there’s 
no “negative mass.” So large concentrations of matter produce substantial gravitational 
effects. Electric charge, in contrast, can be positive or negative, and electric effects in nor-
mal-sized objects tend to cancel. We’ll explore this distinction further in Chapter 20.

8.3 Orbital motion
Orbital motion occurs when gravity is the dominant force acting on a body. It’s not 
just planets and spacecraft that are in orbit. An individual astronaut floating outside the 
space station is orbiting Earth. The Sun itself orbits the center of the galaxy, taking about  
200 million years to complete one revolution. If we neglect air resistance, even a baseball 
is temporarily in orbit. Here we discuss quantitatively the special case of circular orbits; 
then we describe qualitatively the general case.

Newton’s genius was to recognize that the Moon is held in its circular orbit by the same 
force that pulls an apple to the ground. From there, it was a short step for Newton to realize 
that human-made objects could be put into orbit. Nearly 300 years before the first artificial 
satellites, he imagined a projectile launched horizontally from a high mountain (Fig. 8.5).  
The projectile moves in a curve, as gravity pulls it from the straight-line path it would fol-
low if no force were acting. As its initial speed is increased, the projectile travels farther 
before striking Earth. Finally, there comes a speed for which the projectile’s path bends in 
a way that exactly follows Earth’s curvature. It’s then in circular orbit, continuing forever 
unless a nongravitational force acts.

Why doesn’t an orbiting satellite fall toward Earth? It does! Under the influence of 
gravity, it gets ever closer to Earth than it would be on a straight-line path. It’s behaving 
exactly as Newton’s second law requires of an object under the influence of a force—by 
accelerating. For a circular orbit, that acceleration amounts to a change in the direction, 
but not the magnitude, of the satellite’s velocity.

Remember that Newton’s laws aren’t so much about motion as they are about changes 
in motion. To ask why a satellite doesn’t fall to Earth is to adopt the archaic Aristotelian 
view and assume that an object must move in the direction of the force acting on it. The 
correct Newtonian question, in contrast, is based on the idea that motion changes in re-
sponse to a force: Why doesn’t the satellite move in a straight line? And the answer is 
simple: because a force is acting. That force—gravity—is exactly analogous to the tension 
force that keeps a ball on a string whirling in its circular path.

Figure 8.4 The Cavendish experiment to 
determine G.

The small spheres
move, attracted by
gravity to the large
ones.

Thin �ber

Rod

Figure 8.5 Newton’s “thought experiment” 
showing that projectile and orbital motions 
are essentially the same.

Absent gravity, the
projectile would follow
a straight line.

Gravity pulls
the projectile
into a curved
path.

The circular orbit is
a special case where the
path is a circle.

PheT: My Solar System
PheT: Gravity and Orbits
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We can analyze circular orbits quantitatively because we know that a force of  magnitude 
mv2/r is required to keep an object of mass m and speed v in a circular path of radius r. In 
the case of an orbit, that force is gravity, so we have

GMm

r2 =
mv2

r

where m is the mass of the orbiting object and M the mass of the object about which 
it’s orbiting. We assume here that M W m, so the gravitating object can be considered 
 essentially at rest—a reasonable approximation with Earth satellites or planets orbiting the 
much more massive Sun. Solving for the orbital speed gives

 v = AGM
r
  (speed, circular orbit) (8.3)

Often we’re interested in the orbital period, or the time to complete one orbit. In 
one period T, the orbiting object moves the orbital circumference 2pr, so its speed is 
v = 2pr/T. Squaring Equation 8.3 then gives

a2pr

T
b

2

=
GM

r

or

 T2 =
4p2r3

GM
  1orbital period, circular orbit2 (8.4)

In deriving Equation 8.4, we’ve proved Kepler’s third law—that the square of the orbital 
period is proportional to the cube of the semimajor axis—for the special case of a circular 
orbit, whose semimajor axis is identical to its radius.

Note that orbital speed and period are independent of the orbiting object’s mass m—  
another indication that all objects experience the same gravitational acceleration.  Astronauts, 
for example, have the same orbital parameters as the space station. That’s why astronauts 
seem weightless inside the station and why they don’t float away if they step outside.

ExampLE 8.2 Orbital Speed and period: The Space Station

The International Space Station is in a circular orbit at altitude 380 km.  
What are its orbital speed and period?

Interpret This problem involves the speed and period of a circular 
orbit about Earth.

Develop We can compute the orbit’s radius and then use  Equation 8.3,  
v = 1GM/r, to find the speed and Equation 8.4, T2 = 4p2r3/GM, to 
find the period because the orbit is circular.

evaluate As always, the distance is measured from the center of 
the gravitating body, so r in these equations is Earth’s 6.37-Mm radius 
plus the station’s 380-km altitude. So we have

v = BGME

r
= D16.67 * 10-11 N #m2/kg2215.97 * 1024 kg2

6.37 * 106 m + 380 * 103 m

 = 7.68 km/s

or about 17,000 mi/h. We can get the orbital period from the speed 
and radius, or directly from Equation 8.4, T = 24p2r3/GME. Using 
the numbers in the calculation for v gives T = 5.52 * 103 s, or about  
90 min.

assess Make sense? Both answers have the correct units, and 90 min  
seems reasonable for the period of an orbit at a small fraction of the 
Moon’s distance from Earth. Astronauts who want a circular orbit  
380 km up have no choice but this speed and period. In fact, for any 
“near-Earth” orbit, with altitude much less than Earth’s radius, the 
 orbital period is about 90 min. If there were no air resistance and if 
you could throw a baseball fast enough, it too would go into orbit, 
skimming Earth’s surface with a roughly 90-min period. ■

Example 8.2 shows that the near-Earth orbital period is about 90 min. The Moon, on the 
other hand, takes 27 days to complete its nearly circular orbit. So there must be a distance 
where the orbital period is 24 h—the same as Earth’s rotation. A satellite at this distance 
will remain fixed with respect to Earth’s surface provided its orbit is parallel to the equator. 
TV, weather, and communication satellites are often placed in such a geostationary orbit.

M08_WOLF4752_03_SE_C08.indd   133 17/06/15   6:56 PM



134 Chapter 8 Gravity

Elliptical Orbits
Using his laws of motion and gravity, Newton was able to prove Kepler’s assertion that 
the planets move in elliptical paths with the Sun at one focus. Circular orbits represent the 
special case where the two foci of the ellipse coincide, so the distance from the gravitating 
center remains constant. Most planetary orbits are nearly, but not quite, circular; Earth’s 
distance from the Sun, for exam ple, varies by about 3% throughout the year. But the or-
bits of comets and other smaller bodies are often highly elliptical (Fig. 8.6). Their orbital 
speeds vary, as they gain speed “falling” toward the Sun, whip quickly around the Sun 
at the point of closest approach (perihelion), and then “climb” ever more slowly to their 
most distant point (aphelion) before returning.

In Chapter 3, we showed that the trajectory of a projectile is a parabola. But our deri-
vation neglected Earth’s curvature and the associated variation in g with altitude. In fact, 
a projectile is just like any orbiting body. If we neglect air resistance, it too describes an 
elliptical orbit with Earth’s center at one focus. Only for trajectories whose height and 
range are small compared with Earth’s radius are the true elliptical path and the parabola 
of Chapter 3 generally indistinguishable (Fig. 8.7).

Are missiles and baseballs really in orbit? Yes. But their orbits happen to intersect 
Earth’s surface. At that point, nongravitational forces put an end to orbital motion. If Earth 
suddenly shrank to the size of a grapefruit (but kept the same mass), a baseball would con-
tinue happily in orbit, as the dashed continuation of the smaller orbit in Fig. 8.7 suggests. 
Newton’s ingenious intuition was correct: Barring air resistance, there’s truly no difference 
between the motion of everyday objects near Earth and the motion of celestial objects.

Open Orbits
With elliptical and circular orbits, the motion repeats indefinitely because the orbit is a 
closed path. But closed orbits aren’t the only possibility. Imagine again Newton’s thought 
experiment—only now fire the projectile faster than necessary for a circular orbit (Fig. 8.8). 
The projectile goes farther from Earth than before, describing an ellipse that’s closest to 
Earth at the launch site. Faster, and the ellipse gets more elongated. But with great enough 
initial speed, the projectile describes a hyperbolic trajectory that takes it ever farther from 
Earth. We’ll see in the next section how energy determines the type of orbit.

GOT IT? 8.2 Suppose the paths in Fig. 8.8 are the paths of four projectiles. Rank 
each path (circular, elliptical, parabolic, and hyperbolic) according to the initial speed of 
the corresponding projectile. Assume all are launched from their common point at the top 
of the figure.

ExampLE 8.3 Geostationary Orbit: Finding the altitude

What altitude is required for geostationary orbit?

Interpret Here we’re given an orbital period—24 h or 86,400 s—and  
asked to find the corresponding altitude for a circular orbit.

Develop Equation 8.4, T2 = 4p2r3/GM, relates the period T and 
distance r from Earth’s center. Our plan is to solve for r and then sub-
tract Earth’s radius to find the altitude (distance from the surface).

evaluate Solving for r, we get

 r = aGMET2

4p2 b
1/3

 = c 16.67 * 10-11 N #m2/kg2215.97 * 1024 kg218.64 * 104 s22

4p2 d
1/3

 = 4.22 * 107 m

or 42,200 km from Earth’s center. Subtracting Earth’s radius then 
gives an altitude of about 36,000 km, or 22,000 miles.

assess Make sense? This is a lot higher than the 90-min low-Earth 
orbit, but a lot lower than the Moon’s 384,000 km distance. Our 
 answer defines one of the most valuable pieces of “real estate” in 
space—a place where satellites appear suspended over a fixed spot 
on Earth. Every TV dish antenna points to such a  satellite, positioned 
22,000 mi over the equator. A more  careful calculation would use 
Earth’s so-called sidereal rotation period,  measured with respect to the 
distant stars rather than the Sun. Because Earth isn’t a perfect sphere, 
geostationary satellites drift slightly, and therefore they need to fire 
small rockets every few weeks to stay in position. ■

Figure 8.6 Orbits of most known comets, like 
the one shown here, are highly elliptical.

Figure 8.7 Projectile trajectories are actually 
elliptical.

This section
approximates
a parabola.

Focus is Earth’s center.

Figure 8.8 Closed and open orbits.

Open
(hyperbola)

Borderline
(parabola)Closed

(circle)

Closed (ellipse)
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8.4 Gravitational Energy
How much energy does it take to boost a satellite to geostationary altitude? Our simple 
answer mgh won’t do here, since g varies substantially over the distance involved. So, as 
we found in Chapter 7, we have to integrate to determine the potential energy.

Figure 8.9 shows two points at distances r1 and r2 from the center of a gravitating mass M,  
in this case Earth. Equation 7.2 gives the change in potential energy associated with 
 moving a mass m from r1 to r2:

∆U12 = - L
r

2

r1

F
S # d r

!

Here the force points radially inward and has magnitude GMm/r2, while the path element 
dr

!
 points radially outward. Then F

S # dr
!

= -1GMm/r22 dr, where the minus sign comes 
from the factor cos 180° in the dot product of oppositely directed vectors. This minus sign 
cancels the minus sign in the expression above for ∆U12, so here the potential energy 
 difference becomes

 ∆U12 = L
r

2

r1

 
GMm

r2   dr = GMm L
r

2

r1

 r-2 dr = GMm 
r-1

-1
2 r2

r1

= GMm a 1
r1

-
1
r2
b  (8.5)

Does this make sense? Yes: For r1 6 r2, ∆U12 is positive, showing that potential energy 
increases with height—consistent with our simpler result ∆U = mgh near Earth’s surface. 
Although we derived Equation 8.5 for two points on a radial line, Fig. 8.10 shows that it 
holds for any two points at distances r1 and r2 from the gravitating center.

Figure 8.9 Finding the potential-energy 
change requires integration.

F
S

r1 r2

drm
M

u

Figure 8.10 Gravity is conservative, so we can 
use any path to evaluate the potential-energy 
change. Only the radial part of the path con-
tributes to ∆U.

Since altitude doesn’t
change, ∆U = 0
on this path c

cso ∆U12 is
the same as if
we start here.

1

2

ExampLE 8.4 Gravitational potential Energy: Steps to the moon

Materials to construct an 11,000-kg lunar observatory are boosted from Earth to geostationary 
 orbit. There they are assembled and then launched to the Moon, 384,400 km from Earth.  Compare 
the work that must be done against Earth’s gravity on the two legs of the trip.

Interpret This problem asks about work done against gravity, a conservative force.

Develop As we saw in Chapter 7, the work done against a conservative force is equal to the 
change in potential energy; here that change is given by Equation 8.5. For the first leg, we have 
r1 = RE and then, from Example 8.3, r2 = 42,200 km.

evaluate Since the quantity GMEm that appears in Equation 8.5 will be used in both steps, we 
calculate it first: GMEm = 4.383 * 1018 N # m2. Then for the first step, we have

 W = ∆U12 = GMEm a 1
r1

-
1
r2
b

 = 14.383 * 1018 N # m22a 1

6.37 * 106 m
-

1

4.22 * 107 m
b

 = 5.842 * 1011 J

From geostationary orbit to the Moon, a similar calculation gives

 W = 14.383 * 1018 N # m22 a 1

4.22 * 107 m
-

1

3.844 * 108 m
b

 = 9.25 * 1010 J

assess Make sense? Even though the second leg is much longer, the rapid drop-off in the gravi-
tational force means that less work is required than for the shorter boost to geostationary alti-
tude. Our calculations here include only the work done against Earth’s gravity; additional energy 
would be required to attain a circular geostationary orbit. On the other hand, the Moon’s gravita-
tional attraction would lower the required energy somewhat. ■

The Zero of potential Energy
Equation 8.5 has an interesting feature: The potential-energy difference remains finite even 
when the points are infinitely far apart, as you can see by setting either r1 or r2 to infinity. 
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136 Chapter 8 Gravity

Although the gravitational force always acts, it weakens so rapidly that its effect is finite over 
even infinite distances. This property makes it convenient to set the zero of potential energy 
when the two gravitating masses M and m are infinitely far apart. Setting r1 = ∞  and drop-
ping the subscript on r2, we then have an expression for the gravitational potential energy of 
a system comprising a mass m located a distance r from the center of another mass M.

 U1r2 = -  
GMm

r
  1gravitational potential energy2 (8.6)

The potential energy is negative because we chose U = 0 when r = ∞ . When the two 
masses are closer than infinitely far apart, the system has lower—hence negative— 
potential energy.

Knowing the gravitational potential energy allows us to apply the powerful conservation-
of-energy principle. Figure 8.11 shows the potential-energy curve given by Equation 8.6.  
Superposing three values of total energy E shows that orbits with E 6 0 have a turning 
point where they intersect the potential-energy curve, and are therefore closed. Orbits with 
E 7 0, in contrast, are open because they never intersect the curve and therefore extend 
to infinity.

Figure 8.11 A gravitational potential-energy 
curve. Distance is measured from the center of 
a gravitating object like a star or planet. Closed 
orbits, which occur when total energy E is less 
than 0, are elliptical or circular; orbits with 
E 7 0 are hyperbolas. The intermediate  
case E = 0 gives parabolic orbits.
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ExampLE 8.5 Conservation of Energy: Blast Off!

A rocket is launched vertically upward at 3.1 km/s. How high does it go?

Interpret This sounds like a problem from Chapter 2, but here we’ll 
see that the rocket rises high enough that we can’t ignore the varia-
tion in gravity. So the acceleration isn’t constant, and we can’t use the 
constant-acceleration equations of Chapter 2. But the conservation-of-
mechanical-energy principle lets us cut through those details, so we can 
apply the methods of Chapter 7. “How high does it go?” in the problem 
statement means we’re dealing with the initial launch state and a final 
state where the rocket is momentarily at rest at the top of its trajectory.

Develop Equation 7.6 describes conservation of mechanical en-
ergy: K + U = K0 + U0. Here we’re given speed v at the bottom, so 
K0 = 1

2  mv2. We’re going to be using Equation 8.6, U1r2 = -GM m/r, 
for potential energy, and that’s already established the zero of poten-
tial energy at infinity. So U0 isn’t zero but is given by Equation 8.6 
with r equal to Earth’s radius. Finally, at the top, K = 0 and U is 
also given by Equation 8.6, but now we don’t know r. Our plan is to 
solve for that r and from it get the rocket’s altitude. Figure 8.12 shows  
“before” and “after” diagrams with bar graphs, like those we intro-
duced in Chapter 7.

evaluate With our values for the kinetic and potential energies, the 
equation K + U = K0 + U0 becomes

-  
GMEm

r
= 1

2  mv0
2 -

GMEm

RE

where m is the rocket’s mass, r is the distance from Earth’s center at 
the peak, and Earth’s radius RE is the distance at launch. Solving for 
r gives

 r = a 1

RE
-

v0
2

2GME
b

-1

 = a 1

6.37 * 106 m
-

13100 m/s22

216.67 * 10-11 N # m2/kg2215.97 * 1024 kg2 b
-1

 = 6.90 Mm

Again, this is the distance from Earth’s center; subtracting Earth’s 
 radius then gives a peak altitude of 530 km.

assess Make sense? Yes. Our answer of 530 km is significantly 
greater than the 490 km you’d get assuming a potential-energy change 
of ∆U = mgh. That’s because the decreasing gravitational force lets the 
rocket go higher before all its kinetic energy becomes potential energy.

✓TIp All Conservation-of-Energy Problems Are the Same

This problem is essentially the same as throwing a ball straight up 
and solving for its maximum height  using U = mgh for potential 
energy. The only difference is the more complicated potential- 
energy function U = -GMm/r, used here because the variation in 
gravity is significant over the rocket’s trajectory. Recognize what’s 
common to all similar problems, and you’ll begin to see how phys-
ics really is based on just a few simple principles.

Figure 8.12 Diagrams for Example 8.5.
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Escape Speed
What goes up comes down, right? Not always! Figure 8.11 shows that when total energy is 
zero or greater, an object can escape infinitely far from a gravitating body, never to return. 
Consider an object of mass m at the surface of a gravitating body of mass M and radius r. 
The gravitational potential energy is given by Equation 8.6, U = -GMm/r. Toss the object 
upward with speed v, and there’s also kinetic energy 12  mv2. The total energy will be zero if

0 = K + U = 1
2 mv2 -

GMm
r

The speed v here that makes the total energy zero is called the escape speed because an 
object with this speed or greater has enough energy to escape forever from the gravitating 
body. Solving for v in the preceding equation gives the escape speed:

 vesc = A2GM
r
  1escape speed2 (8.7)

At Earth’s surface, vesc = 11.2 km/s. Earth-orbiting spacecraft have lower speeds. 
Moon-bound astronauts go at just under vesc, so if anything goes wrong (as with Apollo 13),  
they can return to Earth. Planetary spacecraft have speeds greater than vesc. The  Pioneer 
and Voyager missions to the outer planets gained enough additional energy in their 
 encounters with Jupiter that they now have escape speed relative to the Sun and will coast 
indefinitely through our galaxy. In 2012, Voyager 1 became the first human-made object 
to leave the Sun’s realm entirely, as it escaped the “bubble” created by the Sun’s magnetic 
field and entered interstellar space (see Fig. 8.13 and this chapter’s opening image).

Energy in Circular Orbits
In the special case of a circular orbit, kinetic and potential energies are related in a simple 
way. In Section 8.3, we found that the speed in a circular orbit is given by

v2 =
GM

r

where r is the distance from a gravitating center of mass M. So the kinetic energy of an 
object in circular orbit is

K = 1
2  mv2 =

GMm

2r

while potential energy is given by Equation 8.6:

U = -  
GMm

r

Comparing these two expressions shows that U = -2K  for a circular orbit. The total 
 energy is therefore

 E = U + K = -2K + K = -K (8.8a)

or, equivalently,

 E = 1
2 U = -  

GMm

2r
 (8.8b)

The total energy in these equations is negative, showing that circular orbits are bound 
 orbits. We stress that these results apply only to circular orbits; in elliptical orbits, there’s a 
continuous interchange between kinetic and potential energy as the orbiting object moves 
relative to the gravitating center.

Equation 8.8a shows that higher kinetic energy corresponds to lower total energy. This 
surprising result occurs because higher orbital speed corresponds to a lower orbit, with 
lower potential energy.

Figure 8.13 In 2012 Voyager 1 crossed into 
interstellar space. Voyager should continue 
sending data to Earth until about 2020.
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appLICaTIOn  Close Encounters

In 2013, Earth experienced two unusually close 
asteroid encounters. Although unrelated, they 
occurred within only 16 hours of each other. The 
larger of the two asteroids, dubbed 2012 DA

14
, 

passed within 35,000 km of Earth—less than 
one-tenth of the Earth–Moon distance and closer 
than geostationary satellites. With a mass of 
some 40 kt (kilotonnes) and speed of 12.7 km/s 
relative to Earth (29.9 km/s relative to the Sun), 
this one could have caused major damage had it 
struck Earth. Since 12.7 km/s is above Earth’s 
escape speed, 2012 DA

14
 could not be orbiting 

Earth. But, as you can show in Problem 64, its 
total energy relative to the Sun is negative, put-
ting it in a bound solar orbit. We can expect an-
other close approach of 2012 DA

14
 in the year 

2123. Sixteen hours before 2012 DA
14

’s clos-
est approach in 2013, a 12-kt asteroid entered 
Earth’s atmosphere over Siberia, moving at  
19.0 km/s relative to Earth and 35.5 km/s  relative 
to the Sun. It underwent a series of explosive 
fragmentations at altitudes ranging from 45 to  
30 km and then disintegrated into small pieces 
at 22 km altitude (see photo). Shock waves from 
these  explosions caused significant damage in  
the Russian city of Chelyabinsk and injured 
some 1600 people. The Chelyabinsk asteroid 
was the largest object to enter Earth’s atmos-
phere in over 100 years. As Problems 45 and 64 
show, it too was in a bound orbit about the Sun 
before its demise in Earth’s atmosphere.
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Astronauts heading for the International Space Station find themselves 
in the right circular orbit, but well behind the station. How should they 
maneuver to catch up?

evaluate To catch up, the astronauts will have to go faster than 
the space station. That means increasing their kinetic energy—and, 
as we’ve just seen, that corresponds to lowering their total energy. So 
they’ll need to drop into a lower orbit.

Figure 8.14 shows the  catch-up sequence. The astronauts fire their 
rocket backward, decreasing their energy and dropping briefly into a 
lower-energy elliptical orbit. They then fire their rocket to circularize 
the orbit. Now they’re in a  lower-energy but faster orbit than the space 
station. When they’re correctly positioned, they fire their rocket to 
boost themselves into a higher-energy elliptical orbit, then fire again 
to circularize that orbit in the vicinity of the station.

assess Our solution sounds counterintuitive—as if a car, to speed 
up, had to apply its brakes. But that’s what’s needed here, thanks to 
the interplay between kinetic and potential energy in circular orbits.

MakIng the connectIon Suppose the astronauts reach the space 
station’s 380-km altitude, but find themselves one-fourth of an  orbit 
behind the station. If the maneuver described above drops their 
 spacecraft into a 320-km circular orbit, how many orbits must they 
make before catching up with the station? Neglect the time involved in 
transferring between circular orbits.

evaluate Applying Equation 8.4 gives periods T1 = 92.0 min for 
the space station and T2 = 90.8 min for the astronauts in their lower 
orbit. So with each orbit the astronauts gain 1.2 min on the station. 
They’ve got to make up one-fourth of an orbit, or 23 min. That will 
take 123 min2/11.2 min/orbit2 = 19 orbits, or just over a day.

GOT IT? 8.3 Two identical spacecraft A and B are in circular orbits about Earth, 
with B at a higher altitude. Which of the following statements are true? (a) B has greater 
total energy; (b) B is moving faster; (c) B takes longer to complete its orbit; (d) B has 
greater potential energy; (e) a larger proportion of B’s total energy is potential energy

8.5 The Gravitational Field
Our description of gravity so far suggests that a massive body like Earth somehow “reaches 
out” across empty space to pull on objects like falling apples, satellites, or the Moon. 
This view—called action-at-a-distance—has bothered both physicists and philosophers 
for centuries. How can the Moon, for example, “know” about the presence of the distant 
Earth?

An alternative view holds that Earth creates a gravitational field and that objects 
 respond to the field in their immediate vicinity. The field is described by vectors that give 
the force per unit mass that would arise at each point if a mass were placed there. Near 
Earth’s surface, for instance, the gravitational field vectors point vertically downward and 
have magnitude 9.8 N/kg. We can express this field vectorially by writing

 g
!

= -gjn  1gravitational field near Earth>s surface2 (8.9)

COnCEpTUaL ExampLE 8.1 Space maneuvers

Figure 8.14 Playing catch-up with the space station.

(b)

(a)
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where we’ve assumed a coordinate system with the y-axis upward. More generally, the 
field points toward a spherical gravitating center, and its strength decreases inversely with 
the square of the distance:

 g
!

= -  
GM

r2  rn  1gravitational field of a spherical mass M2 (8.10)

where  rn  is a unit vector that points radially outward. Figure 8.15 shows pictorial repre-
sentations of Equations 8.9 and 8.10. You can show that the units of gravitational field 
(N/kg) are equivalent to those of acceleration 1m/s22, so the field is really just a vectorial 
representation of g, the local acceleration of gravity.

What do we gain by this field description? As long as we deal with situations where 
nothing changes, the action-at-a-distance and field descriptions are equivalent. But what 
if, for example, Earth suddenly gains mass? How does the Moon know to adjust its orbit? 
Under the field view, its orbit doesn’t change immediately; instead, it takes a small but 
nonzero time for the information about the more massive Earth to propagate out to the 
Moon. The Moon always responds to the gravitational field in its immediate vicinity, and  
it takes a short time for the field itself to change. That description is consistent with 
 Einstein’s notion that instantaneous transmission of information is impossible; the 
 action-at-a-distance view is not.

More generally, the field view provides a powerful way of describing interactions in 
physics. We’ll see fields again when we study electricity and magnetism, and you’ll find 
that fields aren’t just mathematical or philosophical conveniences but are every bit as real 
as matter itself.

Figure 8.15 Gravitational field vectors at points (a) near Earth’s surface and (b) on a larger scale.

(a)

(b)

(a)

(b)

If the gravitational field were uniform, all parts of a freely falling object would 
experience exactly the same acceleration. But gravity does vary, and the re-
sult is a force—not from gravity itself but from changes in gravity with posi-
tion—that tends to stretch or compress an object. Ocean tides result from this 
tidal force, as the nonuniform gravitational forces of Sun and Moon stretch 
the oceans and create bulges that move across Earth as the planet rotates. The 
figure shows that the greatest force is on the ocean nearest the Moon, causing 
one tidal bulge. The solid Earth experiences an intermediate force, pulling it 
away from the ocean on the far side. The water that’s “left behind” forms a 
second bulge opposite the Moon. The bulges shown are highly exaggerated. 
Furthermore, shoreline effects and the differing relative positions of the Moon 
and Sun complicate this simple picture that suggests two equal high tides and 

two equal low tides a day. Tidal forces also cause internal heating of satellites 
like Jupiter’s moon Io and contribute to the formation of planetary rings.

appLICaTIOn Tides

cand greatest
on the near
ocean.

Force is weakest
on the far
ocean c

This results in
two tidal bulges.

Earth

Moon
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Chapter 8 Summary
Big Idea

The big idea here is universal gravitation—an attractive force that acts between all matter 
with a strength that depends directly on the product of two interacting masses and inversely on 
the square of the distance between them. Gravitation is responsible for the familiar behavior 
of falling objects and also for the orbits of planets and satellites. Depending on energy, orbits 
may be closed (elliptical/circular) or open (hyperbolic/parabolic).

Gravity governs
both the falling
apple and the
orbiting Moon.

Open
(hyperbola)

Borderline
(parabola)

Closed
(ellipse>
circle)

Key Concepts and Equations

Mathematically, Newton’s law of universal gravitation describes the attractive force F between two 
masses m1 and m2 located a distance r apart:

F =
Gm1m2

r2   1universal gravitation2

This equation applies to point masses of negligible size and to spherically symmetric masses of any size. It’s an excellent approximation for any 
objects whose size is much smaller than their separation. In all cases, r is measured from the centers of the gravitating objects.

F
S

F
S

r

m1 m2

Because the strength of gravity varies with distance, potential-energy changes over large distances 
aren’t just a product of force and distance. Integration shows that the potential-energy change ∆U 
involved in moving a mass m originally a distance r1 from the center of a mass M to a distance r2 is

∆U = GMm a 1
r1

-
1
r2
b  1change in potential energy2

With gravity, it’s convenient to choose the zero of potential energy at infinity; then

U = -  
GMm

r
  1potential energy, U = 0 at infinity2

for the potential energy of a system comprising a mass m located a distance r from the center of 
another mass M.

Distance, r

Earth
Satellite

U = 0

rPo
te

nt
ia

l e
ne

rg
y,

 U
It would take this
much energy for
the satellite to
escape in�nitely
far from Earth.

The satellite’s potential
energy is negative.

applications

A total energy—kinetic plus potential—of zero marks the  dividing 
line between closed and open orbits. An object located a distance r 
from a gravitating mass M must have at least the escape speed to 
achieve an open orbit and escape M’s vicinity forever:

vesc = A2GM

r

Circular orbits are readily analyzed using Newton’s laws and concepts 
from circular motion. A circular orbit of radius r about a mass M has a 
period given by

T2 =
4p2r3

GM

Kinetic and potential energies are related by U = -2K. Total  energy is 
negative, as appropriate for a closed orbit, and the object actually moves 
faster the lower its total energy.The gravitational field  concept 

provides a way to describe  gravity 
that avoids the troublesome ac-
tion-at-a-distance. A gravitating 
mass creates a field in the space 
around it, and a second mass re-
sponds to the field in its immedi-
ate vicinity.

F
S

Gravitational �eld

Force arises from �eld
at Moon’s location.

A special orbit is the geostationary orbit, parallel to Earth’s equator 
at an altitude of about 36,000 km. Here the orbital period is 24 h, so a 
satellite in geostationary orbit appears from Earth’s surface to be fixed 
in the sky. TV, communications, and weather satellites use geostationary 
orbits.
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Exercises and Problems 141

For homework assigned on MasteringPhysics, go to www.masteringphysics.com

BIO Biology and/or medicine-related problems DATA Data problems ENV Environmental problems CH Challenge problems Comp Computer problems

22. An astronaut hits a golf ball horizontally from the top of a lunar 
mountain so fast that it goes into circular orbit. What’s its orbital 
period?

23. The Mars Reconnaissance Orbiter circles the red planet with a 
112-min period. What’s the spacecraft’s altitude?

Section 8.4 Gravitational Energy
24. Earth’s distance from the Sun varies from 147 Gm at perihelion 

to 152 Gm at aphelion because its orbit isn’t quite circular. Find 
the change in potential energy as Earth goes from perihelion to 
aphelion.

25. So-called suborbital missions take scientific instruments into 
space for brief periods without the expense of getting into orbit; 
their trajectories are often simple “up and down” vertical paths. 
How much energy does it take to launch a 230-kg instrument on 
a vertical trajectory that peaks at 1800 km altitude?

26. A rocket is launched vertically upward from Earth’s surface at 
5.1 km/s. What’s its maximum altitude?

27. What vertical launch speed is necessary to get a rocket to an alti-
tude of 1100 km?

28. Find the energy necessary to put 1 kg, initially at rest on Earth’s 
surface, into geostationary orbit.

29. What’s the total mechanical energy associated with Earth’s or-
bital motion?

30. The escape speed from a planet of mass 2.9 * 1024 kg is 7.1 km/s. 
Find the planet’s radius.

31. Determine escape speeds from (a) Jupiter’s moon Callisto and 
(b) a neutron star, with the Sun’s mass crammed into a sphere of 
radius 6.0 km. See Appendix E for relevant data.

32. To what radius would Earth have to shrink, with no change in 
mass, for escape speed at its surface to be 30 km/s?

problems
33. The gravitational acceleration at a planet’s surface is 22.5 m/s2. 

Find the acceleration at an altitude equal to half the planet’s ra-
dius.

34. One of the longest-standing athletic records is Cuban Javier  
Sotomayor’s 2.45-m high jump. How high could Sotomayor 
jump on (a) Mars and (b) Earth’s Moon?

35. You’re the navigator on a spaceship studying an unexplored 
planet. Your ship has just gone into a circular orbit around the 
planet, and you determine that the gravitational acceleration at 
your orbital altitude is half what it would be at the surface. What 
do you report for your altitude, in terms of the planet’s radius?

36. If you’re standing on the ground 15 m directly below the center 
of a spherical water tank containing 4 * 106 kg of water, by what 
fraction is your weight reduced due to the water’s gravitational 
attraction?

37. Given the Moon’s orbital radius of 384,400 km and period of 
27.3 days, calculate its acceleration in its circular orbit, and com-
pare with the acceleration of gravity at Earth’s surface. Show 
that the Moon’s acceleration is lower by the ratio of the square 
of Earth’s radius to the square of the Moon’s orbital radius, thus 
confirming the inverse-square law for the gravitational force.

38. Equation 7.9 relates force to the derivative of potential  energy. 
Use this fact to differentiate Equation 8.6 for gravitational 
 potential energy, and show that you recover Newton’s law of 
gravitation.

bio

For thought and Discussion
 1. What do Newton’s apple and the Moon have in common?
 2. Explain the difference between G and g.
 3. When you stand on Earth, the distance between you and Earth is 

zero. So why isn’t the gravitational force infinite?
 4. The force of gravity on an object is proportional to the object’s 

mass, yet all objects fall with the same gravitational acceleration. 
Why?

 5. A friend who knows nothing about physics asks what keeps an 
orbiting satellite from falling to Earth. Give an answer that will 
satisfy your friend.

 6. Could you put a satellite in an orbit that keeps it stationary over 
the south pole? Explain.

 7. Why are satellites generally launched eastward and from low 
latitudes? (Hint: Think about Earth’s rotation.)

 8. Given Earth’s mass, the Moon’s distance and orbital period, and 
the value of G, could you calculate the Moon’s mass? If yes, 
how? If no, why not?

 9. How should a satellite be launched so that its orbit takes it over 
every point on the (rotating) Earth?

10. Does the gravitational force of the Sun do work on a planet in a 
circular orbit? In an elliptical orbit? Explain.

exercises and problems
Exercises

Section 8.2 Universal Gravitation
11. Space explorers land on a planet with the same mass as Earth, but 

find they weigh twice as much as they would on Earth. What’s 
the planet’s radius?

12. Use data for the Moon’s orbit from Appendix E to compute the 
Moon’s acceleration in its circular orbit, and verify that the result 
is consistent with Newton’s law of gravitation.

13. To what fraction of its current radius would Earth have to shrink 
(with no change in mass) for the gravitational acceleration at its 
surface to triple?

14. Calculate the gravitational acceleration at the surface of (a) Mer-
cury and (b) Saturn’s moon Titan.

15. Two identical lead spheres with their centers 14 cm apart attract 
each other with a 0.25@mN force. Find their mass.

16. What’s the approximate value of the gravitational force between 
a 67-kg astronaut and a 73,000-kg spacecraft when they’re 84 m 
apart?

17. A sensitive gravimeter is carried to the top of New York’s new 
One World Trade Center, where its reading for the acceleration 
of gravity is 1.67 mm/s2 lower than at street level. Find the build-
ing’s height.

Section 8.3 Orbital Motion
18. At what altitude will a satellite complete a circular orbit of Earth 

in 2.0 h?
19. Find the speed of a satellite in geostationary orbit.
20. Mars’s orbit has a diameter 1.52 times that of Earth’s orbit. How 

long does it take Mars to orbit the Sun?
21. Calculate the orbital period for Jupiter’s moon Io, which orbits 

4.22 * 105 km from the planet’s center.
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142 Chapter 8 Gravity

52. Two meteoroids are 250,000 km from Earth’s center and moving 
at 2.1 km/s. One is headed straight for Earth, while the other is on 
a path that will come within 8500 km of Earth’s center (Fig. 8.16). 
Find the speed of (a) the first meteoroid when it strikes Earth and 
(b) the second meteoroid at its closest approach. (c) Will the sec-
ond meteoroid ever return to Earth’s vicinity?

8500 km

Figure 8.16 Problem 52

53. Neglecting Earth’s rotation, show that the energy needed to 
launch a satellite of mass m into circular orbit at altitude h is 

aGMEm

RE
ba RE + 2h

21RE + h2 b .

54. A projectile is launched vertically upward from a planet of mass 
M and radius R; its initial speed is 22 times the escape speed. 
Derive an expression for its speed as a function of the distance r 
from the planet’s center.

55. A spacecraft is in circular orbit 5500 km above Earth’s surface. 
How much will its altitude decrease if it moves to a new circular 
orbit where (a) its orbital speed is 10% higher or (b) its orbital 
period is 10% shorter?

56. Two meteoroids are 160,000 km from Earth’s center and heading 
straight toward Earth, one at 10 km/s, the other at 20 km/s. At 
what speeds will they strike Earth?

57. Two rockets are launched from Earth’s surface, one at 12 km/s 
and the other at 18 km/s. How fast is each moving when it crosses 
the Moon’s orbit?

58. A satellite is in an elliptical orbit at altitudes ranging from 230 to 
890 km. At its highest point, it’s moving at 7.23 km/s. How fast is 
it moving at its lowest point?

59. A missile’s trajectory takes it to a maximum altitude of 1200 km. 
If its launch speed is 6.1 km/s, how fast is it moving at the peak 
of its trajectory?

60. A 720-kg spacecraft has total energy -0.53 TJ and is in circular 
orbit around the Sun. Find (a) its orbital radius, (b) its kinetic 
energy, and (c) its speed.

61. Mercury’s orbital speed varies from 38.8 km/s at aphelion to  
59.0 km/s at perihelion. If the planet is 6.99 * 1010 m from the 
Sun’s center at aphelion, how far is it at perihelion?

62. Show that the form ∆U = mg ∆r follows from Equation 8.5  
when r1 ≃ r2. [Hint: Write r2 = r1 + ∆r  and apply the  
 binomial approximation (Appendix A).]

63. Two satellites are in geostationary 
orbit but in diametrically  opposite 
positions (Fig. 8.17). In order 
to catch up with the other, one 
satellite descends into a lower 
circular orbit (see Conceptual 
Example 8.1 for a description of 
this maneuver). How far should 
it descend if it’s to catch up in 
10 orbits? Neglect rocket firing 
times and time spent moving between the two circular orbits.

CH

CH

CH

CH

CH

39. During the Apollo Moon landings, one astronaut remained with 
the command module in lunar orbit, about 130 km above the sur-
face. For half of each orbit, this astronaut was completely cut off 
from the rest of humanity as the spacecraft rounded the far side 
of the Moon. How long did this period last?

40. A white dwarf is a collapsed star with roughly the Sun’s mass 
compressed into the size of Earth. What would be (a) the orbital 
speed and (b) the orbital period for a spaceship in orbit just above 
the surface of a white dwarf?

41. Given that our Sun orbits the galaxy with a period of 200 My at 
2.6 * 1020 m from the galactic center, estimate the galaxy’s mass. 
Assume (incorrectly) that the galaxy is essentially spherical and 
that most of its mass lies interior to the Sun’s orbit.

42. You’re preparing an exhibit for the Golf Hall of Fame, and you 
 realize that the longest golf shot in history was Astronaut Alan 
 Shepard’s lunar drive. Shepard, swinging single-handed with a 
golf club  attached to a lunar sample scoop, claimed his ball went 
“miles and miles.” The record for a single-handed golf shot on 
Earth is 257 m. Could Shepard’s ball really have gone “miles 
and miles”? Assume the ball’s initial speed is independent of 
 gravitational acceleration.

43. Exact solutions for gravitational problems involving more than 
two bodies are notoriously difficult. One solvable problem in-
volves a configuration of three equal-mass objects spaced in an 
equilateral triangle. Forces due to their mutual gravitation cause 
the configuration to rotate. Suppose three identical stars, each of 
mass M, form a triangle of side L. Find an expression for the pe-
riod of their orbital motion.

44. Satellites A and B are in circular orbits, with A four times as far 
from Earth’s center as B. How do their orbital periods compare?

45. The asteroid that exploded over Chelyabinsk, Russia, in 2012 
(see Application on page 137) was moving at 35.5 km/s relative 
to the Sun just before it entered Earth’s atmosphere. Calcula-
tions based on orbital observations show that it was moving at 
11.2 km/s at aphelion (its most distant point from the Sun). Find 
the distance at aphelion, expressed in astronomical units (1 AU is 
the average distance of Earth from the Sun; see Appendix E).

46. We still don’t have a permanent solution for the disposal of radi-
oactive waste. As a nuclear waste specialist with the Department 
of Energy, you’re asked to evaluate a proposal to shoot waste 
canisters into the Sun. You need to report the speed at which a 
canister, dropped from rest in the vicinity of Earth’s orbit, would 
hit the Sun. What’s your answer?

47. In November 2013, Comet ISON reached its perihelion  (closest ap-
proach to the Sun) at 1.87 Gm from the Sun’s center (only 1.17 Gm  
from the solar surface); at that point ISON was moving at  
378 km/s relative to the Sun. Do a calculation to determine 
whether its orbit was elliptical or hyperbolic. (Most of ISON’s co-
metary nucleus was destroyed in its close encounter with the Sun.)

48. Neglecting air resistance, to what height would you have to fire 
a rocket for the constant-acceleration equations of Chapter 2 to 
give a height in error by 1%? Would those equations overesti-
mate or underestimate the height?

49. Show that an object released from rest very far from Earth 
reaches Earth’s surface at essentially escape speed.

50. By what factor must an object’s speed in circular orbit be in-
creased to reach escape speed from its orbital altitude?

51. You’re in charge of tracking celestial objects that might pose a 
danger to Earth. Astronomers have discovered a new comet that’s 
moving at 53 km/s as it crosses Earth’s orbit. Determine whether 
the comet will again return to Earth’s vicinity.

CH

ENV

Figure 8.17 Problem 63
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Passage Problems
The Global Positioning  System (GPS) 
uses a “constellation” of some 30 sat-
ellites to provide  accurate positioning 
for any point on Earth (Fig. 8.19). GPS 
receivers time radio signals traveling 
at the speed of light from three of the 
satellites to find the receiver’s posi-
tion. Signals from one or more addi-
tional satellites provide  corrections, 
eliminating the need for high-accura-
cy clocks in  individual GPS receivers. 
GPS satellites are in circular orbits at 
20,200 km altitude.

72. What’s the approximate orbital period of GPS satellites?
a. 90 min
b. 8 h
c. 12 h
d. 24 h
e. 1 week

73. What’s the approximate speed of GPS satellites?
a. 9.8 m/s
b. 500 m/s
c. 1.7 km/s
d. 4 km/s
e. 12 km/s

74. What’s the approximate escape speed at GPS orbital distance?
a. 4 km/s
b. 5.5 km/s
c. 6.3 km/s
d. 9.8 km/s
e. 11 km/s

75. The current generation of GPS satellites has masses of 844 kg. 
What’s the approximate total energy of such a satellite?
a. 6 GJ
b. 3 GJ
c. -3 GJ
d. -6 GJ
e. -8 GJ

answers to Chapter Questions
answer to Chapter Opening Question
Voyager’s total energy—kinetic energy plus potential energy 
 associated with the Sun’s gravitational field—is greater than zero. Put 
 another way, Voyager has escape speed relative to the Sun.

answers to GOT IT? Questions
 8.1   (d) Quadrupled. If the original distance were r, the original force 

would be proportional to 1/r2. At half that distance, the force is 
proportional to 1/1r/222 = 4/r2.

 8.2   Hyperbolic 7 parabolic 7 elliptical 7 circular
 8.3   (a), (c), and (d). Since B has higher total energy, it must have 

lower kinetic energy and is therefore moving slower. B is farther 
from the gravitating body, so its potential energy is higher—still 
 negative, but less so than A’s. For circular orbits, the ratio of poten-
tial energy to total energy is always the same—namely, U = 2E.

64. The two asteroids described in the Application on page 137 both 
set records for being the largest objects of their sizes to come 
as close to Earth in recent times as they did. Use appropriate 
data given in the Application to find the total energy for each 
 asteroid—that is, each asteroid’s kinetic energy plus potential 
energy in the asteroid–Sun system. What do your results show 
about the asteroids’ orbits?

65. A spacecraft is orbiting a spherical asteroid when it deploys a 
probe that falls toward the asteroid’s surface. The spacecraft ra-
dios to Earth the probe’s position and its acceleration; the data 
are shown in the table below. Determine a quantity that, when 
you plot a against it, should yield a straight line. Plot the data, 
determine a best-fit line, and use its slope to determine the aster-
oid’s mass.

Probe position r (km 
from asteroid’s center)

80.0 55.0 40.0 35.0 30.0

Acceleration a (mm/s2) 0.172 0.353 0.704 0.858 1.18

66. We derived Equation 8.4 on the 
assumption that the massive gravi-
tating center remains fixed. Now 
consider two objects with equal 
mass M orbiting each other, as 
shown in Fig. 8.18. Show that 
the orbital period is given by 
T2 = 2p2d3/GM, where d is the 
distance between the objects.

67. Tidal effects in the Earth–Moon system cause the Moon’s or-
bital period to increase at a current rate of about 35 ms per 
century. Assuming the Moon’s orbit is circular, to what rate of 
change in the Earth–Moon distance does this correspond? (Hint: 
 Differentiate Kepler’s third law, Equation 8.4, and consult 
 Appendix E.)

68. As a member of the 2040 Olympic committee, you’re consider-
ing a new sport: asteroid jumping. On Earth, world-class high 
jumpers routinely clear 2 m. Your job is to make sure athletes 
jumping from asteroids will return to the asteroid. Make the sim-
plifying assumption that asteroids are spherical, with average 
density 2500 kg/m3. For safety, make sure even a jumper capable 
of 3 m on Earth will return to the surface. What do you report for 
the minimum asteroid diameter?

69. The Olympic Committee is keeping you busy! You’re now asked 
to consider a proposal for lunar hockey. The record speed for a 
hockey puck is 178 km/h. Is there any danger that hockey pucks 
will go into lunar orbit?

70. Tidal forces are proportional to the variation in gravity with po-
sition. By differentiating Equation 8.1, estimate the ratio of the 
tidal forces due to the Sun and the Moon. Compare your answer 
with the ratio of the gravitational forces that the Sun and Moon 
exert on Earth. Use data from Appendix E.

71. Spacecraft that study the Sun are often placed at the so-called L1 
Lagrange point, located sunward of Earth on the Sun–Earth line. 
L1 is the point where Earth’s and Sun’s gravity together  produce 
an orbital period of one year, so that a spacecraft at L1 stays fixed 
relative to Earth as both planet and spacecraft orbit the Sun. This 
placement ensures an uninterrupted view of the Sun, without  being 
periodically eclipsed by Earth as would occur in Earth orbit. Find 
L1’s location relative to Earth. (Hint: This problem calls for numeri-
cal methods or solving a higher-order polynomial equation.)

DATA
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Figure 8.18 Problem 66

Figure 8.19 GPS satellites 
 (Passage Problems 72–75)

20,200 km
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So far we’ve generally treated objects as point particles, ignoring the fact that most are 
composed of smaller parts. In Chapter 6’s introduction of energy, however, we needed also 

to develop the idea of a system that might comprise more than one object, and in Chapter 
7 we found that the concept of potential energy necessarily required us to consider systems 
of at least two interacting particles. Here we deal explicitly with systems of many particles. 
These include rigid bodies—objects such as baseballs, cars, and planets whose constituent 
particles are stuck together in fixed orientations—as well as systems like human bodies, ex-
ploding fireworks, or flowing rivers, whose parts move relative to one another. In subsequent 
chapters we’ll look at specific instances of many-particle systems, including the rotational 
motion of rigid bodies (Chapter 10) and the behavior of fluids (Chapter 15).

9.1 Center of Mass
The motion of the dancer in the photo to the left is complex, with each part of his body 
moving on a different path. But the superimposed curve shows one point following the 
parabola we expect of a projectile (Section 3.5). This point is the center of mass, an 
 average position of all the mass making up the dancer. Since the net force on the dancer as  

How You’ll Use It
■ Much of what you learn here will have 

analogies in the rotating systems 
you’ll study in Chapters 10 and 11.

■ The technique you learn for setting 
up integrals will be useful in diverse 
physics contexts, especially in  
Chapter 10 and again in Chapter 22.

■ Center of mass, the momentum of a 
system, and momentum conservation 
will remain important concepts even 
as you move beyond Newtonian 
physics in Part 6.

What You’re Learning
■ Here you’ll study systems consisting of 

two or more particles, beginning with 
a system’s center of mass—a point 
where, for the purposes of Newton’s 
laws, a system behaves as though all 
its mass were concentrated.

■ You’ll learn to set up and evaluate an 
integral, here for finding a system’s 
center of mass.

■ You’ll learn to evaluate the 
momentum of a system, and you’ll see 
that momentum is conserved in the 
absence of external forces.

■ You’ll study collisions between objects, 
both energy-conserving elastic 
collisions and inelastic collisions in 
which some mechanical energy is lost.

■ You’ll learn how complicated collision 
problems can be made easier by working 
in the center-of-mass reference frame.

What You Know
■ You know Newton’s second law not 

only in the form F
S

= ma
!
 but also in 

Newton’s original form relating force 
to the rate of change of momentum: 
F
S

= d p
!
/dt.

■ You understand conservation of 
mechanical energy: When only 
conservative forces act, the sum of a 
system’s kinetic and potential energy 
remains constant.

■ You’ve seen the concept of a system, 
and you’ve had practice in defining 
systems for purposes of applying 
energy conservation.

■ You know that nonconservative forces 
result in a loss of mechanical energy.

■ You recognize that Newton’s third law 
requires that forces between interacting 
objects come in pairs with equal 
magnitudes and opposite directions.

Most parts of the dancer’s body undergo complex 
motions during this jump, yet one special point 
follows the parabolic trajectory of a projectile. 
What is that point, and why is it special?
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9.1 Center of Mass 145

a whole is gravity, the photo, with its parabolic arc, suggests that the center of mass obeys 
Newton’s second law, F

S
net = Ma

!
cm, where M is the dancer’s total mass and a

!
cm is the ac-

celeration of the center of mass. (We’ll use the subscript cm for quantities associated with 
the center of mass.) To find the center of mass, we therefore need to locate a point whose 
acceleration obeys F

S
net = Ma

!
cm, with F

S
net the net force on the entire system.

Consider a system of many particles. To find the center of mass, we want an equation 
like Newton’s second law that involves the total mass of the system and the net force on the 
entire system. If we apply Newton’s second law to the ith particle in the system, we have

F
S

i = mi a
!
i = mi 

d2r
!
i

dt2 =
d2mi r

!
i

dt2

where F
S

i is the net force on the particle, mi is its mass, and we’ve written the acceleration 
a
!
i as the second derivative of the position r

!
i. The total force on the system is the sum of the 

forces acting on all N particles. We write this sum compactly using the summation symbol g :

F
S

total = a
N

i=1
 F

S
i = a

N

i=1
 
d2mi r

!
i

dt2

where the sum runs over all particles composing the system, from i = 1 to N. But the sum 
of derivatives is the derivative of the sum, so

F
S

total =
d21a

 

mi r
!
i2

dt2

We can now put this equation in the form of Newton’s second law. Multiplying and 
 dividing the right-hand side by the total mass M = g  mi, and distributing this constant M 
through the differentiation, we have

 F
S

total = M
d2

dt2 a
a  mi r

!
i

M
b  (9.1)

Equation 9.1 has a form like Newton’s law applied to the total mass if we define

 r
!
cm = a  mi r

!
i

M
  1center of mass2 (9.2)

Then the derivative in Equation 9.1 becomes d2 r
!
cm /dt2, which we recognize as the 

 center-of-mass acceleration, a
!
cm. So now Equation 9.1 reads F

S
total = M a

!
cm.  This is 

 almost Newton’s law—but not quite, because the force here is the sum of all the forces 
acting on all the particles of the system, and we want just the net external force—the net 
force applied from outside the system. We can write the force F

S
total as

F
S

total = a  F
S

ext + a  F
S

int

where g  F
S

ext is the sum of all the external forces and g  F
S

int the sum of the internal forces. 
According to Newton’s third law, each of the internal forces has an equal but oppositely 
directed force that itself acts on a particle of the system and is therefore included in the 
sum g  F

S
int. (Each external force is also part of a third-law pair, but forces paired with the 

external forces act outside the system and therefore aren’t included in the sum.) Added 
vectorially, the internal forces therefore cancel in pairs, so g  F

S
int = 0

S
, and the force F

S
total  

in Equation 9.1 is just the net external force applied to the system. So the point r
!
cm defined 

in Equation 9.2 does obey Newton’s law, written in the form

 F
S

net ext = M a
!
cm = M 

d2 r
!
cm

dt2  (9.3)

where F
S

net ext is the net external force applied to the system and M is the total mass.
We’ve defined the center of mass r

!
cm so we can apply Newton’s second law to the  entire 

system rather than to each individual particle. As far as its overall motion is concerned, a 
complex system acts as though all its mass were concentrated at the center of mass.
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Finding the Center of Mass
Equation 9.2 shows that the center-of-mass position is an average of the positions of the 
individual particles, weighted by their masses. For a one-dimensional system, Equation 9.2  
becomes xcm = g

 
mi xi /M; in two and three dimensions, there are similar equations for 

the center-of-mass coordinates ycm and zcm. Finding the center of mass (CM) is a  matter of 
establishing a coordinate system and then using the components of Equation 9.2.

ExaMpLE 9.1 CM in One Dimension: Weightlifting

Find the center of mass of a barbell consisting of 50-kg and 80-kg 
weights at the opposite ends of a 1.5-m-long bar of negligible mass.

Interpret This is a problem about center of mass. We identify the 
system as consisting of two “particles”—namely, the two weights.

Develop Figure 9.1 shows the barbell. Here, with just two  particles, we  
have a one-dimensional situation and Equation 9.2, r

!
cm = g

 
mi r

!
i /M, 

becomes xcm = 1m1 x1 + m2 x22/1m1 + m22. Before we can apply 
this equation, however, we need a coordinate system. As always, any 
coordinate system will do—but a smart choice makes the math easier. 
Let’s take x = 0 at the 50-kg mass, so the term m1x1 becomes zero. 

Our plan is then to find the center-of-mass coordinate xcm using our 
one-dimensional version of Equation 9.2.

evaluate With x = 0 at the left end of the barbell, the coordinate 
of the 80-kg mass is x2 = 1.5 m. So our equation becomes

xcm =
m1 x1 + m2 x2

m1 + m2
=

m2 x2

m1 + m2
=

180 kg211.5 m2
150 kg + 80 kg2 = 0.92 m

where the equation simplified because of our choice x1 = 0.

assess As Fig. 9.1 shows, this result makes sense: The center of 
mass is closer to the heavier weight. If the weights had been equal, the 
center of mass would have been right in the middle.

✓TIp Choosing the Origin

Choosing the origin at one of the masses here conveniently makes 
one of the terms in the sum g  mi xi zero. But, as always, the choice 
of  origin is purely for convenience and doesn’t influence the actual 
 physical location of the center of mass. Exercise 16 demonstrates this 
point, repeating Example 9.1 with a different origin.

Figure 9.1 Our sketch of the barbell.

 ■

ExaMpLE 9.2 CM in Two Dimensions: a Space Station

Figure 9.2 shows a space station consisting of three modules arranged 
in an equilateral triangle, connected by struts of length L and of negli-
gible mass. Two modules have mass m, the other 2m. Find the center 
of mass.

Interpret We’re after the center of mass of the system consisting of 
the three modules.

Develop Figure 9.2 is our drawing. We’ll use Equation 9.2, 
r
!
cm = g

 
mi r

!
i /M, to find the center-of-mass coordinates xcm and ycm. 

A sensible coordinate system has the origin at the module with mass 
2m and the y-axis downward, as shown in Fig. 9.2.

evaluate Labeling the modules from left to right, we see that  
x1 = -L sin 30° = -1

2 L, y1 = L cos 30° = L13/2;  x2 = y2 = 0;  
and x3 = -x1 = 1

2 L, y3 = y1 = L13/2. Writing explicitly the  
x- and y-components of Equation 9.2 for this case gives

 xcm =
mx1 + mx3

4m
=

m1x1 - x12
4m

= 0

 ycm =
my1 + my3

4m
=

2my1

4m
=

1

2
 y1 =

13

4
L ≃ 0.43L

Although there are three “particles” here, our choice of coordinate 
system left only two nonzero terms in the numerator, both associated 
with the same mass m. The more massive module is still in the prob-
lem, though; its mass 2m contributes to make the total mass M in the 
denominator equal to 4m.Figure 9.2 Our sketch of the space station.

Video Tutor Demo | Balancing a Meter Stick
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9.1 Center of Mass 147

Continuous Distributions of Matter
We’ve expressed the center of mass as a sum over individual particles. Ultimately, 
 matter is composed of individual particles. But it’s often convenient to consider that 
it’s  continuously distributed; we don’t want to deal with 1023 atoms to find the center 
of mass of a  macroscopic object! We can think of continuous matter as being composed 
of individual pieces of mass ∆mi, with position vectors r

!
i ; we call these pieces mass 

 elements (Fig. 9.3). The center of mass of the entire chunk is then given by Equation 9.2:  
r
!
cm = 1g

 
∆mi r

!
i2/M, where M = g  ∆mi is the total mass. In the limit as the mass 

 elements become arbitrarily small, this expression becomes an integral:

 r
!
cm = lim

∆miS0
 a  ∆mi r

!
i

M
= 1  r

!
 dm

M
  a center of mass,

continuous matterb  (9.4)

where the integration is over the entire object. Like the sum in Equation 9.2, the integral of the 
vector r

!
 stands for three separate integrals for the components of the center-of-mass position.

assess That xcm = 0 is apparent from symmetry (more on this in 
the following Tip). How about the result for ycm? We have 2m at the 
top of the triangle, and m + m = 2m at the bottom—so shouldn’t the 
center of mass lie midway up the triangle? It does! Expressing the 
center of mass in terms of the triangle side L obscures this fact. The 
triangle’s height is h = L cos 30° = L13/2, and our answer for ycm 
is indeed half this value. We marked the CM on Fig. 9.2.

✓TIp Exploit Symmetries

It’s no accident that xcm here lies on the vertical line that bisects the 
triangle; after all, the triangle is symmetric about that line, so its mass 
is distributed evenly on either side. Exploit symmetry whenever you 
can; that can save you a lot of computation throughout physics!

■

Figure 9.3 A chunk of continuous matter, 
showing one mass element ∆mi and its 
 position vector r

!
i.

ri
u

∆mi

0 Origin is arbitrary.

ExaMpLE 9.3 Continuous Matter: an aircraft Wing

A supersonic aircraft wing is an isosceles triangle of length L, width w,  
and negligible thickness. It has mass M, distributed uniformly over the 
wing. Where’s its center of mass?

Interpret Here the matter is distributed continuously, so we need to 
integrate to find the center of mass. We identify an axis of symmetry 
through the wing, which we designate the x-axis. By symmetry, the 
center of mass lies along this x-axis, so ycm = 0 and we’ll need to 
calculate only xcm.

Develop Figure 9.4 shows the wing. Equation 9.4 applies, and we 
need only the x-component because the y-component is evident from 
symmetry. The x-component of Equation 9.4 is xcm = 11x dm2/M. 

Developing a plan for dealing with an integral like this requires some 
thought; we’ll first do the work and then summarize the general steps 
involved.

Our goal is to find an appropriate mass element dm in terms of 
the infinitesimal coordinate interval dx. As shown in Fig. 9.4, here 
it’s easiest to use a vertical strip of width dx. Each such strip has 
a different height h, depending on its position x. If we choose a 
coordinate system with origin at the wing apex, then, as you can 
see from the figure, the height grows linearly from 0 at x = 0 to 
w at x = L. So h = 1w/L2x. This strip is infinitesimally narrow, so 
its sloping edges don’t matter and its area is that of a very thin rec-
tangle—namely, h dx = 1w/L2x dx. The strip’s mass dm is then the 
same fraction of the total wing mass M as its area is of the total 
wing area 12 wL; that is,

dm

M
=

1w/L2x dx
1
2 wL

=
2x dx

L2

so dm = 2Mx dx/L2.
In the integral we weight each mass element dm by its distance x  

from the origin, and then sum—that is, integrate—over all mass ele-
ments. So, from Equation 9.4, we have

xcm =
1

M
 L  x dm =

1

M L
L

0
x a2Mx

L2  dxb =
2

L2 L
L

0
x2 dx

As always, constants can come outside the integral. We set the limits 
0 and L to cover all the mass elements in the wing. Now we’re finally 
ready to find xcm.Figure 9.4 Our sketch of the supersonic aircraft wing.

Here’s a typical mass
element; in reality its
width dx is in�nitesimally
small.

The height h of
a mass element
depends on its position, x.

(continued)
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evaluate The hard part is done. All that’s left is to evaluate the 
 integral:

xcm =
2

L2 L
L

0
x2 dx =

2

L2 
x3

3
2 L
0

=
2L3

3L2 =
2

3
 L

assess Make sense? Yes: Our answer puts the center of mass toward 
the back of the wing where, because of its increasing width, most of 
the mass lies. In a complicated calculation like this one, it’s reassuring 
to see that the answer is a quantity with the units of length. ■

tactIcs 9.1 Setting Up an Integral

An integral like 1x dm can be confusing because you see both x and dm after the integral sign and they 
don’t seem related. But they are, and here’s how to proceed:

1.  Find a suitable shape for your mass elements, preferably one that exploits any symmetry in the  situation. 
One dimension of the elements should involve an infinitesimal interval in one of the  coordinates x, y, 
or z. In Example 9.3, the mass elements were strips, symmetric about the wing’s centerline and with 
width dx.

2.  Find an expression for the infinitesimal area of your mass elements (in a one-dimensional problem it 
would be the length; in a three-dimensional problem, the volume). In Example 9.3, the infinitesimal 
area of each mass element was the strip height h multiplied by the width dx.

3.  Form ratios that relate the infinitesimal coordinate interval to the physical quantity in the integral—
which in Example 9.3 is the mass element dm. Here we formed the ratio of the area of a mass element 
to the total area, and equated that to the ratio of dm to the total mass M.

4.  Solve your ratio statement for the infinitesimal quantity, in this case dm, that appears in your integral. 
Then you’re ready to evaluate the integral.

Sometimes you’ll be given a density—mass per volume, per area, or per length—and then in place 
of steps 3 and 4 you find dm by multiplying the density by the infinitesimal volume, area, or length you 
identified in step 2.

Although we described this procedure in the context of Example 9.3, it also applies to other integrals 
you’ll encounter in different areas of physics.

With more complex objects, it’s convenient to find the centers of mass of subparts and 
then treat those as point particles to find the center of mass of the entire object (Fig. 9.5).

The center of mass need not lie within an object, as Fig. 9.6 shows. High jumpers 
 exploit this fact as they straddle the bar with arms and legs dangling on either side 
(Fig. 9.7). Although the jumper’s entire body clears the bar, his center of mass doesn’t 
need to!

GOT IT? 9.1 A thick wire is bent into a semicircle, as shown in Fig. 9.6. Which of 
the points shown is the center of mass?

Figure 9.5 The center of mass of the airplane 
is found by treating the wing and fuselage 
as point particles located at their respective 
centers of mass.

CMfuselage

CMplane

CMwing

⊗

Figure 9.6 Got it? The center of mass lies outside 
the semicircular wire, but which point is it?

A

B

C

Figure 9.7 A high jumper clears the bar, but his center of mass doesn’t!

CM position at the
peak of the jump

CM’s
trajectory

⊗
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9.2 Momentum 149

Motion of the Center of Mass
We defined the center of mass so its motion obeys Newton’s law F

S
net ext = M a

!
cm, with 

F
S

net ext the net external force on the system and M the total mass. When gravity is the only 
external force, the center of mass follows the trajectory of a point particle. But if the net 
external force is zero, then the center-of-mass acceleration a

!
cm is also zero, and the center 

of mass moves with constant velocity. In the special case of a system at rest, the center of 
mass remains at rest despite any motions of its internal parts.

9.2 Momentum
In Chapter 4 we defined the linear momentum p

!
 of a particle as p

!
= mv

!
, and we first 

wrote Newton’s law in the form F
S

= d p
!
/dt. We suggested that this form would play an 

ExaMpLE 9.4 CM Motion: Circus Train

Jumbo, a 4.8-t elephant, stands near one end of a 15-t railcar at rest on 
a frictionless horizontal track. (Here t is for tonne, or metric ton, equal 
to 1000 kg.) Jumbo walks 19 m toward the other end of the car. How 
far does the car move?

Interpret We’re asked about the car’s motion, but we can interpret 
this problem as being fundamentally about the center of mass. We 
identify the relevant system as comprising Jumbo and the car. Because 
there’s no net external force acting on the system, its center of mass 
can’t move.

Develop Figure 9.8a shows the initial situation. The symmetric car has 
its CM at its center (here we care only about the x-component). Let’s take 
a coordinate system that’s fixed to the ground and that has x = 0 at this  
initial location of the car’s center. After the car moves, its center 
will be somewhere else! Equation 9.2 applies—here in the sim-
pler one-dimensional, two-object form we used in Example 9.1: 
xcm = 1mJ xJ + mc xc2/M, where we use the subscripts J and c for Jumbo 
and the car, respectively, and where M = mJ + mc is the total mass. 
We have a before/after situation in which the CM position can’t change, 
so we’ll write two versions of this expression, before and after Jumbo’s 
walk. We’ll then set them equal to state mathematically that the CM itself 
doesn’t move; that is, we’ll write xcm i = xcm f, where the subscripts i and f  
designate quantities associated with the initial and final states, respectively.

We chose our coordinate system so that the car’s initial position 
was xci = 0, so our expression for the initial position of the system’s 
center of mass becomes

xcm i = mJ xJi /M

Our expression for the final center-of-mass position, after Jumbo’s 
walk, is xcm f = 1mJ xJf + mc xcf2/M. We don’t know either of the final  
coordinates xJf or xcf here, but we do know that Jumbo walks 19 m 
with respect to the car. The elephant’s final position xJf is therefore 
19 m to the right of x

Ji
, adjusted for the car’s displacement. Therefore 

Jumbo ends up at xJf = xJi + 19 m + xcf. You might think we need a 
minus sign because the car moves to the left. That’s true, but the sign 
of xcf will take care of that. Trust algebra! So our expression for the 
final center-of-mass position is

xcm f =
mJ xJf + mc xcf

M
=

mJ1xJi + 19 m + xcf2 + mc xcf

M

evaluate Finally, we equate our expressions for the initial and fi-
nal positions of the center of mass. Again, that’s because there are 
no forces external to the elephant–car system acting in the horizontal 
direction, so the center-of-mass position xcm can’t change. Thus we 
have xcm i = xcm f, or

mJ xJi

M
=

mJ1xJi + 19 m + xcf2 + mc xcf

M

The total mass M cancels, so we’re left with the equation  
mJ xJi = mJ 1xJi + 19 m + xcf2 + mc xcf. We aren’t given xJi, but 
the term mJ xJi is on both sides of this equation, so it cancels, leaving 
0 = m 119 m + xcf2 + mc xcf. We solve for the unknown xcf to get

xcf = -
119 m2mJ

1mJ + mc2 = -
119 m214.8 t2
14.8 t + 15 t2  

= -4.6 m

The minus sign here indicates a displacement to the left, as we antici-
pated (Fig. 9.8b). Because the masses appear only in ratios, we didn’t 
need to convert to kilograms.

assess The car’s 4.6-m displacement is quite a bit less than  Jumbo’s 
(which is 19 m - 4.6 m, or 14.4 m relative to the ground). That makes 
sense because Jumbo is considerably less massive than the car. ■

Figure 9.8 Jumbo walks, but the center of mass doesn’t move.

xJi

xcf xcm

x = xci = 0

x = 0 xJf

xcm
(a)

(b)

⊗

⊗

important role in many-particle systems. We’re now ready to explore that role.
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150 Chapter 9 Systems of Particles

The momentum of a system of particles is the vector sum of the individual momenta: 
P
S

= g  p
!
i = g

 
miv

!
i, where mi and v

!
i are the masses and velocities of the individual par-

ticles. But we’d rather not have to keep track of all the particles in the system. Is there a 
simpler way to express the total momentum? There is, and it comes from writing the indi-
vidual velocities as time derivatives of position: v

!
= dr

!
/dt. Then

P
S

= a  mi 
d r

!
i

dt
=

d

dt a  mi r
!
i

where the last step follows because the individual particle masses are constant and because the 
sum of derivatives is the derivative of the sum. In Section 9.1, we defined the center- of-mass 
position r

!
cm as g  mi r

!
i /M, where M is the total mass. So the total momentum becomes

P
S

=
d

dt
 M r

!
cm

or, assuming the system mass M remains constant,

 P
S

= M 
dr

!
cm

dt
= Mv

!
cm (9.5)

where v
!
cm = d r

!
cm/dt is the center-of-mass velocity. So a system’s momentum is given by 

an expression similar to that of a single particle; it’s the product of the system’s mass and 
its velocity—that is, the velocity of its center of mass. If this seems obvious, watch out! 
We’ll see soon that the same is not true for the system’s total energy.

If we differentiate Equation 9.5 with respect to time, we have

d P
S

dt
= M

d  v
!
cm

dt
= M a

!
cm

where a
!
cm is the center-of-mass acceleration. But we defined the center of mass so its 

motion obeyed Newton’s second law, F
S

= Ma
!
cm, with F

S
 the net external force on the 

system. So we can write simply

 F
S

net ext =
dP

S

dt
 (9.6)

showing that the momentum of a system of particles changes only if there’s a net external force 
on the system. Remember the hidden role of Newton’s third law in all this: Only because forces 
internal to the system cancel in pairs can we ignore them and consider just the external force.

Equation 9.6 might remind you of Equation 7.8, which said that the total energy of a 
system changes only if external forces—those acting from outside the system—do work 
on the system. Equation 9.6 is similar, except that it’s talking about momentum instead of 
energy: It states that the total momentum of a system changes only if there’s a net external 
force acting on the system. Just as Equation 7.8 allows transformations and transfers of 
energy within the system, so Equation 9.6 allows for the transfer of momentum among the 
system’s constituent particles. It’s only a system’s total energy or total momentum that’s 
constrained by the broad statements embodied in Equations 7.8 and 9.6.

Conservation of Momentum
In the special case when the net external force is zero, Equation 9.6 gives dP

S
/dt = 0

S
, so

 P
S

= constant  1conservation of linear momentum2 (9.7)

Equation 9.7 describes conservation of linear momentum, one of the most fundamental 
laws of physics:

Conservation of linear momentum: When the net external force on a system is 
zero, the total  momentum P

S
 of the system—the vector sum of the individual  momenta 

mv
!
 of its constituent particles—remains  constant.
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Momentum conservation holds no matter how many particles are involved and no 
 matter how they’re moving. It applies to systems ranging from atomic nuclei to pool balls, 
from colliding cars to galaxies. Although we derived Equation 9.7 from Newton’s laws, 
 momentum conservation is even more basic, since it applies to subatomic and  nuclear sys-
tems where the laws and even the language of Newtonian physics are hopelessly  inadequate. 
The following examples show the range and power of momentum  conservation.

GOT IT? 9.2 A 500-g fireworks rocket is moving with velocity v
!

= 60jn m/s at the 
instant it explodes. If you were to add the momentum vectors of all its fragments just after 
the explosion, what would be the result?

COnCEpTUaL ExaMpLE 9.1 Conservation of Momentum: Kayaking

Figure 9.9 Our sketch for Conceptual Example 9.1.

Initially all momenta are zero c

cand they’re zero again after Nick has caught the pack.

Jess (mass 53 kg) and Nick (mass 72 kg) sit in a 26-kg kayak at rest 
on frictionless water. Jess tosses Nick a 17-kg pack, giving it horizontal 
speed 3.1 m/s relative to the water. What’s the kayak’s speed after Nick 
catches the pack? Why can you answer without doing any calculations?

evaluate Figure 9.9 shows the kayak before Jess tosses the pack 
and again after Nick catches it. The water is frictionless, so there’s no 
net external force on the system comprising Jess, Nick, the kayak, and 
the pack. Since there’s no net external force, the system’s momentum 
is conserved. Everything is initially at rest, so that momentum is zero. 
Therefore, it’s also zero after Nick catches the pack. At that point Jess, 
Nick, pack, and kayak are all at rest with respect to each other, so the 
only way the system’s momentum can be zero is if they’re also all at 
rest relative to the water. Therefore, the kayak’s final speed is zero.

assess We didn’t need any calculations here because the power-
ful conservation-of-momentum principle relates the initial and final 
states, without our having to know what happens in between.

MakIng the connectIon What’s the kayak’s speed while the pack 
is in the air?

evaluate Momentum conservation still applies, and the system’s total 
momentum is still zero. Now it consists of the pack’s momentum mpv

!
p 

and the momentum 1mJ + mN + mk2v
!
k of Jess, Nick, and kayak, with 

common velocity v
!
k (Fig. 9.10). Sum these momenta, set the sum to zero, 

and solve, using the given quantities, to get vk = -0.35 m/s. Here we’ve 
dropped vector signs; the minus sign then shows that the kayak’s velocity 
is opposite the pack’s. Since kayak and passengers are much more mas-
sive than the pack, it makes sense that their speed is lower.

Figure 9.10 Our sketch for Making the Connection 9.1.

While the pack is in the air,
momenta still sum to zero.

ExaMpLE 9.5 Conservation of Momentum: Radioactive Decay

A lithium-5 nucleus 15Li2 is moving at 1.6 Mm/s when it decays into 
a proton (1H, or p) and an alpha particle (4He, or a). [Superscripts are 
the total numbers of nucleons and give the approximate masses in uni-
fied atomic mass units (u).] The alpha particle is detected moving at 
1.4 Mm/s, at 33° to the original velocity of the 5Li nucleus. What are 
the magnitude and direction of the proton’s velocity?

Interpret Although the physical situation here is entirely different 
from the preceding example, we interpret this one, too, as being about 
momentum conservation. But there are two differences: First, in this 
case the total momentum isn’t zero, and, second, this situation involves 
two dimensions. The fundamental principle is the same, however: In the 
absence of external forces, a system’s total momentum can’t change. 
Whether a pack gets tossed or a nucleus decays makes no difference.

Develop Figure 9.11 shows what we know: the velocities for the Li 
and He nuclei. You can probably guess that the proton must emerge 
with a downward momentum component, but we’ll let the math con-
firm that. We determine that Equation 9.7, P

S
= constant, applies, 

with the constant equal to the 5Li momentum. After the decay, we 
have two momenta to account for, so Equation 9.7 becomes

mLi v
!
 Li = mpv

!
p + mav

!
a

Figure 9.11 Our sketch for Example 9.5: what we’re given.

(continued)
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152 Chapter 9 Systems of Particles

A system’s momentum is conserved only if no external forces act. Whether a force 
is internal or external depends on your choice of what constitutes the system—a choice 
that, as we noted in Chapter 6, is entirely up to you. In the two preceding examples, it was 
convenient to choose systems that weren’t subject to external forces; then we could apply 
momentum conservation. Sometimes it’s more convenient to deal with systems that do 
experience external forces; then, since dP

!>dt = F
S

,  the system’s momentum changes at a 
rate equal to the external force. Example 9.6 makes this point.

Let’s choose the x-axis along the direction of v
!
Li. Then the two com-

ponents of the momentum conservation equation become

x@component:  mLivLi = mpvpx + mavax

y@component:  0 = mpvpy + mavay

Our plan is to solve these equations for the unknowns vpx and vpy. From 
these we can get the magnitude and direction of the proton’s velocity.

evaluate From Fig. 9.11 it’s evident that vax = va cos f and 
vay = va sin f. So we can solve our two equations to get

 vpx =
mLivLi - mavax

mp
=

mLivLi - mava cos f

mp

 =
15.0 u211.6 Mm/s2 - 14.0 u211.4 Mm/s21cos 33°2

1.0 u
 = 3.30 Mm/s

 vpy = -
mavay

mp
= -

mava sin f

mp

 =
14.0 u211.4 Mm/s21sin 33°2

1.0 u
= -3.05 Mm/s

We’ve kept three significant figures in these intermediate results so we 
can get an accurate two-figure result for our final answer.

Thus the proton’s speed is vp = 2vpx
2 + vpy

2 = 4.5 Mm/s, and its di-
rection is u = tan-11vpy /vpx2 = -43°. Note that here, as in Example 
9.4, the masses appear only in ratios so we don’t need to change units.

assess Make sense? That negative u tells us the proton’s velocity is 
downward, as we anticipated. Figure 9.12 makes our result clear. Here 
we multiplied the velocities by the masses to get momentum vectors. 
The two momenta after the decay event have equal but opposite ver-
tical components, reflecting that the total momentum of the system 
never had a vertical component. And the two horizontal components 
sum to give the initial momentum of the lithium nucleus. Momentum 
is indeed conserved.

Figure 9.12 Our momentum 
diagram for Example 9.5.

■

ExaMpLE 9.6 Changing Momentum: Fighting a Fire

A firefighter directs a stream of water against the window of a burn-
ing building, hoping to break the window so water can get to the fire. 
The hose delivers water at the rate of 45 kg/s, and the water hits the 
window moving horizontally at 32 m/s. After hitting the window, the 
water drops vertically. What horizontal force does the water exert on 
the window?

Interpret We’re asked about the window, but we’re told a lot more 
about the water. The water stops at the window, so clearly the window 
exerts a force on the water—and by Newton’s third law, that force is 
equal in magnitude to the force we’re after—namely, the force of the 
water on the window. So we identify the water as our system and rec-
ognize that it’s subject to an external force from the window.

Develop Newton’s law in the form F
S

= dP
S

/dt applies to the wa-
ter. So our plan is to find the rate at which the water’s momentum 
changes. By Newton’s second law, that’s equal to the window’s force 
on the water, and by Newton’s third law, that’s equal to the water’s 
force on the window.

evaluate The water strikes the window at 32 m/s, so each kilogram 
of water loses 32 kg#m/s of momentum. Water strikes the window at 
the rate of 45 kg/s, so the rate at which it loses momentum to the win-
dow is

dP

dt
= 145 kg/s2132 m/s2 = 1400 kg#m/s2

By Newton’s second law, that’s equal to the force on the water, and by 
the third law, that in turn is equal in magnitude to the force on the win-
dow. So the window experiences a 1400-N force from the water. Since 
the window is rigidly attached to the building and Earth, it doesn’t 
experience significant acceleration—until it breaks and the glass frag-
ments accelerate violently.

assess 1400 N is about twice the weight of a typical person, and a 
fire hose produces quite a blast of water, so this number seems reason-
able. Check the units, too: 1 kg#m/s2 is equal to 1 N, so our answer 
does have the units of force.

GOT IT? 9.3 Two skaters toss a basketball back and forth on frictionless ice. Which 
of the following does not change? (a) the momentum of an individual skater; (b) the mo-
mentum of the basketball; (c) the momentum of the system consisting of one skater and the 
basketball; (d) the momentum of the system consisting of both skaters and the basketball

■
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9.3 Kinetic Energy of a System
We’ve seen how the momentum of a many-particle system is determined entirely by the 
motion of its center of mass; the detailed behavior of the individual particles doesn’t mat-
ter. For example, a firecracker sliding on ice has the same total momentum before and 
after it explodes.

The same, however, is not true of a system’s kinetic energy. Energetically, that fire-
cracker is very different after it explodes; internal potential energy has become kinetic 
energy of the fragments. Nevertheless, the center-of-mass concept remains useful in cat-
egorizing the kinetic energy associated with a system of particles.

The total kinetic energy of a system is the sum of the kinetic energies of the constituent 
particles: K = g  12 mi vi

2. But the velocity v
!
i of a particle can be written as the vector sum 

of the center-of-mass velocity v
!
cm and a velocity v

!
i rel of that particle relative to the center 

of mass: v
!
i = v

!
cm + v

!
i rel. Then the total kinetic energy of the system is

K = a 1
2  mi 1v

!
cm + v

!
i rel2 # 1v

!
cm + v

!
i rel2 = a 1

2 mi vcm
2 + a mi v

!
cm

# v
!
i rel + a  12 mi vi rel

2  (9.8)

Let’s examine the three sums making up the total kinetic energy. Since the center-of-
mass speed vcm is common to all particles, it can be factored out of the first sum, so g  12 mi vcm

2 = 1
2 vcm

2  g  mi = 1
2 Mvcm

2 , where M is the total mass. This is the kinetic energy of 

appLICaTIOn Rockets

Rockets provide propulsion in the vacuum of 
space, where there’s nothing for a wheel or pro-
peller to push against. If no external forces act, 
total momentum stays constant. As the rocket’s 
exhaust carries away momentum, the result is an 
equal but oppositely directed momentum gain 
for the rocket. The rate of momentum change 
is the force on the rocket, which engineers call 
thrust. As with the fire hose in Example 9.6, 
thrust is the product of the exhaust rate dM/dt 
and exhaust speed vex: F = vex dM/dt. Because 
the rocket has to carry the mass it’s going to ex-
haust, the most efficient rockets use high exhaust 
velocities and therefore need less fuel.

What actually propels the rocket? It’s ulti-
mately hot gases inside the rocket engine push-
ing on the front of the engine chamber. The 
rocket doesn’t “push against” anything outside 
itself; all the pushing is done inside the rocket 
engine, accelerating the rocket forward. That’s 
why rockets work just fine in the vacuum of 
space.

The photo shows the 2011 launch of the 
Juno spacecraft, heading for its 2016 rendezvous 
with Jupiter.

a particle with mass M moving at speed vcm, so we call it Kcm, the kinetic energy of the 
center of mass.

The center-of-mass velocity can also be factored out of the second term in Equation 9.8,  
giving g  mi v

!
cm

# v
!
i rel = v

!
cm

# g
 
mi v

!
i rel. Because the v

!
i rel>s are the particle velocities rela-

tive to the center of mass, the sum here is the total momentum relative to the center of 
mass. But that’s zero, so the entire second term in Equation 9.8 is zero.

The third term in Equation 9.8, g  12 mi vi rel
2 , is the sum of the individual kinetic energies 

measured in a frame of reference moving with the center of mass. We call this term Kint, 
the internal kinetic energy.

With the middle term gone, Equation 9.8 shows that the kinetic energy of a system 
breaks into two terms:

 K = Kcm + Kint  1kinetic energy of a system2 (9.9)

The first term, the kinetic energy of the center of mass, depends only on the center-of-
mass motion. In our firecracker example, Kcm doesn’t change when the firecracker ex-
plodes. The second term, the internal kinetic energy, depends only on the motions of the 
individual particles relative to the center of mass. The explosion dramatically increases 
this internal kinetic energy.

GOT IT? 9.4 Which of the following systems has (1) zero internal kinetic energy 
and (2) zero center-of-mass kinetic energy? (a) a pair of ice skaters, arms linked, skating 
together in a straight line; (b) a pair of skaters who start from rest facing each other and 
then push off so they’re moving in opposite directions; (c) a pair of skaters as in (b) but 
who initially are moving together along the ice before they push off

9.4 Collisions
A collision is a brief, intense interaction between objects. Examples abound: automobile 
collisions; collisions of balls on a pool table; the collision of a tennis ball and racket, 
baseball and bat, or football and foot; an asteroid colliding with a planet; and collisions 
of high-energy particles that probe the fundamental structure of matter. Less obvious are 
collisions among galaxies that last a hundred million years, the interaction of a spacecraft 
with a planet as the craft gains energy for a voyage to the outer solar system, and the 
repulsive interaction of two protons that approach but never touch. All these collisions 
meet two criteria. First, they’re brief, lasting but a short time in the overall context of the 
colliding objects’ motions. On a pool table, the collision time is short compared with the 

Video Tutor Demo | Water Rocket
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154 Chapter 9 Systems of Particles

time it takes for a ball to roll across the table. An automobile collision lasts a fraction of a 
second. A baseball spends far more time coming from the pitcher than it does interacting 
with the bat. And even 108 years is short compared with the lifetime of a galaxy. Second, 
collisions are intense: Forces among the interacting objects are far larger than any external 
forces that may be acting on the system. External forces are therefore negligible during the 
collision, so the total momentum of the colliding objects remains essentially unchanged.

Impulse
The forces between colliding objects are internal to the system comprising those objects, so 
they can’t alter the total momentum of the system. But they dramatically alter the  motions of the 
colliding objects. How much depends on the magnitude of the force and how long it’s applied.

If F
S

is the average force acting on one object during a collision that lasts for time ∆t, then 

Newton’s second law reads F
S

 = ∆p
!
/∆t or

 ∆p
!

= F
S

∆t (9.10a)

The product of average force and time that appears in this equation is called impulse. It’s 
given the symbol J

S
, and its units are newton-seconds. 

An impulse J
S

produces the same momentum change regardless of whether it involves 
a larger force exerted over a shorter time or a smaller force exerted over a longer time. The 
force in a collision usually isn’t constant and can fluctuate wildly. In that case, we find the 
impulse by integrating the force over time, so the momentum change becomes

 ∆p
!

= J
S

= L  F
S1t2 dt  1impulse2 (9.10b)

Although we introduced impulse in the context of collisions, it’s useful in other situations 
involving intense forces applied over short times. For example, small rocket engines are 
characterized by the impulse they impart.

Energy in Collisions
Kinetic energy may or may not be conserved in a collision. If it is, then the collision is elastic; 
if not, it’s inelastic. An elastic collision requires that the forces between colliding objects be 
conservative; then kinetic energy is stored briefly as potential energy and released when the 
collision is over. Interactions at the atomic and nuclear scales are often truly elastic. In the 
macroscopic realm, nonconservative forces convert kinetic energy into internal energy, heat-
ing the colliding objects, or they may permanently deform the objects; either way, noncon-
servative forces rob the system of mechanical energy. But even many macroscopic collisions 
are close enough to elastic that we can neglect mechanical energy loss during the collision.

GOT IT? 9.5 Which of the following qualifies as a collision? Of the collisions, which 
are nearly elastic and which inelastic? (a) A basketball rebounds off the backboard; (b) 
two magnets approach, their north poles facing; they repel and reverse direction without 
touching; (c) a basketball flies through the air on a parabolic trajectory; (d) a truck strikes 
a parked car and the two slide off together, crumpled metal hopelessly intertwined; (e) a 
snowball splats against a tree, leaving a lump of snow adhering to the bark.

9.5 Totally Inelastic Collisions
In a totally inelastic collision, the colliding objects stick together to form a single object. 
Even then, kinetic energy is usually not all lost. But a totally inelastic collision entails the 
maximum energy loss consistent with momentum conservation. The motion after a totally 
inelastic collision is determined entirely by momentum conservation, and that makes to-
tally inelastic collisions easy to analyze.

appLICaTIOn Crash Tests

Automotive engineers perform crash tests to 
 assess the safety of their vehicles. Sensors 
 measure the rapidly varying forces as the test car 
collides with a fixed barrier. The graph  below is 
a force-versus-time curve from a typical crash 
test; impulse is the area under the curve. In ad-
dition to force sensors on the vehicle, acceler-
ometers in crash-test dummies determine the 
maximum accelerations of the heads and other 
body parts to assess potential injuries.

F
S

Time

Fo
rc

e

Impulse is the area
under the force–time
curve. With F the
average force, these
two areas are the same.

S

Video Tutor Demo | Happy/Sad Pendulums
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9.5 Totally Inelastic Collisions 155

Consider masses m1 and m2 with initial velocities v
!
1 and v

!
2 that undergo a totally inelas-

tic collision. After colliding, they stick together to form a single object of mass m1 + m2 
and final velocity v

!
f. Conservation of momentum states that the initial and final momenta 

of this system must be the same:

 m1v
!
1 + m2v

!
2 = 1m1 + m22v

!
f  1totally inelastic collision2 (9.11)

Given four of the five quantities m1, v
!
1, m2, v

!
2, and v

!
f, we can solve for the fifth.

ExaMpLE 9.7 an Inelastic Collision: Hockey

The hockey captain, a physics major, decides to measure the puck’s 
speed. He loads a small Styrofoam chest with sand, giving a total 
mass of 6.4 kg. He places it at rest on frictionless ice. The 160-g puck 
strikes the chest and embeds itself in the Styrofoam. The chest moves 
off at 1.2 m/s. What was the puck’s speed?

Interpret This is a totally inelastic collision. We identify the sys-
tem as consisting of puck and chest. Initially, all the system’s mo-
mentum is in the puck; after the collision, it’s in the combination 
puck +  chest. In this case of a single nonzero velocity before col-
lision and a single velocity after, momentum conservation requires 
that both motions be in the same direction. Therefore, we have a one-
dimensional problem.

Develop Figure 9.13 is a sketch of the situation before and after the 
collision. With a totally inelastic collision, Equation 9.11—the state-
ment of momentum conservation—tells it all. In our one-dimensional 
situation, this equation becomes mpvp = 1mp + mc2vc, where the 
subscripts p and c stand for puck and chest, respectively.

evaluate Here we want the initial puck velocity, so we solve for vp:

vp =
1mp + mc2vc

mp
=

10.16 kg + 6.4 kg211.2 m/s2
0.16 kg

= 49 m/s

assess Make sense? Yes: The puck’s mass is small, so it needs a 
much higher speed to carry the same momentum as the much more 
massive chest. Variations on this technique are often used to deter-
mine speeds that would be difficult to measure directly. ■

Figure 9.13 Our 
sketch for  
Example 9.7.

Before collision, the puck
has all the momentum.

After collision, the
puck + chest has the
same momentum.

ExaMpLE 9.8 Conservation of Momentum: Fusion

In a fusion reaction, two deuterium nuclei 12H2 join to form helium 
14He2. Initially, one of the deuterium nuclei is moving at 3.5 Mm/s, 
the second at 1.8 Mm/s at a 64° angle to the velocity of the first. Find 
the speed and direction of the helium nucleus.

Interpret Although the context is very different, this is another to-
tally inelastic collision. But here both objects are initially moving, and 
in different directions, so we have a two-dimensional situation. We 
identify the system as consisting of initially the two deuterium nuclei 
and finally the single helium nucleus. We’re asked for the final veloc-
ity of the helium, expressed as magnitude (speed) and direction.

Develop Figure 9.14 shows the situation. Momentum is con-
served, so Equation 9.11 applies; solving that equation for v

!
f gives 

v
!
f = 1m1v

!
1 + m2v

!
22/1m1 + m22. In two dimensions, this represents 

two equations for the two components of v
!
f. We need a coordinate 

system, and Fig. 9.14 shows our choice, with the x-axis along the mo-
tion of the first deuterium nucleus. We need the components of the 
initial velocities in order to apply our equation for v

!
f.

evaluate With v
!
1 in the x-direction, we have v1x = 3.5 Mm/s and 

v1y = 0. Figure 9.14 shows that v2x = 11.8 Mm/s21cos 64°2 =  
0.789 Mm/s and v2y = 11.8 Mm/s21sin 64°2 = 1.62 Mm/s. So the 
components of our equation become

 vfx =
m1v1x + m2v2x

m1 + m2

 =
12 u213.5 Mm/s2 + 12 u210.789 Mm/s2

2 u + 2 u
= 2.14 Mm/s

 vfy =
m1v1y + m2v2y

m1 + m2

 =
0 + 12 u211.62 Mm/s2

2 u + 2 u
= 0.809 Mm/s

As in Example 9.5, the superscripts are the nuclear masses in u, and 
because the mass units cancel, there’s no need to convert to kilograms.

From these velocity components we can get the final speed and di-
rection: vf = 2vfx

2 + vfy
2 = 2.3 Mm/s and u = tan-11vfy/vfx2 = 21°. 

We show this final velocity on the diagram in Fig. 9.14.

Figure 9.14 Our sketch of 
the velocity vectors for 
Example 9.8.

(continued)
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156 Chapter 9 Systems of Particles

assess In this example the two incident particles have the same 
masses, so their velocities are proportional to their momenta. Figure 9.14  
shows that the total initial momentum is largely horizontal, with 
a smaller vertical component, so the 21° angle of the final velocity 

makes sense. The magnitude of v
!
f also makes sense: Now the total 

momentum is contained in a single, more massive particle, so we ex-
pect a final speed comparable to the initial speeds. ■

ExaMpLE 9.9 The Ballistic pendulum

The ballistic pendulum measures the speeds of fast-moving objects 
like bullets. It consists of a wooden block of mass M suspended from 
vertical strings (Fig. 9.15). A bullet of mass m strikes and embeds it-
self in the block, and the block swings upward through a vertical dis-
tance h. Find an expression for the bullet’s speed.

Interpret Interpreting this example is a bit more involved. We ac-
tually have two separate events: the bullet striking the block and the 
subsequent rise of the block. We can interpret the first event as a one-
dimensional totally inelastic collision, as in Example 9.7. Momentum 
is conserved during this event but, because the collision is inelastic, 
mechanical energy is not. Then the block rises, and now a net external 
force—from string tension and gravity—acts to change the momen-
tum. But gravity is conservative, and the string tension does no work, 
so now mechanical energy is conserved.

Develop Figure 9.15 is our drawing. Our plan is to separate 
the two parts of the problem and then to combine the results to 
get our final answer. First is the inelastic collision; here momen-
tum is conserved, so Equation 9.11 applies. In one dimension, that 

reads mv = 1m + M2V, where v is the initial bullet speed and  
V is the speed of the block with embedded bullet just after the col-
lision. Solving gives V = mv/1m + M2. Now the block swings up-
ward. Momentum isn’t conserved, but mechanical energy is. Setting 
the zero of potential energy in the block’s initial position, we have 
U0 = 0 and—using the situation just after the collision as the initial 
state—K0 = 1

2 1m + M2V2. At the peak of its swing the block is mo-
mentarily at rest, so K = 0. But it’s risen a height h, so the potential 
energy is U = 1m + M2gh. Conservation of mechanical energy reads 
K0 + U0 = K + U—in this case, 12 1m + M2V2 = 1m + M2gh.

evaluate Now we’ve got two equations describing the two parts of 
the problem. Using our expression for V from momentum conserva-
tion in the energy-conservation equation, we get

1

2
a mv

m + M
b

2

= gh

Solving for the bullet speed v then gives our answer:

v = am + M

m
b12gh

assess Make sense? Yes: The smaller the bullet mass m, the higher 
velocity it must have to carry a given momentum; that’s reflected 
by the factor m alone in the denominator. The higher the rise h, the 
greater the bullet speed. But the speed scales not as h itself but as 1h. 
That’s because kinetic energy—which turned into potential energy of 
the rise—depends on velocity squared. ■

Figure 9.15 A ballistic 
 pendulum (Example 9.9).

v
u

h

GOT IT? 9.6 Which of the following collisions qualify as totally inelastic? (a) Two 
equal-mass objects approach from opposite directions at different speeds. They collide 
head-on and stick together; the combined object continues to move; (b) two equal-mass 
objects approach from opposite directions at the same speed. They collide head-on and 
stick together; the combined object is then at rest; (c) two equal-mass objects approach 
from opposite directions at the same speed. They collide head-on and rebound, but with 
lower speed than before.

9.6 Elastic Collisions
We’ve seen that momentum is essentially conserved in any collision. In an elastic  collision, 
kinetic energy is conserved as well. In the most general case of a two-body collision, we 
consider two objects of masses m1 and m2, moving initially with velocities v

!
1i and v

!
2i, 

respectively. Their final velocities after collision are v
!
1f and v

!
2f. Then the conservation 

statements for momentum and kinetic energy become

 m1v
!
1i + m2v

!
2i = m1v

!
1f + m2v

!
2f (9.12)

and

 1
2 m1v1i

2 + 1
2 m2v2i

2 = 1
2 m1v1f

2 + 1
2 m2v2f

2  (9.13)
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Given initial velocities, we’d like to predict the outcome of a collision. In the totally inelas-
tic two-dimensional collision, we had enough information to solve the problem. Here, in 
the two-dimensional elastic case, we have the two components of the momentum conser-
vation equation 9.12 and the single scalar equation for energy conservation 9.13. But we 
have four unknowns—the magnitudes and directions of both final velocities. With three 
equations and four unknowns, we don’t have enough information to solve the general two-
dimensional elastic collision. Later we’ll see how other information can help solve such 
problems. First, though, we look at the special case of one-dimensional elastic collisions.

Elastic Collisions in One Dimension
When two objects collide head-on, the internal forces act along the same line as the inci-
dent motion, and the objects’ subsequent motion must therefore be along that same line 
(Fig. 9.16a). Although such one-dimensional collisions are a special case, they do occur 
and they provide much insight into the more general case.

In the one-dimensional case, the momentum conservation (Equation 9.12) has only one 
nontrivial component:

 m1v1i + m2v2i = m1v1f + m2v2f (9.12a)

where the v’s stand for velocity components, rather than magnitudes, and can therefore be 
positive or negative. If we collect together the terms in Equations 9.12a and 9.13 that are 
associated with each mass, we have

 m11v1i - v1f2 = m21v2f - v2i2 (9.12b)

and

 m11v1i
2 - v1f

22 = m21v2f
2 - v2i

22 (9.13a)

But a2 - b2 = 1a + b21a - b2, so Equation 9.13a can be written

 m11v1i - v1f21v1i + v1f2 = m21v2f - v2i21v2f + v2i2 (9.13b)

Dividing the left and right sides of Equation 9.13b by the corresponding sides of Equation 
9.12b then gives

v1i + v1f = v2f + v2i

Rearranging shows that

 v1i - v2i = v2f - v1f (9.14)

What does this equation tell us? Both sides describe the relative velocity between the two 
particles; the equation therefore shows that the relative speed remains unchanged after the 
collision, although the direction reverses. If the two objects are approaching at a relative 
speed of 5 m/s, then after collision they’ll separate at 5 m/s.

Continuing our search for the final velocities, we solve Equation 9.14 for v2f:

v2f = v1i - v2i + v1f

and use this result in Equation 9.12a:

m1v1i + m2v2i = m1v1f + m21v1i - v2i + v1f2
Solving for v1f then gives

 v1f =
m1 - m2

m1 + m2
 v1i +

2m2

m1 + m2
 v2i (9.15a)

Problem 71 asks you to show similarly that

 v2f =
2m1

m1 + m2
 v1i +

m2 - m1

m1 + m2
 v2i (9.15b)

Equations 9.15 are our desired result, expressing the final velocities in terms of the initial 
velocities alone.

Figure 9.16 Only a head-on collision is  
one-dimensional.

v1i
u

v1i
u

v2i
u

v2i
u

(a)

(b)

Here internal forces act
on the same line as the
incident velocities c

cbut here they don’t, so the motion
involves two dimensions.
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To see that these results make sense, we suppose that v2i = 0. (This really isn’t a special 
case, since we can always work in a reference frame with m2 initially at rest.) We then con-
sider the three special cases of one-dimensional elastic collisions illustrated in Fig. 9.17.

Case 1: m1V m2 (Fig. 9.17a) Picture a ping-pong ball colliding with a bowling ball, or 
any object colliding elastically with a perfectly rigid surface. If we set v2i = 0 in Equations 
9.15, and drop m1 as being negligible compared with m2, Equations 9.15 become simply

v1f = -v1i

and

v2f = 0

That is, the lighter object rebounds with no change in speed, while the heavier object re-
mains at rest. Does this make sense in light of the conservation laws that Equations 9.15 
are supposed to reflect? First consider energy conservation: The kinetic energy of m2 re-
mains zero and, because m1’s speed doesn’t change, neither does its kinetic energy 12 m1v

2
1 . 

So kinetic energy is conserved. But what about momentum? The momentum of the lighter 
object has changed, from m1 v1i to -m1 v1i. But momentum is conserved; the momentum 
given up by the lighter object is absorbed by the heavier object. In the limit of an arbitrar-
ily large m2, the heavier object can absorb huge amounts of momentum mv without acquir-
ing significant speed. If we “back off” from the extreme case where m1 can be  neglected 
altogether, we would find that a lighter object striking a heavier one rebounds with re-
duced speed and that the heavier object begins moving slowly in the opposite direction.

Case 2: m1 = m2 (Fig. 9.17b) Again with v2i = 0, Equations 9.15 now give

v1f = 0

and

v2f = v1i

So the first object stops abruptly, transferring all its energy and momentum to the 
 second. A head-on collision between billiard balls is an almost perfect example of this 
type of  collision. For purposes of energy transfer, two equal-mass particles are perfectly 
“matched.” We’ll encounter analogous instances of energy transfer “matching” when we 
discuss wave motion and again in connection with electric circuits.

Case 3: m1 W m2 (Fig. 9.17c) Now Equations 9.15 give

v1f = v1i

and

v2f = 2v1i

where we’ve neglected m2 compared with m1. So here the more massive object barrels right 
on with no change in motion, while the lighter one heads off with twice the speed of the mas-
sive one. This result is entirely consistent with our earlier claim that the relative speed remains 
unchanged in a one-dimensional elastic collision. How are momentum and energy conserved 
in this case? In the extreme limit where we neglect the mass m2, its energy and momentum 
are negligible. Essentially all the energy and momentum remain with the more massive ob-
ject, and both these quantities are essentially unchanged in the collision. In the less extreme 
case where an object of finite mass strikes a less massive object initially at rest, both objects 
move off in the initial direction of the incident object, with the lighter one moving faster.

Figure 9.17 Special cases of elastic collisions in 
one dimension.
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(a)  m1 V m2

(c)  m1 W m2

(b)  m1 = m2

Nuclear power reactors include a substance called a moderator, whose 
job is to slow the neutrons liberated in nuclear fission, making them 
more likely to induce additional fission and thus sustain a nuclear 
chain reaction. A Canadian reactor design uses so-called heavy water  
as its moderator. In heavy water, ordinary hydrogen atoms are  

replaced by deuterium, the rare form of hydrogen whose nucleus con-
sists of a proton and a neutron. The mass of this deuteron is thus about 
2 u, compared with a neutron’s 1 u. Find the fraction of a neutron’s 
kinetic energy that’s transferred to an initially stationary deuteron in a 
head-on elastic collision.

ExaMpLE 9.10 Elastic Collisions: nuclear Engineering

PheT: Collisions (Introduction)
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9.6 Elastic Collisions 159

GOT IT? 9.7 One ball is at rest on a level floor. A second ball collides elastically 
with the first, and the two move off separately but in the same direction. What can you 
conclude about the masses of the two balls?

Elastic Collisions in Two Dimensions
Analyzing an elastic collision in two dimensions requires the full vector statement of mo-
mentum conservation (Equation 9.12), along with the statement of energy conservation 
(Equation 9.13). But these equations alone don’t provide enough information to solve a 
problem. In a collision between reasonably simple macroscopic objects, that information 
may be provided by the so-called impact parameter, a measure of how much the colli-
sion differs from being head-on (Fig. 9.18). More typically—especially with atomic and 
nuclear interactions—the necessary information must be supplied by measurements done 
after the collision. Knowing the direction of motion of one particle after collision, for ex-
ample, provides enough information to analyze a collision if the masses and initial veloci-
ties are also known.

Interpret We have a head-on collision, so we’re dealing with a one-
dimensional situation. The system of interest consists of the neutron 
and the deuteron. We’re not told much else except the masses of the 
two particles. That should be enough, though, because we’re not asked 
for the final velocities but rather for a ratio of related quantities—
namely, kinetic energies.

Develop Since we have a one-dimensional elastic collision, Equa-
tions 9.15 apply. We’re asked for the fraction of the neutron’s kinetic 
energy that gets transferred to the deuteron, so we need to express the 
deuteron’s final velocity in terms of the neutron’s initial velocity. If 
we take the neutron to be particle 1, then we want Equation 9.15b. 
With the deuteron initially at rest, v2i = 0 and the equation becomes 
v2f = 2m1 v1i/1m1 + m22. Our plan is to use this equation to deter-
mine the kinetic-energy ratio.

evaluate The kinetic energies of the two particles are given by 
K1 = 1

2 m1v1
2 and K2 = 1

2 m2v2
2. Using our equation for v2f gives

K2 =
1

2
 m2 a

2m1v1

m1 + m2
b

2

=
2m2 m1

2v1
2

1m1 + m222

We want to compare this with K1:

K2

K1
= K2 a 1

K1
b = a 2m2 m1

2v1
2

1m1 + m222 ba
1

1
2 m1v1

2
b =

4m1 m2

1m1 + m222 (9.16)

In this case m1 = 1 u and m2 = 2 u, so we have K2/K1 = 8/9 ≃ 0.89. 
Thus 89% of the incident energy is transferred in a single collision, 
leaving the neutron with 11% of its initial energy.

assess Let’s take a look at Equation 9.16 in the context of our three 
special cases. We numbered this equation because it’s a general result 
for the fractional energy transfer in any one-dimensional elastic col-
lision. In case 1, m1 V m2, so we neglect m1 compared with m2 in 
the denominator; then our energy ratio is approximately 4m1/m2. This 
becomes zero in the extreme limit where m1’s mass is negligible—
consistent with our case 1 where the massive object didn’t move at 
all. In case 2, m1 = m2, and Equation 9.16 becomes 4m2/12m22 = 1, 
where m is the mass of both objects. That too agrees with our earlier 
analysis: The incident object stops and transfers all its energy to the 
struck object. Finally, in case 3, m1 W m2, so we neglect m2 in the 
denominator. Now the energy ratio becomes 4m2/m1. As in case 1, 
this approaches zero as the mass ratio gets extremely large. So the 
maximum energy transfer occurs with two equal masses, and tails off 
toward zero if the mass ratio becomes extreme in either direction.

For the particles in this example, the mass ratio 1:2 is close enough 
to equality that the energy transfer is nearly 90% efficient. Problem 84 
explores further this energy transfer. ■

Figure 9.18 The impact parameter b deter-
mines the directions of the collision forces.

v
u F

S

F
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Impact parameter b is the
distance between the spheres’ centers c

cb determines where they hit and
thus the direction of the collision forces.

(a) (b)

b
b

PheT: Collisions (Advanced)
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160 Chapter 9 Systems of Particles

A croquet ball strikes a stationary ball of equal mass. The collision is 
elastic, and the incident ball goes off at 30° to its original direction. In 
what direction does the other ball move?

Interpret We’ve got an elastic collision, so both momentum and 
kinetic energy are conserved. The system consists of the two croquet 
balls. We aren’t given a lot of information, but since we’re asked only 
for a direction, the magnitudes of the velocities won’t matter. Thus 
we’ve got what we need to know about the initial velocities, and we’ve 
got one other piece of information, so we have enough to solve the 
problem.

Develop Figure 9.19 shows the situation, in which we’re after 
the unknown angle u. Since the collision is elastic, Equations 9.12 
(momentum conservation) and 9.13 (energy conservation) both ap-
ply. The masses are equal, so they cancel from both equations. With 
v2i = 0, we then have v

!
1i = v

!
1f + v

!
2f for momentum conservation 

and v1i
2 = v1f

2 + v2f
2 for energy conservation. The rest will be algebra.

evaluate Solving for one unknown in terms of another is going to 
get messy here, with some velocities squared and some not. Here’s a 
more clever approach: Rather than write the momentum equation in 
two components, let’s take the dot product of each side with  itself. 
That will bring in velocity-squared terms, letting us combine the 
 momentum and energy equations. And the dot product includes an 
 angle—which is what we’re asked to find.

The dot product is distributive and commutative, so here’s what 
we get when we dot the momentum equation with itself:

 v
!
1i

# v
!
1i = 1v

!
1f + v

!
2f2 # 1v

!
1f + v

!
2f2

 = v
!
1f

# v
!
1f + v

!
2f

# v
!
2f + 2v

!
1f

# v
!
2f

Recall that the dot product of two vectors is the product of 
their magnitudes with the cosine of the angle between them: 
A
S # B

S
= AB cos u. Since the angle between a vector and itself is zero, 

the dot product of a vector with itself is the square of its magnitude: 
A
S # A

S
= A2 cos102 = A2. So our equation becomes

v1i
2 = v1f

2 + v2f
2 + 2v1f v2f cos1u + 30°2

where the argument of the cosine follows because, as Fig. 9.19 shows, 
the angle between v

!
1f and v

!
2f is u + 30°. We now subtract the energy 

equation from this new equation to get

2v1f v2f cos1u + 30°2 = 0

But neither of the final speeds is zero, so this equation requires that 
cos1u + 30°2 = 0. Thus u + 30° = 90°, and our answer follows: 
u = 60°.

assess This result seems reasonable, although we don’t have a lot 
to go on because we haven’t calculated the final speeds. But it’s in-
triguing that the two balls go off at right angles to each other. Is this a 
coincidence? No: It happens in any two-dimensional elastic collision 
between objects of equal mass when one is initially at rest. You can 
prove this in Problem 72. ■

Figure 9.19 Our sketch of the collision between croquet balls of equal mass 
(Example 9.11).

The Center-of-Mass Frame
Two-dimensional collisions take a particularly simple form in a frame of reference moving 
with the center of mass of the colliding particles, since the total momentum in such a 
frame must be zero. That remains true after a collision, which involves only internal forces 
that don’t affect the center of mass. Therefore, both the initial and final momenta form 
pairs of oppositely directed vectors of equal magnitude, as shown in Fig. 9.20. In an elastic 
collision, energy conservation requires further that the incident and final momenta have 
the same values, so a single number—the angle u in Fig. 9.20—completely describes the 
collision.

It’s often easier to analyze a collision by transforming to the center-of-mass frame, do-
ing the analysis, and then transforming the resulting momentum and velocity vectors back 
to the original or “lab” frame. High-energy physicists routinely make such transformations 
as they seek to understand the fundamental forces between elementary particles. Those 
forces are described most simply in the center-of-mass frame of colliding particles, but in 
some experiments—those where lighter particles slam into massive nuclei or stationary 
targets—the physicists and their particle accelerators are not in the center-of-mass frame.

Figure 9.20 An elastic collision viewed in the 
center-of-mass frame, showing that the initial 
and final momentum vectors form pairs with 
equal magnitudes and opposite directions.

p2f
u

p2i
u

p1i
u

p1f
u

u

u

Collision
point

m1 m2

ExaMpLE 9.11 a Two-Dimensional Elastic Collision: Croquet
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9.6 Elastic Collisions 161

COnCEpTUaL ExaMpLE 9.2 In the CM Frame

Figure 9.21 A two-dimensional collision between equal masses in the CM 
frame.

m1 m2

v2f
u

v2i
u

v1f
u

v1i
u

Figure 9.22 The same collision in a frame with m2 initially at rest.

Figure 9.21 shows initial and final velocities for a collision between 
two equal masses as observed in their center-of-mass reference frame. 
What would a comparable diagram look like in a reference frame 
where m2 is initially at rest?

Interpret Since the masses are equal, momenta and velocity vec-
tors are proportional. Thus Fig. 9.21 does indeed show a collision in 
the center-of-mass reference frame. We need to transform the diagram 
to a frame where m2 is initially at rest.

evaluate To get from Fig. 9.21 to a reference frame where m2 is 
initially at rest, we need to add - v

!
2i to m2’s initial velocity—and 

therefore to all other velocities. That makes v
!
1i twice as long and 

adds an equal-length but perpendicular vector to each final velocity, 
making them both 22 times as long as in the CM frame and pointing 
at 45°. Figure 9.22 is our result.

assess In the ASSESS step of Example 9.11, you learned that a two-
dimensional collision between equal masses, with one initially at rest, 
results in the final velocities being perpendicular. Our result is consist-
ent with that fact, and its symmetry is consistent with the symmetry 
shown in the center-of-mass frame.

MakIng the connectIon Consider a collision in the center- of-
mass frame, as shown in Fig. 9.20, but now with equal-mass objects. 
If the angle u shown in Fig. 9.20 is 70°, what are the angles shown in 
a diagram analogous to Fig. 9.19, in a frame where one of the objects 
is initially at rest?

evaluate Since the objects’ masses are equal, in the zero- 
momentum cm frame they must be approaching each other with equal 
speeds v. We also know that the two velocities after collision must be 
equal and opposite in the cm frame; again, that’s because the  total 
 momentum of the two equal-mass balls is zero in the cm frame. Fur-
thermore, to conserve kinetic energy the speeds in the cm frame must 
be the same as they were before the collision. So the collision looks 
like Fig. 9.20, and we can replace the momentum vectors with equal-
magnitude velocity vectors since the objects have equal masses. To 
get to a reference frame where m

2
 is initially at rest, we need to add a 

rightward velocity v
!
 to all the vectors shown in the cm frame. That 

will give m
1
 an after-collision velocity whose components are 

v1x = v cos u + v and v1y = -v sin u, with the minus sign designat-
ing the downward direction in Fig. 9.20. The angle of m

1
’s velocity, 

analogous to the 30° angle in Fig. 9.19, is then tan-1[-sin u/(1 +  cos u)]. 
Work this out for u = 70°, and you’ll get 35°. In fact, you could show 
in general that, for equal-mass objects, the angles in the cm frame and 
in the frame with one object initially at rest are always related by a 
factor of 2.
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The big idea of this chapter is that systems consisting of many particles exhibit simple behaviors that don’t depend on the complexities of their in-
ternal structure or motions. That, in turn, allows us to understand those internal details. In particular, a system responds to external forces as though 
it were a point particle located at the center of mass. If the net external force on a system is zero, then the center of mass does not accelerate and 
the system’s total momentum is conserved. Conservation of momentum holds to a very good approximation during the brief, intense encounters 
called collisions, allowing us to relate particles’ motions before and after colliding.

Chapter 9 Summary
Big Idea

Newton’s second and third laws are behind these big ideas. The third law, in particular, says that forces 
internal to a system cancel in pairs, and therefore they don’t contribute to the net force on the system. 
That’s what allows us to describe a system’s overall motion without having to worry about what’s going 
on internally.

Key Concepts and Equations

The center of mass position r
!
cm is a weighted average of the positions 

of a system’s constituent particles:

r
!
cm = a  mir

!
i

M
 or, with continuous matter, r

!
cm = 1r

!
 dm

M

Here M is the system’s total mass and the sum or integral is taken over 
the entire system. The center of mass obeys Newton’s second law:

F
S

net ext = M a
!
cm =

dP
S

dt

where F
S

net ext is the net external force on the system, a
!
cm the accelera-

tion of the center of mass, and P
S

the system’s total momentum.

A collision is a brief, intense interaction between particles involving 
large internal forces. External forces have little effect during a colli-
sion, so to a good approximation the total momentum of the interact-
ing particles is conserved.

In a totally inelastic collision, the colliding 
objects stick together to form a composite; 
in that case momentum conservation entirely 
determines the outcome:

m1v
!
1 + m2v

!
2 = 1m1 + m22v

!
f  

(conservation of momentum,
totally inelastic collision)

p2
u

p1
u

pf
u

An elastic collision conserves kinetic energy as well as momentum, and the colliding particles 
separate after the collision:

m1v
!
1i + m2v

!
2i = m1v

!
1f + m2v

!
2f  1conservation of momentum, elastic collision2

1
2 m1v1i

2 + 1
2 m2v2i

2 = 1
2 m1v1f

2 + 1
2 m2v2f

2  1conservation of energy, elastic collision2
In the special case of a one-dimensional elastic collision, knowledge of the mass and initial veloci-
ties is sufficient to determine the outcome. To analyze elastic collisions in two dimensions requires 
an additional piece of information, such as the impact parameter or the direction of one of the par-
ticles after the collision.

applications

One-dimensional collisions 
with one object initially at 
rest provide insights into the 
nature of collisions. There 
are three cases, depending on 
the relative masses:

Before

After

m1
m1 m2

m1

m1

m2

m2
m1

m2m1

m2

m2

m1 6 m2 m1 = m2

m1 reverses direction.

m1 7 m2

m1 continues in
same direction.

m1 stops.

p1f
u

p2f
u

p1i
u

The incoming ball
carries momentum
and energy.

After an
elastic collision,
the two balls’
momenta and
energy sum to
those of the
incoming ball.Initially

at rest.

Rockets provide a technological application of momentum conservation. A rocket exhausts matter out the back at high velocity; momentum 
 conservation then requires that the rocket gain momentum in the forward direction. Rocket propulsion requires no interaction with any external 
material, which is why rockets work in space.

Newton’s
third law

Internal
forces cancel

in pairs

The center of
mass satis�es

Newton’s second 
law

⊗

⊗

⊗

⊗

Only the
center of
mass follows
the trajectory
of a point
particle.
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Exercises and Problems 163

For homework assigned on MasteringPhysics, go to www.masteringphysics.com

BIO Biology and/or medicine-related problems DATA Data problems ENV Environmental problems CH Challenge problems Comp Computer problems

17. Three equal masses lie at the corners of an equilateral triangle of 
side L. Find the center of mass.

18. How far from Earth’s center is the center of mass of the Earth–
Moon system? (Hint: Consult Appendix E.)

Section 9.2 Momentum
19. A popcorn kernel at rest in a hot pan bursts into two pieces, with 

masses 91 mg and 64 mg. The more massive piece moves hori-
zontally at 47 cm/s. Describe the motion of the second piece.

20. A 60-kg skater, at rest on frictionless ice, tosses a 12-kg snowball 
with velocity v

!
= 53.0 in + 14.0 jn m/s, where the x- and y-axes 

are in the horizontal plane. Find the skater’s subsequent velocity.
21. A plutonium-239 nucleus at rest decays into a uranium-235 

nucleus by emitting an alpha particle 14He2 with kinetic en-
ergy 5.15 MeV. Find the speed of the uranium nucleus.

22. A toboggan of mass 8.6 kg is moving horizontally at 23 km/h. As 
it passes under a tree, 15 kg of snow drop onto it. Find its subse-
quent speed.

Section 9.3 Kinetic Energy of a System
23. A 150-g trick baseball is thrown at 60 km/h. It explodes in flight 

into two pieces, with a 38-g piece continuing straight ahead at  
85 km/h. How much energy do the pieces gain in the explosion?

24. An object with kinetic energy K explodes into two pieces, each 
of which moves with twice the speed of the original object. Find 
the ratio of the internal kinetic energy to the center-of-mass en-
ergy after the explosion.

Section 9.4 Collisions
25. Two 140-kg satellites collide at an altitude where g = 8.7 m/s2, 

and the collision imparts an impulse of 1.8 * 105 N #s to each. If 
the collision lasts 120 ms, compare the collisional impulse to that 
imparted by gravity. Your result should show why you can neglect 
the external force of gravity.

26. High-speed photos of a 220@mg flea jumping vertically show that 
  the jump lasts 1.2 ms and involves an average vertical accelera-

tion of 100g. What (a) average force and (b) impulse does the 
ground exert on the flea during its jump? (c) What’s the change 
in the flea’s momentum during its jump?

27. You’re working in mission control for an interplanetary space 
probe. A trajectory correction calls for a rocket firing that imparts 
an impulse of 5.64 N #  s. If the rocket’s average thrust is 135 mN, 
how long should the rocket fire?

Section 9.5 Totally Inelastic Collisions
28. In a railroad switchyard, a 56-ton freight car is sent at 7.0 mi/h 

toward a 31-ton car moving in the same direction at 2.6 mi/h. (a) 
What’s the speed of the cars after they couple? (b) What fraction 
of the initial kinetic energy was lost in the collision?

29. In a totally inelastic collision between two equal masses, with 
one initially at rest, show that half the initial kinetic energy is 
lost.

30. A neutron (mass 1.01 u) strikes a deuteron (mass 2.01 u), and 
they combine to form a tritium nucleus (mass 3.02 u). If the neu-
tron’s initial velocity was 23.5in + 14.4jn  Mm/s and if the tritium 
leaves the reaction with velocity 15.1in + 22.6jn  Mm/s, what was 
the deuteron’s velocity?

bio

For thought and Discussion
 1. Roughly where is your center of mass when you’re standing?
 2. Explain why a high jumper’s center of mass need not clear the bar.
 3. The center of mass of a solid sphere is clearly at its center. If 

the sphere is cut in half and the two halves are stacked as in Fig. 
9.23, is the center of mass at the point where they touch? If not, 
roughly where is it? Explain.

Figure 9.23 For Thought and Discussion 3

 4. The momentum of a system of pool balls is the same before and 
after they are hit by the cue ball. Is it still the same after one of 
the balls strikes the edge of the table? Explain.

 5. An hourglass is inverted and placed on a scale. Compare the 
scale readings (a) before sand begins to hit the bottom; (b) while 
sand is hitting the bottom; and (c) when all the sand is on the bot-
tom.

 6. Why are cars designed so that their front ends crumple during an 
accident?

 7. Give three everyday examples of inelastic collisions.
 8. Is it possible to have an inelastic collision in which all the kinetic 

energy of the colliding objects is lost? If so, give an example.
If not, why not?

 9. If you want to stop the neutrons in a reactor, why not use massive 
nuclei like lead?

10. Why don’t we need to consider external forces acting on a sys-
tem as its constituent particles undergo a collision?

11. How is it possible to have a collision between objects that don’t 
ever touch? Give an example of such a collision.

12. A pitched baseball moves no faster than the pitcher’s hand. But a 
batted ball can move much faster than the bat. What’s the differ-
ence?

13. Two identical satellites are going in opposite directions in the 
same circular orbit when they collide head-on. Describe their 
subsequent motion if the collision is (a) elastic or (b) totally 
 inelastic.

exercises and problems
Exercises

Section 9.1 Center of Mass
14. A 28-kg child sits at one end of a 3.5-m-long seesaw. Where 

should her 65-kg father sit so the center of mass will be at the 
center of the seesaw?

15. Two particles of equal mass m are at the vertices of the base of an 
equilateral triangle. The triangle’s center of mass is midway be-
tween the base and the third vertex. What’s the mass at the third 
vertex?

16. Rework Example 9.1 with the origin at the center of the barbell, 
showing that the physical location of the center of mass doesn’t 
depend on your coordinate system.
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164 Chapter 9 Systems of Particles

42. Physicians perform needle biopsies to sample tissue from inter-
nal organs. A spring-loaded gun shoots a hollow needle into the 
tissue; extracting the needle brings out the tissue core. A particu-
lar device uses 8.3-mg needles that take 90 ms to stop in the tis-
sue, which exerts a stopping force of 41 mN. (a) Find the impulse 
imparted by the tissue. (b) How far into the tissue does the needle 
penetrate?

43. Find the center of mass of the uniform, solid cone of height h, 
base radius R, and constant density r shown in Fig. 9.25. (Hint: 
Integrate over disk-shaped mass elements of thickness dy, as 
shown in the figure.)

R

h

}dy

Figure 9.25 Problem 43

44. A firecracker, initially at rest, explodes into two fragments. The 
first, of mass 14 g, moves in the +x-direction at 48 m/s. The sec-
ond moves at 32 m/s. Find the second fragment’s mass and the 
direction of its motion.

45. An 11,000-kg freight car rests against a spring bumper at the end 
of a railroad track. The spring has constant k = 0.32 MN/m. The 
car is hit by a second car of 9400-kg mass moving at 8.5 m/s, and 
the two couple together. Find (a) the maximum compression of 
the spring and (b) the speed of the two cars when they rebound 
together from the spring.

46. On an icy road, a 1200-kg car moving at 50 km/h strikes a 4400-kg  
truck moving in the same direction at 35 km/h. The pair is soon 
hit from behind by a 1500-kg car speeding at 65 km/h, and all 
three vehicles stick together. Find the speed of the wreckage.

47. A car of mass M is initially at rest on a frictionless surface. A jet 
of water carrying mass at the rate dm/dt and moving horizontally 
at speed v0 strikes the rear window of the car, which is at 45° to 
the horizontal; the water bounces off at the same speed, relative 
to the window, with which it hit (see Fig. 9.26). Find expressions 
for (a) the car’s initial acceleration and (b) the maximum speed it 
reaches. Note: (b) doesn’t require any calculation. It might help 
to sketch a rough plot (no calculations!) of the car’s speed versus 
time.

Figure 9.26 Problem 47

48. A 1250-kg car is moving with velocity v
!
1 = 36.2in + 12.7jn m/s. 

  It skids on a frictionless icy patch and collides with a 448-kg hay 
wagon with velocity v

!
2 = 13.8in + 10.2jn m/s. If the two stay to-

gether, what’s their velocity?
49. Masses m and 3m approach at the same speed v and undergo a 

head-on elastic collision. Show that mass 3m stops, while mass m 
rebounds at speed 2v.

50. A 238U nucleus is moving in the x-direction at 5.0 * 105 m/s when 
it decays into an alpha particle 14He2 and a 234Th nucleus. The 

bio
31. Two identical trucks have mass 5500 kg when empty, and the 

maximum permissible load for each is 8000 kg. The first truck, 
carrying 3800 kg, is at rest. The second truck plows into it at 65 
km/h, and the pair moves away at 27 km/h. As an expert witness, 
you’re asked to determine whether the second truck was over-
loaded. What do you report?

Section 9.6 Elastic Collisions
32. An alpha particle 14He2 strikes a stationary gold nucleus 1197Au2 

head-on. What fraction of the alpha’s kinetic energy is trans-
ferred to the gold? Assume a totally elastic collision.

33. Playing in the street, a child accidentally tosses a ball at 18 m/s 
toward the front of a car moving toward him at 14 m/s. What’s 
the ball’s speed after it rebounds elastically from the car?

34. A block of mass m undergoes a one-dimensional elastic collision 
with a block of mass M initially at rest. If both blocks have the 
same speed after colliding, how are their masses related?

35. A proton moving at 6.9 Mm/s collides elastically head-on with a 
second proton moving in the opposite direction at 11 Mm/s. Find 
their subsequent velocities.

36. A head-on, elastic collision between two particles with equal ini-
tial speed v leaves the more massive particle 1m12 at rest. Find (a) 
the ratio of the particle masses and (b) the final speed of the less 
massive particle.

problems
37. Find the center of mass of a pentagon with five equal sides of 

length a, but with one triangle missing (Fig. 9.24). (Hint: See 
Example 9.3, and treat the pentagon as a group of triangles.)

a

Figure 9.24 Problem 37

38. Wildlife biologists fire 20-g rubber bullets to stop a rhinoceros 
charging at 0.81 m/s. The bullets strike the rhino and drop ver-
tically to the ground. The biologists’ gun fires 15 bullets each 
second, at 73 m/s, and it takes 34 s to stop the rhino. (a) What 
impulse does each bullet deliver? (b) What’s the rhino’s mass? 
Neglect forces between rhino and ground.

39. Consider a system of three equal-mass particles moving in a 
plane; their positions are given by aiin + bijn, where ai and bi are

bio

 functions of time with the units of position. Particle 1 has 
a1 = 6t2 + 5 and b1 = 0; particle 2 has a2 = 4t + 3 and 
b2 = 4t; particle 3 has a3 = 8t and b3 = t + 4. Find the center-
of-mass position, velocity, and acceleration of the system as 
functions of time.

40. You’re with 19 other people on a boat at rest in frictionless water. 
The group’s total mass is 1500 kg, and the boat’s mass is 12,000 kg.  
The entire party walks the 6.5-m distance from bow to stern. 
How far does the boat move?

41. A hemispherical bowl is at rest on a frictionless counter. A mouse 
drops onto the bowl’s rim from a cabinet directly overhead. The 
mouse climbs down inside the bowl to eat crumbs at the bottom. 
If the bowl moves along the counter a distance equal to one-tenth 
of its diameter, how does the mouse’s mass compare with the 
bowl’s mass?
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 stopping. You measure the coefficient of friction between tires 
and road and find it to be 0.712. Show that at least one car must 
have exceeded the 55-km/h speed limit at the intersection.

66. A 400-mg popcorn kernel is skittering across a nonstick frying 
pan at 8.2 cm/s when it pops and breaks into two equal-mass 
pieces. If one piece ends up at rest, how much energy was re-
leased in the popping?

67. Two identical objects with the same initial speed collide and stick 
together. If the composite object moves with half the initial speed 
of either object, what was the angle between the initial veloci-
ties?

68. A proton (mass 1 u) moving at 6.90 Mm/s collides elastically 
head-on with a second particle moving in the opposite direction 
at 2.80 Mm/s. After the collision, the proton is moving opposite 
its initial direction at 8.62 Mm/s. Find the mass and final velocity 
of the second particle.

69. Two objects, one initially at rest, undergo a one-dimensional 
elastic collision. If half the kinetic energy of the initially moving 
object is transferred to the other object, what is the ratio of their 
masses?

70. Blocks B and C have masses 2m and m, respectively, and are at 
rest on a frictionless surface. Block A, also of mass m, is head-
ing at speed v toward block B as shown in Fig. 9.27. Determine 
the final velocity of each block after all subsequent collisions are 
over. Assume all collisions are elastic.

v
u

A B C

Figure 9.27 Problem 70

71. Derive Equation 9.15b.
72. An object collides elastically with an equal-mass object initially 

at rest. If the collision isn’t head-on, show that the final velocity 
vectors are perpendicular.

73. A proton (mass 1 u) collides elastically with a stationary deu-
teron (mass 2 u). If the proton is deflected 37° from its original 
direction, what fraction of its kinetic energy does it transfer to the 
deuteron?

74. Two identical billiard balls are initially at rest when they’re 
struck symmetrically by a third identical ball moving with veloc-
ity v

!
0 = v0 in  (Fig. 9.28). Find the velocities of all three balls after 

this elastic collision.

v0
u

Figure 9.28 Problem 74

75. Find an expression for the impulse imparted by a force 
F1t2 = F0 sin1at2 during the time t = 0 to t = p/a. Here a is a 
constant with units of s-1.

76. A 32-u oxygen molecule 1O22 moving in the +x-direction at 580 
m/s collides with an oxygen atom (mass 16 u) moving at 870 m/s 
at 27° to the x-axis. The particles stick together to form an ozone 
molecule. Find the ozone’s velocity.

77. A 114-g Frisbee is lodged on a tree branch 7.65 m above the 
ground. To free it, you lob a 240-g dirt clod vertically upward. 
The dirt leaves your hand at a point 1.23 m above the ground, 
moving at 17.7 m/s. It sticks to the Frisbee. Find (a) the maxi-
mum height reached by the Frisbee-dirt combination and (b) the 
speed with which the combination hits the ground.

CH

CH

CH

alpha moves at 1.4 * 107 m/s at 22° above the x-axis. Find the 
recoil velocity of the thorium.

51. A cylindrical concrete silo is 4.0 m in diameter and 30 m high. 
It consists of a 6000-kg concrete base and 38,000-kg cylindrical 
concrete walls. Locate the center of mass of the silo (a) when it’s 
empty and (b) when it’s two-thirds full of silage whose density is 
800 kg/m3. Neglect the thickness of the walls and base.

52. A 42-g firecracker is at rest at the origin when it explodes into 
three pieces. The first, with mass 12 g, moves along the x-axis at 
35 m/s. The second, with mass 21 g, moves along the y-axis at 29 
m/s. Find the velocity of the third piece.

53. A 60-kg astronaut floating in space simultaneously tosses away 
a 14-kg oxygen tank and a 5.8-kg camera. The tank moves in the 
x-direction at 1.6 m/s, and the astronaut recoils at 0.85 m/s in a 
direction 200° counterclockwise from the x-axis. Find the cam-
era’s velocity.

54. Assuming equal-mass pieces in Exercise 24, find the angles of 
the two velocities relative to the direction of motion before the 
explosion.

55. A 62-kg sprinter stands on the left end of a 190-kg cart mov-
ing leftward at 7.1 m/s. She runs to the right end and continues 
horizontally off the cart. What should be her speed relative to the 
cart so that once she’s off the cart, she has no horizontal velocity 
relative to the ground?

56. You’re a production engineer in a cookie factory, where mounds 
of dough drop vertically onto a conveyor belt at the rate of one 
12-g mound every 2 seconds. You’re asked to design a mechanism 
that will keep the conveyor belt moving at a constant 50 cm/s.  
What average force must the mechanism exert on the belt?

57. Mass m, moving at speed 2v, approaches mass 4m, moving at 
speed v. The two collide elastically head-on. Find expressions for 
their subsequent speeds.

58. Verify explicitly that kinetic energy is conserved in the collision 
of the preceding problem.

59. While standing on frictionless ice, you (mass 65.0 kg) toss a 
4.50-kg rock with initial speed 12.0 m/s. If the rock is 15.2 m  
from you when it lands, (a) at what angle did you toss it?  
(b) How fast are you moving?

60. You’re an accident investigator at a scene where a drunk driver 
in a 1600-kg car has plowed into a 1300-kg parked car with its 
brake set. You measure skid marks showing that the combined 
wreckage moved 25 m before stopping, and you determine a 
frictional coefficient of 0.77. What do you report for the drunk 
driver’s speed just before the collision?

61. A fireworks rocket is launched vertically upward at 40 m/s. At 
the peak of its trajectory, it explodes into two equal-mass frag-
ments. One reaches the ground 2.87 s after the explosion. When 
does the second reach the ground?

62. Two objects moving in opposite directions with the same speed v  
undergo a totally inelastic collision, and half the initial kinetic 
energy is lost. Find the ratio of their masses.

63. Explosive bolts separate a 950-kg communications satellite from 
its 640-kg booster rocket, imparting a 350@N #s impulse. At what 
relative speed do satellite and booster separate?

64. You’re working in quality control for a model rocket manu-
facturer, testing a class-D rocket whose specifications call for 
an impulse between 10 and 20 N #s. The rocket’s burn time is 
∆t = 2.8 s, and its thrust during that time is F1t2 = at1t - ∆t2, 
where a = -4.6 N/s2. Does the rocket meet its specs?

65. You’re investigating an accident in which a 1040-kg Toyota 
Yaris and an 2140-kg Buick Enclave collided at right angles in 
an intersection. The combined wreckage skidded 12.3 m before 

CH

M09_WOLF4752_03_SE_C09.indd   165 17/06/15   7:04 PM



166 Chapter 9 Systems of Particles

units of mass, and a is a non-negative dimensionless constant. 
Find expressions for (a) the rod’s mass and (b) the location of its 
center of mass. (c) Are your results what you expect when a = 0?

92. Model rocket motors are specified by giving the impulse they 
provide, in N # s, over the entire time the rocket is firing. The ta-
ble below shows the results of rocket-motor tests with different 
motors used to launch rockets of different masses. Determine two 
data-based quantities that, when plotted against each other, should 
give a straight line and whose slope should allow you to deter-
mine g. Plot the data, establish a best-fit line, and determine g.  
Assume that the maximum height is much greater than the dis-
tance over which the rocket motor is firing, so you can neglect 
the latter. You’re also neglecting air resistance—but explain how 
that affects your experimentally determined value for g.

Impulse, J (N # s) 4.5 7.8 4.5 7.8 11

Rocket mass (g) 
 (including motor)

180 485 234 234 485

Maximum height 
achieved (m)

22 13 19 51 23

93. A block of mass M is moving at speed v0 on a frictionless surface 
that ends in a rigid wall, heading toward a stationary block of 
mass nM, where n Ú 1 (Fig. 9.30). Collisions between the two 
blocks or the left-hand block and the wall are elastic and one-
dimensional. (a) Show that the blocks will undergo only one col-
lision with each other if n … 3. (b) Show that the blocks will 
undergo two collisions with each other if n = 4. (c) How many 
collisions will the blocks undergo if n = 10, and what will be 
their final speeds?

M nM

v0
u

Figure 9.30 Problem 93

Passage Problems
You’re interested in the intersection of physics and sports, and you recog-
nize that many sporting events involve collisions—bat and baseball, foot and 
football, hockey stick and puck, basketball and floor. Using strobe photog-
raphy, you embark on a study of such collisions. Figure 9.31 is your strobe 
photo of a ball bouncing off the floor. The ball is launched from a point near 
the top left of the photo and your camera then captures it undergoing three 
subsequent collisions with the floor.

Essential University Physics 3e
Wolfson
Benjamin Cummings
Pearson Education
9937209039
Fig 09-31
Pickup: 6969209036
Rolin Graphics
jr    6/4/14    12p0 x 9p8  

vin
u

vout
u

Figure 9.31 Passage Problems 94–97

94. The collisions between ball and floor are
a. totally elastic.
b. totally inelastic.
c. neither totally elastic nor totally inelastic.

DATA
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78. You set a small ball of mass m atop a large ball of mass M W m 
and drop the pair from height h. Assuming the balls are perfectly 
elastic, show that the smaller ball rebounds to height 9h.

79. A car moving at speed v undergoes a one-dimensional collision 
with an identical car initially at rest. The collision is neither elas-
tic nor fully inelastic; 5/18 of the initial kinetic energy is lost. 
Find the velocities of the two cars after the collision.

80. A 200-g block is released from rest at a height of 25 cm on a 
frictionless 30° incline. It slides down the incline and then along 
a frictionless surface until it collides elastically with an 800-g 
block at rest 1.4 m from the bottom of the incline (Fig. 9.29). 
How much later do the two blocks collide again?

1.4 m

25 cm
30°

Figure 9.29 Problem 80

81. A 14-kg projectile is launched at 380 m/s at a 55° angle to the 
horizontal. At the peak of its trajectory it collides with a second 
projectile moving horizontally, in the opposite direction, at 140 
m/s. The two stick together and land 9.6 km horizontally down-
range from the first projectile’s launch point. Find the mass of the 
second projectile.

82. During a crash test, a car moving at 50 km/h collides with a rigid 
barrier and comes to a complete stop in 200 ms. The collision 
force as a function of time is given by F = at4 + bt3 + ct2 + dt,  
w h e r e  a = -8.86 GN/s4, b = 3.27 GN/s3, c = -362 MN/s2, 
and d = 12.5 MN/s. Find (a) the total impulse imparted by the 
collision, (b) the average collisional force, and (c) the car’s mass.

83. Use numerical or graphical techniques to estimate the peak force of 
the collision in the preceding problem, and determine when it occurs.

84. A block of mass m1 undergoes a one-dimensional elastic collision 
with an initially stationary block of mass m2. Find an expression for 
the fraction of the initial kinetic energy transferred to the second 
block, and plot your result for mass ratios m1/m2 from 0 to 20.

85. Two objects of unequal mass, one initially at rest, undergo a one-
dimensional elastic collision. For a given mass ratio, show that 
the fraction of the initial energy transferred to the initially sta-
tionary object doesn’t depend on which object it is.

86. In Figure 9.6, the uniform semicircular wire has radius R. How 
far above the center of the semicircle is its center of mass?

87. Find the center of mass of a uniform slice of pizza with radius R 
and angular width u.

88. In a ballistic pendulum demonstration gone bad, a 0.52-g pel-
let, fired horizontally with kinetic energy 3.25 J, passes straight 
through a 400-g Styrofoam pendulum block. If the pendulum 
rises a maximum height of 0.50 mm, how much kinetic energy 
did the pellet have after emerging from the Styrofoam?

89. An 80-kg astronaut has become detached from the safety line 
connecting her to the International Space Station. She’s 200 m 
from the station, at rest relative to it, and has 4 min of air remain-
ing. To get herself back, she tosses a 10-kg tool kit away from the 
station at 8.0 m/s. Will she make it back in time?

90. Astronomers detect extrasolar planets by measuring the slight 
movement of stars around the center of mass of the star–planet 
system. Considering just the Sun and Jupiter, determine the 
 radius of the circular orbit the Sun makes about the Sun–Jupiter 
center of mass.

91. A thin rod extends from x = 0 to x = L. It carries a nonuniform 
mass per unit length m = Mxa/L1 + a, where M is a constant with 
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Answers to Chapter Questions 167

answers to GOT IT? Questions
9.1 The CM is the uppermost point A. You can see this by imagin-

ing horizontal strips through the loop; the higher the strip the 
more mass is included, so the CM must lie nearer the top of the 
loop. The bottommost point would be the CM for a complete 
circle.

9.2 Momentum is conserved, so the momentum both before and after 
the explosion is the same: P

S
= mv

!
= 10.50 kg2160jn m/s2 =  

30jn kg#m/s.

9.3 Only (d). The individual skaters experience external forces 
from the ball, as does the ball from the skaters. A system con-
sisting of the ball and one skater experiences external forces 
from the other skater. Only the system of all three has no net 
external force and therefore has conserved momentum.

9.4 (1) (a); (2) (b)
9.5 all but (c) are collisions; (a) and (b) are nearly elastic; (d) and 

(e) are inelastic
9.6 (a) and (b) are totally inelastic; (c) is inelastic but not totally so
9.7 The ball initially at rest is less massive; otherwise, the incident 

ball would have reversed direction (or stopped if the masses 
were equal).

95. The fraction of the ball’s mechanical energy that’s lost in the sec-
ond collision is
a. about 10%.
b. a little less than half.
c. a little more than half.
d. about 90%.

96. The component of the ball’s velocity whose magnitude is most 
affected by the collisions is
a. horizontal.
b. vertical.
c. Both are affected equally.

97. Compared with the time between bounces, the duration of each 
collision is
a. a tiny fraction of the time between bounces.
b. a significant fraction of the time between bounces.
c. much longer than the time between bounces.

answers to Chapter Questions

answer to Chapter Opening Question
The dancer’s center of mass follows the simple path of a projectile 
because, as Newton’s laws show, the dancer’s mass acts like it’s all 
concentrated at this point.
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8
Gravity

9
Systems of Particles

11
Rotational Vectors 

and Angular 
Momentum

12 
Static Equilibrium10

You’re sitting on a rotating planet. The wheels of your car rotate. Your favorite movie comes 
from a rotating DVD. A circular saw rotates to rip its way through a board. A dancer pir-

ouettes, and a satellite spins about its axis. Even molecules rotate. Rotational motion is com-
monplace throughout the physical universe.

In principle, we could treat rotational motion by analyzing the motion of each particle in 
a rotating object. But that would be a hopeless task for all but the simplest objects. Instead, 
we’ll describe rotational motion by analogy with linear motion as governed by Newton’s laws.

This chapter parallels our study of one-dimensional motion in Chapters 2 and 4. In the next 
chapter we introduce a full vector description to treat multidimensional rotational motion.

10.1 Angular Velocity and Acceleration
You slip a DVD into a player, and it starts spinning. You could describe its motion by 
giving the speed and direction of each point on the disc. But it’s much easier just to 
say that the disc is rotating at 800 revolutions per minute (rpm). As long as the disc is 
a rigid body—one whose parts remain in fixed positions relative to one another—then 
that single statement suffices to describe the motion of the entire disc.

How You’ll Use It
■ Concepts of rotational motion that 

you learn here set the groundwork 
for the vector treatment of rotation in 
Chapter 11.

■ Angular velocity and rotational inertia 
will prove useful in the important 
quantity called angular momentum.

■ Appreciating the analogies between 
linear and angular motion will help 
you to understand the seemingly 
counterintuitive behaviors that result 
from the vector nature of rotational 
motion, from the precession of Earth’s 
axis to the stability of a bicycle.

What You’re Learning
■ Here you’ll learn the rotational analogs 

of quantities in one-dimensional 
motion: angular position, angular 
velocity, and angular acceleration.

■ You’ll be able to solve rotational-
motion problems analogously to 
problems involving one-dimensional 
motion in Chapter 2.

■ You’ll learn about torque, the 
rotational analog of force, and 
rotational inertia, the analog of mass.

■ You’ll learn the rotational analog of 
Newton’s second law.

■ You’ll learn how to calculate rotational 
inertias by integration.

■ You’ll learn to couple rotational and 
linear motion, including the special 
case of rolling motion.

■ You’ll learn how to calculate rotational 
kinetic energy.

What You Know
■ You know how to describe motion in 

one dimension using the concepts of 
position, velocity, and acceleration.

■ You know how to relate position, 
velocity, and acceleration in the 
special case of one-dimensional 
motion with constant acceleration.

■ You understand Newton’s second 
law and how to apply it to one-
dimensional motion.

■ You can describe circular motion 
and the associated centripetal 
acceleration.

Rotational Motion

For a given blade mass, how should you engineer 
a wind turbine’s blades so it’s easiest for the wind 
to get the turbine rotating?
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10.1 Angular Velocity and Acceleration 169

Angular Velocity
The rate at which a body rotates is its angular velocity—the rate at which the angular po-
sition of any point on the body changes. With our 800-rpm DVD, the unit of angle was one 
full revolution (360°, or 2p radians), and the unit of time was the minute. But we could 
equally well express angular velocity in revolutions per second (rev/s), degrees per second 
1°/s2, or radians per second (rad/s or simply s-1 since radians are dimensionless). Because 
of the mathematically simple nature of radian measure, we often use radians in calcula-
tions involving rotational motion (Fig. 10.1).

We use the Greek symbol v (omega) for angular velocity and define average angular 
velocity v as

 v =
∆u

∆t
   1average angular velocity2 (10.1)

where ∆u is the angular displacement—that is, the change in angular position— occurring 
in the time ∆t (Fig. 10.2). When angular velocity is changing, we define  instantaneous 
angular velocity as the limit over arbitrarily short time intervals:

 v = lim
∆tS0

 
∆u

∆t
=

du

dt
   1instantaneous angular velocity2 (10.2)

These definitions are analogous to those of average and instantaneous linear velocity in-
troduced in Chapter 2. Just as we use the term speed for the magnitude of velocity, so we 
define angular speed as the magnitude of the angular velocity.

Velocity is a vector quantity, with magnitude and direction. Is angular velocity also a 
vector? Yes, but we’ll wait until the next chapter for the full vector description of rota-
tional motion. In this chapter, it’s sufficient to know whether an object’s rotation is clock-
wise (CW) or counterclockwise (CCW) about a fixed axis—as suggested by the curved 
arrow in Fig. 10.2. This restriction to a fixed axis is analogous to Chapter 2’s restriction to 
 one-dimensional motion.

Angular and Linear Speed
Individual points on a rotating object undergo circular motion. Each point has an instan-
taneous linear velocity v

!
 whose magnitude is the linear speed v. We now relate this linear 

speed v to the angular speed v. The definition of angular measure in radians (Fig. 10.1) is 
u = s/r. Differentiating this expression with respect to time, we have

du

dt
=

1
r
 
ds

dt

because the radius r is constant. The left-hand side of this equation is the angular velocity v,  
as defined in Equation 10.2. Because s is the arc length—the actual distance traversed by a 
point on the rotating object—the term ds/dt is just the linear speed v, so v = v/r, or

 v = vr (10.3)

Thus the linear speed of any point on a rotating object is proportional both to the angular 
speed of the object and to the distance from that point to the axis of rotation (Fig. 10.3).

✓TIp Radian Measure

Equation 10.3 was derived using the definition of angle in radians and therefore holds 
for only angular speed measured in radians per unit time. If you’re given other angular 
measures—degrees or revolutions, for example—you should convert to radians before 
using Equation 10.3.

s
r

The full circumference is
2pr, so 1 revolution is 2p
radians.  That makes 1 radian
360°>2p or about 57.3°.

Angle in radians is the
ratio of arc s to radius r:
u = s>r.  Here u is a little
less than 1 radian.

r

s
u

u = 

Figure 10.1 Radian measure of angles.

∆u

The arm rotates through
the angle ∆u in time ∆t,
so its average angular
velocity is v = ∆u>∆t.

Direction is
counterclockwise (CCW).

Figure 10.2 Average angular velocity.

Figure 10.3 Linear and rotational speeds.

v
u

v
u

v

Linear speed is proportional
to distance from the rotation axis.

The point on the rim has
the same angular speed v 
but a higher linear speed v
than the inner point.

v = vrr

PheT: Ladybug Revolution
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170 Chapter 10 Rotational Motion

Angular Acceleration
If the angular velocity of a rotating object changes, then the object undergoes angular 
acceleration a, defined analogously to linear acceleration:

 a = lim
∆tS0

 
∆v

∆t
=

dv

dt
  1angular acceleration2 (10.4)

Taking the limit gives the instantaneous angular acceleration; if we don’t take the limit, 
then we have an average over the time interval ∆t. The SI units of angular acceleration are 
rad/s2, although we sometimes use other units such as rpm/s or rev/s2.

Angular acceleration has the same direction as angular velocity—CW or CCW—if the 
angular speed is increasing, and the opposite direction if it’s decreasing. These situations 
are analogous to a car that’s speeding up (acceleration and velocity in the same direction) 
or braking (acceleration opposite velocity).

When a rotating object undergoes angular acceleration, points on the object speed up 
or slow down. Therefore, they have tangential acceleration dv/dt directed parallel or 
 antiparallel to their linear velocity (Fig. 10.4). We introduced this idea of tangential accel-
eration back in Chapter 3; here we can recast it in terms of the angular acceleration:

 a t =
dv

dt
= r 

dv

dt
= ra   1tangential acceleration2 (10.5)

Whether or not there’s angular acceleration, points on a rotating object also have radial accel-
eration because they’re in circular motion. Radial acceleration is given, as usual, by ar = v2/r; 
using v = vr from Equation 10.3, we can recast this equation in angular terms as ar = v2r.

Because angular velocity and acceleration are defined analogously to linear velocity 
and acceleration, all the relations among linear position, velocity, and acceleration au-
tomatically apply among angular position, angular velocity, and angular acceleration. If 
angular acceleration is constant, then all our constant-acceleration formulas of Chapter 2 
apply when we make the substitutions u for x, v for v, and a for a. Table 10.1 summarizes 

EvaluatE One revolution is 2p rad, and 1 min is 60 s, so we have

v = 21 rpm =
121 rev/min212p rad/rev2

60 s/min
= 2.2 rad/s

The speed at the tip of a 28-m-long blade then follows from Equation 
10.3: v = vr = 12.2 rad/s2128 m2 = 62 m/s.

assEss With v in radians per second, multiplying by length in me-
ters gives correct velocity units of meters per second because radians 
are dimensionless. ■

A wind turbine’s blades are 28 m long and rotate at 21 rpm. Find the 
angular speed of the blades in radians per second, and determine the 
linear speed at the tip of a blade.

IntErprEt This problem is about converting between two units of 
angular speed, revolutions per minute and radians per second, as well 
as finding linear speed given angular speed and radius.

DEvElop We’ll first convert the units to radians per second and then 
calculate the linear speed using Equation 10.3, v = vr.

Figure 10.4 Radial and tangential acceleration.

a
u

v
u

at is the tangential
component of
acceleration a and is
parallel to the linear
velocity v.

r u

at = ra

ar = v2r

v

v

ar is the radial component,
perpendicular to v.

u

u

u

Table 10.1 Angular and Linear Position, Velocity, and Acceleration

Linear Quantity Angular Quantity

Position x Angular position u

Velocity v =
dx

dt
Angular velocity v =

du

dt

Acceleration a =
dv

dt
=

d2x

dt2 Angular acceleration a =
dv

dt
=

d2u

dt2

equations for Constant Linear Acceleration equations for Constant Angular Acceleration

v = 1
21v0 + v2 (2.8) v = 1

21v0 + v2 (10.6)
v = v0 + at (2.7) v = v0 + at (10.7)
x = x0 + v0 t + 1

2 at2 (2.10) u = u0 + v0 t + 1
2 at2 (10.8)

v2 = v0
2 + 2a1x - x02 (2.11) v2 = v0

2 + 2a1u - u02 (10.9)

ExAmpLE 10.1 Angular Speed: A Wind Turbine
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10.2 Torque 171

GoT IT? 10.1 A wheel undergoes constant angular acceleration, starting from rest. 
Which graph describes correctly the time dependence of both the transverse and radial 
 accelerations of a point on the wheel’s rim? Explain.

10.2 Torque
Newton’s second law, F

S
= ma

!
, proved very powerful in our study of motion. Ultimately 

Newton’s law governs all motion, but its application to every particle in a rotating object 
would be terribly cumbersome. Can we instead formulate an analogous law that deals with 
rotational quantities?

To develop such a law, we need rotational analogs of force, mass, and acceleration. 
Angular acceleration a is the analog of linear acceleration; in the next two sections we 
develop analogs for force and mass.

How can a small child balance her father on a seesaw? By sitting far from the seesaw’s 
rotation axis; that way, her smaller weight at a greater distance from the pivot is as ef-
fective as her father’s greater weight closer to the pivot. In general, the effectiveness of a 
force in bringing about changes in rotational motion—a quantity called torque—depends 
not only on the magnitude of the force but also on how far from the rotation axis it’s ap-
plied (Fig. 10.5). The effectiveness of the force also depends on the direction in which 
it’s applied, as Fig. 10.6 suggests. Based on these considerations, we define torque as the 

Figure 10.5 Torque increases with the distance r  
from the rotation axis O to the point where 
force is applied.

r
u

r
u

r
u

F
S

F
S

F
S

The same force is applied
at different points on the
wrench.

Closest to O, t is smallest.

Farther away, t becomes larger.

Farthest away, t becomes greatest.

(a)

(b)

(c)

O

O

O

this direct analogy between linear and rotational quantities. With Table 10.1, problems 
involving rotational motion are analogous to the one-dimensional linear problems you 
solved in Chapter 2.

When the wind dies, the turbine of Example 10.1 spins down with 
constant angular acceleration of magnitude 0.12 rad/s2. How many 
revolutions does the turbine make before coming to a stop?

IntErprEt The key to problems involving rotational motion is to 
identify the analogous situation for linear motion. This problem is 
analogous to asking how far a braking car travels before coming to 
a stop. We identify the number of rotations—the angular displace-
ment—as the analog of the car’s linear displacement. The given an-
gular acceleration is analogous to the car’s braking acceleration. The 
initial angular speed (2.2 rad/s, from Example 10.1) is analogous to 
the car’s initial speed. And in both cases the final state we’re interested 
in has zero speed—whether linear or angular.

DEvElop Our plan is to develop the analogy further so we can find 
the angular displacement. The easiest way to solve the linear problem 
would be to use Equation 2.11, v2 = v0

2 + 2a1x - x02, with v = 0, v0 
the initial velocity, a the car’s acceleration, and ∆x = x - x0 the  

distance we’re solving for. In Table 10.1, Equation 10.9 is the analo-
gous equation for rotational motion: v2 = v0

2 + 2a∆u, where we’ve 
written u - u0 = ∆u for the rotational displacement during the spin-
down.

EvaluatE We solve for ∆u:

∆u =
v2 - v0

2

2a
=

0 - 12.2 rad/s22

1221-0.12 rad/s22 = 20 rad = 3.2 revolutions

where the last conversion follows because 1 revolution is 2p radians.

assEss The turbine blades are turning rather slowly—less than 
1 revolution every second—so it’s not surprising that a small angular 
acceleration can bring them to a halt in a short angular “distance.” 
Note, too, how the units work out. Also, by taking v as positive, 
we needed to treat a as negative because the angular acceleration is  
opposite the angular velocity when the rotation rate is slowing—just 
as the braking car’s linear acceleration is opposite its velocity. ■

ExAmpLE 10.2 Linear Analogies: Spin-down
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172 Chapter 10 Rotational Motion

product of the distance r from the rotation axis and the component of force perpendicular 
to that axis. Torque is given the symbol t (Greek tau, pronounced to rhyme with “how”). 
Then we can write

 t = rF sin u (10.10)

where u is the angle between the force vector and the vector r
!
 from the rotation axis to  

the force application point. Figure 10.7 shows two interpretations of Equation 10.10. 
Figure 10.7b also defines the so-called lever arm.

Torque, which you can think of as a “twisting force,” plays the role of force in the 
rotational analog of Newton’s second law. Equation 10.10 shows that torque is measured 
in newton-meters. Although this is the same unit as energy, torque is a different physical 
quantity, so we reserve the term joule 1=1 N #m2 for energy.

Does torque have direction? Yes, and we’ll extend our notion of torque to provide a 
vector description in the next chapter. For now we’ll specify the direction as either clock-
wise or counterclockwise.

r
ur

u
r
u

F
S

F
S

F
S

OO O

Torque is greatest when F
is perpendicular to r.

The same force is applied at different angles.

Torque decreases when F
is no longer perpendicular
to r.

Torque is zero when
F is parallel to r.

(a) (b) (c)

u
u

u
S

S

S

Figure 10.6 Torque is greatest with F
S

 and r
!
 at right angles, and diminishes to zero as they become colinear.

Figure 10.7 Two ways of thinking about 
torque. (a) t = rF#  ; (b) t = r#F. Both give 
t = rF sin u.

r
u

r
u

F
S

F
S

F}

r}

F# is the effective force;
F} doesn’t produce torque.

r# is the lever arm—the 
effective distance at which F acts.

(a) (b)

O O

F# = F sinu

r# = r sinu

u u

S

example, are often specified for nuts and bolts in critical applications. 
Mechanics use specially designed “torque wrenches” that provide a 
direct indication of the applied torque. ■

You’re tightening your car’s wheel nuts after changing a flat tire. The 
instructions specify a tightening torque of 95 N # m so the nuts won’t 
come loose. If your 45-cm-long wrench makes a 67° angle with the 
horizontal, with what force must you pull horizontally to produce the 
required torque?

IntErprEt We need to find the force required to produce a specific 
torque, given the distance from the rotation axis and the angle the 
force makes with the wrench.

DEvElop Figure 10.8 is our drawing, and we’ll calculate the torque 
using Equation 10.10, t = rF sin u. With the force applied horizon-
tally, comparison of Figs. 10.7a and 10.8 shows that the angle u in 
Equation 10.10 is 180° - 67° = 113°.

EvaluatE We solve Equation 10.10 for the force F:

F =
t

r sin u
=

95 N # m
10.45 m21sin 113°2 = 230 N

assEss Is a 230-N force reasonable? Yes: It’s roughly the force 
needed to lift a 23-kg 1∼50@lb2 suitcase. Tightening torques, as in this 

ExAmpLE 10.3 Torque: Changing a Tire

Figure 10.8 Our sketch of the wrench 
and wheel nut.

r
u

r
u

F
S

F
S

F}

r}

F# is the effective force;
F} doesn’t produce torque.

r# is the lever arm—the 
effective distance at which F acts.

(a) (b)

O O

F# = F sinu

r# = r sinu
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10.3 Rotational Inertia and the Analog of Newton’s Law 173

✓TIp Specify the Axis

Torque depends on where the force is applied relative to some rotation axis. The same 
physical force results in different torques about different axes. Be sure the rotation axis 
is specified before you make a calculation involving torque.

GoT IT? 10.2 The forces in Figs. 10.5 and 10.6 all have the same magnitude. (1) Which  
of Figs. 10.5a, 10.5b, and 10.6b has the greatest torque? (2) Which of these has the least 
torque?

10.3 Rotational Inertia and the Analog  
of Newton’s Law
Torque and angular acceleration are the rotational analogs of force and linear accelera-
tion. To develop a rotational analog of Newton’s law, we still need the rotational analog 
of mass.

The mass m in Newton’s law is a measure of a body’s inertia—of its resistance to 
changes in motion. So we want a quantity that describes resistance to changes in rotational 
motion. Figure 10.9 shows that it’s easier to set an object rotating when its mass is concen-
trated near the rotation axis. Therefore, our rotational analog of inertia must depend not 
only on mass itself but also on the distribution of mass relative to the rotation axis.

Suppose the object in Fig. 10.9 consists of an essentially massless rod of length R with 
a ball of mass m on the end. We allow the object to rotate about an axis through the free 
end of the rod and apply a force F

S
 to the ball, always at right angles to the rod (Fig. 10.10). 

The ball undergoes a tangential acceleration given by Newton’s law: F = ma t. (There’s 
also a tension force in the rod, but because it acts along the rod, it doesn’t contribute 
to the torque or angular acceleration.) We can use Equation 10.5 to express the tangen-
tial  acceleration in terms of the angular acceleration a and the distance R from the rota-
tion axis: F = ma t = maR. We can also express the force F in terms of its associated 
torque. Since the force is perpendicular to the rod, Equation 10.10 gives t = RF. Using 
our  expression for F, we have

t = 1mR22a
Here we have Newton’s law, F = ma, written in terms of rotational quantities.  

The torque—analogous to force—is the product of the angular acceleration and the  
quantity mR2, which must therefore be the rotational analog of mass. We call this quantity 
the  rotational inertia or moment of inertia and give it the symbol I. Rotational inertia 
is measured in kg #m2 and accounts for both an object’s mass and the distribution of that 
mass. Like torque, the value of the rotational inertia depends on the location of the rotation 
axis. Given the rotational inertia I, our rotational analog of Newton’s law becomes

 t = Ia  1rotational analog of Newton>s second law2 (10.11)

Although we derived Equation 10.11 for a single, localized mass, it applies to extended 
objects if we interpret t as the net torque on the object and I as the sum of the rotational 
inertias of the individual mass elements making up the object.

Calculating the Rotational Inertia
When an object consists of a number of discrete mass points, its rotational inertia about an 
axis is the sum of the rotational inertias of the individual mass points:

 I = a  mi ri
2  1rotational inertia2 (10.12)

Here mi is the mass of the ith mass point, and ri is its distance from the rotation axis.

Figure 10.9 It’s easier to set an object rotating if 
the mass is concentrated near the axis.

Rotating the
mass near the
axis is easy.

Farther away,
it’s harder
to spin.

Rotation axis

Figure 10.10 A force applied perpendicular to 
the rod results in angular acceleration.

F
S F

S

F
S

PheT: Torque (Torque)

PheT: Torque (Moment of Inertia)
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174 Chapter 10 Rotational Motion

assEss Make sense? Even though there are two masses, our answer is 
less than the rotational inertia mL2 of a single mass rotated about a rod of 
length L. That’s because distance from the rotation axis is squared, so it 
contributes more in determining rotational inertia than does mass. ■

A dumbbell-shaped object consists of two equal masses m = 0.64 kg 
on the ends of a massless rod of length L = 85 cm. Calculate its rota-
tional inertia about an axis one-fourth of the way from one end of the 
rod and perpendicular to it.

IntErprEt Here we have two discrete masses, so this problem is 
asking us to calculate the rotational inertia by summing over the in-
dividual masses.

DEvElop Figure 10.11 is our sketch. We’ll use Equation 10.12, 
I = g  mi ri

2, to sum the two individual rotational inertias.

EvaluatE  I = a  mi ri
2 = m11

4L22 + m13
4L22 = 5

8 mL2

 = 5
810.64 kg210.85 m22 = 0.29 kg # m2

Figure 10.11 Our sketch for Example 10.4, showing rotation 
about an axis perpendicular to the page.

GoT IT? 10.3 Would the rotational inertia of the two-mass dumbbell in Example 
10.4 (a) increase, (b) decrease, or (c) stay the same (1) if the rotation axis were at the 
center of the rod? (2) If it were at one end?

With continuous distributions of matter, we consider a large number of very small mass 
elements dm throughout the object, and sum the individual rotational inertias r2 dm over 
the entire object (Fig. 10.12). In the limit of an arbitrarily large number of infinitesimally 
small mass elements, that sum becomes an integral:

 I = Lr2 dm  a rotational inertia,
continuous matterb  (10.13)

where the limits of integration cover the entire object.

Figure 10.12 Rotational inertia can be found by 
integrating the rotational inertias r2 dm of the 
mass elements making up an object.

The mass element dm contributes
rotational inertia r2 dm.

Rotation
axis

r

dm

ExAmpLE 10.4 Rotational Inertia: A Sum

We’re almost done. But the integral in Equation 10.13 contains r, 
and we’ve related dm and dx. No problem: On the one-dimensional 
rod, distances from the rotation axis are just the coordinates x. So r 
becomes x in our integral, and we have

I = Lr2 dm = L
L/2

-L/2
x2 

M

L
 dx

We chose the limits to include the entire rod; with the origin at the 
center, it runs from -L/2 to L/2.

Find the rotational inertia of a uniform, narrow rod of mass M and 
length L about an axis through its center and perpendicular to the rod.

IntErprEt The rod is a continuous distribution of matter, so calcu-
lating the rotational inertia is going to involve integration. We identify 
the rotation axis as being in the center of the rod.

DEvElop Figure 10.13 shows the rod and rotation axis; we added a 
coordinate system with x-axis along the rod and the origin at the rota-
tion axis. With a continuous distribution, Equation 10.13, I = 1r2 dm, 
applies. To develop a solution plan, we need to set up the integral in 
Equation 10.13. That equation may seem confusing because the inte-
gral contains both the geometric variable r and the mass element dm. 
How are they related? At this point you might want to review Tactics 9.1 
(page 148); we’ll follow its steps here. (1) We’re first supposed to find 
a suitable mass element; here, with a one-dimensional rod, that can be a 
short section of the rod. We marked a typical mass element in Fig. 10.13. 
(2) This step is straightforward in this one-dimensional case; the length 
of the mass element is dx, signifying an infinitesimally short piece of the 
rod. (3) Now we form ratios to relate dx and the mass element dm. The 
total mass of the rod is M, and its total length is L. With the mass distrib-
uted uniformly, that means dx is the same fraction of L that dm is of M, 
or dx/L = dm/M. (4) We solve for the mass element: dm = 1M/L2 dx.

Figure 10.13 Our sketch of the uniform rod of Example 10.5.

The mass element
has mass dm and
length dx.

ExAmpLE 10.5 Rotational Inertia by Integration: A Rod
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EvaluatE Because the sum of the mass elements over the ring is the 
total mass M, we find

 I = MR2  1thin ring2 (10.15)

assEss The rotational inertia of the ring is the same as if all the mass 
were concentrated in one place a distance R from the rotation axis; 
the angular distribution of the mass about the axis doesn’t matter. 
Notice, too, that it doesn’t matter whether the ring is narrow like a 
loop of wire or long like a section of hollow pipe, as long as it’s thin 
enough that all of it is essentially equidistant from the rotation axis 
(Fig. 10.15).

Find the rotational inertia of a thin ring of radius R and mass M about 
the ring’s axis.

IntErprEt This example is similar to Example 10.5, but the geom-
etry has changed from a rod to a ring.

DEvElop Figure 10.14 shows the ring with a mass element dm. All the 
mass elements in the ring are the same distance R from the rotation axis, 
so r in Equation 10.13 is the constant R, and the equation becomes

I = LR2 dm = R2Ldm

where the integration is over the ring.

Figure 10.14 Our sketch of a thin ring, showing one mass element dm.

Figure 10.15 The rotational inertia is MR2 for any thin ring, whether it’s narrow 
like a wire loop or long like a pipe. ■

ExAmpLE 10.6 Rotational Inertia by Integration: A Ring

you probably realized that the rotational inertia would be 12 mL2 for ro-
tation about the rod’s center. The total mass for that one was M = 2m, 
so in terms of total mass the rotational inertia about the center would 
be I = 1

4 ML2—a lot larger than what we’ve found for the continuous 
rod. That’s because much of the continuous rod’s mass is close to the 
rotation axis, so it contributes less to the rotational inertia. ■

EvaluatE The constants M and L come outside the integral, so we have

I = L
L/2

-L/2
x2 

M

L
 dx =

M

L L
L/2

-L/2
x2 dx =

M

L
 
x3

3
`
L/2

-L/2
= 1

12 ML2 (10.14)

assEss Make sense? In Example 10.4 we found I = 5
8 mL2 for a rod 

with two masses m on the ends. If you thought about GOT IT? 10.3, 

A disk of radius R and mass M has uniform density. Find the rota-
tional inertia of the disk about an axis through its center and perpen-
dicular to the disk.

IntErprEt Again we need to find the rotational inertia for a piece of 
continuous matter, this time a disk.

DEvElop Because the disk is continuous, we need to integrate us-
ing Equation 10.13, I = 1r2 dm. We’ll condense the strategy we 
applied in Example 10.5. The result of Example 10.6 suggests di-
viding the disk into rings, as shown in Fig. 10.16a. Equation 10.15, 
with M S dm, shows that a ring of radius r and mass dm contributes 
r2 dm to the rotational inertia of the disk. Then the total inertia will 
be I = 1R

0 r2 dm, where we chose the limits to pick up contributions 
from all the mass elements on the disk. Again we need to relate r 
and dm. Think of “unwinding” the ring, as shown in Fig. 10.16b; 
it becomes essentially a rectangle whose area dA is its circumfer-
ence multiplied by its width: dA = 2pr dr. Next, we form ratios. 

Figure 10.16 A disk may be divided into ring-shaped mass elements of mass 
dm, radius r, and width dr.

(a)

(b)

ExAmpLE 10.7 Rotational Inertia by Integration: A Disk

The ring area dA is to the total disk area pR2 as the ring mass dm 
is to the total mass M: 2pr dr/pR2 = dm/M. Solving for dm gives 
dm = 12Mr/R22 dr.

(continued)

M10_WOLF4752_03_SE_C10.indd   175 17/06/15   7:04 PM



176 Chapter 10 Rotational Motion

The rotational inertias of other shapes about various axes are found by integration as 
in these examples. Table 10.2 lists results for some common shapes. Note that more than 
one rotational inertia is listed for some shapes, since the rotational inertia depends on the 
rotation axis.

If we know the rotational inertia Icm about an axis through the center of mass of a body, 
a useful relation called the parallel-axis theorem allows us to calculate the rotational in-
ertia I through any parallel axis. The parallel-axis theorem states that

 I = Icm + Md2 (10.17)

where d is the distance from the center-of-mass axis to the parallel axis and M is the total 
mass of the object. Figure 10.17 shows the meaning of the parallel-axis theorem, which 
you can prove in Problem 78.

GoT IT? 10.4 Explain why the rotational inertia of the solid sphere in Table 10.2 is 
less than that of the spherical shell with the same radius and the same mass.

✓TIp Constants and Variables

Note the different roles of R and r here. R represents a fixed quan-
tity—the actual radius of the disk—and it’s a constant that can go 
outside the integral. In contrast, r is the variable of integration, 
and it changes as we range from the disk’s center to its edge, add-
ing up all the infinitesimal mass elements. Because r is a variable 
over the region of integration, we can’t take it outside the integral.

 ■

EvaluatE We now evaluate the integral:

 I = L
R

0
r2 dm = L

R

0
r2 a2Mr

R2 b  dr

  =
2M

R2 L
R

0
r3 dr =

2M

R2  
r4

4
`
R

0
= 1

2  MR2   1disk2 (10.16)

assEss Again, this result makes sense. In the disk, some of the mass 
is closer to the rotation axis, so the rotational inertia should be less 
than the value MR2 for the ring.

Table 10.2 Rotational Inertias

1
2

1
3

2
3

1
12

1
12

Thin rod about center
I =    ML2

Thin rod about end
I =   ML2

R
R

RR

Thin ring or hollow cylinder
about its axis
I = MR2

Disk or solid cylinder
about its axis
I =   MR2

Hollow spherical shell about diameter
I =   MR2

Solid sphere about diameter
I =   MR2

b
a

b

a

Flat plate about perpendicular axis
I =    M1a2 + b22

Flat plate about central axis
I =    Ma2

L

L

2
5

1
12

Figure 10.17 Meaning of the parallel-axis theorem.

2
5

2
5

7
5

This axis is through
the sphere’s center,
so I =   MR2.

This parallel axis is
a distance d = R away
from the original axis, 
so I =   MR2 + Md2 =   MR2.

(a) (b)

d = R
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10.3 Rotational Inertia and the Analog of Newton’s Law 177

Rotational Dynamics
Knowing a body’s rotational inertia, we can use the rotational analog of Newton’s second 
law (Equation 10.11) to determine its behavior, just as we used Newton’s law itself to ana-
lyze linear motion. Like the force in Newton’s law, the torque in Equation 10.11 is the net 
external torque—the sum of all external torques acting on the body.

to the jets using Equation 10.10, t = rF sin u. (3) Use the rotational 
analog of Newton’s law—Equation 10.11, t = Ia—to find the angu-
lar acceleration. (4) Use the change in angular speed to get the time.

EvaluatE Following our plan, (1) the rotational inertia from  
Table 10.2 is I = 1

2 MR2. (2) With the jets tangent to the satellite, sin u 
in Equation 10.10 is 1, so each jet contributes a torque of magnitude 
RF, where R is the satellite radius and F the jet thrust force. With two 
jets, the net torque then has magnitude t = 2RF. (3) Equation 10.11 
gives a = t/I = 12RF2/11

2 MR22 = 4F/MR. (4) We want this torque 
to drop the angular speed from v0 = 10 rpm to zero, so the magni-
tude of the speed change is

 ∆v = 10 rev/min = 110 rev/min212p rad/rev2/160 s/min2
 = 1.05 rad/s

Since angular acceleration is a = ∆v/∆t, our final answer is

 ∆t =
∆v

a
=

MR ∆v

4F

 =
1940 kg210.70 m211.05 rad/s2

142120 N2 = 8.6 s

assEss Make sense? Yes: The thrust F appears in the denominator, 
showing that a larger force and hence torque will bring the satellite 
more rapidly to a halt. Larger M and R contribute to a larger rotational 
inertia, thus lengthening the stopping time—although a larger R also 
means a larger torque, an effect that reduces the R dependence from 
the R2 that appears in the expression for rotational inertia. ■

A cylindrical satellite is 1.4 m in diameter, with its 940-kg mass dis-
tributed uniformly. The satellite is spinning at 10 rpm but must be 
stopped so that astronauts can make repairs. Two small gas jets, each 
with 20-N thrust, are mounted on opposite sides of the satellite and 
fire tangent to the satellite’s rim. How long must the jets be fired in 
order to stop the satellite’s rotation?

IntErprEt This is ultimately a problem about angular acceleration, 
but we’re given the forces the jets exert. So it becomes a problem 
about calculating torque and then acceleration—that is, a problem in 
rotational dynamics using the rotational analog of Newton’s law.

DEvElop Figure 10.18 shows the situation. We’re asked about the 
time, which we can get from the angular acceleration and initial angu-
lar speed. We can find the acceleration using the rotational analog of 
Newton’s law, Equation 10.11, if we know both torque and rotational 
inertia. So here’s our plan: (1) Find the satellite’s rotational inertia 
from Table 10.2, treating it as a solid cylinder. (2) Find the torque due 

Figure 10.18 Torque from the jets stops the satellite’s rotation.

ExAmpLE 10.8 Rotational Dynamics: De-Spinning a Satellite

A single problem can involve both rotational and linear motion with more than one  object. 
The strategy for dealing with such problems is similar to the multiple-object strategy we de-
veloped in Chapter 5, where we identified the objects whose motions we were interested in, 
drew a free-body diagram for each, and then applied Newton’s law separately to each ob-
ject. We used the physical connections among the objects to relate quantities appearing in 
the separate Newton’s law equations. Here we do the same thing, except that when an object 
is rotating, we use Equation 10.11, the rotational analog of Newton’s law. Often the physical 
connection will entail relations between the force on an object in linear motion and the torque 
on a rotating object, as well as between the objects’ linear and rotational accelerations.

A solid cylinder of mass M and radius R is mounted on a frictionless 
horizontal axle over a well, as shown in Fig. 10.19. A rope of negli-
gible mass is wrapped around the cylinder and supports a bucket of 
mass m. Find an expression for the bucket’s acceleration as it falls 
down the well shaft.

ExAmpLE 10.9 Rotational and Linear Dynamics: Into the Well

IntErprEt If it weren’t connected to the cylinder, the bucket would 
fall with acceleration g. But the rope exerts an upward tension force T

S
  

on the bucket, reducing its acceleration and at the same time exerting a 
torque on the cylinder. So we have a problem involving both rotational 
and linear dynamics. We identify the bucket and the cylinder as the 

(continued)
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178 Chapter 10 Rotational Motion

Figure 10.20 Our free-body diagrams for the bucket and cylinder.
Figure 10.19 Example 10.9.

Pulley mass M

m

m

GoT IT? 10.5 The figure shows two identical masses m 
connected by a string that passes over a frictionless pulley whose 
mass M is not negligible. One mass rests on a frictionless table; 
the other hangs vertically, as shown. Is the magnitude of the ten-
sion force in the vertical section of the string (a) greater than,  
(b) equal to, or (c) less than that in the horizontal section? Explain.

10.4 Rotational Energy
A rotating object has kinetic energy because all its parts are in motion. We define an 
 object’s rotational kinetic energy as the sum of the kinetic energies of all its individual 
mass elements, taken with respect to the rotation axis. Figure 10.21 shows that an indi-
vidual mass element dm a distance r from the rotation axis has kinetic energy given by 
dK = 1

21dm21v22 = 1
21dm21vr22. The rotational kinetic energy is given by summing—

that is, integrating—over the entire object:

Krot = LdK = L  121dm21vr22 = 1
2 v2Lr2 dm

where we’ve taken v2 outside the integral because it’s the same for every mass element in 
the rigid, rotating object. The remaining integral is just the rotational inertia I, so we have

 Krot = 1
2 Iv2   1rotational kinetic energy2 (10.18)

unwinds, the tangential acceleration of the cylinder’s edge must be 
equal to the bucket’s linear acceleration; thus, using Equation 10.5, 
we have a = a/R, and the cylinder equation becomes RT = Ia/R 
or T = Ia/R2. But the cylinder’s rotational inertia, from Table 10.2, 
is I = 1

2 MR2, so T = 1
2 Ma. Using this result in the bucket equation 

gives ma = mg - T = mg - 1
2 Ma; solving for a, we then have

a =
mg

m + 1
2 M

assEss Make sense? If M = 0, there would be no rotational in-
ertia and we would have a = g. With no torque needed to acceler-
ate the cylinder, there would be no rope tension and the bucket would 
fall freely with acceleration g. But as the cylinder’s mass M increases, 
the bucket’s deceleration drops as greater torque and thus rope ten-
sion are needed to give the cylinder its rotational acceleration. You 
may be surprised to see that the cylinder radius doesn’t appear in our 
answer. That, too, makes sense: The rotational inertia scales as R2, 
but both the torque and the tangential acceleration scale with R. Since 
the cylinder’s tangential acceleration is the same as the bucket’s accel-
eration, the increases in torque and tangential acceleration cancel the  
effect of a greater rotational inertia. ■

objects of interest; the bucket is in linear motion while the cylinder 
rotates. The connection between them is the rope.

DEvElop Figure 10.20 shows free-body diagrams for the two objects; 
note that both involve the rope tension, T

S
. We chose the downward 

direction as positive in the bucket diagram and the clockwise direction 
as positive in the cylinder diagram. Now we’re ready to write New-
ton’s second law and its analog—Equation 10.11, t = Ia—for the 
two objects. Our plan is to formulate both equations and solve using 
the connection between them—physically the rope and mathemati-
cally the magnitude of the rope tension. We have to express the torque 
on the cylinder in terms of the tension force, using Equation 10.10, 
t = rF sin u. We also need to relate the cylinder’s angular accelera-
tion to the bucket’s linear acceleration, using Equation 10.5, a t = ra.

EvaluatE With the downward direction positive, Newton’s sec-
ond law for the bucket reads Fnet = mg - T = ma. For the cylinder 
we have the rotational analog of Newton’s second law: t = Ia. But 
here the torque is due to the rope tension, which exerts a force T at 
right angles to a line from the rotation axis and so produces torque 
RT. Then the Newton’s law analog becomes RT = Ia. As the rope 

1
2

r

dm

v = vr

v

A mass element dm has linear
speed v = vr, giving it kinetic
energy dK =   1dm21vr22.

Figure 10.21 Kinetic energy of a mass element.
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10.4 Rotational Energy 179

This formula makes sense in light of our analogies between linear and rotational mo-
tion: Since I and v are the rotational analogs of mass and speed, Equation 10.18 is the 
rotational equivalent of K = 1

2 mv2.

AppLICATIoN Flywheel Energy Storage

Flywheels provide an attractive alternative to batteries in applications requir-
ing short bursts of power. Examples include acceleration and hill climbing in 
hybrid vehicles, industrial lifting equipment and amusement park rides, power 
management on the electric grid, and uninterruptible power supplies. Flywheel-
based hybrid vehicles would achieve high efficiency by storing mechanical 
energy in the flywheel during braking rather than dissipating it as heat in con-
ventional brakes or even storing it in a chemical battery as in today’s hybrids.

Equation 10.18 shows that the stored energy can be substantial, provided 
the flywheel has significant rotational inertia and angular speed—the latter be-
ing especially important because the energy scales as the square of the an-
gular speed. Modern flywheels can supply tens of kilowatts of power for as 
long as a minute; unlike batteries, their output isn’t reduced in cold weather. 
They achieve rotation rates of 30,000 rpm and more using advanced carbon 
composite materials that can withstand the forces needed to maintain the ra-
dial acceleration of magnitude v2r. Advanced flywheels spin in vacuum, using 
magnetic bearings to minimize friction. Some even use superconducting mate-
rials, which eliminate electrical losses that we’ll examine in Chapter 26. The 
photo shows a high-speed flywheel used in a prototype hybrid bus operating in 
Austin, Texas. The flywheel helps the bus achieve 30% fuel savings.

131,000 rev/min212p rad/rev2/160 s/min2 = 3246 rad/s. Then Equa-
tion 10.18 gives

Krot = 1
2 Iv2 = 11

2216.1 kg # m2213246 rad/s22 = 32 MJ

assEss 32 MJ is roughly the energy contained in a liter of gaso-
line. The advantages of the flywheel over a fuel or a chemical battery 
are more concentrated energy storage and greater efficiency at get-
ting energy into and out of storage; see the Application below. Can 
you see why the solid disk of this example isn’t the most efficient 
 flywheel design? You can explore this question further in Question 11  
and Problem 77. ■

A flywheel has a 135-kg solid cylindrical rotor with radius 30 cm and 
spins at 31,000 rpm. How much energy does it store?

IntErprEt We’re being asked about kinetic energy stored in a rotat-
ing cylinder.

DEvElop Equation 10.18, Krot = 1
2 Iv2, gives the rotational energy. 

To use it, we need the rotational inertia from Table 10.2, and we need 
to convert the rotation rate in revolutions per minute to angular speed 
v in radians per second.

EvaluatE Table 10.2 gives the rotational inertia, I = 1
2 MR2 =

11
221135 kg210.30 m22 = 6.1 kg # m2, and 31,000 rpm is equivalent to 

ExAmpLE 10.10 Rotational Energy: Flywheel Storage

✓TIp When to Use Radians

We derived Equation 10.18, K = 1
2 Iv2, using Equation 10.3, v = vr. Since that equa-

tion works only with radian measure, the same is true of Equation 10.18.

Energy and Work in Rotational motion
In Section 6.3 we proved the work–kinetic energy theorem, which states that the change 
in an object’s linear kinetic energy is equal to the net work done on the object. There the 
work was the product (or the integral, for a changing force) of the net force and the dis-
tance the object moves. Not surprisingly, there’s an analogous relation for rotational mo-
tion: The change in an object’s rotational kinetic energy is equal to the net work done on 
the object. Now the work is, analogously, the product (or the integral, when torque varies 
with angle) of the torque and the angular displacement:

 W = L
u

f

ui

t du = ∆Krot = 1
2 Ivf

2 - 1
2 Ivi

2    awork9kinetic energy theorem,
rotational motion b  (10.19)

Here the subscripts refer to the initial and final states.
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180 Chapter 10 Rotational Motion

GoT IT? 10.6 A wheel is rotating at 100 rpm. To spin it up to 200 rpm will take 
(a) less; (b) more; (c) the same work as it took to get it from rest to 100 rpm.

10.5 Rolling motion
A rolling object exhibits both rotational motion and translational motion—the motion of 
the whole object from place to place. How much kinetic energy is associated with each?

In Section 9.3, we found that the kinetic energy of a composite object comprises two 
terms: the kinetic energy of the center of mass and the internal kinetic energy relative 
to the center of mass: K = Kcm + Kinternal. A wheel of mass M moving with speed v 
has center-of-mass kinetic energy Kcm = 1

2 Mv2. In the center-of-mass frame, the wheel 
is  simply rotating with angular speed v about the center of mass, so its internal kinetic 
 energy is Kinternal = 1

2 Icmv
2, where the rotational inertia is taken about the center of mass. 

We now sum Kcm and Kinternal to get the total kinetic energy:

 Ktotal = 1
2 Mv2 + 1

2 Icmv
2 (10.20)

When a wheel is rolling—moving without slipping against the ground—its translational 
speed v and angular speed v about its center of mass are related. Imagine a wheel that rolls 
half a revolution and therefore moves horizontally half its circumference (Fig. 10.22). 
Then the wheel’s angular speed is the angular displacement ∆u, here half a revolution, or 
p radians, divided by the time ∆t: v = p/∆t. Its translational speed is the actual distance 
the wheel travels divided by the same time interval. But we’ve just argued that the wheel 
travels half a circumference, or pR, where R is its radius. So its translational speed is 
v = pR/∆t. Comparing our expressions for v and v, we see that

 v = vR   1rolling motion2 (10.21)

Equation 10.21 looks deceptively like Equation 10.3. But it says more. In Equation 
10.3, v = vr, v is the linear speed of a point a distance r from the center of a rotating 
object. In Equation 10.21, v is the translational speed of the whole object and R is its ra-
dius. The two equations look similar because, as our argument leading to Equation 10.21 
shows, an object that rolls without slipping moves with respect to the ground at the same 
rate that a point on its rim moves in the center-of-mass frame.

Our description of rolling motion leads to a point you may at first find absurd: In a roll-
ing wheel, the point in contact with the ground is, instantaneously, at rest! Figure 10.23 
shows how this surprising situation comes about.

Why would an object roll without slipping? The answer is friction. On an icy slope, a 
wheel just slides down without rolling. Normally, though, the force of static friction keeps 

 integral in Equation 10.19 becomes the product t ∆u, so we can solve 
for the torque.

EvaluatE The initial angular speed vi is zero, and the final speed 
vf = 1700 rev/min212p rad/rev2/160 s/min2 = 73.3 rad/s. The angu-
lar displacement ∆u is 125 rev212p rad/rev2 = 157 rad. Then Equa-
tion 10.19 becomes W = t ∆u = 1

2 Ivf
2, which gives

t =
1
2 Ivf

2

∆u
=

11
2212.7 kg # m22173.3 rad/s22

157 rad
= 46 N # m

assEss If this torque results from a force applied at the rim of a typi-
cal 40-cm-radius tire, then the magnitude of the force would be just 
over 100 N, about the weight of a 10-kg mass and thus a reasonable 
value. ■

An automobile wheel with tire has rotational inertia 2.7 kg # m2. What 
constant torque does a tire-balancing machine need to apply in order 
to spin this tire up from rest to 700 rpm in 25 revolutions?

IntErprEt The wheel’s rotational kinetic energy changes as it spins 
up, so the machine must be doing work by applying a torque. There-
fore, the concept behind this problem is the work–kinetic energy theo-
rem for rotational motion.

DEvElop The work–kinetic energy theorem of Equation 10.19 re-
lates the work to the change in rotational kinetic energy:

W = L
u

f

ui

t du = ∆Krot = 1
2 Ivf

2 - 1
2 Ivi

2.

We’re given the initial and final angular velocities, although we have 
to convert them to radians per second. With constant torque, the 

ExAmpLE 10.11 Work and Rotational Energy: Balancing a Tire

Figure 10.22 A rolling wheel turns through half 
a revolution.

R

R

pR

The wheel travels a distance
equal to half its circumference.
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10.5 Rolling Motion 181

it from sliding. Instead, it rolls (Fig. 10.24). Because the contact point is at rest, the fric-
tional force does no work and therefore mechanical energy is conserved. This lets us use 
the conservation-of-energy principle to analyze rolling objects.

GoT IT? 10.7 The wheels of trains, subway cars, and other rail vehicles include a 
flange that extends beyond the part of 
the wheel that rolls on top of the rail, as 
shown. The flanges keep the train from 
running off the rails. Consider the bottom-
most point on the flange: Is it (a) mov-
ing in the direction of the train’s motion; 
(b) instantaneously at rest; or (c) moving 
backward, opposite the train’s motion?

Figure 10.23 Motion of a rolling wheel, decomposed into translation of the entire wheel plus rotation about the 
center of mass.

vcm
u

vcm
u

vcm
u

2vcm

v = 0-vcm

Motion of
the CM plus c

cmotion about 
the CM equals c

cmotion of individual
points on the wheel.

These two velocity
vectors sum to give
zero velocity at bottom.

The bottom of
the wheel is at
rest!  But 
only for an
instant.

+ =

u

uu

Figure 10.24 Rolling down a slope.

fs
u

Friction keeps the
wheel from slipping.

We’ve determined that conservation of mechanical energy holds, so 
K0 + U0 = K + U. Here K0 = 0 and, if we take the zero of poten-
tial energy at the bottom, then U0 = Mgh and U = 0. Finally, K con-
sists of both translational and rotational kinetic energy as expressed in 
Equation 10.20, Ktotal = 1

2 Mv2 + 1
2 Iv2. Our plan is to use this expres-

sion in the conservation-of-energy statement and solve for v. It looks 
like there’s an extra variable, v, that we don’t know. But the ball isn’t 
slipping, so Equation 10.21 holds and gives v = v/R. Then conserva-
tion of energy becomes

Mgh = 1
2 Mv2 + 1

2 Iv2 = 1
2 Mv2 + 1

212
5 MR22a v

R
b

2

= 7
10 Mv2

where we found the rotational inertia of a solid sphere, 2
5 MR2, from 

Table 10.2.

EvaluatE Solving for v gives our answer:

v = A10

7
 gh

assEss This result is less than the speed v = 12gh for an object 
that slides down a frictionless incline. Make sense? Yes: Some of 
the energy the rolling object gains goes into rotation, leaving less for 
translational motion. As often happens with gravitational problems, 
mass doesn’t matter. Neither does radius: That factor 7

10 results from 
the distribution of mass that gives the sphere its particular rotational 
inertia and would be the same for all spheres regardless of radius  
or mass. ■

A solid ball of mass M and radius R starts from rest and rolls down a 
hill. Its center of mass drops a total distance h. Find the ball’s speed at 
the bottom of the hill.

IntErprEt This is similar to conservation-of-energy problems from 
Chapter 7, but now we identify two types of kinetic energy: transla-
tional and rotational. The ball starts on the slope with some gravita-
tional potential energy, which ends up as kinetic energy at the bottom. 
The frictional force that keeps the ball from slipping does no work, so 
we can apply conservation of mechanical energy.

DEvElop Figure 10.25 shows the situation, including bar graphs 
showing the distribution of energy in the ball’s initial and final states. 

Figure 10.25 How fast is the ball moving at the bottom of the hill?

ExAmpLE 10.12 Energy Conservation: Rolling Downhill

Rail

What’s the motion of the bottom of this �ange?
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182 Chapter 10 Rotational Motion

CoNCEpTUAL ExAmpLE 10.1 A Rolling Race

assEss Make sense? Yes: Energy is conserved for both balls, but for 
the hollow ball more of that energy is in rotation and less in transla-
tion. As Example 10.12 shows, neither the mass nor the radius of a 
ball affects its speed; all that matters is its mass distribution and hence 
its rotational inertia.

MakIng thE ConnECtIon Compare the final speeds of the two 
balls in this example.

EvaluatE Example 10.12 gives 110gh/7 for the speed of the solid 
ball after it’s rolled down a vertical drop h. Substituting the hollow 
ball’s rotational inertia, I = 2

3MR2 from Table 10.2, in the calculation 
of Example 10.12 gives v = 16gh/5. So the solid ball is faster by a 
factor 110/7/16/5 ≃ 1.1.

A solid ball and a hollow ball roll without slipping down a ramp. 
Which reaches the bottom first?

EvaluatE Example 10.12 shows that when a ball rolls down a slope, 
some of its potential energy gets converted into rotational kinetic 
energy—leaving less for translational kinetic energy. As a result, it 
moves more slowly, and therefore takes more time, than an object that 
slides without rolling. Here we want to compare two rolling objects—
the solid ball treated in Example 10.12 and a hollow one. With its 
mass concentrated at its surface, far from the rotation axis, the hollow 
ball has greater rotational inertia. Thus more of its energy goes into 
rotation, meaning its translational speed is lower, so it reaches the bot-
tom later.

Example 10.12 shows that the final speed of an object that rolls down an incline 
 depends on the details of its mass distribution. That means objects that look superficially 
identical will reach the bottom of an incline at different times, if they have different mass 
distributions. Conceptual Example 10.1 helps you think further about this point. Another 
difference that can affect the speed of rolling objects is whether they roll as rigid bodies or 
not. When a can of liquid rolls down a ramp, for instance, the liquid need not spin as fast 
as the can itself (or it may not even spin at all), and therefore less energy goes into rota-
tion—leaving more for translational motion. You can see an example by viewing the video 
tutorial “Canned Food Race” accessed from the QR code at the left. After watching the 
video, can you see how you might distinguish a hard-boiled egg from a raw one?

Video Tutor Demo | Canned Food Race

M10_WOLF4752_03_SE_C10.indd   182 17/06/15   7:04 PM

https://mediaplayer.pearsoncmg.com/assets/secs-vtd18_racingsoup


Chapter 10 Summary
Big Idea

The big idea of this chapter is rotational motion, 
 quantified as the rate of change of angular position of 
any point on a rotating object. All the quantities used 
to  describe linear motion have analogs in rotational 
 motion. The  analogs of force, mass, and acceleration 
are,  respectively, torque, rotational inertia, and  angular 
 acceleration—and together they obey the rotational 
analog of Newton’s second law.

This table summarizes the analogies between 
linear and rotational quantities, along with 
quantitative relations that link rotational and 
linear quantities. Many of these relations re-
quire that angles be measured in radians, and 
most require explicit specification of a rota-
tion axis.

Applications

Constant angular acceleration: When angu-
lar acceleration is constant, equations analo-
gous to those of Chapter 2 apply.

equations for Constant 
Linear Acceleration

equations for Constant  
Angular Acceleration

v = 1
21v0 + v2 (2.8) v = 1

21v0 + v2 (10.6)
v = v0 + at (2.7) v = v0 + at (10.7)
x = x0 + v0 t + 1

2 at2 (2.10) u = u0 + v0 t + 1
2 at2 (10.8)

v2 = v0
2 + 2a1x - x02 (2.11) v2 = v0

2 + 2a1u - u02 (10.9)

Key Concepts and Equations

The defining relations for rotational quantities are analogous to those for linear quantities, as is the statement of Newton’s second law for rotational 
motion. Key concepts include angular velocity and acceleration, torque, and rotational inertia.

Rolling:

v = 0
at bottom

R

v = vR
v

Linear Quantity  
or equation

Angular Quantity  
or equation

relation Between Linear  
and Angular Quantities

Position x Angular position u
Speed v = dx/dt Angular speed v = du/dt v = vr
Acceleration a Angular acceleration a at = ar

Mass m Rotational inertia I I = 1r2 dm

Force F Torque t t = rF sin u
Kinetic energy Ktrans = 1

2  mv2 Kinetic energy Krot = 1
2 Iv2

Newton’s second law (constant mass or rotational inertia):
F = ma t = Ia

Rolling motion: When an object of radius R rolls without slipping, the point in contact with the 
ground is instantaneously at rest. In this case the object’s translational and rotational speeds are related 
by v = vR. The object’s kinetic energy is shared among translational kinetic energy 1

2 Mv2 and rota-
tional kinetic energy 12 Iv2, with the division between these forms dependent on the rotational inertia.

Displacement

Position, x

Linear
motion

 displacem
ent 

A
ngular 

       Angular position, u

Rotational
motion

Rotation
axis

Angular velocity, v

Time t t + ∆t

∆u

v = ∆u∆t

r
u

F
S

Torque, t

Rotation axis

u

t = rF sinu

L

Rotational inertia, I

Mass closer
to axis:
lower I

Discrete
masses

Continuous
matter

r2 dm

Same mass,
farther from axis:
greater I

I = amir i
2
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For homework assigned on MasteringPhysics, go to www.masteringphysics.com

BIO Biology and/or medicine-related problems DATA Data problems ENV Environmental problems CH Challenge problems Comp Computer problems

 15. Express each of the following in radians per second: (a) 720 rpm; 
(b) 50°/h; (c) 1000 rev/s; (d) 1 rev/year (Earth’s angular speed in 
its orbit).

 16. A 25-cm-diameter circular saw blade spins at 3500 rpm. How 
fast would you have to push a straight hand saw to have the 
teeth move through the wood at the same rate as the circular 
saw teeth?

 17. A compact disc’s rotation varies from about 200 rpm to 500 rpm. 
If the disc plays for 74 min, what’s its average angular accelera-
tion in (a) rpm/s and (b) rad/s2?

18. During startup, a power plant’s turbine accelerates from rest  
at 0.52 rad/s2. (a) How long does it take to reach its 3600-rpm 
operating speed? (b) How many revolutions does it make during 
this time?

19. A merry-go-round starts from rest and accelerates with angu-
lar acceleration 0.010 rad/s2 for 14 s. (a) How many revolutions 
does it make during this time? (b) What’s its average angular 
speed?

Section 10.2 Torque
20. A 320-N frictional force acts on the rim of a 1.0-m-diameter 

wheel to oppose its rotational motion. Find the torque about the 
wheel’s central axis.

21. A 110@N # m torque is needed to start a revolving door rotating. If 
a child can push with a maximum force of 90 N, how far from the 
door’s rotation axis must she apply this force?

22. A car tune-up manual calls for tightening the spark plugs to a 
torque of 35.0 N # m. To achieve this torque, with what force must 
you pull on the end of a 24.0-cm-long wrench if you pull (a) at 
a right angle to the wrench shaft and (b) at 110° to the wrench 
shaft?

23. A 55-g mouse runs out to the end of the 17-cm-long minute hand 
of a grandfather clock when the clock reads 10 past the hour. 
What torque does the mouse’s weight exert about the rotation 
axis of the clock hand?

24. You have your bicycle upside down for repairs. The front wheel  
is free to rotate and is perfectly balanced except for the 25-g 
valve stem. If the valve stem is 32 cm from the rotation axis and 
at 24° below the horizontal, what’s the resulting torque about the 
wheel’s axis?

Section 10.3 Rotational Inertia and the  
Analog of Newton’s Law
25. Four equal masses m are located at the corners of a square of side 

L, connected by essentially massless rods. Find the rotational in-
ertia of this system about an axis (a) that coincides with one side 
and (b) that bisects two opposite sides.

26. The shaft connecting a power plant’s turbine and electric genera-
tor is a solid cylinder of mass 6.8 Mg and diameter 85 cm. Find 
its rotational inertia.

27. The chamber of a rock-tumbling machine is a hollow cylinder 
with mass 120 g and radius 8.5 cm. The chamber is closed by 
end caps in the form of uniform circular disks, each of mass 33 g.  
Find (a) the rotational inertia of the chamber about its central 
axis and (b) the torque needed to give the chamber an angular 
acceleration of 3.3 rad/s2.

For thought and Discussion
 1. Do all points on a rigid, rotating object have the same angular 

velocity? Linear speed? Radial acceleration?
 2. A point on the rim of a rotating wheel has nonzero acceleration, 

since it’s moving in a circular path. Does it necessarily follow 
that the wheel is undergoing angular acceleration?

 3. Why doesn’t it make sense to talk about a body’s rotational iner-
tia unless you specify a rotation axis?

 4. Two forces act on an object, but the net force is zero. Must the 
net torque be zero? If so, why? If not, give a counterexample.

 5. Is it possible to apply a counterclockwise torque to an object 
that’s rotating clockwise? If so, how will the object’s motion 
change? If not, why not?

 6. A solid sphere and a hollow sphere of the same mass and radius 
are rolling along level ground. If they have the same total kinetic 
energy, which is moving faster?

 7. A solid cylinder and a hollow cylinder of the same mass and ra-
dius are rolling along level ground at the same speed. Which has 
more kinetic energy?

 8. A circular saw takes a long time to stop rotating after the power 
is turned off. Without the saw blade mounted, the motor stops 
much more quickly. Why?

 9. A solid sphere and a solid cube have the same mass, and the 
side of the cube is equal to the diameter of the sphere. The 
cube’s rotation axis is perpendicular to two of its faces. Which 
has greater rotational inertia about an axis through the center 
of mass?

 10. The lower part of a horse’s leg contains essentially no muscle. 
How does this help the horse to run fast? Explain in terms of 
rotational inertia.

 11. Given a fixed amount of a material, what shape should you make 
a flywheel so it will store the most energy at a given angular 
speed?

12. A ball starts from rest and rolls without slipping down a slope, 
then starts up a frictionless slope (Fig. 10.26). Compare its maxi-
mum height on the frictionless slope with its starting height on 
the first slope.

h
No slip

Frictionless

Figure 10.26 For Thought and Discussion 12, Problem 64

exercises and problems

Exercises

Section 10.1 Angular Velocity and Acceleration
 13. Determine the angular speed, in rad/s, of (a) Earth about its axis; 

(b) the minute hand of a clock; (c) the hour hand of a clock; and 
(d) an eggbeater turning at 300 rpm.

 14. What’s the linear speed of a point (a) on Earth’s equator and  
(b) at your latitude?

bio
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42. You’re an engineer designing kitchen appliances, and you’re work-
ing on a two-speed food blender, with 3600 rpm and 1800 rpm  
settings. Specs call for the blender to make no more than 60 revo-
lutions while it’s switching from high to low speed. If it takes  
1.4 s to make the transition, does it meet its specs?

43. An eagle with 2.1-m wingspan flaps its wings 20 times per 
minute, each stroke extending from 45° above the horizontal 
to 45° below. Downward and upward strokes take the same 
time. On a given downstroke, what’s (a) the average angular 
velocity of the wing and (b) the average tangential velocity of 
the wingtip?

44. A compact disc (CD) player varies the rotation rate of the disc 
in order to keep the part of the disc from which information 
is being read moving at a constant linear speed of 1.30 m/s. 
Compare the rotation rates of a 12.0-cm-diameter CD when 
information is being read (a) from its outer edge and (b) from 
a point 3.75 cm from the center. Give your answers in rad/s 
and rpm.

45. You rev your car’s engine and watch the tachometer climb 
steadily from 1200 rpm to 5500 rpm in 2.7 s. What are (a) the 
engine’s angular acceleration and (b) the tangential acceleration 
of a point on the edge of the engine’s 3.5-cm-diameter crank-
shaft? (c) How many revolutions does the engine make during 
this time?

46. A circular saw spins at 5800 rpm, and its electronic brake is sup-
posed to stop it in less than 2 s. As a quality-control specialist, 
you’re testing saws with a device that counts the number of blade 
revolutions. A particular saw turns 75 revolutions while stopping. 
Does it meet its specs?

47. Full-circle rotation is common in mechanical systems, but less 
evident in biology. Yet many single-celled organisms are pro-
pelled by spinning, tail-like flagella. The flagellum of the bac-
terium E. coli spins at some 600 rad/s, propelling the bacterium 
at speeds around 25 μm/s. How many revolutions does E. coli’s 
flagellum make as the bacterium crosses a microscope’s field of 
view, which is 150@μm wide.

48. A pulley 12 cm in diameter is free to rotate about a horizontal 
axle. A 220-g mass and a 470-g mass are tied to either end of a 
massless string, and the string is hung over the pulley. Assuming 
the string doesn’t slip, what torque must be applied to keep the 
pulley from rotating?

49. A square frame is made from four thin rods, each of length L 
and mass m. Calculate its rotational inertia about the three axes 
shown in Fig. 10.27.

(a) (b) (c)

Figure 10.27 Problem 49

50. A thick ring has inner radius 1
2R, outer radius R, and mass M. 

Find an expression for its rotational inertia. (Hint: Consult  
Example 10.7.)

51. A uniform rectangular flat plate has mass M and dimensions  
a by b. Use the parallel-axis theorem in conjunction with  
Table 10.2 to show that its rotational inertia about the side of 
length b is 13 Ma2.

bio

bio

28. A wheel’s diameter is 92 cm, and its rotational inertia is 
7.8 kg # m2. (a) What’s the minimum mass it could have? (b) How 
could it have more mass?

29. Three equal masses m are located at the vertices of an equilateral 
triangle of side L, connected by rods of negligible mass. Find ex-
pressions for the rotational inertia of this object (a) about an axis 
through the center of the triangle and perpendicular to its plane 
and (b) about an axis that passes through one vertex and the mid-
point of the opposite side.

30. (a) Estimate Earth’s rotational inertia, assuming it to be a uni-
form solid sphere. (b) What torque applied to Earth would cause 
the length of a day to change by 1 second every century?

31. A neutron star is an extremely dense, rapidly spinning object 
that results from the collapse of a massive star at the end of 
its life. A neutron star with 2.3 times the Sun’s mass has an 
essentially uniform density of 4.8 * 1017 kg/m3. (a) What’s its 
rotational inertia? (b) The neutron star’s spin rate slowly de-
creases as a result of torque associated with magnetic forces. If 
the spin-down rate is 5.6 * 10-5 rad/s2, what’s the magnitude of 
the magnetic torque?

32. A 108-g Frisbee is 24 cm in diameter and has half its mass spread 
uniformly in the disk and the other half concentrated in the rim. 
(a) What’s the Frisbee’s rotational inertia? (b) With a quarter-turn 
flick of the wrist, a student sets the Frisbee rotating at 550 rpm. 
What’s the magnitude of the torque, assumed constant, that the 
student applied?

33. At the MIT Magnet Laboratory, energy is stored in huge solid 
flywheels of mass 7.7 * 104 kg and radius 2.4 m. The flywheels 
ride on shafts 41 cm in diameter. If a frictional force of 34 kN 
acts tangentially on the shaft, how long will it take the flywheel 
to come to a stop from its usual 360-rpm rotation rate?

Section 10.4 Rotational Energy
34. A 25-cm-diameter circular saw blade has mass 0.85 kg, distrib-

uted uniformly in a disk. (a) What’s its rotational kinetic energy 
at 3500 rpm? (b) What average power must be applied to bring 
the blade from rest to 3500 rpm in 3.2 s?

35. Humankind uses energy at the rate of about 16 TW. If we found a 
way to extract this energy from Earth’s rotation, how long would 
it take before the length of the day increased by 1 second?

36. A 150-g baseball is pitched at 33 m/s spinning at 42 rad/s. You 
can treat the baseball as a uniform solid sphere of radius 3.7 cm. 
What fraction of its kinetic energy is rotational?

37. (a) Find the energy stored in the flywheel of Exercise 33 when 
it’s rotating at 360 rpm. (b) The wheel is attached to an electric 
generator and the rotation rate drops from 360 rpm to 300 rpm in 
3.0 s. What’s the average power output?

Section 10.5 Rolling Motion
38. A solid 2.4-kg sphere is rolling at 5.0 m/s. Find (a) its transla-

tional kinetic energy and (b) its rotational kinetic energy.
39. What fraction of a solid disk’s kinetic energy is rotational if it’s 

rolling without slipping?
40. A rolling ball has total kinetic energy 100 J, 40 J of which is rota-

tional energy. Is the ball solid or hollow?

problems
41. A wheel turns through 2.0 revolutions while accelerating from 

rest at 18 rpm/s. (a) What’s its final angular speed? (b) How long 
does it take?
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186 Chapter 10 Rotational Motion

61. Starting from rest, a hollow ball rolls down a ramp inclined at 
angle u to the horizontal. Find an expression for its speed after 
it’s gone a distance d along the incline.

62. A hollow ball rolls along a horizontal surface at 3.7 m/s when it 
encounters an upward incline. If it rolls without slipping up the 
incline, what maximum height will it reach?

63. As an automotive engineer, you’re charged with improving the 
fuel economy of your company’s vehicles. You realize that the ro-
tational kinetic energy of a car’s wheels is a significant factor in 
fuel consumption, and you set out to lower it. For a typical car, 
the wheels’ rotational energy is 40% of their translational kinetic 
energy. You propose a redesigned wheel with the same radius but 
10% lower rotational inertia and 20% less mass. What do you re-
port for the decrease in the wheel’s total kinetic energy at a given 
speed?

64. A solid ball of mass M and radius R starts at rest at height h 
above the bottom of the path in Fig. 10.26. It rolls without slip-
ping down the left side. The right side of the path, starting at the 
bottom, is frictionless. To what height does the ball rise on the 
right?

65. A disk of radius R has an initial mass M. Then a hole of radius 
R/4 is drilled, with its edge at the disk center (Fig. 10.29). 
Find the new rotational inertia about the central axis. (Hint: 
Find the rotational inertia of the missing piece, and subtract it 
from that of the whole disk. You’ll find the parallel-axis theo-
rem helpful.)

1
4

R
R

Figure 10.29 Problems 65 and 70

66. A 50-kg mass is tied to a massless rope wrapped around a solid 
cylindrical drum, mounted on a frictionless horizontal axle. When 
the mass is released, it falls with acceleration a = 3.7 m/s2. Find 
(a) the rope tension and (b) the drum’s mass.

67. Each wheel of a 320-kg motorcycle is 52 cm in diameter and 
has rotational inertia 2.1 kg # m2. The cycle and its 75-kg rider 
are coasting at 85 km/h on a flat road when they encounter a 
hill. If the cycle rolls up the hill with no applied power and 
no significant internal friction, what vertical height will it 
reach?

68. A solid marble starts from rest and rolls without slipping on 
the loop-the-loop track in Fig. 10.30. Find the minimum start-
ing height from which the marble will remain on the track 
through the loop. Assume the marble’s radius is small com-
pared with R.

R

h

Figure 10.30 Problem 68
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52. Each propeller on a King Air twin-engine airplane consists of 
three blades, each of mass 10 kg and length 125 cm. The blades 
may be treated approximately as uniform, thin rods. (a) What’s 
the propeller’s rotational inertia? (b) If the plane’s engine devel-
ops a torque of 2.7 kN # m, how long will it take to spin up the 
propeller from 1400 rpm to 1900 rpm?

53. The cellular motor driving the flagellum in E. coli (see Prob-
lem 47) exerts a typical torque of 400 pN #nm on the flagellum. 
If this torque results from a force applied tangentially to the 
outside of the 12-nm-radius flagellum, what’s the magnitude 
of that force?

54. Verify by direct integration Table 10.2’s entry for the rotational 
inertia of a flat plate about a central axis. (Hint: Divide the plate 
into strips parallel to the axis.)

55. You’re an astronaut in the first crew of a new space station. The 
station is shaped like a wheel 22 m in diameter, with essentially 
all its 5 * 105@kg mass at the rim. When the crew arrives, it will be 
set rotating at a rate that requires an object at the rim to have radial 
acceleration g, thereby simulating Earth’s surface gravity. This will 
be accomplished using two small rockets, each with 100-N thrust, 
mounted on the station’s rim. Your job is to determine how long to 
fire the rockets and the number of revolutions the station will make 
during the firing.

56. A skater’s body has rotational inertia 4.2 kg # m2 with his fists 
held to his chest and 5.7 kg # m2 with his arms outstretched. He’s 
twirling at 3.1 rev/s while holding 2.5-kg weights in each out-
stretched hand; the weights are 76 cm from his rotation axis. If 
he pulls his hands to his chest, so the weights are essentially at 
his rotation axis, how fast will he be rotating?

57. A 2.4-kg block rests on a slope and is attached by a string of 
negligible mass to a solid drum of mass 0.85 kg and radius  
5.0 cm, as shown in Fig. 10.28. When released, the block acceler-
ates down the slope at 1.6 m/s2. Find the coefficient of friction 
between block and slope.

30°

Figure 10.28 Problem 57

58. You’ve got your bicycle upside down for repairs, with its 66-cm-
diameter wheel spinning freely at 230 rpm. The wheel’s mass is 
1.9 kg, concentrated mostly at the rim. You hold a wrench against 
the tire for 3.1 s, applying a 2.7-N normal force. If the coefficient 
of friction between wrench and tire is 0.46, what’s the final angu-
lar speed of the wheel?

59. A potter’s wheel is a stone disk 90 cm in diameter with mass 120 kg.  
If the potter’s foot pushes at the outer edge of the initially station-
ary wheel with a 75-N force for one-eighth of a revolution, what 
will be the final speed?

60. A ship’s anchor weighs 5.0 kN. Its cable passes over a roller 
of negligible mass and is wound around a hollow cylindri-
cal drum of mass 380 kg and radius 1.1 m, mounted on a 
frictionless axle. The anchor is released and drops 16 m to 
the water. Use energy considerations to determine the drum’s 
rotation rate when the anchor hits the water. Neglect the ca-
ble’s mass.

bio
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Exercises and Problems 187

Both axes are perpendicular to the page. The figure shows an 
arbitrary mass element dm and vectors connecting the center of 
mass, the point A, and dm. (a) Use the law of cosines (Appendix A)  
to show that r2 = r2

cm + h2 - 2 h
S # rScm.  (b) Use this result in 

I = 1r2 dm to calculate the object’s rotational inertia about the 
axis through A. Each term in your expression for r2 leads to 
a separate integral. 
Identify one as the 
rota t ional  iner t ia 
about the CM, an-
other as the quan-
tity Mh2, and argue 
that the third is zero. 
Yo u r  r e s u l t  i s  a 
statement of the par-
allel-axis theorem 
(Equation 10.17).

79. Figure 10.32 shows an apparatus used to measure rotational 
inertias of various objects, in this case spheres of varying 
masses M and radii R. The spheres are made of different mate-
rials, and some are hollow while others are solid. To perform 
the experiment, a sphere is mounted to a vertical axle held 
in a frame with essentially frictionless bearings. A spool of 
radius b = 2.50 cm is also mounted to the axle, and a string 
is wrapped around the spool. The string runs horizontally 
over an essentially frictionless pulley and is tied to a mass 
m = 77.8 g. As the mass falls, the string imparts a torque to 
the spool/axle/disk combination, resulting in angular accelera-
tion. The mass of the string is negligible, but the combination 
of axle and spool has non-negligible rotational inertia I0 whose 
value isn’t known in advance. In each experimental run, the 
mass m is suspended a height h = 1.00 m above the floor and 
the rotating system is initially at rest. The mass is released, 
and experimenters measure the time to reach the floor. Results 
are given in the tables below. Determine an appropriate func-
tion of the time t which, when plotted against other quantities 
including M and R, should yield two 
straight lines—one for the hollow 
spheres and one for the solid ones. 
Plot your data, establish best-fit 
lines, and use the resulting slopes 
to verify the numerical factors 2/5 
and 2/3 in the expressions for the 
rotational inertias of spheres given 
in Table 10.2. You should also find a 
value for the rotational inertia of the 
axle and drum together.

DATA
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69. A disk of radius R and thickness w has a mass density that in-
creases from the center outward, given by r = r0 r/R, where r is 
the distance from the disk axis. Calculate (a) the disk’s total mass 
M and (b) its rotational inertia about its axis in terms of M and R. 
Compare with the results for a solid disk of uniform density and 
for a ring.

70. The disk in Fig. 10.29 is rotating freely about a frictionless hori-
zontal axle. Since the disk is unbalanced, its angular speed var-
ies as it rotates. If the maximum angular speed is vmax, find an 
expression for the minimum speed. (Hint: How does potential 
energy change as the wheel rotates?)

71. You’re asked to check the specifications for a wind turbine. The 
turbine produces a peak electric power of 1.50 MW while turning 
at its normal operating speed of 17.0 rpm. The rotational inertia 
of its rotating structure—three blades, shaft, gears, and electric 
generator—is 2.65 * 107 kg # m2. Under peak conditions, the wind 
exerts a torque of 896 kN # m on the turbine blades. Starting from 
rest, the turbine is supposed to take less than 1 min to spin up to 
its 17-rpm operating speed. The generator is supposed to be 96% 
efficient at converting the mechanical energy imparted by the 
wind into electrical energy. During spin-up, the electric genera-
tor isn’t producing power, and the only torque is due to the wind. 
Once the turbine reaches operating speed, the generator connects 
to the electric grid and produces a torque that cancels the wind’s 
torque, so the turbine turns with constant angular speed. Does the 
turbine meet its specifications?

72. In bicycling, each foot pushes on the pedal for half a rotation of 
the pedal shaft; that foot then rests and the other foot takes over. 
During each half-cycle, the torque resulting from the force of the 
active foot is given approximately by t = t0 sin vt, where t0 is 
the maximum torque and v is the angular speed of the pedal shaft 
(in s- 1, as usual). A particular cyclist is turning the pedal shaft at 
70.0 rpm, and at the same time t0 is measured at 38.5 N # m. Find 
(a) the energy supplied by the cyclist in one turn of the pedal 
shaft and (b) the cyclist’s average power output.

73. Calculate the rotational inertia of a solid, uniform right circular 
cone of mass M, height h, and base radius R about its axis.

74. A thick ring of mass M has inner radius R1 and outer radius R2. 
Show that its rotational inertia is given by 12 M1R 2

1 + R 2
2 2.

75. A thin rod of length L and mass M is free to pivot about one end. 
If it makes an angle u with the horizontal, find the torque due to 
gravity about the pivot. (Hint: Integrate the torques on the mass 
elements composing the rod.)

76. The local historical society has asked your assistance in writ-
ing the interpretive material for a display featuring an old 
steam locomotive. You have information on the torque on a 
flywheel but need to know the force applied by means of an 
attached horizontal rod. The rod joins the wheel with a flexible 
connection 95 cm from the wheel’s axis. The maximum torque 
the rod produces on the flywheel is 10.1 kN # m. What force 
does the rod apply?

77. You’re skeptical about a new hybrid car that stores energy in a 
flywheel. The manufacturer claims the flywheel stores 12 MJ 
of energy and can supply 40 kW of power for 5 minutes. You 
dig deeper and find that the flywheel is a 39-cm-diameter  
ring with mass 48 kg that rotates at 30,000 rpm. Are the specs 
correct?

78. Figure 10.31 shows an object of mass M with one axis through 
its center of mass and a parallel axis through an arbitrary point A.  
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Figure 10.32 Problem 79

M

R

b

m

Sphere mass M (g) 783 432 286 677 347

Sphere radius R (cm) 6.25 3.86 9.34 9.42 9.12

Fall time t (s) 2.36 1.22 2.72 3.24 2.91

Sphere mass M (g) 947 189 821 544 417

Sphere radius R (cm) 6.71 5.45 6.55 4.67 9.98

Fall time t (s) 2.75 1.41 2.51 1.93 3.47

Figure 10.31 Problem 78

r
u

rCM
u

h
u

A

CM dm

M10_WOLF4752_03_SE_C10.indd   187 17/06/15   7:04 PM



188 Chapter 10 Rotational Motion

83. While the centrifuges are spinning, the net force on samples in 
the tubes is
a. outward.
b. inward.
c. zero.

84. If a centrifuge’s radius and mass are both doubled without 
 otherwise changing the design, its rotational inertia will
a. double.
b. quadruple.
c. increase by a factor of 8.
d. increase by a factor of 16.

answers to Chapter Questions

Answer to Chapter opening Question
The blade mass should be concentrated toward the rotation axis, thus 
lowering the turbine’s rotational inertia—the rotational analog of 
mass.

Answers to GoT IT? Questions
 10.1  (c) The linear speed v increases linearly with time, and the ra-

dial acceleration increases as v2. Tangential acceleration is con-
stant because it’s proportional to angular acceleration, which 
we’re told is constant.

 10.2  (1) 10.5b; (2) 10.5a.
 10.3  (1) (b) rotational inertia with axis at the center, 1mL2/22;  

(2) (a) rotational inertia with the axis at the end, 1mL22
 10.4  The mass of the shell is farther from the rotation axis.
 10.5  (a) There must be a net torque acting to increase the pulley’s 

clockwise angular velocity. The difference in the two tension 
forces provides that torque.

 10.6  (b) because the wheel’s rotational kinetic energy, and hence the 
work required, increases as the square of its rotational speed.

 10.7  (c)

passage problems
Centrifuges are widely used in biology and medicine to separate cells 
and other particles from liquid suspensions. Figure 10.33 shows top 
and side views of two centrifuge designs. In both designs, the round 
holes are for tubes holding samples to be separated; the side views 
show two tubes in place. The total mass and radius of the rotating 
structure are the same for both, the sample-hole tubes are at the same 
radius, and the sample tubes are identical.

(a)

Top view

Side view

(b)

Figure 10.33 Two centrifuge designs, shown from the top and the side 
(Passage Problems 80–84).

80. Which design has greater rotational inertia?
a. design A
b. design B
c. Both have the same rotational inertia.

81. If both centrifuges are made thicker in the vertical direction, 
without changing their masses or mass distribution, their rota-
tional inertias will
a. remain the same.
b. increase.
c. decrease.

82. If the sample tubes are made longer, the rotational inertia of the 
centrifuges with sample tubes inserted will
a. remain the same.
b. increase.
c. decrease.
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11
Rotational Vectors and  

Angular Momentum
What You Know
■ You understand the basic concepts 

of rotational motion, including the 
rotational analog of Newton’s  
second law.

■ You’re proficient in handling vectors.

Summer, fall, winter, spring: the cycle of the seasons is ultimately determined by the vector 
direction of Earth’s angular velocity. The changing angular velocity of protons in living tis-

sue produces MRI images that give physicians a noninvasive look inside the human body. Ris-
ing and rotating, moist, heated air forms itself into the ominous funnel of a tornado. You ride 
your bicycle, the rotating wheels helping stabilize what seems a precarious balance. These 
examples all involve rotational motion in which not only the magnitude but also the direction 
matters. They’re best understood in terms of the rotational analog of Newton’s law, which we 
introduce here in full vector form involving a rotational analog of momentum. The transition 
from Chapter 10 to Chapter 11 is analogous to the leap from Chapter 2’s one-dimensional de-
scription of motion to the full vector description in Chapter 3. Here, as there, we’ll find a new 
richness of phenomena involving motion.

11.1 Angular Velocity and Acceleration Vectors
So far we’ve ascribed direction to rotational motion using the terms “clockwise” and 
“counterclockwise.” But that’s not enough: To describe rotational motion fully we 
need to specify the direction of the rotation axis. We therefore define angular  velocity 
v

!
 as a vector whose magnitude is the angular speed v and whose direction is parallel 

to the rotation axis. There’s an ambiguity in this definition, since there are two possible 
directions parallel to the axis. We resolve the ambiguity with the right-hand rule: If 
you curl the fingers of your right hand to follow the rotation, then your right thumb 
points in the direction of the angular velocity (Fig. 11.1). This refinement means 
that v

!
 not only gives the angular speed and the direction of the rotation axis but also 

 distinguishes what we would have described previously as clockwise or counterclock-
wise rotation.

What You’re Learning
■ Here you’ll learn how to describe 

rotational quantities using vectors.

■ You’ll learn about the cross product, a 
way of multiplying two vectors that 
yields a third vector.

■ You’ll learn about angular momentum, 
the rotational analog of linear 
momentum, and the conditions under 
which it’s conserved.

■ You’ll come to understand some 
counterintuitive results of angular 
momentum conservation, including 
the phenomenon of precession.

How You’ll Use It
■ The vector description of rotational 

motion, coupled with angular 
momentum conservation, will help you 
understand a host of phenomena from 
magnetic resonance imaging (MRI), 
to the climate implications of Earth’s 
precession, to the physics of bicycling.

Earth isn’t quite round. How does this affect 
its  rotation axis, and what’s this got to do with 
ice ages? (The  deviation from roundness is 
 exaggerated in this photo.)
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190 Chapter 11 Rotational Vectors and Angular Momentum

By analogy with the linear acceleration vector, we define angular acceleration as the 
rate of change of the angular velocity vector:

 a
!

= lim
∆tS0

 
∆ v

!

∆t
=

d v
!

dt
   1angular acceleration vector2 (11.1)

where, as with Equation 10.4, we get the average angular acceleration if we don’t take the limit.
Equation 11.1 says that angular acceleration points in the direction of the change in angular 

velocity. If that change is only in magnitude, then v
!
 simply grows or shrinks, and a

!
 is parallel or 

antiparallel to the rotation axis (Fig. 11.2a, b). But a change in direction is also a change in angu-
lar velocity. When the angular velocity v

!
 changes only in direction, then the angular acceleration 

vector is perpendicular to v
!
 (Fig. 11.2c). More generally, both the magnitude and direction of v

!
 

may change; then a
!
 is neither parallel nor perpendicular to v

!
. These cases are exactly analogous 

to the situations we treated in Chapter 3, where acceleration parallel to velocity changes only the 
speed, while acceleration perpendicular to velocity changes only the direction of motion.

Figure 11.1 The right-hand rule gives the 
 direction of the angular velocity vector.

v
u

v
u

v
u

Figure 11.2 Angular acceleration can (a) increase or (b) decrease the 
magnitude of the angular velocity, or (c) change its direction.

a
u

a
u

a
u

v�nal
u

v�nal
u

v�nal
u

vinitial
uvinitial

u

vinitial
u

(a) (b) (c)

Got It? 11.1 You’re standing on the sidewalk watching a car go by on the adjacent 
road, moving from left to right. The direction of the angular velocities of the car’s wheels is  
(a) toward the sidewalk; (b) in the direction of the car’s forward motion; (c) toward the back of the 
car; (d) vertically upward; (e) away from the sidewalk; (f) different for each of the four wheels.

11.2 torque and the Vector Cross Product
Figure 11.3 shows a wheel, initially stationary, with a force applied at its rim. The torque 
associated with this force sets the wheel rotating in the direction shown; applying the 
right-hand rule, we see that angular velocity vector v

!
 points upward. Since the angular 

speed is increasing, the angular acceleration a
!
 also points upward. So that our rotational 

analog of Newton’s law—angular acceleration proportional to torque—will hold for direc-
tions as well as magnitudes, we’d like the torque to have an upward direction, too.

We already know the magnitude of the torque: From Equation 10.10, it’s t = rF sin u, 
where u is the angle between the vectors r

!
 and F

S
in Fig. 11.3. We define the direction of 

the torque as being perpendicular to both r
!
 and F

S
, as given by the right-hand rule shown in  

Fig. 11.4. You can verify that this rule gives an upward direction for the torque in Fig. 11.3.

Figure 11.3 The torque vector is perpendicular 
to r

!
 and F

S
 and in the same direction as the 

angular  acceleration. Here F
S

 lies in the plane 
of the disk.

ru
a
u

v
u

t
uF

S

u

ru

t (out of page)u

F
S

Start with the
vectors tail to
tail.

Curl your �ngers in a
direction that rotates
the �rst vector (r )
onto the second (F ).

Then your
thumb points
in the direction
of t = r * F.

u

uu

S

SFigure 11.4 The right-hand rule for the 
 direction of torque.
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11.2 Torque and the Vector Cross Product 191

the Cross Product
The magnitude of the torque, t = rF sin u, is determined by the magnitudes of the  vectors 
r
!
 and F

S
and the angle between them; the direction of the torque is determined by the 

 vectors r
!
 and F

S
through the right-hand rule. This operation—forming from two  vectors 

A
S

and B
S

a third vector C
S

of magnitude C = AB sin u and direction given by the right-
hand rule—occurs frequently in physics and is called the cross product:

The cross product C
S

of two vectors A
S

and B
S

is written

C
S

= A
S

* B
S

and is a vector with magnitude AB sin u, where u is the angle between A
S

and B
S

, and 
where the direction of C

S
is given by the right-hand rule of Fig. 11.4.

Torque is an instance of the cross product, and we can write the torque vector simply as

 t
!

= r
!

* F
S
  1torque vector2 (11.2)

Both direction and magnitude are described succinctly in this equation.

TacTics 11.1 Multiplying Vectors

The cross product A
S

* B
S

 is the second way of multiplying vectors that you’ve encountered. The first 
was the scalar product A

S # B
S

= AB cos u introduced in Chapter 6 and also called the dot product. Both 
depend on the product of the vector magnitudes and on the angle between them. But where the dot product 
depends on the cosine of the angle and is therefore maximum when the two vectors are parallel, the cross 
product depends on the sine and is therefore maximum for perpendicular vectors. There’s another crucial 
distinction between dot product and cross product: The dot product is a scalar—a single number, with no 
direction—while the cross product is a vector. That’s why AB cos u completely specifies the dot product, 
but AB sin u gives only the magnitude of the cross product; it’s also necessary to specify the direction via 
the right-hand rule.

The cross product obeys the usual distributive rule: A
S

* 1B
S

+ C
S2 = A

S
* B

S
+ A

S
* C

S
, but 

it’s not commutative; in fact, as you can see by rotating F
S

onto r
!
 instead of r

!
 onto F

S
in Fig. 11.4, 

B
S

* A
S

= - A
S

* B
S

.
With the vectors A

S
and B

S
in component form, we developed Equation 6.4 to express the dot product in 

terms of components, as you can show in Problem 49:

A
S

* B
S

= 1Ay Bz - Az By2 in + 1Az Bx - Ax Bz2 jn + 1Ax By - Ay Bx2kn

This expression is more complicated than Equation 6.4 for the dot product because the cross product is a 
vector, and also because that vector is perpendicular to both A

S
and B

S
.

Got It? 11.2 The figure shows four pairs of force and radius vectors and eight 
torque vectors. Which numbered torque vector goes with each pair of force–radius vec-
tors? Consider only direction, not magnitude.

t1
u

t2
u t3

u
t4
u

t5
u

t6
u

t7
u

t8
u

r
u

r
u

r
u

r
u

F
S

F
S

F
S

F
S

(2)(1) (3) (4)
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192 Chapter 11 Rotational Vectors and Angular Momentum

11.3 Angular Momentum
We first used Newton’s law in the form F

S
= ma

!
, but later found the momentum form 

F
S

= d p
!
/dt especially powerful. The same is true in rotational motion: To explore fully 

some surprising aspects of rotational dynamics, we need to define angular momentum and 
develop a relation between its rate of change and the applied torque. Once we’ve done 
that, we’ll be able to answer questions like why a gyroscope doesn’t fall over and how 
spinning protons yield MRI images of your body’s innards.

Like other rotational quantities, angular momentum is always specified with respect to 
a given point or axis. We begin with the angular momentum L

S
of a single particle:

If a particle with linear momentum p
!
 is at position r

!
 with respect to some point, then 

its angular momentum L
S

about that point is defined as

 L
S

= r
!

* p
!
  1angular momentum2 (11.3)

ExAMPLE 11.1 Calculating Angular Momentum: A Single Particle

A particle of mass m moves counterclockwise at speed v around a 
 circle of radius r in the x9y plane. Find its angular momentum about 
the center of the circle, and express the answer in terms of its angular 
velocity.

inTerpreT We’re given the motion of a particle—namely, uniform 
motion in a circle—and asked to find the corresponding angular 
 momentum and its relation to angular velocity.

Develop Figure 11.5 is our sketch, showing the particle in its 
 circular path. We added an xyz coordinate system with the circular 
path in the x9y plane. Equation 11.3, L

S
= r

!
* p

!
, gives the angular 

momentum in terms of the position vector r
!
 and the linear momentum 

p
!
. We know that linear momentum is the product mv

!
, so we have eve-

rything we need to apply Equation 11.3. We’ll then express our result 
in terms of angular velocity using v = vr.

evaluaTe Figure 11.5 shows that the linear momentum mv
!
 

is  perpendicular to r
!
, so sin u = 1 in the cross product, and the 

 magnitude of the angular momentum becomes L = mvr. Applying 
the right-hand rule shows that L

S
 points in the z-direction, so we can 

write L
S

= mvrkn. But v = vr, and the right-hand rule shows that v
!
, 

too, points in the z-direction. So we can write

L
S

= mvrkn = mr2v kn = mr2 v
!

assess Make sense? The faster the particle is going, the more linear 
momentum it has. But angular momentum depends on linear momen-
tum and distance from the rotation axis, so at a given angular speed, 
the angular momentum scales as the square of the radius. ■

Figure 11.5 Finding the angular momentum L
S

 of a particle moving  
in a circle.

v is perpendicular
to r.

u

u

Angular momentum is the rotational analog of linear momentum p
!

= mv
!
. Since 

 rotational inertia I is the analog of mass m, and angular velocity v
!
 is the analog of linear 

velocity v
!
, you might expect that we could write

 L
S

= I v
!
 (11.4)

The rotational inertia of a single particle is mr2, so you can see that the result of Example 
11.1 can indeed be written L

S
= Iv

!
. Equation 11.4 also holds for symmetric objects like a 

wheel or sphere rotating about a fixed axis. But in more complicated cases, Equation 11.4 
may not hold; surprisingly, L

S
and v

!
 can even have different directions. We’ll leave such 

cases for more advanced courses.
We emphasize again that angular momentum isn’t absolute, but—as with other 

 rotational quantities—it depends on your choice of rotation axis. If that arbitrariness 
 bothers you, note that there’s an analogous arbitrariness to linear momentum. If an object 
has velocity v

!
 with respect to you, then it’s got linear momentum p

!
= mv

!
—but only as 
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11.3 Angular Momentum 193

measured by you or others at rest with respect to you. Jump into another reference frame, 
where the object is moving with some other velocity v

!
′, and now its momentum has the 

different value mv
!
′—which might even be zero if you’re at rest with respect to the object. 

No problem; you just have to know what reference frame you’re working in. Analogously, 
with angular momentum, you have to know what rotation axis or point you’re considering 
as you calculate L

S
.

torque and Angular Momentum
We’re now ready to develop the full vector analog of Newton’s law in the form F

S
= dP

S
/dt. 

Recall that F
S

here is the net external force on a system, and P
S

is the system’s momen-
tum—the vector sum of the momenta of its constituent particles. Can we write, by anal-
ogy, t

!
= dL

S
/dt? To see that we can, we write the angular momentum of a system as the 

sum of the angular momenta of its constituent particles:

L
S

= a  L
S

i = a  
1r

!
i * p

!
i2

where the subscript i refers to the ith particle. Differentiating gives

dL
!

dt
= a  ar

!
i *

d p
!
i

dt
+

d r
!
i

dt
* p

!
ib

where we’ve applied the product rule for differentiation, being careful to preserve the or-
der of the cross product since it’s not commutative. But dr

!
i /dt is the velocity of the ith 

particle, so the second term in the sum is the cross product of velocity v
!
 and momentum 

p
!

= mv
!
. Since these two vectors are parallel, their cross product is zero, and we’re left 

with only the first term in the sum:

 
dL

!

dt
= a  ar

!
i *

d p
!
i

dt
b = a  1r

!
i * F

S
i2 

where we’ve used Newton’s law to write d p
!
i /dt = F

S
i. But r

!
i * F

S
i is the torque t

!
i on the 

ith particle, so

dL
!

dt
= a  t

!
i

The sum here includes both external and internal torques—the latter due to interactions 
among the particles of the system. Newton’s third law assures us that internal forces cancel 
in pairs, but what about torques? They’ll cancel, too, provided the internal forces act along 
lines joining pairs of particles. This condition is stronger than Newton’s third law alone, 
and it usually but not always holds. When it does, the sum of torques reduces to the net 
external torque, and we have

 dL
!

dt
= t

!
  a rotational analog,

Newton>s second lawb  (11.5)

where t
!
 is the net external torque. Thus our analogy between linear and rotational motion 

holds for momentum as well as for the other quantities we’ve discussed.

Got It? 11.3 The figure shows three particles with the same mass m, all moving 
with the same constant speed v. Particle (1) moves in a circle of radius R about the point P, 
particle (2) in a straight line whose closest approach to point P is the same as the circle’s 
radius R, and particle (3) in a straight line that passes through P. Which of these state-
ments correctly describes the magnitudes of the particles’ angular momenta?

 (a) L1 = L2 = L3 ≠ 0;
 (b) L1 7 0, L2 = L3 = 0;

(c) L1 7 L2 7 L3 = 0;
(d) L2 = L1 ≠ 0, L3 = 0

1

2

R

P3

v2
u

v3
u

v1
u
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194 Chapter 11 Rotational Vectors and Angular Momentum

11.4 Conservation of Angular 
 Momentum
When there’s no external torque on a system, Equation 11.5 tells 
us that angular  momentum is constant. This statement—that the 
angular momentum of an isolated  system cannot change—is 
of fundamental importance in physics, and applies to systems 
 ranging from subatomic particles to galaxies. Because a com-
posite system can change its  configuration—and hence its ro-
tational inertia I—conservation of angular momentum requires 
that angular speed increase if I decreases, and vice versa. The 
classic example is a figure skater who starts spinning relatively 
slowly with arms and leg extended and then pulls in her limbs 
to spin rapidly (Fig. 11.6). A more dramatic example is the col-
lapse of a star at the end of its lifetime, explored in the next 
example.

Figure 11.6 As the skater’s rotational inertia decreases, her angular speed 
increases to conserve angular momentum.

v
u

v
u

Arms and leg
far from axis:
large I, small v

Mass closer to
axis:  small I,
large v, same
L = Iv

(a)

(b)

ConCEPtUAL ExAMPLE 11.1 on the Playground

A merry-go-round is rotating freely when a boy runs radially inward, 
straight toward the merry-go-round’s center, and leaps on. Later, a girl 
runs tangent to the merry-go-round’s edge, in the same direction the 
edge is moving, and also leaps on. Does the merry-go-round’s angular 
speed increase, decrease, or stay the same in each case?

evaluaTe Because the merry-go-round is rotating freely, the only 
torques are those exerted by the children as they leap on. If we con-
sider a system consisting of the merry-go-round and both children, 
then those torques are internal, and the system’s angular momentum 
is conserved. In Fig. 11.7 we’ve sketched the situation, before either 
child leaps onto the merry-go-round and after both are on board.

The boy, running radially, carries no angular momentum (his 
 linear momentum and the radius vector are in the same direction, 
making L

S
zero), so you might think he doesn’t change the merry-  

go-round’s angular speed. Yet he does, because he adds mass and 
therefore  rotational inertia. At the same time, he doesn’t change the 
angular momentum, so with I increased, v must therefore drop.

ExAMPLE 11.2 Conservation of Angular Momentum: Pulsars

A star rotates once every 45 days. At the end of its life, it undergoes 
a supernova explosion, hurling much of its mass into the interstel-
lar medium. But the inner core of the star, whose radius is initially  
20 Mm, collapses into a neutron star only 6 km in radius. As it rotates, 
the neutron star emits regular pulses of radio waves, making it a pul-
sar. Calculate the rotation rate, which is the same as the pulse rate that 
radio astronomers detect. Consider the core to be a uniform sphere, 
and assume that no external torques act during the collapse.

inTerpreT Here we’re given the radius and rotation rate of the stel-
lar core before collapse and asked for the rotation rate afterward. That 
kind of “before and after” question often calls for the application of a 
conservation law. In this case there’s no external torque, so it’s angular 
momentum that’s conserved.

Develop The magnitude of the angular momentum is Iv, so our plan 
is to write this expression before and after collapse, and then equate 

the two to find the new rotation rate: I1v1 = I2v2. We need to use 
Table 10.2’s expression for the rotational inertia of a solid sphere: 
I = 2

5 MR2.

evaluaTe Given I, our statement of angular momentum conserva-
tion becomes 25 MR1

2v1 = 2
5 MR2

2v2, or

v2 = v1a
R1

R2
b

2

= a 1 rev

45 day
ba2 * 107 m

6 * 103 m
b

2

= 2.5 * 105 rev/day

assess Our answer is huge, about 3 revolutions per second. But that 
makes sense. This neutron star is a fantastic thing—an object with 
more mass than the entire Sun, crammed into a diameter of about  
8 miles. It’s because of that dramatic reduction in radius—and thus in 
rotational inertia—that the pulsar’s rotation rate is so high. Note that 
in a case like this, where v appears on both sides of the equation, it 
isn’t necessary to convert to radian measure. ■

Running in the same direction as the merry-go-round’s tangential 
velocity, the girl adds angular momentum to the system—an addition 
that would tend to increase the angular speed. But she also adds mass, 
and thus increases the rotational inertia—which, as in the boy’s case, 
tends to decrease angular speed. So which wins out? That depends on 
her speed. Without knowing that, we can’t tell whether the merry-go-
round speeds up or slows down.

assess The angular momentum the girl adds is the product of her 
linear momentum mv and the merry-go-round’s radius R, while 
she increases the rotational inertia by mR2. With small m and large 
v, she could add a lot of angular momentum without increasing the 
 rotational inertia significantly. That would increase the merry- go-
round’s rotation rate. But with a large m and small v—giving the 
same additional angular momentum—the increase in rotational in-
ertia would more than offset the angular momentum added, and 
the merry-go-round would slow down. We can’t answer the ques-
tion about the merry- go-round’s angular speed without knowing the 

v
u

v
u

Arms and leg
far from axis:
large I, small v

Mass closer to
axis:  small I,
large v, same
L = Iv

(a)

(b)
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11.4 Conservation of Angular  Momentum 195

 numbers. “Making the Connection,” below, solves this example for a 
particular set of values, and you can explore a similar situation more 
generally in Problem 53.

Making The connecTion Take the merry-go-round’s radius to 
be R = 1.3 m, its rotational inertia I = 240 kg #  m2, and its initial 
 angular speed vinitial = 11 rpm. The boy’s and girl’s masses are, 

 respectively, 28 kg and 32 kg, and they run, respectively, at 2.5 m/s 
and 3.7 m/s. Find the merry-go-round’s angular speed vfinal after both 
children are on board.

evaluaTe Following the conceptual example, take the system to in-
clude the merry-go-round and the two children. Before the children 
leap on, both the merry-go-round itself and the girl carry angular 
 momentum; afterward, with children and merry-go-round rotating 
with a common angular speed, they all do. Thus conservation of 
 angular momentum reads

Ivinitial + mgvg R = Ivfinal + mbR
2vfinal + mgR

2vfinal

Solving with the given numbers yields vfinal = 12 rpm. That’s not 
much change, so the girl’s effect must have been a speed increase, but 
only a little more than enough to overcome the boy’s slowing effect. 
Note that the boy’s speed didn’t matter, since it didn’t contribute to 
angular momentum or rotational inertia. And be careful with units: 
You’ve got to express all angular momenta in the same units. That 
means converting angular speeds to radians per second or expressing 
the girl’s angular momentum mgvgR in unusual units, kg #  m2 #  rpm.

✓tIP Angular Momentum in Straight-line Motion

You don’t have to be rotating to have angular momentum. The girl in Conceptual 
 Example 11.1 was running in a straight line, yet she had nonzero angular momentum 
with respect to the merry-go-round’s rotation axis. Problem 36 explores this point  further.

In a popular demonstration, a student stands on a stationary turntable holding a wheel 
rotating about a vertical axis. The student flips the wheel upside down, and the turntable 
starts rotating. Figure 11.8 shows how angular momentum conservation explains this be-
havior. Once again, though, mechanical energy isn’t conserved. In this case the student 
does work, exerting forces that result in torques on her body and the turntable. The end 
result is a greater rotational kinetic energy than was initially present.

Figure 11.8 A demonstration of angular  momentum  conservation.

Ltotal = Lwheel

Lwheel

Lts

Ltotal

The student stands on a
stationary turntable holding a
wheel that spins counterclockwise;
the wheel’s angular momentum
points upward.

She �ips the spinning
wheel, reversing its angular 
momentum.  The total angular
momentum is conserved, so 
turntable and student (ts) must 
rotate the other way.

(a)

(b)

S S

S

S

S

Video Tutor Demo | Spinning Person Drops Weights

Video Tutor Demo | Off-Center Collision

Figure 11.7 Our diagrams for Conceptual Example 11.1.

Running straight
toward the axis, the
boy carries no
angular momentum.

Running tangentially, the
girl carries additional
angular momentum.

Ltotal = Lwheel

Lwheel

Lts

Ltotal

The student stands on a
stationary turntable holding a
wheel that spins counterclockwise;
the wheel’s angular momentum
points upward.

She �ips the spinning
wheel, reversing its angular 
momentum.  The total angular
momentum is conserved, so 
turntable and student (ts) must 
rotate the other way.

(a)

(b)

S S

S

S

S
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196 Chapter 11 Rotational Vectors and Angular Momentum

Got It? 11.4 You step onto an initially nonrotating turntable like the one in Fig. 11.8,  
holding a nonrotating wheel with its axis vertical. You’re careful not to exert any torques 
so that the turntable remains stationary as you step on. (1) If you then spin the wheel 
counterclockwise as viewed from above, will you and the turntable rotate (a) clockwise or  
(b) counterclockwise? (2) If you now turn the spinning wheel upside down, will your 
 rotation rate (a) increase, (b) decrease, or (c) remain the same? (3) As you turn the wheel 
upside down, will the direction of rotation (a) remain unchanged or (b) reverse?

11.5 Gyroscopes and Precession
Angular momentum—a vector quantity with direction as well as magnitude—is con-
served in the absence of external torques. For symmetric objects, angular momentum has 
the same direction as the rotation axis, so the axis can’t change direction unless an ex-
ternal torque acts. This is the principle behind the gyroscope—a spinning object whose 
rotation axis remains fixed in space. The faster a gyroscope spins, the larger its angular 
 momentum and thus the harder it is to change its orientation. Gyroscopes are widely used 
for  navigation, where their direction-holding capability provides an alternative to the mag-
netic compass. More sophisticated gyroscope systems guide missiles and submarines and 
stabilize ships in heavy seas. Space telescopes start and stop gyroscopic wheels oriented 
along three  perpendicular axes; to conserve angular momentum, the entire telescope re-
orients itself to point  toward a desired astronomical object. This approach avoids rocket 
exhaust that would foul the telescope’s superb viewing and ensures that there’s no fuel to 
run out. Instead,  solar- generated electricity operates the wheels’ drive motors.

If you have a modern smartphone, it, too, contains gyroscopes. They’re used to  determine 
the phone’s orientation in space; among other uses, they tell the phone how to orient its 
display. You can even get applications that access data from these  gyroscopes  directly 
(Fig. 11.9a). Smartphone gyroscopes are microelectromechanical systems (MEMS) de-
vices, and they’re based on vibrating rather than rotating structures (Fig. 11.9b). Similar 
MEMS gyroscopes are used in computer mice and video game consoles, and MEMS gyros 
 stabilize the Segway Human Transporter.

(a)

(b)

Figure 11.9 (a) Smartphone displaying data from its internal gyroscopes, indicating the phone’s 
orientation and its rate of change. Graph at top shows that the phone was recently reoriented. 
(b) Micro photo of a MEMS gyro like those used in smartphones. The entire structure is only 
about 0.5 mm across.

PheT: Simplified MRI

(a)

(b)
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Precession
If an object does experience a net external torque, then, according to the rotational analog 
of Newton’s law (Equation 11.5, dL

S
/dt = t

!
), its angular momentum must change. 

For rapidly rotating objects, the result is the surprising phenomenon of precession—
a  continual change in the direction of the rotation axis, which traces out a circle. You 
may have seen a toy gyroscope or top precess instead of simply falling over as you might 
 expect.

Figure 11.10 shows why procession occurs. Here a spinning gyroscope is tilted, so 
there’s a gravitational torque acting on it. Yet it doesn’t fall over. Why not? Apply the 
right-hand rule to the vector r

!
 and the gravitational force vector F

S
g shown in the figure, 

and you’ll see that the torque t
!
 points into the page. So, by t

!
= dL

S
/dt, that must also be 

the direction of the change in the angular momentum L
S

. And that’s just what’s happen-
ing: The change ∆L

S
 in the angular momentum vector is indeed into the page. So the axis 

of the gyroscope—which coincides with the angular momentum vector—moves into the 
page. Repeat this argument, and you’ll see that the change ∆L

S
 is always perpendicular to 

L
S

; as a result, the angular momentum vector describes a circular path, continually chang-
ing in direction but not magnitude.

So is there something special about a rotating gyroscope? Wouldn’t a nonrotating 
 gyroscope also obey the rotational analog of Newton’s law? It would, and you can see that 
by applying the argument of the previous paragraph, now assuming that the gyroscope 
in Fig. 11.10 isn’t rotating. The gravitational force and torque are still the same, with 
the torque into the page. The rotational analog of Newton’s second law still holds, so the 
change ∆L

S
 in angular momentum is still into the page. But here’s the difference: In this 

case the initial angular momentum is zero, so the gyroscope needs to acquire an angular 
momentum that points into the page. It does that by falling over, rotating about its pivot 
as it does so. Apply the right-hand rule to the gyroscope as it falls, and the result is an 
angular momentum pointing into the page. Again, the rotational analog of Newton’s law 
is satisfied. If you’re bothered that the gyroscope doesn’t rotate about its shaft as before, 
note that there’s nothing in the rotational analog of Newton’s law that says how or about 
what axis something has to rotate. Its falling over is a perfectly good rotational motion—
although it will end when the gyroscope hits the floor and nongravitational torques begin 
to act.

The difference between the rotating and nonrotating gyroscope is like the difference 
between a satellite in circular orbit and a ball that’s simply dropped from rest. Newton’s 
law, F

S
= dp

!
/dt, governs both cases, and says that the change in linear momentum is in 

the direction of the gravitational force. The satellite already has momentum, and since it’s 
going at the right speed for a circular orbit, this change amounts to a change in direction 
only. The ball has no initial momentum, so it acquires a momentum in the direction of the 
force—namely, downward. Substitute “rotating gyroscope” for “satellite,” “ nonrotating 
gyroscope” for “ball,” “ angular momentum” for “linear momentum,” and “torque” for 
“force,” and you’ve got the analogous explanations for the two gyroscope situations.

What determines the rate of precession? You can explore that question qualitatively in 
Question 14, and quantitatively in Problem 61.

Precession on the atomic scale helps explain the medical imaging technique MRI (mag-
netic resonance imaging). Protons in the body’s abundant hydrogen precess because of 
torque resulting from a strong magnetic field. The MRI imager detects signals emitted at 
the precession frequency. By spatially varying the magnetic field, the device localizes the 
precessing protons and thus constructs high-resolution images of the body’s interior.

Figure 11.10 Why doesn’t the spinning 
 gyroscope fall over?

t
u

r
u

L
S

Fg
S

Change ∆L is also into the page,
so the gyroscope precesses, its tip
describing a circle.

Gravity exerts
a torque about the
pivot;  t = r * F is
into the page.

t points into
the page.

∆L
S

u

u u

S

S
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198 Chapter 11 Rotational Vectors and Angular Momentum

Figure 11.11 Earth’s precession. The equatorial 
bulge is highly exaggerated.

L
S

F2
S

F1
S

Near side is closer
to Sun, so F1 7 F2;
the result is a
torque.

Torque causes axis
to precess.

Earth
Sun

Now 13,000 years
in future

Got It? 11.5 You push horizontally at right an-
gles to the shaft of a spinning gyroscope, as shown in 
the figure. Does the shaft move (a) upward, (b) down-
ward, (c) in the direction of your push, or (d) opposite 
the direction of your push?

The rotational analog of Newton’s second law helps explain why bicycles 
don’t tip over. The photo shows why. If the bicycle is perfectly vertical, the 
gravitational force exerts no torque. But if it tips to the rider’s left, as in the 
photo, then there’s a torque t

!
= r

!
* F

S
g toward the rear. A stationary  bicycle, 

with no angular momentum, would respond by tipping further left, rotating 
about a front-to-back axis and gaining angular momentum toward the rear. 
That’s just as Newton requires: a change in angular momentum in the direction 
of the torque. But a moving bicycle already has angular momentum L

S
of its 

rotating wheels; as the photo shows, that angular momentum points generally 
to the rider’s left. A rearward change in angular momentum then requires just 
a slight turn of the front wheel to the left. The rider subconsciously makes that 
turn, at once satisfying Newton and helping to keep the bicycle stable.

The physics of cycling is a complicated subject, and the role of angular 
momentum described here is only one of several effects that contribute to 
 bicycle stability.

APPLICAtIon Bicycling

t
u

L
S

r
u

Fg
S

Wheel turns to 
left, changing 
angular
momentum 
vector in
direction of 
torque.

Gravitational
torque is toward
back of bicycle,
into page.

On a much larger scale, Earth itself precesses. Because of its rotation, the planet bulges 
slightly at the equator. Solar gravity exerts a torque on the equatorial bulge, causing 
Earth’s rotation axis to precess with a period of about 26,000 years (Fig. 11.11). The axis 
now points toward Polaris, which for that reason we call the North Star, but it won’t al-
ways do so. This precession, in connection with deviations in Earth’s orbit from a perfect 
circle, results in subtle climatic changes that are believed to be partly responsible for the 
onset of ice ages.
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The vector cross product is a way of multiplying two vectors A
S

and B
S

to produce a third vector C
S

of 
magnitude C = AB sin u and direction at right angles to the other two, as given by the  right-hand rule. 
It’s written as

C
S

= A
S

* B
S

Torque is a vector defined as the cross product of the radius vector r
!
 from a given axis to the point 

where a force F
S

is applied:

t
!

= r
!

* F
S

Chapter 11 Summary
Big Idea

The big idea of this chapter is that rotational quantities can be described as vectors, with the vector 
direction at right angles to the plane in which the action—motion, acceleration, or effects associated 
with torque—is occurring. The direction is given by the right-hand rule. A new concept, angular 
 momentum, is the rotational analog of linear momentum. The rotational analog of Newton’s law 
equates the net torque on a system with the rate of change of its angular momentum. In the absence of 
a net torque, angular momentum is conserved.

v
u

Curl your �ngers in
the direction of
rotation c

cthen your thumb
gives the direction
of the angular velocity.

Key Concepts and Equations

r
u

F
S

t (out of page)

Start with the
vectors tail to
tail.

Curl your �ngers in a
direction that rotates
the �rst vector (r )
onto the second (F ).

Then your
thumb points
in the direction
of t = r * F.

u

u

u

S

Su

Angular momentum L
S

is the rotational analog of linear momentum p
!
. It’s always defined with respect to a particular axis. For a point particle at 

position r
!
 with respect to the axis, moving with linear momentum p

!
= mv

!
, the angular momentum is defined as

L
S

= r
!

* p
!

For a symmetric object with rotational inertia I rotating with angular velocity v
!
, angular momentum becomes L

S
= Iv

!
.

In terms of angular momentum, the rotational analog of Newton’s law states that the rate of change of angular momentum is equal to the net exter-
nal torque:

dL
!

dt
= t

!
net

If the external torque on a system is zero, then its angular momentum cannot change.

Applications

Conservation of angular momentum explains the action of gyroscopes—spinning objects whose rotation axis remains fixed in the absence of a net 
external torque. If an external torque is applied, the rotation axis undergoes a circular motion known as precession. Precession occurs in systems 
ranging from subatomic particles to tops and gyroscopes and on to planets.

t
u

r
u

L
S

Fg
S

The axis of the precessing 
gyroscope traces out a circle.

∆L

t points into
the page.

u

S
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200 Chapter 11 Rotational Vectors and Angular Momentum

16. If the car of Exercise 15 makes a 90° left turn lasting 25 s, deter-
mine the average angular acceleration of the wheels.

17. A wheel is spinning at 45 rpm with its axis vertical. After 15 s, 
it’s spinning at 60 rpm with its axis horizontal. Find (a) the mag-
nitude of its average angular acceleration and (b) the angle the 
average angular acceleration vector makes with the horizontal.

18. A wheel is spinning about a horizontal axis with angular speed 
140 rad/s and with its angular velocity pointing east. Find the 
magnitude and direction of its angular velocity after an angular 
acceleration of 35 rad/s2, pointing 68° west of north, is applied 
for 5.0 s.

Section 11.2 Torque and the Vector Cross Product
19. A 12-N force is applied at the point x = 3 m, y = 1 m. Find the 

torque about the origin if the force points in (a) the x-direction, 
(b) the y-direction, and (c) the z-direction.

20. A  f o r c e  F
S

= 1.3in + 2.7jn N  i s  a p p l i e d  a t  t h e  p o i n t 
x = 3.0 m, y = 0 m. Find the torque about (a) the origin and  
(b) the point x = -1.3 m, y = 2.4 m.

21. When you hold your arm outstretched, it’s supported primarily 
by the deltoid muscle. Figure 11.13 shows a case in which the 
deltoid exerts a 67-N force at 15° to the horizontal. If the  force- 
application point is 18 cm horizontally from the shoulder joint, 
what torque does the deltoid exert about the shoulder?

18 cm

15°

F = 67 N
Deltoid muscle

Figure 11.13 Exercise 21

Section 11.3 Angular Momentum
22. Express the units of angular momentum (a) using only the funda-

mental units kilogram, meter, and second; (b) in a form involving 
newtons; (c) in a form involving joules.

23. In the Olympic hammer throw, a contestant whirls a 7.3-kg steel 
ball on the end of a 1.2-m cable. If the contestant’s arms reach 
an additional 90 cm from his rotation axis and if the ball’s speed 
just prior to release is 27 m/s, what’s the magnitude of the ball’s 
angular momentum?

24. A gymnast of rotational inertia 62 kg #  m2 is tumbling head over 
heels with angular momentum 470 kg #  m2/s. What’s her angular 
speed?

25. A 640-g hoop 90 cm in diameter is rotating at 170 rpm about its 
central axis. What’s its angular momentum?

26. A 7.4-cm-diameter baseball has mass 145 g and is spinning at 
2000 rpm. Treating the baseball as a uniform solid sphere, what’s 
its angular momentum?

Section 11.4 Conservation of Angular Momentum
27. A potter’s wheel with rotational inertia 6.40 kg #  m2 is spinning 

freely at 19.0 rpm. The potter drops a 2.70-kg lump of clay onto 
the wheel, where it sticks 46.0 cm from the rotation axis. What’s 
the wheel’s subsequent angular speed?

28. A 3.0-m-diameter merry-go-round with rotational inertia 
120 kg#m2 is spinning freely at 0.50 rev/s. Four 25-kg children 

BIo

For thought and Discussion
 1. Does Earth’s angular velocity vector point north or south?
 2. Figure 11.12 shows four forces acting on a body. In what  directions 

are the associated torques about point O? About point P?

F2
S

F1
S

F3
S

F4
S

O
P

Figure 11.12 For Thought and Discussion 2

 3. You stand with your right arm extended horizontally to the 
right. What’s the direction of the gravitational torque about your 
 shoulder?

 4. Although it contains no parentheses, the expression A
S

* B
S # C

S
 

is unambiguous. Why? Is the expression a vector or a scalar?
 5. What’s the angle between two vectors if their dot product is equal 

to the magnitude of their cross product?
 6. Why does a tetherball move faster as it winds up its pole?
 7. Why do helicopters have two rotors?
 8. A group of polar bears is standing around the edge of a slowly 

rotating ice floe. If the bears all walk to the center, what happens 
to the rotation rate?

 9. Tornadoes in the northern hemisphere rotate counterclockwise 
as viewed from above. A far-fetched idea suggests that  driving 
on the right side of the road may increase the frequency of 
 tornadoes. Does this idea have any merit? Explain in terms of the 
angular momentum imparted to the air as two cars pass.

10. Does a particle moving at constant speed in a straight line have 
angular momentum about a point on the line? About a point not 
on the line? In either case, is its angular momentum constant?

11. When you turn on a high-speed power tool such as a router, the 
tool tends to twist in your hands. Why?

12. Why is it easier to balance a basketball on your finger if it’s spin-
ning?

13. A bug, initially at rest on a stationary, frictionless turntable, 
walks halfway around the turntable’s circumference. Describe 
the motion of the turntable while the bug is walking and after the 
bug has stopped.

14. If you increase the rotation rate of a precessing gyroscope, will 
the precession rate increase or decrease?

exercises and problems
Exercises

Section 11.1 Angular Velocity and Acceleration Vectors
15. A car is headed north at 70 km/h. Give the magnitude and 

 direction of the angular velocity of its 62-cm-diameter wheels.
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40. Figure 11.15 shows the dimensions of a 880-g wooden base-
ball bat whose rotational inertia about its center of mass is 
0.048 kg #  m2. If the bat is swung so its far end moves at 50 m/s, 
find (a) its angular momentum about the pivot P and (b) the con-
stant torque applied about P to achieve this angular momentum 
in 0.25 s. (Hint: Remember the parallel-axis theorem.)

43 cm 31 cm

P CM
⊗

Figure 11.15 Problem 40

41. As an automotive engineer, you’re charged with redesigning a 
car’s wheels with the goal of decreasing each wheel’s angular mo-
mentum by 30% for a given linear speed of the car. Other design 
considerations require that the wheel diameter go from 38 cm  
to 35 cm. If the old wheel had rotational inertia 0.32 kg #  m2, what 
do you specify for the new rotational inertia?

42. A turntable of radius 25 cm and rotational inertia 0.0154 kg #  m2 
is spinning freely at 22.0 rpm about its central axis, with a 19.5-g 
mouse on its outer edge. The mouse walks from the edge to the 
center. Find (a) the new rotation speed and (b) the work done by 
the mouse.

43. A 17-kg dog is standing on the edge of a stationary, friction-
less turntable of rotational inertia 95 kg #  m2 and radius 1.81 m.  
The dog walks once around the turntable. What fraction of 
a full circle does the dog’s motion make with respect to the 
ground?

44. A physics student is standing on an initially motionless, friction-
less turntable with rotational inertia 0.31 kg #  m2. She’s holding 
a wheel with rotational inertia 0.22 kg #  m2 spinning at 130 rpm 
about a vertical axis, as in Fig. 11.8. When she turns the wheel 
upside down, student and turntable begin rotating at 70 rpm. (a) 
Find the student’s mass, considering her to be a 30-cm-diame-
ter cylinder. (b) Neglecting the distance between the axes of the 
turntable and wheel, determine the work she did in turning the 
wheel upside down.

45. You’re choreographing your school’s annual ice show. You 
call for eight 60-kg skaters to join hands and skate side by 
side in a line extending 12 m. The skater at one end is to stop 
abruptly, so the line will rotate rigidly about that skater. For 
safety, you don’t want the fastest skater to be moving at more 
than 8.0 m/s, and you don’t want the force on that skater’s 
hand to exceed 300 N. What do you determine is the great-
est speed the skaters can have before they execute their rota-
tional maneuver?

46. Find the angle between two vectors whose dot product is twice 
the magnitude of their cross product.

47. A circular bird feeder 19 cm in radius has rotational inertia 
0.12 kg #  m2. It’s suspended by a thin wire and is spinning slowly 
at 5.6 rpm. A 140-g bird lands on the feeder’s rim, coming in 
tangent to the rim at 1.1 m/s in a direction opposite the feeder’s 
rotation. What’s the rotation rate after the bird lands?

48. A force F
S

applied at the point x = 2.0 m, y = 0 m produces a 
torque 4.6kn N #  m about the origin. If the x-component of F

S
is 3.1 N,  

what angle does it make with the x-axis?
49. S h o w  t h a t  t h e  c r o s s  p r o d u c t  o f  t w o  v e c t o r s 

A
S

= Ax in + Ay jn + Azkn  and B
S

= Bx in + By jn + Bzkn  is given by 
A
S

* B
S

= 1AyBz - AzBy2 in + 1AzBx - AxBz2 jn + 1AxBy - AyBx2kn. 
(Hint: You’ll need to work out cross products of all possible pairs 
of the unit vectors in, jn, and kn —including with themselves.)

CH

sit suddenly on the edge of the merry-go-round. (a) Find the new 
angular speed, and (b) determine the total energy lost to friction 
between children and merry-go-round.

29. A uniform, spherical cloud of interstellar gas has mass 
2.0 * 1030 kg, has radius 1.0 * 1013 m, and is rotating with period 
1.4 * 106 years. The cloud collapses to form a star 7.0 * 108 m in 
radius. Find the star’s rotation period.

30. A skater has rotational inertia 4.2 kg#m2 with his fists held to 
his chest and 5.7 kg#m2 with his arms outstretched. The skater 
is spinning at 3.0 rev/s while holding a 2.5-kg weight in each 
outstretched hand; the weights are 76 cm from his rotation axis. 
If he pulls his hands in to his chest, so they’re essentially on his 
rotation axis, how fast will he be spinning?

Problems
31. You slip a wrench over a bolt. Taking the origin at the bolt, the 

other end of the wrench is at x = 18 cm, y = 5.5 cm. You apply 
a force F

S
= 88in - 23jn N to the end of the wrench. What’s the 

torque on the bolt?
32. Vector A

S
points 30° counterclockwise from the x-axis. Vector  

B
S

has twice the magnitude of A
S

. Their product A
S

* B
S

has 
magnitude A2 and points in the negative z-direction. What’s the 
direction of vector B

S
?

33. A baseball player extends his arm straight up to catch a 145-g 
baseball moving horizontally at 42 m/s. It’s 63 cm from the play-
er’s shoulder joint to the point the ball strikes his hand, and his 
arm remains stiff while it rotates about the shoulder during the 
catch. The player’s hand recoils 5.00 cm horizontally while he 
stops the ball. What average torque does the player’s arm exert 
on the ball?

34. Show that A
S # 1A

S
* B

S2 = 0 for any vectors A
S

and B
S

.
35. A weightlifter’s barbell consists of two 25-kg masses on the ends 

of a 15-kg rod 1.6 m long. The weightlifter holds the rod at its 
center and spins it at 10 rpm about an axis perpendicular to the 
rod. What’s the magnitude of the barbell’s angular momentum?

36. A particle of mass m moves in a straight line at constant speed v.  
Show that its angular momentum about a point located a perpen-
dicular distance b from its line of motion is mvb regardless of 
where the particle is on the line.

37. Two identical 1800-kg cars are traveling in opposite directions at 
83 km/h. Each car’s center of mass is 3.2 m from the center of the 
highway (Fig. 11.14). What are the magnitude and direction of 
the angular momentum of the system consisting of the two cars, 
about a point on the centerline of the highway?

3.2 m
3.2 m

Figure 11.14 Problem 37

38. The dot product of two vectors is half the magnitude of their 
cross product. What’s the angle between the two vectors?

39. Biomechanical engineers have developed micromechanical de-
vices for measuring blood flow as an alternative to dye injection 
following angioplasty to remove arterial plaque. One experimental 
device consists of a 300@µm@diameter, 2.0@µm@thick silicon rotor 
inserted into blood vessels. Moving blood spins the rotor, whose 
rotation rate provides a measure of blood flow. This device exhib-
ited an 800-rpm rotation rate in tests with water flows at several 
m/s. Treating the rotor as a disk, what was its angular momentum 
at 800 rpm? (Hint: You’ll need to find the density of silicon.)

BIo

BIo
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202 Chapter 11 Rotational Vectors and Angular Momentum

planet, without adding any material or angular momentum, into 
a hollow shell whose thickness is one-fifth its outer radius. How 
much will your design increase the surface area, and how will it 
change the length of the day?

57. In Fig. 11.18, the lower disk, of mass 440 g and radius 3.5 cm, 
is rotating at 180 rpm on a frictionless shaft of negligible radius. 
The upper disk, of mass 270 g and radius 2.3 cm, is initially not 
rotating. It drops freely down onto the lower disk, and frictional 
forces bring the two disks to a common rotational speed. Find 
(a) that common speed and (b) the fraction of the initial kinetic 
energy lost to friction.

Initial Final

Figure 11.18 Problem 57

58. A massless spring with constant k is mounted on a turntable of ro-
tational inertia I, as shown in Fig. 11.19. The turntable is on a fric-
tionless vertical axle, though initially it’s not rotating. The spring 
is compressed a distance ∆x from its equilibrium, with a mass m 
placed against it. When the spring is released, the mass moves at 
right angles to a line through the turntable’s center, at a distance b 
from the center, and slides without friction across the table and off 
the edge. Find expressions for (a) the linear speed of the mass and 
(b) the rotational speed of the turntable. (Hint: What’s conserved?)

v
u
b

v

Figure 11.19 Problem 58

59. A solid ball of mass M and radius R is spinning with angular 
velocity v0 about a horizontal axis. It drops vertically onto a sur-
face where the coefficient of kinetic friction with the ball is mk 
(Fig. 11.20). Find expressions for (a) the final angular velocity 
once it’s achieved pure rolling motion and (b) the time it takes to 
achieve this motion.

Initial Final

v0

v

Figure 11.20 Problem 59

60. A time-dependent torque given by t = a + b sin ct is applied to 
an object that’s initially stationary but is free to rotate. Here a, b, 
and c are constants. Find an expression for the object’s angular 

CH

CH

CH

50. If you’re familiar with determinants, show that the cross product 
can be written as a determinant:

A
S

* B
S

= †
in jn kn

Ax Ay Az

Bx By Bz

†

(Hint: See the preceding problem.)
51. Jumbo is back! Jumbo is the 4.8-Mg elephant from Example 9.4. 

This time he’s standing at the outer edge of a 15-Mg turntable of 
radius 8.5 m, rotating with angular velocity 0.15 s- 1 on friction-
less bearings. Jumbo then walks to the center of the turntable. 
Treating Jumbo as a point mass and the turntable as a solid disk, 
find (a) the angular velocity of the turntable once Jumbo reaches 
the center and (b) the work Jumbo does in walking to the center.

52. An anemometer for measuring wind speeds consists of four small 
cups, each with mass 124 g, mounted a pair of 32.6-cm-long rods 
with mass 75.7 g each, as shown in Fig. 11.16. Find the angular 
momentum of the anemometer when it’s spinning at 12.4 rev/s. 
You can treat the cups as point masses.

32.6 cm

Figure 11.16 Problem 52

53. A turntable has rotational inertia I and is rotating with angular 
speed v about a frictionless vertical axis. A wad of clay with 
mass m is tossed onto the turntable and sticks a distance d from 
the rotation axis. The clay hits horizontally with its velocity v

!
 at 

right angles to the turntable’s radius, and in the same direction as 
the turntable’s rotation (Fig. 11.17). Find expressions for v that 
will result in (a) the turntable’s angular speed dropping to half its 
initial value, (b) no change in the turntable’s angular speed, and 
(c) the angular speed doubling.

v
u

d

Figure 11.17 Problem 53.

54. A uniform, solid, spherical asteroid with mass 1.2 * 1013 kg and 
radius 1.0 km is rotating with period 4.3 h. A meteoroid mov-
ing in the asteroid’s equatorial plane crashes into the equator at  
8.4 km/s. It hits at a 58° angle to the vertical and embeds itself 
at the surface. After the impact the asteroid’s rotation period is  
3.9 h. Find the meteoroid’s mass.

55. About 99.9% of the solar system’s total mass lies in the Sun. Us-
ing data from Appendix E, estimate what fraction of the solar 
system’s angular momentum about its center is associated with 
the Sun. Where is most of the rest of the angular momentum?

56. You’re a civil engineer for an advanced civilization on a solid 
spherical planet of uniform density. Running out of room for the 
expanding population, the government asks you to redesign your 
planet to give it more surface area. You recommend reshaping the 

CH

CH
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Nonspinning
weight

Disk spinning
on frictionless
bearing

Arrowhead

Stand
Base

Shaft

Shaft can pivot
horizontally and
vertically.

You push in
this region.

 
 Figure 11.22 A gyroscope 
(Passage Problems 65–68)

65. If you push on the shaft between the arrowhead and the disk, 
pushing horizontally away from you (i.e., into the page in Fig. 
11.22), the arrowhead end of the shaft will move
a. away from you (i.e., into the page).
b. toward you (i.e., out of the page).
c. downward.
d. upward.

66. If you push on the shaft between the arrowhead and the disk, 
pushing directly upward on the bottom of the shaft, the arrow-
head end of the shaft will move
a. away from you (i.e., into the page).
b. toward you (i.e., out of the page).
c. downward.
d. upward.

67. If an additional weight is hung on the left end of the shaft, the ar-
rowhead will
a. pivot upward until the weighted end of the shaft hits the base.
b. pivot downward until the arrowhead hits the base.
c. precess counterclockwise when viewed from above.
d. precess clockwise when viewed from above.

68. If the system is precessing, and only the disk’s rotation rate is 
increased, the precession rate will
a. decrease.
b. increase.
c. stay the same.
d. become zero.

answers to Chapter Questions

Answer to Chapter opening Question
The rotation axis precesses—changes orientation—over a 26,000-year 
cycle. This alters the relation between sunlight intensity and seasons, 
triggering ice ages.

Answers to Got It? Questions
 11.1 (e)
 11.2  (1) t

!
3; (2) t

!
5; (3) t

!
1; (4) t

!
4

 11.3 (d)
 11.4  (1) (a) to keep the total angular momentum at 0;  

(2) (c) so L
total

 remains 0; (3) (b)
 11.5 (a)

momentum as a function of time, assuming the torque is first ap-
plied at t = 0.

61. Consider a rapidly spinning gyroscope whose axis is precessing 
uniformly in a horizontal circle of radius r, as shown in Fig. 11.10. 
 Apply t

!
= dL

S
/dt to show that the angular speed of precession 

about the vertical axis through the center of the circle is mgr/L.
62. When a star like our Sun exhausts its fuel, thermonuclear reac-

tions in its core cease, and it collapses to become a white dwarf. 
Often the star will blow off its outer layers and lose some mass 
before it collapses. Suppose a star with the Sun’s mass and radius 
is rotating with period 25 days and then it collapses to a white 
dwarf with 60% of the Sun’s mass and a rotation period of 131 s. 
What’s the radius of the white dwarf? Compare your answer with 
the radii of Sun and Earth.

63. Pulsars—the rapidly rotating neutron stars described in Example 
11.2—have magnetic fields that interact with charged particles 
in the surrounding interstellar medium. The result is torque that 
causes the pulsar’s spin rate and therefore its angular momentum 
to decrease very slowly. The table below gives values for the ro-
tation period of a given pulsar as it’s been observed at the same 
date every 5 years for two decades. The pulsar’s rotational inertia 
is known to be 1.12 * 1038 kg # m2. Make a plot of the pulsar’s 
angular momentum over time, and use the associated best-fit 
line, along with the rotational analog of Newton’s law, to find the 
torque acting on the pulsar.

Year of observation 1995 2000 2005 2010 2015

Angular momentum 
(1037 kg # m2/s)

7.844 7.831 7.816 7.799 7.787

64. A system has total angular momentum L
S

about an axis O. Show 
that the system’s angular momentum about a parallel axis O′ is 
given by L

S
′ = L - h

!
* p

!
, where p

!
 is the system’s linear mo-

mentum and h
!
 is a vector from O to O′ (see Fig. 11.21, which 

also shows vectors r
!
i and r

!
i
′ from each axis to the system’s ith 

mass element mi).

O′
O

ri′
u

ri
u

h
u

mi

 Figure 11.21 Problem 64

Passage Problems
Figure 11.22 shows a demonstration gyroscope, consisting of a solid disk 
mounted on a shaft. The disk spins about the shaft on essentially frictionless 
bearings. The shaft is mounted on a stand so it’s free to pivot both horizon-
tally and vertically. A weight at the far end of the shaft balances the disk, so 
in the configuration shown there’s no torque on the system. An arrowhead 
mounted on the disk end of the shaft indicates the direction of the disk’s 
angular velocity.

DATA

CH
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Static Equilibrium

12

What You Know
■ You understand Newton’s second law 

and its rotational analog.

■ You can solve problems involving 
multiple force vectors in two 
dimensions.

■ You’re familiar with the center-of-mass 
concept.

■ You know how to calculate torque as a 
cross product.

Architect Santiago Calatrava envisioned the boldly improbable bridge shown here. But it 
took engineers to make sure that the bridge would be stable in the face of what looks 

like an obvious tendency to topple to the left. The key to the engineers’ success is static 
 equilibrium—the condition in which a structure or system experiences neither a net force 
nor a net torque. Engineers use the principles of static equilibrium to design buildings, 
 bridges, and aircraft. Scientists apply equilibrium principles at scales from molecular to astro-
physical. Here we explore the conditions for static equilibrium required by the laws of physics.

12.1 Conditions for Equilibrium
A body is in equilibrium when the net external force and torque on it are both zero. 
In the special case when the body is also at rest, it’s in static equilibrium. Systems in 
static equilibrium include not only engineered structures but also trees, molecules, and 
even your bones and muscles when you’re at rest.

We can write the conditions for static equilibrium mathematically by setting the 
sums of all the external forces and torques both to zero:

 a F
S

i = 0
!
 (12.1)

and

 a t
!
i = a 1r

!
i * F

S
i2 = 0

!
 (12.2)

Here the subscripts i label the forces F
S

acting on an object, the positions r
!
 of the force-

application points, and the associated torques t
!
.

What You’re Learning
■ Here you’ll learn to describe situations 

involving static equilibrium, in which 
an object remains at rest because 
there’s zero net force and zero net 
torque acting on it.

■ You’ll learn about center of gravity—
which, for everyday-sized objects, is 
the same point as the center of mass.

■ You’ll learn to distinguish stable 
equilibria from unstable equilibria, and 
to identify the in-between case of 
metastable equilibria.

How You’ll Use It
■ Static equilibrium is especially 

important for architects and engineers 
concerned about the stability of 
structures they design.

■ Static equilibrium is also important 
in physiology because conditions for 
static equilibrium often determine the 
forces acting within the body.

■ Equilibrium situations occur 
throughout the universe, and whether 
they’re stable or unstable is a crucial 
determinant of a system’s behavior.

The Alamillo Bridge in Seville, Spain, is the work 
of architect Santiago Calatrava. What conditions 
must be met to ensure the stability of this 
dramatic structure?
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In Chapters 10 and 11, we noted that torque depends on the choice of a rotation axis. 
Actually, the issue is not so much an axis but a single point—the point of origin of the 
vectors r

!
 that enter the expression t

!
= r

!
* F

S
. In this chapter, where we have objects in 

equilibrium so they aren’t rotating, we’ll talk of this “pivot point” rather than a rotation 
axis. So the torque t

!
= r

!
* F

S
 depends on the choice of pivot point. Then there seems to 

be an ambiguity in Equation 12.2, since we haven’t specified a pivot point.
For an object to be in static equilibrium it can’t rotate about any point, so Equation 12.2 

must hold no matter what point we choose. Must we then check every possible point? For-
tunately, no. If the first equilibrium condition holds—that is, if the net force on an object 
is zero—and if the net torque about some point is zero, then the net torque about any other 
point is also zero. Problem 51 leads you through the proof of this statement.

In solving equilibrium problems, we’re thus free to choose any convenient point about 
which to evaluate the torques. An appropriate choice is often the application point of one 
of the forces; then r

!
= 0

!
 for that force, and the associated torque r

!
* F

S
is zero. This 

leaves Equation 12.2 with one term fewer than it would otherwise have.

ExAmpLE 12.1 Choosing the pivot: A Drawbridge

The raised span of the drawbridge shown in Fig. 12.1a has its 11,000-kg  
mass distributed uniformly over its 14-m length. Find the magnitude 
of the tension in the supporting cable.

Interpret Because the drawbridge is at rest, it’s in static equilibrium.

Develop Here we’ll demonstrate how a sensible choice of the 
pivot point can make solving static-equilibrium problems easier.  
Figure 12.1b is a simplified diagram of the bridge, showing the three 
forces acting on it. These forces must satisfy both Equations 12.1 
and 12.2, but we aren’t asked about the hinge force F

S
h, so it makes 

sense to choose the pivot at the hinge. We can then focus on Equa-
tion 12.2, g  t

!
i = 0

!
, in which the only torques are due to gravity and 

tension. Gravity acts at the center of mass, half the bridge length L 
from the pivot (we’ll prove this shortly). Therefore, it exerts a torque 
tg = -1L/22 mg sin u1, where u1 is the angle between the gravitational 
force and a vector from the pivot. This torque is into the page, or in 
the negative z-direction—hence the negative sign. Similarly, the ten-
sion force, applied at the full length L, exerts a torque tT = LT sin u2. 
Equation 12.2 then becomes

-
L

2
 mg  sin u1 + LT  sin u2 = 0

evaluate We solve for the tension T:

T =
mg  sin u1

2  sin u2
=

111,000 kg219.8 m/s221sin 120°2
1221sin 165°2 = 180 kN

assess This tension force is considerably larger than the 
 approximately 110-kN weight of the bridge because the tension acts at a 
small angle to produce a torque that balances the torque due to gravity.

One point of this example is that a wise choice of the pivot point 
can eliminate a lot of work—in this case, allowing us to solve the 
problem using only Equation 12.2. If we had chosen a different pivot, 
then the force Fh would have appeared in the torque  equation, and we 
would have had to eliminate it using the force equation,  Equation 12.1 
(see Exercise 13). ■

Figure 12.1 (a) A drawbridge. (b) Our sketch showing forces supporting the 
bridge.

30°
15°

14 m

(a)

(b)

We don’t know
the exact direction
of the hinge force.

Tension force
acts at 15° below
the horizontal.

Gravity acts
downward.

Got It? 12.1 The figure shows three pairs of 
forces acting on an object. Which pair, acting as the 
only forces on the object, results in static equilib-
rium? Explain why the others don’t.

A2
S

B2
S

C2
S

A1
S

B1
S

C1
S
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206 Chapter 12 Static Equilibrium

12.2 Center of Gravity
In Fig. 12.1b we drew the gravitational force acting at the center of mass of the bridge. 
That seems sensible, but is it correct? After all, gravity acts on all parts of an object. How 
do we know that the resulting torque is equivalent to the torque due to a single force act-
ing at the center of mass? To see that it is, consider the gravitational forces on all parts of 
an object of mass M. The vector sum of those forces is Mg

!
, but what about the torques? 

 Figure 12.2 shows the ingredients we need to calculate the torque t
!

= r
!

* F
S

 associated 
with one mass element; summing gives the total torque:

t
!

= a  r
!
i * F

S
i = a  r

!
i * mi g

!
= 1a  mi r

!
i2 * g

!

We can rewrite this equation by multiplying the right-hand side by M/M, with M the total 
mass:

t
!

= a a  mi r
!
i

M
b * Mg

!

The term in parentheses is the position of the center of mass (Section 9.1), and the 
 right-hand term is the total weight. Therefore, the net torque on the body due to  gravity 
is that of the gravitational force Mg

!
 acting at the center of mass. In general, the point 

at which the gravitational force seems to act is called the center of gravity. We’ve just 
proven an important point: The center of gravity coincides with the center of mass 
when the gravitational field is uniform.

Figure 12.2 The gravitational force F
S

i  on the 
mass element mi produces a torque about 
point O.

ri
u

Fi = mig

mi

O

uS

ConCEptUAL ExAmpLE 12.1 Finding the Center of Gravity

Figure 12.3 Finding the center of gravity.

r
u

r
u

Fg
S

Fg
S

There’s a net
torque because
the CG isn’t
directly below
the suspension
point c

cso the 
object swings
until the CG
is below the 
suspension
point.

Line from 
�rst suspension
point c

cand
from second
point

CG

CG CG

(a) (b) (c)

Explain how you can find an object’s center of gravity by suspending 
it from a string.

evaluate Suspend an object from a string and it will quickly come 
to equilibrium, as shown in Figs. 12.3a, b. In equilibrium there’s no 
torque on the object and so, as Fig. 12.3b shows, its center of gravity 
(CG) must be directly below the suspension point. So far all we know 
is that the CG lies on a vertical line extending from the suspension 
point. But two intersecting lines determine a point, so all we have to 
do is suspend the object from a different point. In its new equilibrium, 
the CG again lies on a vertical line from the suspension point. Where 
the two lines meet is the center of gravity (Fig. 12.3c).

assess Here’s a quick, easy, and practical way to find the center of 
gravity—at least for two-dimensional objects.

MakIng the ConneCtIon Do the experiment! Determine the 
center of gravity of an isosceles triangle made from material of 
 uniform density.

evaluate Cut a triangle of cardboard or wood and follow the 
 procedure described here. You should get good agreement with 
 Example 9.3: The triangle’s CG (which is the same as its center of 
mass) lies two-thirds of the way from the apex to the base.
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12.3 Examples of Static Equilibrium
It’s frequently the case that all the forces acting on a system lie in a plane, so Equation 12.1— 
the statement that there’s no net force in static equilibrium—becomes two equations for 
the two force components in that plane. And with all the forces in a plane, the torques 
are all at right angles to that plane, so Equation 12.2—the statement that there’s no net 
torque—becomes a single equation. We’ll restrict ourselves to such cases in which the 
conditions for static equilibrium reduce to three scalar equations. Sometimes, as in Exam-
ple 12.1, the torque equation alone will give what we’re looking for, but often that’s not 
the case.

Solving static-equilibrium problems is much like solving Newton’s law problems; after 
all, the equations for static equilibrium are Newton’s law and its rotational analog, both 
with acceleration set to zero. Here we adapt our Newton’s law strategy from Chapter 4 to 
problems of static equilibrium. The examples that follow illustrate the use of this strategy.

A B

C

Got It? 12.2 The dancer in the figure is balanced; that is, 
she’s in static equilibrium. Which of the three lettered points could 
be her center of gravity?

probleM-solvIng strategy 12.1 Static-Equilibrium problems

IntErprEt Interpret the problem to be sure it’s about static equilibrium, and identify the object 
that you want to keep in equilibrium. Next, identify all the forces acting on the object.

DEvELop Draw a diagram showing the forces acting on your object. Since you’ve got  torques 
to calculate, it’s important to show where each force is applied. So don’t represent your 
 object as a single dot but show it semirealistically with the force-application points. This is a 
 static-equilibrium problem, so Equations 12.1, g F

S
i = 0

!
, and 12.2, g  t

!
i = 0

!
, apply.  Develop 

your solution by choosing a coordinate system that will help resolve the force vectors into 
components and choose its origin at an appropriate pivot point—usually the application point 
of one of the forces. In some problems the unknown is itself a force; in that case, draw a force 
vector that you think is appropriate and let the algebra take care of the signs and angles.

EvALUAtE At this point the physics is done, and you’re ready to evaluate your answer. Begin 
by writing the two components of Equation 12.1 in your coordinate system. Then evaluate the 
torques about your chosen origin, and write Equation 12.2 as a single scalar equation showing 
that the torques sum to zero. Now you’ve got three equations, and you’re ready to solve. Since 
there are three equations, there will be three unknowns even if you’re asked for only one final 
answer. You can use the equations to eliminate the unknowns you don’t want.

ASSESS Assess your solution to see whether it makes sense. Are the numbers reasonable? 
Do the directions of forces and torques make sense in the context of static equilibrium? What 
 happens in special cases—for example, when a force or mass goes to zero or gets very large, or 
for special values of angles among the various vectors?

ExAmpLE 12.2  Static Equilibrium: Ladder Safety

A ladder of mass m and length L is leaning against a wall, as shown in 
Fig. 12.4a (next page). The wall is frictionless, and the coefficient of 
static friction between ladder and ground is m. Find an expression for 
the minimum angle f at which the ladder can lean without slipping.

Interpret This problem is about static equilibrium, and the ladder 
is the object we want to keep in equilibrium. We identify four forces 
acting on the ladder: gravity, normal forces from the floor and wall, 
and static friction from the ground.

(continued)

Video Tutor Demo | Walking the Plank
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208 Chapter 12 Static Equilibrium

Develop Figure 12.4b shows the four forces and the unknown an-
gle f. We’ll get the minimum angle when static friction is greatest: 
fs = mn1. Since we’re dealing with static equilibrium, Equations 12.1 
and 12.2 apply. In a horizontal/vertical coordinate system, Equation 
12.1 has the two components:

Force, x:     mn1 - n2 = 0

Force, y:     n1 - mg = 0

Now for the torques: If we choose the bottom of the ladder as the 
pivot, we eliminate two forces from the torque equation. That 

leaves only the gravitational torque and the torque due to the wall’s 
 normal force; both involve the unknown angle f. The gravitational 
torque is into the page, or the negative z-direction, so it’s given by 
tg = -1L/22mg sin190° - f2 = -1L/22mg cos f. The torque due 
to the wall is out of the page: tw = Ln2 

sin1180° - f2 = Ln2 

sin f. 
We used two trig identities here: sin190° - f2 = cos f  and 
sin1180° - f2 = sin f. Then Equation 12.2 becomes

Torque:  Ln2 sin f -
L

2
 mg cos f = 0

evaluate We have three unknowns: n1, n2, and f. The  y- component 
of the force equation gives n1 = mg, showing that the ground 
 supports the ladder’s weight. Using this result in the x-component 
of the force equation gives n2 = mmg. Then the torque equation be-
comes mmgL sin f - 1L/22mg cos f = 0. The term mgL cancels, giv-
ing m sin f - 1

2  cos f = 0. We solve for the unknown angle f by 
forming its tangent:

tan f =
sin f

cos f
=

1

2m

assess Make sense? The larger the frictional coefficient, the more 
horizontal force holding the ladder in place, and the smaller the 
 angle at which it can safely lean. On the other hand, a very small 
 frictional coefficient makes for a very large tangent—meaning the 
angle  approaches 90°. With no friction, you could stand the ladder 
only if it were strictly vertical. A word of caution: We worked this 
example with no one on the ladder. With the extra weight of a person, 
 especially near the top, the minimum safe angle will be a lot larger. 
Problem 29 explores this situation. ■

Figure 12.4 (a) At what angle will the ladder slip? (b) Our sketch.

L

f

(a) (b)

ExAmpLE 12.3  Static Equilibrium: In the Body

Figure 12.5a shows a human arm holding a pumpkin, with masses and 
distances marked. Find the magnitudes of the biceps tension and the 
contact force at the elbow joint.

Interpret This problem is about static equilibrium, with the  
arm/pumpkin being the object in equilibrium. We identify four forces: 
the weights of the arm and the pumpkin, the biceps tension, and the 
contact force at the elbow.

Develop Figure 12.5b shows the four forces, including the elbow 
contact force F

S
c, whose exact direction we don’t know. We can read 

the horizontal and vertical components of Equation 12.1, the force 
balance equation, from the diagram:

 Force, x:      Fcx - T cos u = 0

 Force, y:  T sin u - Fcy - mg - Mg = 0

Choosing the elbow as the pivot eliminates the contact force from the 
torque equation, giving

Torque:  x1T sin u - x2 mg - x3 Mg = 0

where the x values are the coordinates of the three force-application points.

evaluate We begin by solving the torque equation for the biceps 
tension:

T =
1x2 m + x3 M2g

x1 sin u
= 500 N

Figure 12.5 (a) Holding a pumpkin. (b) Our sketch.

(a)

(b)

3.6 cm

m = 2.7 kg M = 4.5 kg

14 cm

32 cm

Biceps

Humerus

Elbow pivot 80°
CM
⊗
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12.4 Stability
If a body is disturbed from equilibrium, it generally experiences nonzero torques or forces 
that cause it to accelerate. Figure 12.6 shows two very different possibilities for the sub-
sequent motion of two cones initially in equilibrium. Tip the cone on the left slightly, and 
a torque develops that brings it quickly back to equilibrium. Tip the cone on the right, and 
over it goes. The torque arising from even a slight displacement swings the cone perma-
nently away from its original equilibrium. The former situation is an example of stable 
equilibrium, the latter of unstable equilibrium. Nearly all the equilibria we encounter 
in nature are stable, since a body in unstable equilibrium won’t remain so. The slightest 
disturbance will set it in motion, bringing it to a very different equilibrium state.

where we used the values in Fig. 12.5 to evaluate the numerical an-
swer. The force equations then give the components of the elbow con-
tact force:

Fcx = T cos u = 87 N and Fcy = T sin u - 1m + M2g = 420 N

The magnitude of the contact force at the elbow then becomes

Fc = 2872 + 4202 N = 430 N.

Assess These answers may seem huge—both the biceps tension and 
the elbow contact force are roughly 10 times the weight of the  pumpkin, 
on the order of 100 pounds. But that’s because the biceps muscle is 
 attached so close to the elbow; given this small lever arm, it takes a 
large force to balance the torque from the weight of pumpkin and arm. 
This example shows that the human body routinely experiences forces 
substantially greater than the weights of objects it’s lifting. ■

Got It? 12.3 The figure shows a person in static equilibrium  leaning 
against a wall. Which of the following must be true? (a) There must be a 
 frictional force at the wall but not necessarily at the floor. (b) There must be 
a frictional force at the floor but not necessarily at the wall. (c) There must 
be frictional forces at both floor and wall.

Figure 12.6 Stable (left) and unstable (right) 
equilibria.

ApplIcAtIon Vehicle Stability control

When a car or other vehicle rounds a curve, the force of static friction between 
road and wheels provides the centripetal acceleration that keeps the car in its 
circular path. These frictional forces act at the road, and so they exert a torque 
that tends to rotate the vehicle about its center of gravity (see drawing). The ef-
fect is to increase the normal force on the wheels at the outside of the turn and 
decrease it on the wheels at the inside of the turn. In extreme cases, the inside 
wheels may leave the road—a condition that can rapidly worsen and lead to a 
rollover.

Consider the case of a vehicle whose inside wheels are just about to leave 
the road, so there’s neither a normal force nor a frictional force on the wheels 
at the inside of the turn. Applying Newton’s second law to the remaining forces 
(see the drawing) gives f = mv2/r in the horizontal direction and n = mg in 
the vertical direction. Meanwhile, the torques associated with these two forces 
are fh and nt/2, where h is the height of the center of gravity above the road and 
t is the width between the wheels. The drawing shows that these torques are in 
opposite directions; setting the net torque to zero and substituting for the two 
forces then gives the rollover condition:

v2

rg
=

t

2h

The term on the right depends only on the geometry of the vehicle (including 
how it’s loaded with passengers and cargo), and is called the static stability 
factor (SSF). The equation shows that if v2/rg exceeds the SSF, the vehicle’s 
inner tires will leave the road, setting the stage for a rollover. The equation also 
shows that the wider the tire spacing t, the higher the SSF and the more stable 
the vehicle. But the higher the center of gravity, as given by h, the lower the 

To center
of turn

h

t

Center 
of gravity

Normal
force

Frictional 
force

Inside wheels just
lifting off road

n
u

f
u

CG

mg
u

(continued)

SSF and the less stable is the vehicle. That’s why SUVs and vans have had 
high rates of rollover accidents—among the most serious of single-vehicle ac-
cidents.

Today’s cars and SUVs increasingly include electronic stability control 
systems (ECS), which monitor speed, tilt angle, and steering wheel position 
and apply brakes to individual wheels so as to prevent rollover; ECS may also 
throttle back the engine as needed. Studies show that ECS can reduce SUV ac-
cidents by two-thirds and fatal rollovers by as much as 80%. Extensive use of 
ECS in recent SUVs has actually made late-model SUVs less likely to experi-
ence rollover than non-ECS cars.
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210 Chapter 12 Static Equilibrium

Figure 12.7 shows a ball in four different equilibrium situations. Situation (a) is stable 
and (b) is unstable. Situation (c) is neither stable nor unstable; it’s called neutrally stable. 
But what about (d)? For small disturbances, the ball will return to its original state, so the 
equilibrium is stable. But for larger disturbances—large enough to push the ball over the 
highest points on the hill—it’s unstable. Such an equilibrium is conditionally stable or 
metastable.

A system disturbed from stable equilibrium can take a while to return to equilib-
rium. In Fig. 12.7a, for example, displacing the ball results in its rolling back and forth. 
Eventually friction dissipates its energy, and it comes to rest at equilibrium. Back-and-
forth motion is common to many systems—from nuclei and atoms to skyscrapers and 
bridges—that are displaced from stable equilibrium. Such motion is the topic of the next 
chapter.

Stability is closely associated with potential energy. Because gravitational potential 
 energy is directly proportional to height, the shapes of the hills and valleys in Fig. 12.7 
are in fact potential-energy curves. In all cases of equilibrium, the ball is at a minimum 
or maximum of the potential-energy curve—at a place where the force (i.e., the deriva-
tive of potential energy with respect to position) is zero. For the stable and metastable 
 equilibria, the potential energy at equilibrium is a local minimum. A deviation from 
equilibrium  requires that work be done against the force that tends to restore the ball 
to equilibrium. The unstable equilibrium, in contrast, occurs at a maximum in poten-
tial energy. Here, a deviation from equilibrium results in lower potential energy and 
in a force that accelerates the ball farther from equilibrium. For the neutrally stable 
equilibrium, there’s no change in potential energy as the ball moves; consequently it 
experiences no force. Figure 12.8 gives another example of equilibria in the context of 
potential energy.

Our simple analysis doesn’t take into account factors like the vehicle’s 
suspension and the deformation of its tires—both of which can exacerbate 
rollover danger by allowing the vehicle to tilt even before its tires leave the 
road.

But wait! A vehicle rounding a curve is hardly in static equilibrium;  after 
all, it’s both moving and, more importantly, accelerating. But our  analysis 

nevertheless applies, provided we recognize that the nonzero net force means 
we can no longer conclude that zero torque about one point implies zero 
torque about all other points. In this case, though, rotation tends to begin 
about the center of gravity, so our analysis involving that point is what’s rel-
evant here.

Figure 12.7 (a) Stable, (b) unstable, (c) neutrally 
stable, and (d) metastable equilibria.

(c)

(d)

(a)

(b)

Figure 12.8 Identical blocks in stable and metastable equilibria.

This block is in
stable equilibrium;
its potential energy
can’t get any lower.

This block is in
metastable equilibrium;
it takes a little energy
to tip it on edge, but
then it would fall over.

We can sum up our understanding of equilibrium and potential energy in two simple 
mathematical statements. First, the force must be zero; that requires a local maximum or 
minimum in potential energy:

 
dU

dx
= 0  1equilibrium condition2 (12.3)

where U is the potential energy of a system and x is a variable describing the system’s 
configuration. For the simple systems we’ve been considering, x measures the position or 
orientation of an object, but for more complicated systems, it could be another quantity 
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12.4 Stability 211

such as the system’s volume or even its composition. For a stable equilibrium, we require 
a local minimum, so the potential-energy curve is concave upward. (See Tactics 12.1 to 
review the relevant calculus.) Mathematically,

 
d2U

dx2 7 0  1stable equilibrium2 (12.4)

This condition applies to metastable equilibria as well because they’re locally stable. In 
contrast, unstable equilibrium occurs where the potential energy has a local maximum, or

 
d2U

dx2 6 0  1unstable equilibrium2 (12.5)

The intermediate case d2U/dx2 = 0 corresponds to neutral stability.

taCtICs 12.1 Finding maxima and minima

1.  Begin by sketching a plot of the function, which will give a visual check for your numerical answers.
2.  Next, take the function’s first derivative and set it to zero. As Fig. 12.7 suggests, a hill (maximum) or 

valley (minimum) is level right at its top or bottom. So by setting the first derivative to zero, you’re 
requiring that its slope be zero and therefore requiring the function to be at a maximum or minimum.

3.  Find the sign of the function’s second derivative at the points where you found the first derivative  
is zero. Your sketch should show this; where the curve is concave upward, as in Figs. 12.7a and d,  
the  second derivative is positive and the point is a minimum. Where it’s concave downward, as in  
Fig. 12.7b, d2U/dt2 is negative and you’ve got a maximum. If it wasn’t obvious how to sketch the function, 
you can use calculus to determine the second derivative and then find its sign at the equilibrium points.

4. Check that the values you found for maxima and minima agree with your plot of the function.

ExAmpLE 12.4  Stability Analysis: Semiconductor Engineering

Physicists develop a new semiconductor device in which the poten-
tial energy associated with an electron’s being at position x is given 
by U1x2 = ax2 - bx4, where x is in nm, U is the potential energy 
in aJ 110-18 J2, and constants a and b are 8 aJ/nm2 and 1 aJ/nm4, 
 respectively. Find the equilibrium positions for the electron, and 
 describe their stability.

Interpret This problem is about stability in the context of a given 
potential-energy function. We’re interested in the electron, and 
we’re asked to find the values of x where it’s in equilibrium and then 
 examine their stability.

Develop The potential-energy curve gives us insight into this prob-
lem, so we’ve drawn it by plotting the function U1x2 in Fig. 12.9. 
Equation 12.3, dU/dx = 0, determines the equilibria, while Equa-
tions 12.4, d2U/dx2 7 0, and 12.5, d2U/dx2 6 0, determine the 
stability. Our plan is first to find the equilibrium positions using Equa-
tion 12.3 and then to examine their stability.

evaluate Equation 12.3 states that equilibria occur where the 
 potential energy has a maximum or minimum—that is, where its 
 derivative is zero. Taking the derivative of U and setting it to zero gives

0 =
dU

dx
= 2ax - 4bx3 = 2x1a - 2bx22

This equation has solutions when x = 0 and when a = 2bx2 or 
x = {2a/2b = {2 nm. We could take second derivatives to 
 evaluate the stability, but the situation is evident from our plot: x = 0 

lies at a local minimum of the potential-energy curve, so this equi-
librium is metastable. The other two equilibria, at maxima of U, are 
unstable.

assess Do our numerical answers make sense? Yes: The 
 potential-energy curve has zero slope at the points x = -2 nm, x = 0, 
and x = 2 nm, so we’ve found all the equilibria. Note that the 
 equilibrium at x = 0 is only metastable; given enough energy, an 
electron disturbed from this position could make it all the way over 
the peaks and never return to x = 0. ■

Figure 12.9 Our sketch of the potential-energy curve for Example 12.4.

Equilibria occur
where the curve is �at c

cbut only this
equilibrium is stable c

cand it’s only
metastable because
the curve goes
lower.
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212 Chapter 12 Static Equilibrium

Stability considerations apply to the overall arrangements of matter. A mixture of 
 hydrogen and oxygen, for example, is in metastable equilibrium at room temperature. 
 Lighting a match puts some atoms over the maxima in their potential-energy curves, at 
which point they rearrange into a state of lower potential energy—the state we call H2O. 
Similarly, a uranium nucleus is at a local minimum of its potential-energy curve, and a 
little excess  energy can result in its splitting into two smaller nuclei whose total  potential 
energy is much lower. That transition from a less stable to a more stable equilibrium 
 describes the basic physics of nuclear fission.

Potential-energy curves for complex structures like molecules or skyscrapers can’t be 
described fully with one-dimensional graphs. If potential energy varies in different ways 
when the structure is altered in different directions, then in order to determine stability we 
need to consider all possible ways potential energy might vary. For example, a  snowball 
sitting on a mountain pass—or any other system with a saddle-shaped potential-energy 
curve—is stable against displacements in one direction but not another (Fig. 12.10). 
 Stability analysis of complex physical systems, ranging from nuclei and molecules to 
bridges and buildings and machinery, and on to stars and galaxies, is an important part of 
contemporary work in engineering and science.

Figure 12.10 Equilibrium on a saddle-shaped 
potential-energy curve.

Point P is stable
in this direction c

cbut not this one.

P

Got It? 12.4 Which of the labeled points 
in the figure are stable, metastable, unstable, or 
neutrally stable equilibria?

A

B

C

D

E

Position, x

Po
te

nt
ia

l e
ne

rg
y,

 U
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Chapter 12 Summary
Big Idea

The big idea here is static equilibrium—the state in which 
a system at rest remains at rest because there’s no net force 
to accelerate it and no net torque to start it rotating. An equi-
librium is stable if a disturbance of the system results in its 
returning to the original equilibrium state.

⊗

Torque due to gravity
tends to rotate the
crane this way.

Torque due to the horizontal cable 
counters the gravitational torque.

The normal force
of the rock
counters 
gravity.

50°

CM

Key Concepts and Equations

Static equilibrium requires that there be no net 
force and no net torque on a system; mathe-
matically:

a  F
S

i = 0
!

and

a  t
!
i = a  

1r
!
i * F

S
i2 = 0

!

where the sums include all the forces applied 
to the system. Solving an equilibrium problem 
involves identifying all the forces F

S
i acting 

on the system, choosing an appropriate origin 
about which to evaluate the torques, and re-
quiring that forces and torques sum to zero.

Equilibria occur where a system’s potential energy U1x2 has a maximum or a minimum:

 
dU

dx
= 0  (equilibrium condition)

 
d2U

dx2 7 0  (stable equilibrium)

 
d2U

dx2 6 0  (unstable equilibrium)

Stable equilibria occur at minima of U and unstable equilibria at maxima.

Unstable

x

U(x)
Metastable

Stable

Metastable:  Locally
stable but a large
enough disturbance
could result in a 
transition to the stable
equilibrium at left.

Applications

The center of gravity of a system is the point where the force of grav-
ity appears to act. When the gravitational field is uniform over the 
system, the center of gravity coincides with the center of mass. This 
provides a handy way to locate the center of mass.

⊗

Suspend the
object from 
any point; the
CM lies
somewhere
directly
below.

The same is
true for any
other point,
so the CM is
where the
lines cross.

Four different types of equilibrium are stable, unstable, neutrally 
stable, and metastable.

The lowest point
in a valley is stable.

The highest point
on a hill is unstable.

A level surface
is neutrally stable.

This point is 
metastable.

Note that the
hill goes lower
over here.
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Section 12.2 Center of Gravity
15. Figure 12.12a shows a thin, uniform square plate of mass m and 

side L. The plate is in a vertical plane. Find the magnitude of the 
gravitational torque on the plate about each of the three points 
shown.

(a) (b)

A

C

B

A

B

C

Figure 12.12 Exercises 15 and 16

16. Repeat the preceding problem for the equilateral triangle in  
Fig. 12.12b, which has side L.

17. A 23-m-long log of irregular cross section lies horizontally, sup-
ported by a wall at one end and a cable attached 4.0 m from the 
other end, as shown in Fig. 12.13. The log weighs 7.5 kN and the 
tension in the cable is 6.2 kN. Find the log’s center of gravity.

4.0 m

23 m

Figure 12.13 Exercise 17

Section 12.3 Examples of Static Equilibrium
18. A 60-kg uniform board 2.4 m long is supported by a pivot 80 cm 

from the left end and by a scale at the right end (Fig. 12.14). How 
far from the left end should a 40-kg child sit for the scale to read 
zero?

Figure 12.14 Exercises 18 and 19

19. Where should the child in Fig. 12.14 sit if the scale is to read  
(a) 100 N and (b) 300 N?

20. A 4.2-m-long beam is supported by a cable at its center. A 65-kg  
steelworker stands at one end of the beam. Where should a  
190-kg bucket of concrete be suspended for the beam to be in 
static equilibrium?

21. Figure 12.15 shows how a scale with a capacity of only 250 N 
can be used to weigh a heavier person. The 3.4-kg board is 3.0 m  
long and has uniform density. It’s free to pivot about the end 
 farthest from the scale. Assume that the beam remains essentially 

For thought and Discussion
 1. Give an example of an object on which the net force is zero, but 

that isn’t in static equilibrium.
 2. Give an example of an object on which the net torque about the 

center of gravity is zero, but that isn’t in static equilibrium.
 3. The best way to lift a heavy weight is to squat with your back 

vertical, rather than to lean over. Why?
 4. Pregnant women often assume a posture with their shoulders 

held far back from their normal position. Why?
 5. When you carry a bucket of water with one hand, you instinc-

tively extend your opposite arm. Why?
 6. Is a ladder more likely to slip when you stand near the top or the 

bottom? Explain.
 7. How does a heavy keel help keep a boat from tipping over?
 8. Does choosing a pivot point in an equilibrium problem mean that 

something is necessarily going to rotate about that point?
 9. If you take the pivot point at the application point of one force in 

a static-equilibrium problem, that force doesn’t enter the torque 
equation. Does that make the force irrelevant to the problem? 
 Explain.

10. A short dog and a tall person are standing on a slope. If the slope 
angle increases, which will fall over first? Why?

11. A stiltwalker is standing motionless on one stilt. What can you 
say about the location of the stiltwalker’s center of mass?

exercises and problems

Exercises

Section 12.1 Conditions for Equilibrium
12. A body is subject to three forces: F

S
1 = 1in + 2jn N, applied 

at the point x = 2 m, y = 0 m; F
S

2 = -2in - 5jn N, applied 
a t  x = -1 m, y = 1 m;  and F

S
3 = 1in + 3jn N ,  appl ied  a t 

x = -2 m, y = 5 m. Show that (a) the net force and (b) the net 
torque about the origin are both zero.

13. To demonstrate that the choice of pivot point doesn’t matter, 
show that the torques in Exercise 12 sum to zero when evaluated 
about the points (3 m, 2 m) and (-7 m, 1 m).

14. In Fig. 12.11 the forces shown all have the same magnitude F. 
For each case shown, is it possible to place a third force so as 
to meet both conditions for static equilibrium? If so, specify the 
force and a suitable application point. If not, why not?

 - 

F2
S

F2
S

F1
SF1

S

(b)(a)

2

1

-1

-2

x (m) x (m)
-2-2 -1 -1 1 21 2

1

y (m) y (m)

2

-1

-2

Figure 12.11 Exercise 14
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⊗

(a)

(b)

18 cm

15°

6.0 kg
15°

CG

21 cm

56 cm

Deltoid muscle

5.0°

Figure 12.17 Problem 25

26. A uniform sphere of radius R is supported by a rope attached to 
a vertical wall, as shown in Fig. 12.18. The rope joins the sphere 
at a point where a continuation of the rope would intersect a hori-
zontal line through the sphere’s center a distance 12 R beyond the 
center, as shown. What’s the smallest possible value for the coef-
ficient of friction between wall and sphere?

1
2

30°

R
R

Figure 12.18 Problem 26

27. You work for a garden equipment company, and you’re design-
ing a new garden cart. Specifications to be listed include the 
horizontal force that must be applied to push the fully loaded cart 
(mass 55 kg, 60-cm-diameter wheels) up an abrupt 8.0-cm step, 
as shown in Fig. 12.19. What do you specify for the force?

F
S

8.0 cm60 cm

Figure 12.19 Problem 27

28. Figure 12.20 shows the foot and lower leg of a person standing 
on the ball of one foot. Three forces act to maintain this equi-
librium: the tension force T

S
 in the Achilles tendon, the contact 

force F
S

c at the ankle joint, and the normal force n
!
 that supports 

the  person’s 697-N weight. The application points for these 

CH

BIO

horizontal. What’s the weight of a person standing 1.2 m from 
the pivot end if the scale reads 210 N?

0 250 N

Board

1.2 m

3.0 m

Figure 12.15 Exercise 21

Section 12.4 Stability
22. A portion of a roller-coaster track is described by the equation 

h = 0.94x - 0.010x2, where h and x are the height and horizon-
tal position in meters. (a) Find a point where the roller-coaster 
car could be in static equilibrium on this track. (b) Is this equilib-
rium stable or unstable?

23. The potential energy associated with a particle at position x is 
given by U = 2x3 - 2x2 - 7x + 10, with x in meters and U in 
joules. Find the positions of any stable and unstable equilibria.

problems
24. You’re a highway safety engineer, and you’re asked to  specify 

bolt sizes so the traffic signal in Fig. 12.16 won’t fall over. 
The figure indicates the masses and positions of the structure’s 
 various parts. The structure is mounted with two bolts, located 
symmetrically about the vertical member’s centerline, as shown. 
What tension force must the left-hand bolt be capable of with-
standing?

8.22 m

3.60 m

76.0 cm

64.7 kg

321 kg

Bolts

175 kg

CM
⊗

Figure 12.16 Problem 24

25. Figure 12.17a shows an outstretched arm with mass 4.2 kg. The 
arm is 56 cm long, and its center of gravity is 21 cm from the 
shoulder. The hand at the end of the arm holds a 6.0-kg mass.  
(a) Find the torque about the shoulder due to the weight of the 
arm and the 6.0-kg mass. (b) If the arm is held in equilibrium 
by the deltoid muscle, whose force on the arm acts below the 
horizontal at a point 18 cm from the shoulder joint (Fig. 12.17b), 
what’s the force exerted by the muscle?

BIO
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216 Chapter 12 Static Equilibrium

32. Figure 12.23 shows a 1250-kg car that has slipped over an em-
bankment. People are trying to hold the car in place by pulling on 
a horizontal rope. The car’s bottom is pivoted on the edge of the 
embankment, and its center of mass lies farther back, as shown. 
If the car makes a 34° angle with the horizontal, what force must 
the people apply to hold it in place?

34°

1.8 m
2.4 m

CM
⊗

Figure 12.23 Problem 32

33. Repeat Example 12.2, now assuming that the coefficient of 
friction at the ground is m1 and at the wall is m2. Show that the 
minimum angle at which the ladder won’t slip is now given by 
f = tan-13(1 - m1m2)/2m14 .

34. You are headwaiter at a new restaurant, and your boss asks you to 
hang a sign for her. You’re to hang the sign, whose mass is 66 kg, 
in the configuration shown in Fig. 12.24. A uniform horizontal 
rod of mass 8.2 kg and length 2.3 m holds the sign. At one end 
the rod is attached to the wall by a pivot; at the other end it’s sup-
ported by a cable that can withstand a maximum tension of 800 N.  
You’re to determine the minimum height h above the pivot for 
anchoring the cable to the wall.

2.3 m

h

Figure 12.24 Problem 34

35. Climbers attempting to cross a stream place a 340-kg log against a 
vertical, frictionless ice cliff on the opposite side (Fig. 12.25). The 
log slopes up at 27° and its center of gravity is one-third of the way 
along its 6.3-m length. If the coefficient of friction between the left 
end of the log and the ground is 0.92, what’s the maximum mass for 
a climber and pack to cross without the log slipping?

27°

CG

⊗

Figure 12.25 Problem 35

CH

forces are shown in Fig. 12.20. The person’s center of gravity 
is directly above the contact point with the ground, and you can 
treat the mass of the foot itself as being negligible. Find the mag-
nitudes of (a) the tension in the Achilles tendon and (b) the con-
tact force at the ankle joint.

n
uFc

S

T
S

11.6 cm

4.55 cm

25°

Ankle
joint

Achilles
tendon

Figure 12.20 Problem 28

29. A uniform 5.0-kg ladder is leaning against a frictionless vertical 
wall, with which it makes a 15° angle. The coefficient of friction 
between ladder and ground is 0.26. Can a 65-kg person climb to the 
top of the ladder without it slipping? If not, how high can that per-
son climb? If so, how massive a person would make the ladder slip?

30. The boom in the crane of Fig. 12.21 is free to pivot about point P  
and is supported by the cable attached halfway along its 18-m 
length. The cable passes over a pulley and is anchored at the back 
of the crane. The boom has mass 1700 kg distributed uniformly 
along its length, and the mass hanging from the boom is 2200 kg. 
The boom makes a 50° angle with the horizontal. Find the ten-
sion in the cable.

m

50°

P

18 m

Figure 12.21 Problem 30

31. A uniform board of length L and weight W is suspended between 
two vertical walls by ropes of length L/2 each. When a weight w 
is placed on the left end of the board, it assumes the configura-
tion shown in Fig. 12.22. Find the weight w in terms of the board 
weight W.

L
2

35°

9.2°
L

60°

w

L
2

Figure 12.22 Problem 31

CH
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How much energy does it take to bring it to unstable equilibrium, 
resting on its apex?

45. You’re investigating ladder safety for the Consumer Product 
Safety Commission. Your test case is a uniform ladder of mass m  
leaning against a frictionless vertical wall with which it makes 
an angle u. The coefficient of static friction at the floor is m. Your 
job is to find an expression for the maximum mass of a person 
who can climb to the top of the ladder without its slipping. With 
that result, you’re to show that anyone can climb to the top if 
m Ú tan u but that no one can if m 6 1

2 tan u.
46. A 2.0-m-long rod has density l in kilograms per meter of length 

described by l = a + bx, where a = 1.0 kg/m, b = 1.0 kg/m2, 
and x is the distance from the left end of the rod. The rod rests 
horizontally with each end supported by a scale. What do the two 
scales read?

47. What horizontal force applied at its highest point is necessary to 
keep a wheel of mass M from rolling down a slope inclined at 
angle u to the horizontal?

48. A rectangular block twice as high as it is wide is resting on a board. 
The coefficient of static friction between board and incline is 0.63. 
If the board’s inclination angle u (shown in Fig. 12.27) is gradually 
increased, will the block first tip over or first begin sliding?

1
2

1
3

u

h

h

h

Figure 12.27 Problems 48, 49, and 50

49. What condition on the coefficient of friction in Problem 48 will 
cause the block to slide before it tips?

50. A uniform solid cone of height h and base diameter 13 h sits on the 
board of Fig. 12.27. The coefficient of static friction between the 
cone and incline is 0.63. As the slope of the board is increased, 
will the cone first tip over or first begin sliding? (Hint: Start with 
an integration to find the center of mass.)

51. Prove the statement in Section 12.1 that the choice of pivot point 
doesn’t matter when applying conditions for static equilibrium. 
Figure 12.28 shows an object on which the net force is assumed 
to be zero. The net torque about the point O is also zero. Show 
that the net torque about any other point P is also zero. To do so, 
write the net torque about P as t

!
P = a  r

!
Pi * F

S
i, where the vec-

tors r
!
P go from P to the force-application points, and the index i 

labels the different forces. In Fig. 12.28, note that r
!
Pi = r

!
Oi + R

S
, 

where R
S

is a vector from P to O. Use this result in your expres-
sion for t

!
P and apply the distributive law to get two separate sums. 

Use the assumptions that F
S

net = 0
!
 and t

!
O = 0

!
 to argue that both 

terms are zero. This completes the proof.

rP2
u

rO2
u

R
S

F3
S

F2
S

F1
S

O

P

Figure 12.28 Problem 51

CH

CH

CH

36. A crane in a marble quarry is mounted on the quarry’s rock walls 
and is supporting a 2500-kg marble slab as shown in Fig. 12.26. 
The center of mass of the 830-kg boom is located one-third of 
the way from the pivot end of its 15-m length, as shown. Find the 
tension in the horizontal cable that supports the boom.

50°

CM
⊗

Figure 12.26 Problem 36

37. A rectangular block measures w * w * L, where L is the longer 
dimension. It’s on a horizontal surface, resting on its long side. 
Use geometrical arguments to find an expression for the angle 
through you would have to tilt it in order to put it in an unstable 
equilibrium, resting on a short edge.

38. The potential energy as a function of position for a particle is 
given by

U1x2 = U0 ax3

x 3
0

+ a 
x2

x 2
0

+ 4 
x

x0
b

where x0 and a are constants. For what values of a will there 
be two static equilibria? Comment on the stability of these 
 equilibria.

39. A rectangular block of mass m measures w * w * L, where L 
is the longer dimension. It’s on a horizontal surface, resting on 
its long side, as in the left-hand block in Fig. 12.8. (a) Taking 
the zero of potential energy when the block is lying on its long 
side, find an expression for its potential energy as a function of 
the angle u that the long dimension of the block makes with the 
 horizontal, starting with u = 0 in the left-hand configuration of 
Fig. 12.8 and continuing through the upright position shown at 
the right (u = 90°). (b) Use calculus to find the angle u where 
your function has a maximum, and check that it agrees with the 
answer to Problem 37. (c) Use calculus to show that this is a 
point of unstable equilibrium.

40. A 160-kg highway sign of uniform density is 2.3 m wide and 
1.4 m high. At one side it’s secured to a pole with a single bolt, 
mounted a distance d from the top of the sign. The only other 
place where the sign contacts the pole is at its bottom corner. If 
the bolt can sustain a horizontal tension of 2.1 kN, what’s the 
maximum permissible value for the distance d?

41. A 5.0-m-long ladder has mass 9.5 kg and is leaning against a 
frictionless wall, making a 66° angle with the horizontal. If the 
coefficient of friction between ladder and ground is 0.42, what’s 
the mass of the heaviest person who can safely ascend to the top 
of the ladder? (The center of mass of the ladder is at its center.)

42. To what vertical height on the ladder in Problem 41 could a  
95-kg person reach before the ladder starts to slip?

43. A uniform, solid cube of mass m and side s is in stable equilibrium 
when sitting on a level tabletop. How much energy is required to 
bring it to an unstable equilibrium where it’s resting on its corner?

44. An isosceles triangular block of mass m and height h is in 
 stable equilibrium, resting on its base on a horizontal surface.  

CH

CH
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218 Chapter 12 Static Equilibrium

76 cm

28 cm

CMhead

CMneck

50°

27°

nuchal ligament

⊗

Figure 12.32 Problem 56

57. A 4.2-kg plant hangs from the bracket shown in Fig. 12.33. The 
bracket’s mass is 0.85 kg, and its center of mass lies 9.0 cm from 
the wall. A single screw holds the bracket to the wall, as shown. 
Find the horizontal tension in the screw. (Hint: Imagine that the 
bracket is slightly loose and pivoting about its bottom end. As-
sume the wall is frictionless.)

⊗
CM

28 cm
9 cm

7.2 cm

Figure 12.33 Problem 57

58. The wheel in Fig. 12.34 has mass M and is weighted with an ad-
ditional mass m as shown. The coefficient of friction is sufficient 
to keep the wheel from sliding; however, it might still roll.

Show that it won’t roll only if m 7
M sin u

1 - sin u
.

u

m

M

Figure 12.34 Problem 58

59. An interstellar spacecraft from an advanced civilization is hover-
ing above Earth, as shown in Fig. 12.35. The ship consists of two 
pods of mass m separated by a rigid shaft of negligible mass and 
one Earth radius (RE) long. Find (a) the magnitude and direction 
of the net gravitational force on the ship and (b) the net torque 
about the center of mass. (c) Show that the ship’s center of grav-
ity is displaced approximately 0.083RE from its center of mass.

m m

RE

RE

2RE

Earth

Figure 12.35 Problem 59

CH

52. Three identical books of length L are stacked over the edge of a 
table as shown in Fig. 12.29. The top book overhangs the middle 
one by L/2, so it just barely avoids falling. The middle book over-
hangs the bottom one by L/4. How much of the bottom book can 
overhang the edge of the table without the books falling?

1
2

1
4
L L

L

?

Figure 12.29 Problem 52

53. A uniform pole of mass M is at rest on an incline of angle u se-
cured by a horizontal rope as shown in Fig. 12.30. Find the mini-
mum frictional coefficient that will keep the pole from slipping.

u

M

Figure 12.30 Problems 53 and 54

54. For what angle does the situation in Problem 53 require the great-
est coefficient of friction?

55. Figure 12.31 shows a popular system for mounting bookshelves. 
An aluminum bracket is mounted on a vertical aluminum support 
by small tabs inserted into vertical slots. Contact between the 
bracket and support occurs only at the upper tab and at the bot-
tom of the bracket, 4.5 cm below the upper tab. If each bracket in 
the shelf system supports 32 kg of books, with the center of grav-
ity 12 cm out from the vertical support, what is the horizontal 
component of the force exerted on the upper bracket tab?

Fg
S

Shelf

Bracket 4.5 cm

12 cm

PHYSICSPHYSICS

Figure 12.31 Problem 55

56. The nuchal ligament is a thick, cordlike structure that supports 
the head and neck in animals like horses. Figure 12.32 shows the 
nuchal ligament and its attachment points on a horse’s skeleton, 
along with an approximation to the spine as a rigid rod. Centers 
of mass of head and neck are also shown. If the masses of head 
and neck are 29 kg and 68 kg, respectively, what’s the tension in 
the nuchal ligament? (Note: Your answer will be an overestimate 
because muscles also provide support.)

CH

BIO
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Passage Problems
You’ve been hired by your state’s environmental agency to monitor 
carbon dioxide levels just above rivers, with the goal of understanding 
whether river water acts as a source or sink of CO2. You’ve constructed 
the apparatus shown in Fig. 12.38, consisting of a boom mounted on a 
pivot, a vertical support, and a rope with pulley for raising and lower-
ing the boom so its end can extend different distances over the river. In 
addition, there’s a separate rope and pulley for dropping the sampling 
apparatus so it’s just above the river.

Boom
ropeSampling

rope
Pulley

Sampling
apparatus

Boom

Pulley

Pivot

Figure 12.38 Passage Problems 64–67

64. When the boom rope is horizontal, it can’t exert any vertical 
force. Therefore,
a. it’s impossible to hold the boom with the boom rope horizontal.
b. the boom rope tension becomes infinite.
c. the pivot supplies the necessary vertical force.
d. the boom rope exerts no torque.

65. The tension in the boom rope will be greatest when
a. the boom is horizontal.
b. the boom rope is horizontal.
c. the boom is vertical.
d. in some orientation other than (a), (b), or (c).

66. If you secure the boom at a fixed angle and lower the sampling 
apparatus at constant speed, the boom rope tension will
a. increase.
b. decrease.
c. remain the same.
d. increase only if the sampling apparatus is more massive than 

the boom.
67. If you pull the boom rope with constant speed, the angle the 

boom makes with the horizontal will
a. increase at a constant rate.
b. increase at an increasing rate.
c. increase at a decreasing rate.
d. decrease.

answers to Chapter Questions

Answer to Chapter opening Question
Both the net force and the net torque on all parts of the bridge must be zero.

Answers to Got It? Questions
 12.1  Pair C; pair A produces nonzero net force, while pair B pro-

duces nonzero net torque
 12.2  B; It’s located directly over the point of contact with the floor, 

ensuring there’s no gravitational torque.
 12.3  (b) A frictional force at the floor is necessary to balance the 

normal force from the wall.
 12.4  D: stable; B: metastable; A and C: unstable; E: neutrally stable

60. You’re called to testify in a product liability lawsuit. An infant sit-
ting in the portable seat shown in Fig. 12.36 was injured when it 
fell to the floor. The manufacturer claims the child was too heavy 
for the seat; the parents claim the seat was defective. Tests show 
that the seat can safely hold a child if the force F

S
of the table on 

the chair doesn’t exceed 229 N. The seat’s mass is 2.0 kg, the in-
jured child’s is 10 kg, and the center of mass of child and seat was 
16 cm from the table edge. In whose favor should the jury rule?

F
S

Tabletop

22 cm 16 cm

Figure 12.36 Problem 60

61. You’re designing a vacation cabin at a ski resort. The cabin has 
a cathedral ceiling as shown in Fig. 12.37, and you estimate that 
each roof rafter needs to support up to 170 kg of snow and build-
ing materials. The horizontal tie beam near the roof peak can 
withstand a 7.5-kN force. You can neglect any horizontal force 
from the vertical walls, and treat contact forces as concentrated 
at the roof peak and the outside edge of the rafter/wall junctions. 
Will the tie beam hold? Will it be in tension or compression?

0.8 m

3.2 m

Tie beam

Roof rafter

9.6 m

Wall

Figure 12.37 Problem 61

62. You’ll need to study the Application on page 209 to do this prob-
lem. An SUV without ECS has SSF = 1.12 with its two passen-
gers on board. (a) Can it successfully negotiate an 85-m-radius 
turn on a flat road, going at the speed limit of 100 km/h? (b) With 
its passengers, the SUV’s total mass is 1940 kg, and the left-to-
right spacing between its tires is 1.71 m. If a 315-kg load of cargo 
is secured to the roof, with its center of gravity 2.1 m above the 
road, what’s the maximum safe speed on the same road?

63. Engineers designing a new semiconductor device measure the 
potential energy that results when they move an electron to dif-
ferent positions within their device. The device is one-dimen-
sional, so the positions all lie along a line. The table below gives 
the resulting data. Plot these data and from your plot, determine 
the approximate positions of any equilibria and whether such 
equilibria are stable or unstable.

DATA

Position x (nm) 0 3.26 5.85 6.41 7.12 9.37 10.5 12.2 14.0 14.5 15.3 17.2

Potential energy U (aJ) 1.5 0.65 0.30 0.47 0.85 2.7 3.3 2.1 -0.47 -0.86 -0.72 3.2
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part one Challenge problem
A solid ball of radius R is set spinning with angular speed v about a horizontal axis. The ball 
is then lowered vertically with negligible speed until it just touches a horizontal surface and is 
released (see figure). If the coefficient of kinetic friction between the ball and the surface is m,  
find (a) the linear speed of the ball once it achieves pure rolling motion, (b) the distance it 
travels before it achieves this motion, and (c) the fraction of the ball’s initial rotational kinetic 
energy that’s been lost to friction.

A system is in static equilibrium when the net force and the net 
torque on the system are both zero:

Rotational motion is described by quantities analogous to those of 
linear motion.

Momentum is conserved in a system that’s not subject to external forces.Universal gravitation describes the attractive 
force between all matter in the universe.

F =
Gm1m2

r2

Energy and work are related concepts; 
work is a mechanical means of trans-
ferring energy.

Work: W = F
S # ∆r

!
 or, for a varying

force, W = L F
S # dr

!

Work–kinetic energy theorem: ∆K = W   
with kinetic energy K = 1

2 mv2

For conservative forces, energy that gets transferred by doing work is 
stored as potential energy U. Then K +  U = constant.

Newton’s laws provide a full description of motion.
Newton’s first law: Force causes a change in motion.
Newton’s second law: F

S  
=   dp

!
/dt or, for constant mass, F

S  
=   ma

!

Newton’s third law: F
S

AB = - F
S

BA

From the concept of force and Newton’s laws follow the essen-
tial ideas of energy and work, including kinetic and potential energy 
and the conservation of mechanical energy in the absence of noncon-
servative forces like friction. One important force is gravity, which  
Newton described through his law of universal gravitation and applied 
to explain the motions of the planets. Application of Newton’s laws 
to systems comprising multiple objects gives us the concept of center 
of mass and lets us describe the interactions of colliding objects. Fi-
nally, Newton’s laws explain circular and rotational motion, the latter 
through the analogy between force and torque. That, in turn, gives us 
the tools needed to determine static equilibrium—the state in which 
an object at rest remains at rest, subject neither to a net force nor to a 
net torque.

The big idea of Part One is Newton’s realization that forces—pushes 
and pulls—don’t cause motion but instead cause changes in motion. 
Newton’s second law quantifies this idea. With momentum p

!
 =   mv

!
 

as Newton’s measure of “quantity of motion,” the second law equates 
the net force on an object to the rate of change of its momentum: 
F
S  

=   d p
!
/dt or, for constant mass, F

S
=   ma

!
. The second law encom-

passes the first law, also called the law of inertia: In the absence of a 
net force, an object continues in uniform motion, unchanging in speed 
or direction—a state that includes the special case of being at rest. 
Newton’s third law rounds out the picture, providing a fully consistent 
description of motion with its statement that forces come in pairs: If 
object A exerts a force on B, then B exerts a force of equal magnitude 
but opposite direction on A.

mechanicspart One Summary
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Oscillations, Waves, 
and Fluids

Part tWO OvervieW

A tsunami crashes on shore, dissipating energy that has traveled across  thousands 
of kilometers of open ocean. Near the epicenter of the earthquake that spawned 

the tsunami, a skyscraper sways in response but suffers no damage thanks to a 
 carefully engineered system that counters quake-induced vibrations. An electric 
guitar sounds loud during a rock concert, the sound waves following the vibrations of 
the guitar strings. Inside your watch, a tiny quartz crystal vibrates 32,768 times each 
 second to keep near-perfect time. A radar-equipped police officer waits around the 
next turn in the highway ready to ticket your speeding car, while astrophysicists use 
the same principle to measure the expansion of the universe. A rafting party enters 
a narrow gorge, getting a wild ride as the river’s speed increases. A plane cruises far 
overhead, supported by the force of air on its wings. All these examples involve the 
collective motion of many particles. In the next three chapters, we first explore the 
repetitive motion called oscillation and then show how oscillations in many-particle 
systems lead to wave motion. Finally, we apply the laws of motion to reveal the 
 fascinating and sometimes surprising behavior of fluids like air and water.

High-speed photo shows complex fluid 
behavior and spreading circular waves on 
water.
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11
Rotational Vectors 

and Angular 
Momentum

12
Static Equilibrium

14
Wave Motion

15
Fluid Motion

Oscillatory Motion

13

What You Know
■ You understand Newton’s second law.

■ You’re familiar with ideal springs.

■ You can describe circular and 
rotational motion in terms of angular 
velocity, revolutions per second, or by 
giving the period of the motion.

■ In calculus, you’ve learned to differentiate 
the sine and cosine functions.

Displace a system from stable equilibrium, and forces or torques tend to restore that 
 equilibrium. But, like the ball in Fig. 13.1, the system often overshoots its equilibrium and 

goes into oscillatory motion back and forth about equilibrium. In the absence of friction, this 
oscillation would continue forever; in reality, the system eventually settles into equilibrium.

Oscillatory motion occurs throughout the physical world. A uranium nucleus oscillates 
 before it fissions. Water molecules oscillate to heat the food in a microwave oven. Carbon 
 dioxide molecules in the atmosphere oscillate, absorbing energy and thus contributing to 
global warming. A watch—whether an old-fashioned mechanical one or a modern quartz 
timepiece—is a carefully engineered oscillating system. Buildings and bridges undergo 
 oscillatory motion, sometimes with disastrous results. Even stars oscillate. And waves—from 
sound to ocean waves to seismic waves in the solid Earth—ultimately involve oscillatory 
 motion.

What You’re Learning
■ Here you’ll see how displacing a 

system from stable equilibrium 
usually results in oscillatory motion.

■ You’ll learn about the special case of 
simple harmonic motion, in which the 
force or torque tending to restore 
equilibrium is directly proportional to 
the displacement.

■ You’ll see why simple harmonic 
motion is ubiquitous in systems 
ranging from molecules to engineered 
structures and on to stars.

■ You’ll explore the relationship 
between simple harmonic motion and 
circular motion.

■ You’ll learn about resonance.

How You’ll Use It
■ In Chapter 14 you’ll see how 

oscillations, coupled between 
adjacent parts of a system to another, 
lead to waves.

■ In Part 4 you’ll see electrical analogs of 
the oscillating systems described here.

■ In Part 6 you’ll learn how quantum 
physics describes systems undergoing 
simple harmonic motion.

A tiny quartz tuning fork sets the timekeeping 
of a quartz watch. It oscillates at 32,768 Hz. What 
does this mean, and why this number?

Figure 13.1 Disturbing a system results in 
oscillatory motion.

Here the ball
is in stable 
equilibrium.

Disturb the ball,
and it oscillates about 
its equilibrium
position.
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13.1 Describing Oscillatory Motion 223

Oscillatory motion is universal because systems in stable equilibrium naturally tend to  return 
toward equilibrium when they’re displaced. And it’s not just the qualitative phenomenon of 
 oscillation that’s universal: Remarkably, the mathematical description of oscillatory motion is the 
same for systems ranging from atoms and molecules to cars and bridges and on to stars and 
galaxies.

13.1 Describing Oscillatory Motion
Figure 13.2 shows two quantities that characterize oscillatory motion: Amplitude is the 
maximum displacement from equilibrium, and period is the time it takes for the motion to 
repeat itself. Another way to express the time aspect is frequency, or number of oscilla-
tion cycles per unit time. Frequency f  and period T are complementary ways of conveying 
the same information, and mathematically they’re inverses:

 f =
1

T
 (13.1)

The unit of frequency is the hertz (Hz), named after the German Heinrich Hertz (1857–
1894), who was the first to produce and detect radio waves. One hertz is equal to one 
oscillation cycle per second.

Figure 13.2 Position–time graphs for two 
oscillatory motions with the same amplitude A 
and period T (and therefore frequency).

1
T

Both motions have
the same period T
(and therefore 
frequency f =   ).

They also
have the same
amplitude A.

0

0

A

A

Po
si

tio
n

Time

Po
si

tio
n

Time

Period

Period

ExaMpLE 13.1 amplitude, period, Frequency: an Oscillatory Distraction

Tired of homework, a student holds one end of a flexible plastic ruler 
against a desk and idly strikes the other end, setting it into oscillation 
(Fig. 13.3). The student notes that 28 complete cycles occur in 10 s 
and that the end of the ruler moves a total distance of 8.0 cm. What are 
the amplitude, period, and frequency of this oscillatory motion?

Interpret We’ve got a case of oscillatory motion, and we’re asked to 
describe it quantitatively in terms of amplitude, period, and frequency.

Develop We can work from the definitions of these quantities: Am-
plitude is the maximum displacement from equilibrium, period is the 
time to complete a full oscillation, and frequency is the inverse of the 
period (Equation 13.1).

evaluate The ruler moves a total of 8.0 cm from one extreme to 
the other. Since the motion takes it to both sides of its equilibrium 
position, the amplitude is 4.0 cm. With 28 cycles in 10 s, the time per 
cycle, or the period, is

T =
10 s

28
= 0.36 s

The frequency is the inverse of the period: f = 1/T = 1/0.36 s =
2.8 Hz. We can also get this directly: 28 cycles/10 s = 2.8 Hz.

assess Make sense? With a period that’s less than 1 s, the frequency 
must be more than 1 cycle per second or 1 Hz. Our definition of 
 amplitude as the maximum displacement from equilibrium led to our 
4.0-cm amplitude; the full 8.0 cm between extreme positions is called 
the peak-to-peak amplitude. ■

Figure 13.3 A ruler undergoing oscillatory motion.

8.0 cm

Amplitude and frequency don’t provide all the details of oscillatory motion, since two 
quite different motions can have the same frequency and amplitude (Fig. 13.2). The differ-
ences reflect the restoring forces that return systems to equilibrium. Remarkably, though, 
restoring forces in many physical systems have the same mathematical form—a form we 
encountered before, when we introduced the force of an ideal spring in Chapter 4.

GOt It? 13.1 A typical human heart rate is about 65 beats per minute. The cor-
responding period and frequency are (a) period just over 1 s and frequency just under  
1 Hz; (b) period just under 1 s and frequency just under 1 Hz; (c) period just under 1 s and 
frequency just over 1 Hz; or (d) period just over 1 minute and frequency of 70 Hz.
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224 Chapter 13 Oscillatory Motion

13.2 Simple Harmonic Motion
In many systems, the restoring force that develops when the system is displaced from 
equilibrium increases approximately in direct proportion to the displacement—meaning 
that if you displace the system twice as far from equilibrium, the force tending to restore 
equilibrium becomes twice as great. In the rest of this chapter, we therefore consider the 
case of a restoring force directly proportional to displacement. This is an approximation 
for most real systems, but often a very good approximation, especially for small displace-
ments from equilibrium.

The type of motion that results from a restoring force proportional to displacement is 
called simple harmonic motion (SHM). Mathematically, we describe such a force by 
writing

 F = -kx  1restoring force in SHM2 (13.2)

where F is the force, x is the displacement, and k is a constant of proportionality between 
them. The minus sign in Equation 13.2 indicates a restoring force: If the object is dis-
placed in one direction, the force is in the opposite direction, so it tends to restore the 
equilibrium.

You’ve seen Equation 13.2 before: It’s the force exerted by an ideal spring of spring 
constant k. So a system consisting of a mass attached to a spring undergoes simple 
 harmonic motion (Fig. 13.4). Many other systems—including atoms and molecules—can 
be modeled as miniature mass–spring systems.

How does a body in simple harmonic motion actually move? We can find out by applying  
Newton’s second law, F = ma, to the mass–spring system of Fig. 13.4. Here the force on 
the mass m is -kx, so Newton’s law becomes -kx = ma, where we take the x-axis along the  
direction of motion, with x = 0 at the equilibrium position. Now, the acceleration a is  
the second derivative of position, so we can write our Newton’s law equation as

 m 
d2x

dt2 = -kx  1Newton>s second law for SHM2 (13.3)

The solution to this equation is the position x as a function of time. What sort of func-
tion might it be? We expect periodic motion, so let’s try periodic functions like sine and 
cosine. Suppose we pull the mass in Fig. 13.4 to the right and, at time t = 0, release it. 
Since it starts with a nonzero displacement, cosine is the appropriate function [recall that 
cos102 = 1, and sin102 = 0]. We don’t know the amplitude or frequency, so we’ll try a 
form that has two unknown constants:

 x1t2 = A cos vt (13.4)

Because the cosine function itself varies between +1 and -1, A in Equation 13.4 is the 
amplitude—the greatest displacement from equilibrium (Fig. 13.5). What about v? The 
cosine function undergoes a full cycle as its argument increases by 2p radians, or 360°, as 
shown in Fig. 13.5. In Equation 13.4, the argument of the cosine is vt. Since the time for a 
full cycle is the period T, the argument vt must go from 0 to 2p as the time t goes from 0 
to T. So we have vT = 2p, or

 T =
2p
v

 (13.5)

The frequency of the motion is then

 f =
1

T
=

v

2p
 (13.6)

Equation 13.6 shows that v is a measure of the frequency, although it differs from the 
 frequency f  by the factor 2p. The quantity v is called the angular frequency, and 
its units are radians per second or, since radians are dimensionless, simply inverse 
seconds 1s-12.

Figure 13.4 A mass attached to a spring 
undergoes simple harmonic motion.

k
m

Figure 13.5 The function A cos vt.

A full cycle occurs
as vt increases from
0 to 2p.

The displacement x swings
between A and -A.

1 cycle

T
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A
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t = T
vt = 2p

PheT: Masses and Springs
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13.2 Simple Harmonic Motion 225

✓tIp Why Radians?

Here, as in Chapter 10, we use the angular quantity v because it provides the  simplest 
mathematical description of the motion. In fact, the relationship between angular 
 frequency and frequency in hertz is the same as Chapter 10’s relationship between 
 angular speed in radians per second and in revolutions per second. We’ll explore this 
similarity further in Section 13.4.

Writing the displacement x in the form 13.4 doesn’t guarantee that we have a solution; 
we still need to see whether this form satisfies Equation 13.3. With x1t2 given by Equation 
13.4, its first derivative is

dx

dt
=

d

dt
 1A cos vt2 = -Av sin vt

where we’ve used the chain rule for differentiation (see Appendix A). Then the second 
derivative is

d2x

dt2 =
d

dt
 adx

dt
b =

d

dt
 1-Av sin vt2 = -Av2 cos vt

We can now try out our assumed solution for x (Equation 13.4) and its second derivative in 
Equation 13.3. Substituting x1t2 and d2x/dt2 in the appropriate places gives

m1-Av2 cos vt2 ≟ -k1A cos vt2
where the ? indicates that we’re still trying to find out whether this is indeed an  equality. If 
it is, the equality must hold for all values of time t. Why? Because Newton’s law holds at all 
times, and we derived our questionable equality from Newton’s law. Fortunately, the time-
dependent term cos vt appears on both sides of the equation, so we can  cancel it. Also, the 
amplitude A and the minus sign cancel from the equation, leaving only mv2 = k, or

 v = A k
m
  1angular frequency, simple harmonic motion2 (13.7a)

Thus, Equation 13.4 is a solution of Equation 13.3, provided the angular frequency v is 
given by Equation 13.7a.

Frequency and period in Simple Harmonic Motion
We can recast Equation 13.7a in terms of the more familiar frequency f  and period T using 
Equation 13.6, f = v/2p. This gives

 f =
v

2p
=

1

2p
 A k

m
 and T =

1

f
= 2p Am

k
 (13.7b, c)

Do these relationships make sense? If we increase the mass m, it becomes harder to 
accelerate and we expect slower oscillations. This is reflected in Equations 13.7a and b, 
where m appears in the denominator. Increasing k, on the other hand, makes the spring 
stiffer and therefore results in greater force. That increases the oscillation frequency—as 
shown by the presence of k in the numerators of Equations 13.7a and b.

Physical systems display a wide range of m and k values and a correspondingly large 
range of oscillation frequencies. A molecule, with its small mass and its “springiness” 
provided by electric forces, may oscillate at 1014 Hz or more. A massive skyscraper, in 
contrast, typically oscillates at about 0.1 Hz.

amplitude in Simple Harmonic Motion
The amplitude A canceled from our equations, so our analysis works for any value of A. 
This means that the oscillation frequency doesn’t depend on amplitude. Frequency that’s 
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226 Chapter 13 Oscillatory Motion

independent of amplitude is an essential feature of simple harmonic motion and arises 
 because the restoring force is directly proportional to the displacement. When the  restoring 
force does not have the simple form F = -kx, then frequency does depend on amplitude 
and the analysis of oscillatory motion becomes much more complicated. In many systems 
the relation F = -kx breaks down if the displacement x gets too big; for this reason, 
 simple harmonic motion usually occurs only for small oscillation amplitudes.

phase
Equation 13.4 isn’t the only solution to Equation 13.3; you can readily show that 
x = A sin vt works just as well. We chose the cosine because we took time t = 0 at 
the point of maximum displacement. Had we set t = 0 as the mass passed through its 
 equilibrium point, sine would have been the appropriate function. More generally we can 
take the zero of time at some arbitrary point in the oscillation cycle. Then, as Fig. 13.6 
shows, we can represent the motion by the form

 x1t2 = A cos1vt + f2  1simple harmonic motion2 (13.8)

where the phase constant f has the effect of shifting the cosine curve to the left (for 
f 7 0) or right 1f 6 02 but doesn’t affect the frequency or amplitude.

Velocity and acceleration in Simple Harmonic Motion
Equation 13.4 (or, more generally, Equation 13.8) gives the position of an object in 
simple harmonic motion as a function of time, so its first derivative must be the object’s 
velocity:

 v1t2 =
dx

dt
=

d

dt
 1A cos vt2 = -vA sin vt (13.9)

Because the maximum value of the sine function is 1, this expression shows that the maxi-
mum velocity is vA. This makes sense because a higher-frequency oscillation requires that 
the object traverse the distance A in a shorter time—so it must move faster. Equation 13.9 
shows that the velocity v1t2 is a sine function when the displacement x1t2 is a cosine. Thus 
velocity is a maximum when displacement is zero, and vice versa; mathematically, we 
express this by saying that displacement and velocity differ in phase by p2  radians or 90°. 
Does this make sense? Sure, because at the extremes of its motion, the object is instanta-
neously at rest as it reverses direction: maximum displacement, zero speed. And when it 
passes through its equilibrium position, the object is going fastest. Figures 13.7a and b 
show graphically the relationship between displacement and velocity in simple harmonic 
motion.

Just as velocity is the derivative of position, so acceleration is the derivative of velocity, 
or the second derivative of position:

 a1t2 =
dv

dt
=

d

dt
 1-vA sin vt2 = -v2A cos vt (13.10)

Thus the maximum acceleration is v2A. Since acceleration is a cosine function if velocity 
is a sine, each reaches its maximum value when the other is zero (Fig. 13.7b, c).

GOt It? 13.2 Two identical mass–spring systems are displaced different amounts 
from equilibrium and then released at different times. Of the amplitudes, frequencies, 
 periods, and phase constants of the subsequent motions, which are the same for both 
 systems and which are different?

Figure 13.6 A negative phase constant shifts 
the curve to the right.
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13.3 Applications of Simple Harmonic Motion 227

ExaMpLE 13.2 Simple Harmonic Motion: a tuned Mass Damper

The tuned mass damper in New York’s Citicorp Tower (see Applica-
tion on this page) consists of a 373-Mg concrete block that completes 
one oscillation in 6.80 s. The oscillation amplitude in a high wind is 
110 cm. Determine the spring constant and the maximum speed and 
acceleration of the block.

Interpret This is a problem involving simple harmonic motion, 
with the concrete block and spring making up the oscillating system. 
We’re given the period, mass, and amplitude.

Develop Equation 13.7c, T = 2p1m/k, will give the spring con-
stant. Equations 13.9 and 13.10 show that the maximum speed and 
 acceleration are vmax = vA and amax = v2A, and we can get the 
 angular frequency v from the period using Equation 13.5: v = 2p/T.

evaluate First we solve Equation 13.7c for the spring constant:

k =
4p2m

T2 =
14p2213.73 * 105 kg2

16.80 s22 = 3.18 * 105 N/m

The angular frequency is v = 2p/T = 0.924 s-1. Then we have vmax=  
vA = 10.924 s-1211.10 m2 = 1.02 m/s and amax = v2A = 0.939 m/s2.

assess The large spring constant and relatively low velocity and 
 acceleration make sense given the huge mass involved. Note that we 
had to convert the mass, given as 373 Mg 1373 * 106 g2, to kilograms 
before evaluating. ■

13.3 applications of Simple Harmonic Motion
Simple harmonic motion occurs in any system where the tendency to return to equilibrium 
increases in direct proportion to the displacement from equilibrium. Analysis of such sys-
tems is like that of the mass–spring system we just considered but may involve different 
physical quantities.

the Vertical Mass–Spring System
A mass hanging vertically from a spring is subject to gravity as well as the spring force 
(Fig. 13.8). In equilibrium the spring stretches enough for its force to balance  gravity: 
mg - kx1 = 0, where x1 is the new equilibrium position. Stretching the spring an 
 additional amount ∆x increases the spring force by k ∆x, and this increased force tends to 
restore the equilibrium. So once again we have a restoring force that’s directly  proportional 
to displacement. And here, with the same spring constant k and mass m, our previous 
 analysis still applies and we get simple harmonic motion with frequency v = 1k/m. 
Thus gravity changes only the equilibrium position and doesn’t affect the frequency.

Figure 13.8 A vertical mass–spring system 
oscillates about a new equilibrium position x1, 
with the same frequency v = 1k/m.

When a block is added 
weight causes the spring 
to stretch this much c

cso the block 
oscillates about
the new equilibrium.

(a) (b)

k

m

x1

appLICatIOn Swaying Skyscrapers

Skyscrapers are tall, thin, flexible structures. High winds and 
earthquakes can set them oscillating, much like the ruler of 
Example 13.1. Wind-driven oscillations are uncomfortable 
to occupants of a building’s upper floors, and earthquake- 
induced oscillations can be downright destructive.

Modern skyscrapers use so-called tuned mass dampers 
to counteract building oscillations. These devices are essen-
tially large mass–spring systems mounted high in the building. 
They’re engineered to oscillate with the same frequency as the 
building (hence the term “tuned”) but 180° out of phase, thus 
reducing the amplitude of the building’s own oscillation. The 
result is increased comfort for the building’s occupants and 
improved safety for buildings in earthquake-prone regions. 
Tuned mass dampers also find applications in tall smoke-
stacks, airport control towers, power-plant cooling towers, 
bridges, ski lifts, and even the Grand Canyon skywalk. By sup-
pressing vibrations, tuned mass dampers enable architects and 
engineers to design structures that don’t need as much  intrinsic 
stiffness, so they can be lighter and less expensive. The pho-
tos show the world’s largest tuned mass damper and the  
building that houses it, Taiwan’s Taipei 101 skyscraper. The 
damper helps the building survive earthquakes and typhoons. 
Example 13.2 explores another tuned mass damper.
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228 Chapter 13 Oscillatory Motion

the torsional Oscillator
Figure 13.9 shows a disk suspended from a wire. Rotate the disk slightly, and a torque 
develops in the wire. Let go, and the disk oscillates by rotating back and forth. This is a 
torsional oscillator, and it’s best described using the language of rotational motion. The 
angular displacement u, restoring torque t, and torsional constant k relate the torque 
and displacement: t = -ku, where again the minus sign indicates that the torque is oppo-
site the displacement, tending to restore the system to equilibrium. The rotational analog 
of Newton’s law, t = Ia, describes the system’s behavior; here the rotational inertia I 
plays the role of mass. But the angular acceleration a is the second derivative of the angu-
lar position, so Newton’s law becomes

 I 
d2u

dt2 = -ku (13.11)

This is identical to Equation 13.3 for the linear oscillator, with I replacing m, u replacing x, 
and k replacing k. So we can immediately write u1t2 = A cos vt for the angular displace-
ment and, in analogy with Equation 13.7a,

 v = Ak

I
 (13.12)

for the angular frequency. Note that the units of k are N #m/rad.
Torsional oscillators constitute the timekeeping mechanism in mechanical watches, and 

they can provide accurate measures of rotational inertia.

the pendulum
A simple pendulum consists of a point mass suspended from a massless string. Real 
 systems approximate this ideal when a suspended object’s size is negligible compared 
with the suspension length and its mass is much greater than that of the suspension. The 
pendulum in a grandfather clock is essentially a simple pendulum. Figure 13.10 shows a 
pendulum of mass m and length L displaced slightly from equilibrium. The gravitational 
force exerts a torque given by t = -mgL sin u, where the minus sign indicates that the 
torque tends to rotate the  pendulum back toward equilibrium. The rotational analog of 
Newton’s law, t = Ia, then becomes

I 
d2u

dt2 = -mgL  sin u

where we’ve written the angular acceleration as the second derivative of the angular 
 displacement. This looks like Equation 13.11 for the torsional oscillator—but not quite, 
since the torque involves sin u rather than u itself. Thus the restoring torque is not directly 
proportional to the angular displacement, and the motion is therefore not simple harmonic.

If, however, the amplitude of the motion is small, then it approximates simple harmonic 
motion. Figure 13.11 shows that for small angles, sin u and u are essentially equal. For a 
small-amplitude pendulum we can therefore replace sin u with u to get

I 
d2u

dt2 = -mgLu

This is essentially Equation 13.11, with mgL playing the role of k. So the small- amplitude 
pendulum undergoes simple harmonic motion, with its angular frequency given by 
 Equation 13.12 with k = mgL:

 v = AmgL

I
 (13.13)

For a simple pendulum, the rotational inertia I is that of a point mass m a distance L from 
the rotation axis, or I = mL2, as we found in Chapter 10. Then we have

 v = AmgL

mL2 = A g

L
  1simple pendulum2 (13.14)

Figure 13.9 A torsional oscillator.

Figure 13.10 Forces on a pendulum.

T
S

Pivot

u

u

L

There’s no torque
from the tension
because it acts 
along the line to
the pivot.

Gravitational force
produces a torque
of magnitude
mgL sinu.

mg
u

Figure 13.11 For u much less than 1 radian, sin u 
and u are nearly equal.
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At small angles,
u and sinu
are nearly
equal.

At larger angles
this approximation
fails.
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13.3 Applications of Simple Harmonic Motion 229

or, from Equation 13.5,

 T =
2p
v

= 2pAL
g
  1simple pendulum2 (13.15)

These equations show that the frequency and period of a simple pendulum are independent 
of its mass, depending only on length and gravitational acceleration.

ExaMpLE 13.3 a pendulum: Rescuing tarzan
Tarzan stands on a branch as a leopard threatens. Fortunately, Jane is 
on a nearby branch of the same height, holding a 25-m-long vine at-
tached directly above the point midway between her and Tarzan. She 
grasps the vine and steps off with negligible velocity. How soon does 
she reach Tarzan?

Interpret This is a problem about a pendulum, which we identify 
as consisting of Jane and the vine. The period of the pendulum is the 

time for a full swing back and forth, so the answer we’re after—the 
time to reach Tarzan—is half the period.

Develop We sketched the situation in Fig. 13.12. Equation 13.15, 
T = 2p1L/g, determines the period, so we can use this equation to 
find the half-period.

evaluate Equation 13.15 gives

1

2
 T = a1

2
b12p2AL

g
= 1p2A 25 m

9.8 m/s2 = 5.0 s

assess This seems a reasonable answer for a problem involving 
 human-scale objects and many meters of vine. One caution: Jane’s res-
cue will be successful only if the vine is strong enough—not only to 
support her weight but also to provide the acceleration that keeps her 
moving in a circular arc. You can explore that issue in Problem 56. ■

Figure 13.12 Our sketch 
for Example 13.3. Vine 
length is not to scale.

GOt It? 13.3 What happens to the period of a pendulum if (1) its mass is doubled; 
(2) it’s moved to a planet whose gravitational acceleration is one-fourth that of Earth; and 
(3) its length is quadrupled?

COnCEptUaL ExaMpLE 13.1 the nonlinear pendulum

A pendulum consists of a weight on the end of a rigid rod of negligi-
ble mass, hanging vertically from a frictionless pivot at the opposite 
end of the rod. For small-amplitude disturbances from equilibrium, 
the system constitutes a simple pendulum. But for larger disturbances 
it becomes a nonlinear pendulum, so named because the restoring 
torque is no longer proportional to the displacement. Quantitative 
analysis of a nonlinear pendulum is difficult, but you can still under-
stand it conceptually.

(a)  As the pendulum’s amplitude increases, how will its period 
change?

(b)  If you start the pendulum by striking it when it’s hanging 
 vertically, will it undergo oscillatory motion no matter how hard 
it’s hit?

evaluate (a) Before we made the small-amplitude approximation, 
we showed that a pendulum’s restoring torque is, in general, propor-
tional to sin u. But Fig. 13.11 shows that sin u doesn’t increase as fast 
as u itself. So for large-amplitude swings, the restoring torque is less 
than it would be in the small-amplitude approximation. This suggests 
the pendulum should return more slowly toward equilibrium—and 
thus its period should increase.

(b) When you strike the pendulum, you give it kinetic energy. If 
that energy is insufficient to invert it completely, then the pendulum 
will swing to one side, eventually stop, and return, undergoing back-
and-forth oscillatory motion. But hit it hard enough, and it will go 
“over the top,” reaching its fully inverted position with kinetic energy 

(continued)

PheT: Pendulum Lab
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230 Chapter 13 Oscillatory Motion

Figure 13.13 Conceptual Example 13.1: (a) Small-amplitude oscillations; (b) large-amplitude 
oscillations; (c) circular motion.
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the physical pendulum
A physical pendulum is an object of arbitrary shape that’s free to swing (Fig. 13.14). 
It differs from a simple pendulum in that mass may be distributed over its entire length. 
Physical pendulums are everywhere: Examples include the legs of humans and other ani-
mals (see Example 13.4), a skier on a chair lift, a boxer’s punching bag, a frying pan 
hanging from a rack, and a crane lifting any object of significant extent. In our analysis of 
the simple pendulum, we used the fact that mass was concentrated at the bottom only in 
the final step, when we wrote mL2 for the rotational inertia. Our analysis before that step 
therefore applies to the physical pendulum as well.

In particular, a physical pendulum displaced slightly from equilibrium undergoes sim-
ple harmonic motion with frequency given by Equation 13.13. But how are we to interpret 
the length L in that equation? Because gravity—which provides the restoring torque for 
any pendulum—acts on an object’s center of gravity, L must be the distance from the pivot 
to the center of gravity, as marked in Fig. 13.14.Figure 13.14 A physical pendulum.

Pivot

L

Center of
gravity

u

to spare. Round and round it goes, executing motion 
that’s periodic and circular, but not oscillatory. This 
circular motion isn’t uniform, because it moves more 
slowly at the top and faster at the bottom.

assess Make sense? Yes: Consider a pendulum with 
just a little less energy than it takes to go “over the 
top.” It will move very slowly near the top of its trajec-
tory, so its period will be quite long. And its angular-
position-versus-time curve will be flatter than the sine 
curve of a simple pendulum. Give it just a little more 
energy, and it goes into circular motion. Figure 13.13 
illustrates all three situations. You can explore the non-
linear pendulum computationally in Problem 86.

MakIng the ConneCtIon If the pendulum has 
length L, what’s the minimum speed that will get it 
“over the top,” into periodic nonuniform circular mo-
tion?

evaluate Potential energy at the top is U = mg12L2, 
so kinetic energy K = 1

2 mv2 has to be at least this 
large. That gives v 7 21gL.

ExaMpLE 13.4 a physical pendulum: Walking

When walking, the leg not in contact with the ground swings forward, 
acting like a physical pendulum. Approximating the leg as a uniform 
rod, find the period of this pendulum motion for a leg of length 90 cm.

Interpret This problem is about a physical pendulum, here identi-
fied as a uniform rod approximating the leg.

Develop Figure 13.15 is our drawing, showing the leg as a rod piv-
oting at the hip. The center of mass of a uniform rod is at its center, 
so the effective length L is half the leg’s length, or 45 cm. Equation 
13.13, v = 1mgL/I, determines the angular frequency, from which 
we can get the period using Equation 13.5, T = 2p/v. We also need 
the rotational inertia; from Table 10.2, that’s I = 1

3 M12L22, where 
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13.4 Circular Motion and Harmonic Motion 231

13.4 Circular Motion and Harmonic Motion
Look down on the solar system, and you see Earth in circular motion about the Sun (Fig. 
13.16a). But look in from the plane of Earth’s orbit, and Earth appears to be moving back 
and forth (Fig. 13.16b). Figure 13.17 shows that this apparent back-and-forth motion is 
a single component of the actual circular motion, and that this component describes a 
 sinusoidal function of time. Specifically, the position vector r

!
 for Earth or any other object 

in circular motion makes an angle that increases linearly with time: u = vt, where we 

we use 2L because Table 10.2’s expression involves the full length 
of the rod.

evaluate Putting this all together, we evaluate to get the answer:

T =
2p
v

= 2pA I

mgL
= 2pD 

1
3 m12L22

mgL
= 2pA4L

3g

Using L = 0.45 m gives T = 1.6 s.

assess The leg swings forward to complete a full stride in half a pe-
riod, or 0.8 s. This seems a reasonable value for the pace in walking. ■Figure 13.15 A human leg treated as a pendulum.

A uniform rod
approximates the
leg.

The effective
length L is
half the
leg’s length.

Figure 13.16 Two views of Earth’s orbital motion.

R

x = -R x = Rx = 0

(a)

(b)

In the plane of Earth’s orbit,
we don’t see the component of
motion toward or away from us. 
Instead, we see Earth undergoing 
oscillatory motion with 
amplitude R. 

Looking down on Earth
and the Sun, we see Earth’s
orbit around the Sun as an
essentially circular path of
radius R.

Figure 13.17 As the position vector r
!
 traces out a circle, its x- and 

y-components are sinusoidal functions of time.
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232 Chapter 13 Oscillatory Motion

measure u with respect to the x-axis and take t = 0 when the object is on the x-axis. Then 
the two components x = r cos u and y = r sin u of the object’s position become

x1t2 = r cos vt and y1t2 = r sin vt

These are the equations for two different simple harmonic motions, one in the x-direction 
and the other in the y-direction. Because one is a cosine and the other is a sine, they’re out 
of phase by p2  or 90°.

So we can think of circular motion as resulting from perpendicular simple harmonic 
motions, with the same amplitude and frequency but 90° out of phase. This should help 
you to understand why we use the term angular frequency for simple harmonic motion 
even though there’s no angle involved. The argument vt in the description of simple har-
monic motion is the same as the physical angle u in the corresponding circular motion. 
The time for one cycle of simple harmonic motion is the same as the time for one revolu-
tion in the circular motion, so the values of T and therefore v are exactly the same.

You can verify that two mutually perpendicular simple harmonic motions of the same 
amplitude and frequency sum vectorially to give circular motion (see Problem 53). If the 
amplitudes or frequencies aren’t the same, then interesting complex motions occur, as 
shown in Fig. 13.18.

GOt It? 13.4 Figure 13.18 shows the paths traced in the horizontal plane by two 
pendulums swinging with different frequencies in two perpendicular directions. What’s 
the ratio of x-direction frequency to y-direction frequency for (1) path (a) and (2) path (b)?

13.5 Energy in Simple Harmonic Motion
Displace a mass–spring system from equilibrium, and you do work as you build up 
 potential energy in the spring. Release the mass, and it accelerates toward equilibrium, 
gaining kinetic energy at the expense of potential energy. It passes through its equilib-
rium position with maximum kinetic energy; at that point there’s no potential energy in 
the system. The mass then slows and potential energy builds as the mass compresses 
the spring. If there’s no energy loss, this process continues indefinitely. In  oscillatory 
 motion, energy is continuously transferred back and forth between its kinetic and 
 potential forms (Fig. 13.19).

For a mass–spring system, the potential energy is given by Equation 7.4: U = 1
2 kx2, 

where x is the displacement from equilibrium. Meanwhile, the kinetic energy is K = 1
2 mv2. 

We can illustrate explicitly the interchange of kinetic and potential energy in simple har-
monic motion by using x from Equation 13.4 and v from Equation 13.9 in the expressions 
for potential and kinetic energy. Then we have

U = 1
2 kx2 = 1

2 k1A cos vt22 = 1
2 kA2 cos2 vt

and

K = 1
2 mv2 = 1

2 m1-vA sin vt22 = 1
2 mv2A2 sin2 vt = 1

2 kA2 sin2 vt

where we used v2 = k/m. Both energy expressions have the same maximum value—1
2 kA2—  

equal to the initial potential energy of the stretched spring. But the potential energy is a 
maximum when the kinetic energy is zero, and vice versa. What about the total energy? It’s

E = U + K = 1
2 kA2 cos2 vt + 1

2 kA2 sin2 vt = 1
2 kA2

where we used sin2 vt + cos2 vt = 1.
Our result is a statement of the conservation of mechanical energy—the principle we 

introduced in Chapter 7—applied to a simple harmonic oscillator. Although the kinetic 
and potential energies K and U both vary with time, their sum—the total energy E—does 
not (Fig. 13.20).

Figure 13.18 Complex paths resulting from 
different frequencies in different directions. 
Can you determine the frequency ratios?

(a)

x

y

(b)

Figure 13.19 Kinetic and potential energy in 
simple harmonic motion. Dashed curve is 
the position of the mass; straight dashed line 
marks the equilibrium position x = 0.
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13.6 Damped Harmonic Motion 233

Figure 13.20 Energy of a simple harmonic oscillator.

Total energy E is constant c

cwhile potential energy U 
and kinetic energy K oscillate.
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ExaMpLE 13.5 Energy in Simple Harmonic Motion

A mass–spring system undergoes simple harmonic motion with angu-
lar frequency v and amplitude A. Find its speed at the point where the 
kinetic and potential energies are equal.

Interpret This example involves the concept of energy conserva-
tion in simple harmonic motion. We’re asked to find a speed, which is 
related to kinetic energy.

Develop When the kinetic energy equals the potential energy, each 
must be half the total energy. What is that total? The speed is at its 
maximum, vmax = vA from Equation 13.9, when the energy is all 
 kinetic. Thus the total energy is E = 1

2 mvmax
2 = 1

2 mv2A2. The speed v  
we’re after occurs when the kinetic energy has half this value, or 
K = 1

2 mv2 = 1
211

2 mv2A22 = 1
4 mv2A2.

evaluate Solving for v gives our answer:

v =
vA12

assess Make sense? Yes: The speed at this point must be less than 
the maximum speed, since half the energy is tied up as potential en-
ergy in the spring. And because kinetic energy depends on the square 
of the speed, it’s lower not by a factor of 2 but by 12. ■

potential-Energy Curves and Simple Harmonic Motion
We arrived at the expression U = 1

2 kx2 for the potential energy of a spring by integrat-
ing the spring force, -kx, over distance. Since every simple harmonic oscillator has a 
restoring force or torque proportional to displacement, integration always results in a 
potential energy proportional to the square of the displacement—that is, in a parabolic 
potential- energy curve. Conversely, any system with a parabolic potential-energy curve 
exhibits simple harmonic motion. The simplest mathematical approximation to a smooth 
curve near a minimum is a parabola, and for that reason potential-energy curves for com-
plex systems often approximate parabolas near their stable equilibrium points (Fig. 13.21). 
Small disturbances from these equilibria therefore result in simple harmonic motion, and 
that’s why simple harmonic motion is so common throughout the physical world.

GOt It? 13.5 Two different mass–spring systems are oscillating with the same am-
plitude and frequency. If one has twice as much total energy as the other, how do (1) their 
masses and (2) their spring constants compare? (3) What about their maximum speeds?

13.6 Damped Harmonic Motion
In real oscillating systems, forces such as friction or air resistance normally dissipate the 
oscillation energy. This energy loss causes the oscillation amplitude to decrease, and the 
motion is said to be damped.

If dissipation is sufficiently weak that only a small fraction of the system’s energy is 
lost in each oscillation cycle, then we expect that the system should behave essentially as 
in the undamped case, except for a gradual decrease in amplitude (Fig. 13.22).

Figure 13.21 Near their minima, potential-
energy curves often approximate parabolas. 
This results in simple harmonic motion.
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234 Chapter 13 Oscillatory Motion

In many systems the damping force is approximately proportional to the velocity and in 
the opposite direction:

 Fd = -bv = -b 
dx

dt
 

where b is a constant giving the strength of the damping. We can write Newton’s law as 
before, now including the damping force along with the restoring force. For a mass–spring 
system, we have

 m 
d2x

dt2 = -kx - b 
dx

dt
 (13.16)

We won’t solve this equation, but simply state its solution:

 x1t2 = Ae-bt/2m cos1vt + f2 (13.17)

This equation describes sinusoidal motion whose amplitude decreases exponentially 
with time. How fast depends on the damping constant b and mass m: When t = 2m/b, 
the  amplitude has dropped to 1/e of its original value. When the damping is so weak that 
only a small fraction of the total energy is lost in each cycle, the frequency v in Equation 
13.17 is essentially equal to the undamped frequency 1k/m. But with stronger damping, 
the damping force slows the motion, and the frequency becomes lower. As long as oscilla-
tion occurs, the motion is said to be underdamped (Fig. 13.23a). For sufficiently strong 
damping, though, the effect of the damping force is as great as that of the spring force. 
Under this condition, called critical damping, the system returns to its equilibrium state 
without undergoing any oscillations (Fig. 13.23b). If the damping is made still stronger, 
the system becomes overdamped. The damping force now dominates, so the system re-
turns more slowly to equilibrium (Fig. 13.23c).

Many physical systems, from atoms to the human leg, can be modeled as damped 
oscillators. Engineers often design systems with specific amounts of damping. Automo-
bile shock absorbers, for example, coordinate with the springs to give critical damping. 
This results in rapid return to equilibrium while absorbing the energy imparted by road 
bumps.

Figure 13.23 (a) Underdamped, (b) critically 
damped, and (c) overdamped oscillations.
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ExaMpLE 13.6 Damped Simple Harmonic Motion: Bad Shocks

A car’s suspension acts like a mass–spring system with m = 1200 kg 
and k = 58 kN/m. Its worn-out shock absorbers provide a damping 
constant b = 230 kg/s. After the car hits a pothole, how many oscilla-
tions will it make before the amplitude drops to half its initial value?

Interpret We interpret this problem as being about damped simple 
harmonic motion, and we identify the car as the oscillating system.

Develop Our plan is to find out how long it takes the amplitude to 
decrease by half and then find the number of oscillation cycles in this 
time. Equation 13.17, x1t2 = Ae-bt/2m cos1vt + f2, describes the 
motion, with the factor e-bt/2m giving the decrease in amplitude. At 
t = 0 this factor is 1, so we want to know when it’s equal to one-half: 
e-bt/2m = 1

2.

evaluate Taking the natural logarithms of both sides gives 
bt/2m = ln 2, where we used the facts that ln1x2 and ex are inverse 
functions and ln11/x2 = - ln1x2. Then

t =
2m

b
 ln 2 =

12211200 kg2
230 kg/s

 ln 2 = 7.23 s

is the time for the amplitude to drop to half its original value. For weak 
damping, the period is very close to the undamped period, which is

T = 2pAm

k
= 2pA 1200 kg

58 * 103 N/m
= 0.904 s

Then the number of cycles during the 7.23 s it takes the amplitude to 
drop in half is

7.23 s

0.904 s
= 8

assess That the number of oscillations is much greater than 1 tells us 
that the damping is weak, justifying our use of the undamped  period. 
It also tells us that those are really bad shocks! ■
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13.7 Driven Oscillations and Resonance 235

GOt It? 13.6 The figure shows displacement-versus-time graphs for three mass–
spring systems, with different masses m, spring constants k, and damping constants b. The 
time on the horizontal axis is the same for all three. (1) For which system is damping the 
most significant? (2) For which system is damping the least significant?
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13.7 Driven Oscillations and Resonance
Pushing a child on a swing, you can build up a large amplitude by giving a relatively small 
push once each oscillation cycle. If your pushing were not in step with the swing’s natural 
oscillatory motion, then the same force would have little effect.

When an external force acts on an oscillatory system, we say that the system is driven. 
Consider a mass–spring system, which you might drive as suggested in Fig. 13.24. Sup-
pose the driving force is given by Fd cos vd t, where vd is called the driving frequency. 
Then Newton’s law is

 m 
d2x

dt2 = -kx - b 
dx

dt
+ Fd cos vdt (13.18)

where the first term on the right-hand side is the restoring force, the second the damping 
force, and the third the driving force. Since the system is being driven at the frequency vd, 
we expect it to undergo oscillatory motion at this frequency. So we guess that the solution 
to Equation 13.18 might have the form

x = A cos1vdt + f2
Substituting this expression and its derivatives into Equation 13.18 shows that the equation 
is satisfied if

 A1v2 =
Fd

m21vd
2 - v0

222 + b2vd
2/m2

 (13.19)

where v0 is the undamped natural frequency 1k/m, as distinguished from the driving 
frequency vd.

Figure 13.25 shows resonance curves—plots of Equation 13.19 as a function of 
 driving frequency—for three values of the damping constant. As long as the system is 

Figure 13.24 Driving a mass–spring system 
results in a large amplitude if the driving 
frequency is near the natural frequency 1k/m.

Hand moves with 
the driving frequency.

Block responds at
the same frequency,
but possibly larger
amplitude.

Figure 13.25 Resonance curves for three 
damping strengths; v0 is the undamped 
natural frequency 1k/m.
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236 Chapter 13 Oscillatory Motion

underdamped, the curve has a maximum at some nonzero frequency, and for weak damp-
ing, that maximum occurs at very nearly the natural frequency. The weaker the damping, 
the more sharply peaked is the resonance curve. Thus, in weakly damped systems, it’s 
possible to build up large-amplitude oscillations with relatively small driving forces—a 
 phenomenon known as resonance.

Most physical systems, from molecules to cars, and loudspeakers to buildings and 
bridges, exhibit one or more natural modes of oscillation. If these oscillations are weakly 
damped, then the buildup of large-amplitude oscillations through resonance can cause se-
rious problems—sometimes even destroying the system (Fig. 13.26). Engineers designing 
complex structures spend a lot of their time exploring all possible oscillation modes and 
taking steps to avoid resonance. In an earthquake-prone area, for example, a building’s 
natural frequencies would be designed to avoid the frequency of typical earthquake mo-
tions. A loudspeaker should be engineered so its natural frequency isn’t in the range of 
sound it’s intended to reproduce. Damping systems such as the shock absorbers of Ex-
ample 13.6 or the tuned mass damper of Example 13.2 help limit resonant oscillations in 
cases where natural frequencies aren’t easily altered.

Resonance is also important in microscopic systems. The resonant behavior of elec-
trons in a special tube called a magnetron produces the microwaves that cook food in 
a microwave oven; the same resonant process heats ionized gases in some experiments 
designed to harness fusion energy. Carbon dioxide in Earth’s atmosphere absorbs infrared 
radiation because CO2 molecules—acting like miniature mass–spring systems—resonate 
at some of the frequencies of infrared radiation. The result is the greenhouse effect, which 
now threatens Earth with significant climatic change. The process called nuclear magnetic 
resonance (NMR) uses the resonant behavior of protons to probe the structure of matter 
and is the basis of magnetic resonance imaging (MRI) used in medicine. In NMR, the res-
onance involves the natural precession frequency of the protons due to magnetic torques; 
we described a classical model of this process in Chapter 11.

GOt It? 13.7 The photo shows a wineglass shattering in response to sound. What’s 
more important here, the amplitude or the frequency of the sound?

Figure 13.26 Collapse of the Tacoma Narrows 
Bridge—only four months after its opening in 
1940—followed the resonant growth of  large-
amplitude oscillations.

Video Tutor Demo | Vibrating Rods
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Period T is the time to complete 
one oscillation cycle; its inverse is 
 frequency, or number of oscilla-
tions per unit time:

f =
1

T

ChaPter 13 Summary
Big Idea

The big idea here is simple harmonic motion (SHM), oscillatory motion that 
is ubiquitous and that occurs whenever a disturbance from equilibrium results 
in a restoring force or torque that is directly proportional to the displacement. 
Position in SHM is a sinusoidal function of time:

x1t2 = A cos vt

Key Concepts and Equations

Another measure of frequency is 
 angular frequency v, given by

v = 2pf =
2p

T

Angular frequency can be under-
stood in terms of the close relation-
ship between circular motion and 
simple harmonic  motion.

r
u

u = vt
p 2p

vt

Po
si

tio
n

In the absence of friction and other 
dissipative forces, energy in SHM is 
conserved, although it’s transformed 
back and forth between kinetic and 
potential forms:

E = 1
2 mv2 + 1

2 kx2 = constant

1
2

1
2

U =   kx2

Total energy U + K

K =   mv2

When dissipative forces act, the motion 
is damped. For small dissipative forces 
the oscillation amplitude decreases expo-
nentially with time:

x1t2 = Ae-bt/2m cos1vt + f2

e-bt>2m

If a system is driven at a frequency near its natural oscillation frequency 
v0, then large-amplitude oscillations can build; this is  resonance. The 
amplitude A depends on the driving force Fd, the driving frequency vd, 
the natural frequency v0 = 1k/m, and the damping constant b:

A1v2 =
Fd

m21vd
2 - v0

222 + b2vd
2/m2

Driving frequency, vd

A
m

pl
itu

de

v0

applications

In mass–spring systems, the 
angular frequency is given 
by

v = A k

m

m

m

k

k

In systems involving rotational oscillations, the 
analogous relation involves the torsional constant 
and rotational inertia:

v = Ak

I

A special case is the pendulum, 
for which (with small-amplitude 
oscillations)

v = AmgL

I

Pivot

L Center of
gravity

In the case of a simple pendulum, the angular fre-
quency reduces to

v = A g

L

m

L

T

x (t)

t

A
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Section 13.2 Simple Harmonic Motion
22. A 200-g mass is attached to a spring of constant k = 5.6 N/m 

and set into oscillation with amplitude A = 25 cm. Determine 
(a) the frequency in hertz, (b) the period, (c) the maximum 
 velocity, and (d) the maximum force in the spring.

23. An automobile suspension has an effective spring constant of  
26 kN/m, and the car’s suspended mass is 1900 kg. In the ab-
sence of damping, with what frequency and period will the car 
undergo simple harmonic motion?

24. The quartz crystal in a watch executes simple harmonic motion at 
32,768 Hz. (This is 215 Hz, chosen so that 15 divisions by 2 give 
a signal at 1.00000 Hz.) If each face of the crystal undergoes a 
maximum displacement of 100 nm, find the maximum velocity 
and acceleration of the crystal faces.

25. A 342-g mass is attached to a spring and undergoes sim-
ple harmonic motion. Its maximum acceleration is 18.6 m/s2, 
and its maximum speed is 1.75 m/s. Determine (a) the angular 
 frequency, (b) the amplitude, and (c) the spring constant.

26. A particle undergoes simple harmonic motion with amplitude  
25 cm and maximum speed 4.8 m/s. Find the (a) angular fre-
quency, (b) period, and (c) maximum acceleration.

27. A particle undergoes simple harmonic motion with maximum 
speed 1.4 m/s and maximum acceleration 3.1 m/s2. Find the  
(a) angular frequency, (b) period, and (c) amplitude.

Section 13.3 Applications of Simple Harmonic Motion
28. How long should you make a simple pendulum so its period is  

(a) 200 ms, (b) 5.0 s, and (c) 2.0 min?
29. At the heart of a grandfather clock is a simple pendulum 1.45 m 

long; the clock ticks each time the pendulum reaches its maxi-
mum displacement in either direction. What’s the time interval 
between ticks?

30. A 622-g basketball with 24.0-cm diameter is suspended by a wire 
and is undergoing torsional oscillations at 1.87 Hz. Find the tor-
sional constant of the wire.

31. A meter stick is suspended from one end and set swinging. Find 
the period of the resulting small-amplitude oscillations.

Section 13.4 Circular and Harmonic Motion
32. A wheel rotates at 600 rpm. Viewed from the edge, a point on 

the wheel appears to undergo simple harmonic motion. What are  
(a) the frequency in Hz and (b) the angular frequency for this SHM?

33. The x- and y-components of an object’s motion are harmonic with 
frequency ratio 1.75:1. How many oscillations must each compo-
nent undergo before the object returns to its initial position?

Section 13.5 Energy in Simple Harmonic Motion
34. A 450-g mass on a spring is oscillating at 1.2 Hz, with total en-

ergy 0.51 J. What’s the oscillation amplitude?
35. A torsional oscillator of rotational inertia 1.6 kg#m2 and torsional 

constant 3.4 N #m/rad has total energy 4.7 J. Find its maximum 
angular displacement and maximum angular speed.

36. You’re riding in a friend’s 1400-kg car with bad shock absorb-
ers, bouncing down the highway at 20 m/s and executing vertical 
SHM with amplitude 18 cm and frequency 0.67 Hz. Concerned 
about fuel efficiency, your friend wonders what percentage of 
the car’s kinetic energy is tied up in this oscillation. Make an 
 estimate, neglecting the wheels’ rotational energy and the fact 
that not all of the car’s mass participates in the oscillation.

For thought and Discussion
 1. Is a vertically bouncing ball an example of oscillatory motion? 

Of simple harmonic motion? Explain.
 2. The vibration frequencies of molecules are much higher than 

those of macroscopic mechanical systems. Why?
 3. What happens to the frequency of a simple harmonic oscillator 

when the spring constant is doubled? When the mass is doubled?
 4. If the spring of a simple harmonic oscillator is cut in half, what 

happens to the frequency?
 5. How does the frequency of a simple harmonic oscillator depend 

on its amplitude?
 6. How would the frequency of a horizontal mass–spring system 

change if it were taken to the Moon? Of a vertical mass–spring 
system? Of a simple pendulum?

 7. When in its cycle is the acceleration of an undamped simple har-
monic oscillator zero? When is the velocity zero?

 8. Explain how simple harmonic motion might be used to determine 
the masses of objects in an orbiting spacecraft.

 9. One pendulum consists of a solid rod of mass m and length L, 
and another consists of a compact ball of the same mass m on 
the end of a massless string of the same length L. Which has the 
greater period? Why?

10. The x- and y-components of motion of a body are both simple 
harmonic with the same frequency and amplitude. What shape is 
the path of the body if the component motions are (a) in phase, 
(b) p/2 out of phase, and (c) p/4 out of phase?

11. Why is critical damping desirable in a car’s suspension?
12. Explain why the frequency of a damped system is lower than that 

of the equivalent undamped system.
13. Opera singers have been known to break glasses with their 

voices. How?
14. What will happen to the period of a mass–spring system if it’s 

placed in a jetliner accelerating down a runway? What will hap-
pen to the period of a pendulum in the same situation?

15. How can a system have more than one resonant frequency?

exercises and Problems
Exercises

Section 13.1 Describing Oscillatory Motion
16. A doctor counts 68 heartbeats in 1.0 minute. What are the cor-

responding period and frequency?
17. A violin string playing the note A oscillates at 440 Hz. What’s its 

oscillation period?
18. The vibration frequency of a hydrogen chloride molecule is 

8.66 * 1013 Hz. How long does it take the molecule to complete 
one oscillation?

19. Write expressions for the displacement x(t) in simple harmonic 
motion (a) with amplitude 12.5 cm, frequency 6.68 Hz, and max-
imum displacement when t = 0, and (b) with amplitude 2.15 cm, 
angular frequency 4.63 s- 1, and maximum speed when t = 0.

20. The top of a skyscraper sways back and forth, completing 95 full 
oscillation cycles in 10 minutes. Find (a) the period and (b) the 
frequency (in Hz) of its oscillatory motion.

21. A hummingbird’s wings vibrate at about 45 Hz. What’s the cor-
responding period?

BIO

BIO
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with acceleration a = 1
2 g; (c) accelerating downward with 

a = 1
2 g; and (d) in free fall.

47. The protein dynein powers the flagella that propel some unicellu-
lar organisms. Biophysicists have found that dynein is intrinsically 
oscillatory, and that it exerts peak forces of about 1.0 pN when 
it attaches to structures called microtubules. The resulting oscil-
lations have amplitude 15 nm. (a) If this system is modeled as a 
mass–spring system, what’s the associated spring constant? (b) If 
the oscillation frequency is 70 Hz, what’s the effective mass?

48. A mass is attached to a vertical spring, which then goes into 
 oscillation. At the high point of the oscillation, the spring is in the 
original unstretched equilibrium position it had before the mass 
was attached; the low point is 5.8 cm below this. Find the oscilla-
tion period.

49. Derive the period of a simple pendulum by considering the hori-
zontal displacement x and the force acting on the bob, rather than 
the angular displacement and torque.

50. A solid disk of radius R is suspended from a spring of spring 
constant k and torsional constant k, as shown in Fig. 13.29. In 
terms of k and k, what value of R will give the same period for 
the vertical and torsional oscillations of this system?

Figure 13.29 Problem 50

51. A thin steel beam is suspended from a crane and is undergoing tor-
sional oscillations. Two 82.4 kg steelworkers leap onto opposite 
ends of the beam, as shown in Fig. 13.30. If the frequency of tor-
sional oscillations diminishes by 21.0%, what’s the beam’s mass?

Figure 13.30 Problem 51

52. A cyclist turns her bicycle upside down to repair it. She then no-
tices that the front wheel is executing a slow, small-amplitude, 
back-and-forth rotational motion with period 12 s. Treating the 
wheel as a thin ring of mass 600 g and radius 30 cm, whose only 
irregularity is the tire valve stem, determine the mass of the valve 
stem.

53. An object undergoes simple harmonic motion in two mutually 
perpendicular directions, its position given by r

!
= A sin vtin +

A cos vtjn. (a) Show that the object remains a fixed distance from 
the origin (i.e., that its path is circular), and find that distance. 
(b) Find an expression for the object’s velocity. (c) Show that the 
speed remains constant, and find its value. (d) Find the angular 
speed of the object in its circular path.

54. The muscles that drive insect wings minimize the energy needed 
for flight by “choosing” to move at the natural oscillation fre-
quency of the wings. Biologists study this phenomenon by clip-
ping an insect’s wings to reduce their mass. If the wing system 
is modeled as a simple harmonic oscillator, by what percent will 

BIO

CH
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Sections 13.6 and 13.7 Damped Harmonic Motion  
and Resonance
37. The vibration of a piano string can be described by an equation 

analogous to Equation 13.17. If the quantity analogous to b/2m 
in that equation has the value 2.8 s-1, how long will it take the 
amplitude to drop to half its original value?

38. A mass–spring system has b/m = v0 /5, where b is the damping 
constant and v0 the natural frequency. How does its amplitude at 
v0 compare with its amplitude when driven at frequencies 10% 
above and below v0?

39. A car’s front suspension has a natural frequency of 0.45 Hz. The 
car’s front shock absorbers are worn and no longer provide criti-
cal damping. The car is driving on a bumpy road with bumps  
40 m apart. At a certain speed, the driver notices that the car 
 begins to shake violently. What is this speed?

problems
40. A simple model for carbon dioxide consists of three mass points 

(atoms) connected by two springs (electric forces), as shown in 
Fig. 13.27. One way this system can oscillate is if the carbon atom 
stays fixed and the two oxygens move symmetrically on  either 
side of it. If the frequency of this oscillation is 4.0 * 1013 Hz,  
what’s the effective spring constant? (Note: The mass of an oxy-
gen atom is 16 u.)

C OO

Figure 13.27 Problem 40

41. Two identical mass–spring systems consist of 430-g masses on 
springs of constant k = 2.2 N/m. Both are displaced from equilib-
rium, and the first is released at time t = 0. How much later should 
the second be released so their oscillations differ in phase by p/2?

42. The human eye and muscles that hold it can be modeled as 
a mass–spring system with typical values m = 7.5 g and 
k = 2.5 kN/m. What’s the resonant frequency of this system? 
Shaking your head at this frequency blurs vision, as the eyeball 
undergoes resonant oscillations.

43. A mass m slides along a frictionless horizontal surface at speed 
v0. It strikes a spring of constant k attached to a rigid wall, as 
shown in Fig. 13.28. After an elastic encounter with the spring, 
the mass heads back in the direction it came from. In terms of 
k, m, and v0, determine (a) how long the mass is in contact with 
the spring and (b) the spring’s maximum compression.

v0
u

m

Figure 13.28 Problem 43

44. Show by substitution that x1t2 = A sin vt  is a solution to 
 Equation 13.3.

45. A physics student, bored by a lecture on simple harmonic  motion, 
idly picks up his pencil (mass 8.65 g, length 18.8 cm) by the tip 
with his frictionless fingers, and allows it to swing back and forth 
with small amplitude. If the pencil completes 5974 full cycles 
during the lecture, how long does the lecture last?

46. A pendulum of length L is mounted in a rocket. Find its period if 
the rocket is (a) at rest on its launch pad; (b) accelerating  upward 

BIO
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240 Chapter 13 Oscillatory Motion

Figure 13.33 Problem 63

64. A mass m is free to slide on a frictionless track whose height y 
as a function of horizontal position x is y = ax2, where a is a 
constant with units of inverse length. The mass is given an ini-
tial displacement from the bottom of the track and then released. 
Find an expression for the period of the resulting motion.

65. A 250-g mass is mounted on a spring of constant k = 3.3 N/m. 
The damping constant for this system is b = 8.4 * 10- 3 kg/s. 
How many oscillations will the system undergo before the ampli-
tude decays to 1/e of its original value?

66. A harmonic oscillator is underdamped if the damping constant 
b is less than 12mv0, where v0 is the natural frequency of un-
damped motion. Show that for an underdamped oscillator, Equa-
tion 13.19 has a maximum at a driving frequency less than v0.

67. A massless spring with k = 74 N/m hangs from the ceiling. A 
490-g mass is hooked onto the unstretched spring and allowed 
to drop. Find (a) the amplitude and (b) the period of the resulting 
motion.

68. A meter stick is suspended from a frictionless rod through a 
small hole at the 25-cm mark. Find the period of small-amplitude 
oscillations about the stick’s equilibrium position.

69. A particle of mass m has potential energy given by U = ax2, 
where a is a constant and x is the particle’s position. Find an ex-
pression for the frequency of simple harmonic oscillations this 
particle undergoes.

70. Two balls with the same unknown mass m are mounted on op-
posite ends of a 1.5-m-long rod of mass 850 g. The system is 
suspended from a wire attached to the center of the rod and set 
into torsional oscillations. If the wire has torsional constant 
0.63 N #m/rad and the period of the oscillations is 5.6 s, what’s 
the unknown mass m?

71. Two mass–spring systems with the same mass are undergoing 
 oscillatory motion with the same amplitudes. System 1 has twice 
the frequency of system 2. How do (a) their energies and (b) their 
maximum accelerations compare?

72. Two mass–spring systems have the same mass and the same total 
energy. The amplitude of system 1 is twice that of system 2. How 
do (a) their frequencies and (b) their maximum accelerations 
compare?

73. A 500-g mass is suspended from a thread 45 cm long that can 
sustain a tension of 6.0 N before breaking. Find the maximum 
allowable amplitude for pendulum motion of this system.

74. A 500-g block on a frictionless, horizontal surface is attached to 
a rather limp spring with k = 8.7 N/m. A second block rests on 
the first, and the whole system executes simple harmonic motion 
with period 1.8 s. When the amplitude of the motion is increased 
to 35 cm, the upper block just begins to slip. What’s the coeffi-
cient of static friction between the blocks?

75. Repeat Problem 64 for a small solid ball of mass M and radius R 
that rolls without slipping on the parabolic track.

76. You’re working on the script of a movie whose plot involves a 
hole drilled straight through Earth’s center and out the other side. 
You’re asked to determine what will happen if a person falls into 
the hole. You find that the gravitational acceleration inside Earth 
points toward Earth’s center, with magnitude given approxi-
mately by g1r2 = g01r/RE2, where g0 is the surface value, r is 
the distance from Earth’s center, and RE is Earth’s radius. What 
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the frequency change if the wing mass is decreased by 25%? Will 
it increase or decrease?

55. A pendulum consists of a 320-g solid ball 15.0 cm in diameter, 
suspended by an essentially massless string 80.0 cm long. Calcu-
late the period of this pendulum, treating it first as a simple pen-
dulum and then as a physical pendulum. What’s the error in the 
simple-pendulum approximation? (Hint: Remember the parallel-
axis theorem.)

56. If Jane and Tarzan are initially 8.0 m apart in Fig. 13.12, and 
Jane’s mass is 60 kg, what’s the maximum tension in the vine, 
and at what point does it occur?

57. A small mass measuring device (SMMD) used for research 
on the biological effects of spaceflight consists of a small 
spring-mounted cage. Rats or other small subjects are in-
troduced into the cage, which is set into oscillation. Cali-
bration of a SMMD gives a linear function for the square 
of the oscillation period versus the subject’s mass m in kg: 
T2 = 4.0 s2 + 15.0 s2/kg2m. Find (a) the spring constant and 
(b) the mass of the cage alone.

58. A thin, uniform hoop of mass M and radius R is suspended from a 
horizontal rod and set oscillating with small amplitude, as shown 
in Fig. 13.31. Show that the period of the oscillations is 2p22R/g.  
(Hint: You may find the parallel-axis theorem useful.)

Figure 13.31 Problem 58

59. A mass m is mounted between two springs with constants k1 and 
k2, as shown in Fig. 13.32. Show that the angular frequency of 
oscillation is v = 21k1 + k22/m.

m

k1 k2

Figure 13.32 Problem 59

60. The equation for an ellipse is 1x2/a22 + 1y2/b22 = 1. Show that 
two-dimensional simple harmonic motion whose components 
have different amplitudes and are p/2 out of phase gives rise to 
elliptical motion. How are constants a and b related to the ampli-
tudes?

61. Show that the potential energy of a simple pendulum is propor-
tional to the square of the angular displacement in the small-am-
plitude limit.

62. The total energy of a mass–spring system is the sum of its kinetic 
and potential energy: E = 1

2 mv2 + 1
2 kx2. Assuming E remains 

constant, differentiate both sides of this expression with respect 
to time and show that Equation 13.3 results. (Hint: Remember 
that v = dx/dt.)

63. A solid cylinder of mass M and radius R is mounted on an axle 
through its center. The axle is attached to a horizontal spring 
of constant k, and the cylinder rolls back and forth without 
slipping (Fig. 13.33). Write the statement of energy conserva-
tion for this system, and differentiate it to obtain an equation 
analogous to Equation 13.3 (see Problem 62). Comparing your 
result with Equation 13.3, determine the angular frequency of 
the motion.

CH
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Beam deflection x (cm) potential energy U (J)

-4.54 164
-3.49 141
-2.62 71.9
-1.22 9.15
-0.448 0.162

0 0
0.730 4.13
1.29 16.3
2.13 34.0
3.39 115
4.70 225

Find a quantity which, when U is plotted against it, should give a 
straight line. Make your plot, determine the best-fit line, and use 
its slope to determine the resonant frequency of the beam.

81. Show that x1t2 = a cos vt - b sin vt represents simple har-
monic motion, as in Equation 13.8, with A = 2a2 + b2 and 
f = tan- 11b/a2.

82. You’re working for the summer with an ornithologist who knows 
you’ve studied physics. She asks you for a noninvasive way to 
measure birds’ masses. You propose using a bird feeder in the 
shape of a 50-cm-diameter disk of mass 340 g, suspended by a 
wire with torsional constant 5.00 N #m/rad (Fig. 13.36). Two birds 
land on opposite sides and the feeder goes into torsional oscilla-
tion at 2.6 Hz. Assuming the birds have the same mass, what is it?

50 cm

340 g

 Figure 13.36 Problem 82

83. While waiting for your plane to take off, you suspend your keys 
from a thread and set the resulting pendulum oscillating. It com-
pletes exactly 90 cycles in 1 minute. You repeat the experiment as 
the plane accelerates down the runway, and now measure exactly 
91 cycles in 1 minute. Find the plane’s acceleration.

84. You’re working for a playground equipment company, which 
wants to know the rotational inertia of its swing with a child 
on board; the combined mass is 20 kg. You observe the child 
twirling around in the swing, twisting the ropes as shown in  
Fig. 13.37. As a result, child and swing rise slightly, with the rise 
h in cm equal to the square of the number of full turns. When the 
child stops twisting, the swing begins torsional oscillations. You 
measure the period at 6.91 s. What do you report for the rota-
tional inertia of the child–swing system?

h

Figure 13.37 Problem 84

do you report for the person’s motion, including equations and 
values for any relevant parameters?

77. A 1.2-kg block rests on a frictionless surface and is attached to a 
horizontal spring of constant k = 23 N/m (Fig. 13.34). The block 
oscillates with amplitude 10 cm and phase constant f = -p/2. 
A block of mass 0.80 kg moves from the right at 1.7 m/s and 
strikes the first block when the latter is at the rightmost point in 
its oscillation. The two blocks stick together. Determine the fre-
quency, amplitude, and phase constant (relative to the original 
t = 0) of the resulting motion.

1.2 kg 0.80 kg
1.7 m>s

Figure 13.34 Problem 77

78. A disk of radius R is suspended from a pivot somewhere between 
its center and edge (Fig. 13.35). For what pivot point will the 
period of this physical pendulum be a minimum?

Suspension point

?

Figure 13.35 Problem 78

79. A simple model for a variable star considers that the outer layer of 
the star is subject to two forces: the inward force of gravity and the 
outward force due to gas pressure. As a result, Newton’s law for the 
star’s outer layer reads m d2r/dt2 = 4pr2p - GMm/r2. Here m 

  is the mass of the outer layer, M is the total mass of the star, 
r is the star’s radius, and p is the pressure. (a) Use this equa-
tion to show that the star’s equilibrium pressure and radius are 
related by p0 = GMm/4pr 4

0 , where the subscript 0 represents 
equilibrium values. (b) As you’ll learn in Chapter 18, gas pres-
sure and volume V (= 4

3pr3) are related by pV5/3 = p0V
5/3

0  (this 
is for an adiabatic process, a good approximation here, and the 
exponent 5/3 reflects the ionized gas that makes up the star). 
Let x = r - r0 be the displacement of the star’s surface from 
equilibrium. Use the binomial approximation (Appendix A)  
to show that, when x is small compared with r, the right-
hand side of the above equation can be written -1GMm/r 3

02x.  
(c) Since r and x differ only by a constant, the term d2r/dt2 in 
the equation above can also be written d2x/dt2. Make this sub-
stitution, along with substituting the result of part (b) for the 
right-hand side, and compare your result with Equations 13.2 and 
13.7 to find an expression for the oscillation period of the star. 
(d) What does your simple model predict for the period of the 
variable star Delta Cephei, with radius 44.5 times that of the Sun 
and mass of 4.5 Sun masses? (Your answer overestimates the ac-
tual period by a factor of about 3, both because of oversimplified 
physics and because changes in the star’s radius are too large for 
the assumption of a linear restoring force.)

80. You’re a structural engineer working on a design for a steel beam, 
and you need to know its resonant frequency. The beam’s mass is 
3750 kg. You test the beam by clamping one end and deflecting 
the other so it bends, and you determine the associated potential 
energy. The table below gives the results:
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 motion, and measurement of the oscillation period, along with the 
known spring constant and mass of the chair itself, then yields the 
astronaut’s mass. When a 60-kg astronaut is strapped into the 20-kg 
chair, the time for three oscillation periods is measured to be 6.0 s.

87. If a 90-kg astronaut is “weighed” with this BMMD, the time for 
three periods will be
a. 50% longer.
b. shorter by less than 50%.
c. longer by less than 50%.
d. longer by more than 50%.

88. If the same device were used on Earth, the results for a given 
astronaut (assuming mass hasn’t yet been lost in space) would be
a. the same.
b. greater than in an orbiting spacecraft.
c. less than in an orbiting spacecraft.
d. meaningless, because the device won’t work on Earth.

89. If an astronaut’s mass declines linearly with time while she’s in 
orbit, the oscillation period of the BMMD will
a. decrease at an ever-decreasing rate.
b. decrease linearly with time.
c. decrease at an ever-increasing rate.
d. increase linearly with time.

90. The spring constant for the BMMD described here is
a. 80 N/m.
b. 80p N/m.
c. 2 N/m.
d. 80p2 N/m.
e. none of the above.

answers to Chapter Questions

answer to Chapter Opening Question
1 Hz is 1 cycle per second, so that’s 32,768 oscillation cycles per 
 second.  This number is 215, so it takes 15 divisions by two to reduce 
to the one “tick” per second that drives the watch.

answers to GOt It? Questions
 13.1 (c)
 13.2 Frequencies and periods are the same; amplitudes and phase 

constants are different because of the different initial displace-
ments and times of release, respectively.

 13.3 (1) no change; (2) doubles; (3) doubles
 13.4 (1) 1:2; (2) 3:2
 13.5 The more energetic oscillator has (1) twice the mass and (2) 

twice the spring constant. (3) Their maximum speeds are equal.
 13.6 (1) c; (2) b
 13.7 The frequency, which needs to be at the glass’s resonant fre-

quency (although, even at resonance, a sound that’s too weak 
won’t break the glass).

85. You’ve inherited your great-grandmother’s mantle clock. The 
clock’s timekeeping is established by a pendulum consisting 
of a 15.0-cm-long rod and a disk 6.35 cm in diameter. The rod 
passes through a hole in the disk, and the disk is supported at 
its bottom by a decorative nut mounted on the bottom portion of 
the rod, which is threaded; see Fig. 13.38. As shown, the bottom 
of the disk is 1.92 cm above the bottom of the rod. There are 
20.0 threads per cm, meaning that one full turn of the decorative 
nut moves the disk up or down by 1/20 cm. The clock is beau-
tiful, but it isn’t accurate; you note that it’s losing 1.5 minutes 
per day. But you realize that the decorative nut is an adjustment 
mechanism, and you decide to adjust the clock’s timekeeping.  
(a) Should you turn the nut to move the disk up or down?  
(b) How many times should you turn the nut? Note: The disk is 
massive enough that you can safely neglect the mass of the rod 
and nut. But you can’t neglect the disk’s size compared with the 
rod length, so you don’t have a simple pendulum. Furthermore, 
note that both the effective length of the pendulum and its rota-
tional inertia change as the disk moves up or down the shaft. You 
can either solve a quadratic or you can use calculus to get an ap-
proximate but nevertheless very accurate answer.

Shaft

Disk

Nut

Threads
1.92 cm

6.35 cm

15.0 cm

Figure 13.38 Problem 85

86. This problem explores the nonlinear pendulum discussed qualita-
tively in Conceptual Example 13.1. You can tackle this problem if 
you have experience with your calculator’s differential-equation 
solving capabilities or if you’ve used a software program like 
Mathematica or Maple that can solve differential equations nu-
merically. On page 228 we wrote Newton’s law for a  pendulum 

  in the form I d2u/dt2 = -mgL sin u. (a) Rewrite this equation in a 
  form suitable for a simple pendulum, but without making the 

approximation  sin u _ u. Although it won’t affect the form of 
the equation, assume that your pendulum uses a massless rigid 
rod rather than a string, so it can turn completely upside down 
without collapsing. (b) Enter your equation into your calcula-
tor or software, and produce graphical solutions to the equation 
for the situation where you specify the initial kinetic energy K0 
when the pendulum is at its bottommost position. In particu-
lar, describe solutions for (i) K0 66 Umax, (ii) K0 ≲ Umax, and  
(iii) K0 7 Umax. Here Umax is the maximum possible potential en-
ergy for the system, which occurs when the pendulum is completely 
upside down; U0 = 2Lmg, where L is the pendulum’s length.

Passage Problems
Physicians and physiologists are interested in the long-term effects of 
apparent weightlessness on the human body. Among these effects are 
redistribution of body fluids to the upper body, loss of muscle tone, 
and overall mass loss. One method of measuring mass in the appar-
ent weightlessness of an orbiting spacecraft is to strap the astronaut 
into a chairlike device mounted on springs (Fig. 13.39). This body 
mass measuring device (BMMD) is set oscillating in simple harmonic 

CH

comp

Figure 13.39 Astronaut Tamara Jernigan uses a body mass measuring device 
in the Spacelab Life Sciences Module (Passage Problems 87–90).
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Humans and other animals communicate using sound waves. Light and related waves  enable 
us to visualize our surroundings and provide virtually all our information about the universe 

beyond Earth. Our cell phones keep us connected via radio waves. Physicians probe our bodies 
with ultrasound waves. Radio waves connect our wireless devices to the Internet and cook the 
food in our microwave ovens. Earthquakes trigger waves in the solid Earth and may generate 
dangerous tsunamis. Wave motion is an essential feature of our physical environment.

All these examples involve a disturbance that moves or propagates through space. The 
disturbance carries energy, but not matter. Air doesn’t move from your mouth to a listener’s 
ear, but sound energy does. Water doesn’t move across the open ocean, but wave energy 
does. A wave is a traveling disturbance that transports energy but not matter.

How You’ll Use It
■ The wave concepts you learn here will 

help you understand electromagnetic 
waves, introduced in Chapter 29.

■ In Part 5 you’ll study optics—the 
science of light that’s based ultimately 
in light’s nature as an electromagnetic 
wave. Wave concepts will be especially 
important in Chapter 32.

■ In Part 6 you’ll see how wave concepts 
are at the heart of quantum physics, 
even in the description of matter.

What You’re Learning
■ You’ll learn how to describe wave 

motion mathematically in terms of 
spatial and temporal variations.

■ You’ll add wavelength and wave 
number to your vocabulary that 
already includes frequency and period.

■ You’ll see how oscillatory motion in 
coupled systems leads to waves.

■ You’ll explore the Newtonian physics 
behind wave motion for the special 
case of waves on a taut string or wire.

■ You’ll learn how to characterize 
energy carried by waves.

■ You’ll learn about sound waves and 
the decibel system for sound intensity.

■ You’ll learn about wave reflection and 
interference.

■ You’ll see how reflection and 
interference result in standing waves.

■ You’ll learn about the Doppler effect 
and shock waves.

What You Know
■ You understand how restoring forces 

lead to oscillatory motion.

■ You’re particularly familiar with simple 
harmonic motion.

■ You can describe periodic motion in 
terms of angular frequency, frequency 
in hertz, or period, and you know 
how to relate these three measures of 
periodicity.

Wave Motion

14

Ocean waves travel thousands of kilometers across the open sea before breaking on shore.  
How much water moves with the waves?
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244 Chapter 14 Wave Motion

14.1 Waves and Their Properties
In this chapter we’ll deal with mechanical waves, which are disturbances of some  material 
medium, such as air, water, a violin string, or Earth’s interior.  Visible and  infrared light 
waves, radio waves, ultraviolet and X rays, in contrast, are  electromagnetic waves. They 
share many properties with mechanical waves, but they don’t require a material medium. 
We’ll treat electromagnetic waves in Chapters 29–32.

Mechanical waves occur when a disturbance in one part of a medium is  communicated 
to adjacent parts. Figure 14.1 shows a multiple mass–spring system that serves as a model 
for many types of mechanical waves. Disturb one mass, and it goes into simple  harmonic 
motion. But because the masses are connected, that motion is communicated to the 
 adjacent mass. As a result, both the disturbance and its associated energy propagate along 
the mass–spring system, disturbing successive masses as they go.

✓TIP Wave Motions

A wave moves energy from place to place, but not matter. However, that doesn’t mean that 
the matter making up the wave medium doesn’t move. It does, undergoing localized oscil-
latory motion as the wave passes. But once the wave is gone, the disturbed matter returns 
to its equilibrium state. Don’t confuse this localized motion of the medium with the motion 
of the wave itself. Both occur, but only the latter carries energy from one place to another.

Longitudinal and Transverse Waves
In Fig. 14.1, we disturbed the system by displacing one block so its subsequent oscillations 
were back and forth along the structure—in the same direction as the wave propagation. The 
result is a longitudinal wave. Sound is a longitudinal wave, as we’ll see in Section 14.4. We 
could equally well displace a mass at right angles, as in Fig. 14.2. Then we get a transverse 
wave, whose disturbance is at right angles to the wave propagation. Some waves include 
both longitudinal and transverse motions, as shown for a water wave in Fig. 14.3.

Figure 14.1 Wave propagation in a  
mass–spring system.

Disturb this block 
by displacing it slightly,
and it begins to oscillate.

The oscillation and its energy are
communicated to the next block c

cand so the wave
propagates.

(a)

(b)

(c)

Figure 14.2 A transverse wave.

The disturbance is
up and down c

cbut the wave moves
horizontally.

Figure 14.3 A water wave has both  longitudinal 
and transverse components.

Wave motion

Here the
water moves
longitudinally.

In regions in between,
it moves both longitudinally
and transversely.

Here it’s moving
transversely.

Amplitude and Waveform
The maximum value of a wave’s disturbance is the wave amplitude. For a water wave, amplitude 
is the maximum height above the undisturbed water level; for a sound wave, it’s the maximum ex-
cess air pressure; for the waves of Figs. 14.1 and 14.2, it’s the maximum displacement of a mass.

Wave disturbances come in many shapes, called waveforms (Fig. 14.4). An  isolated 
disturbance is a pulse, which occurs when the medium is disturbed only briefly. A 
 continuous wave results from an ongoing periodic disturbance. Intermediate between 
these extremes is a wave train, resulting from a periodic disturbance lasting a finite time.

Wavelength, Period, and Frequency
A continuous wave repeats in both space and time. The wavelength l is the distance over 
which the wave pattern repeats (Fig. 14.5). The wave period T is the time for one  complete os-
cillation. The frequency f, or number of wave cycles per unit time, is the inverse of the period.

Figure 14.4 (a) A pulse, (b) a continuous wave, 
and (c) a wave train.

(a)

(b)

(c)

Figure 14.5 The wavelength l is the distance 
over which the wave pattern repeats.

The wavelength can be
measured between any two
repeating points on the wave.

l

l

l
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14.2 Wave Math 245

Wave Speed
A wave travels at a specific speed through its medium. The speed of sound in air is about 
340 m/s. Small ripples on water move at about 20 cm/s, while earthquake waves travel at 
several kilometers per second. The physical properties of the medium ultimately deter-
mine the wave speed, as we’ll see in Section 14.3.

Wave speed, wavelength, and period are related. In one wave period, a fixed observer 
sees one complete wavelength go by (Fig. 14.6). Thus, the wave moves one wavelength in 
one period, so its speed is

 v =
l

T
= lf  1wave speed2 (14.1)

where the second equality follows because period and frequency are inverses.

GoT IT? 14.1 A boat bobs up and down on a water wave, moving 2 m vertically in 1 s. 
A wave crest moves 10 m horizontally in 2 s. Is the wave speed (a) 2 m/s or (b) 5 m/s? Explain.

14.2 Wave Math
Figure 14.7 shows “snapshots” of a wave pulse at time t = 0 and at some later time t. Initially 
the wave disturbance y is some function of position: y = f 1x2. Later the pulse has moved to 
the right a distance vt, but its shape, described by the function f, is the same. We can  represent 
this displaced pulse by replacing x with x - vt as the argument of the function f. Then x has 
to be larger—by the amount vt—to give the same value of f  as it did before. For  example, 
this particular pulse peaks when the argument of f  is zero. Initially, that occurred when x 
was zero. Replacing x by x - vt ensures that the argument becomes zero when x = vt, 
 putting the peak at this new position. As time increases, so does vt and therefore the value of x 
 corresponding to the peak. Thus f 1x - vt2 correctly represents the moving pulse.

Although we considered a single pulse, this argument applies to any function f 1x2, in-
cluding continuous waves: Replace the argument x with x - vt, and the function f 1x - vt2 
describes a wave moving in the positive x-direction with speed v. You can  convince yourself 
that a function of the form f 1x + vt2 describes a wave moving in the negative x-direction.

A particularly important case is a simple harmonic wave, for which a “snapshot” at 
time t = 0 shows a sinusoidal function. We’ll choose coordinates so that x = 0 is at a 
maximum of the wave, making the function a cosine (Fig. 14.8a). Then y 1x, 02 = A cos kx, 
where A is the amplitude and k is a constant, called the wave number. We can find k 
 because we know that the wave repeats in one wavelength l. Since the period of the cosine 
function is 2p, we therefore want kx to be 2p when x equals l. Then kl = 2p, or

 k =
2p

l
  1wave number2 (14.2)

To describe a wave moving with speed v, we replace x in the expression A cos kx with 
x - vt, giving y1x, t2 = A cos3k1x - vt24 . If we now sit at the point x = 0, we’ll see an 
oscillation described by y10, t2 = A cos1-kvt2 = A cos1kvt2, where the last step follows 
because cos1-x2 = cos x. But we found that k = 2p/l, and Equation 14.1 shows that 
v = l/T, so the argument of the cosine function becomes kvt = 12p/l21l/T2t = 2pt/T.

In Chapter 13, we introduced the angular frequency v = 2p/T  in describing  simple 
harmonic motion; here the same quantity arises in describing wave motion. And no 
 wonder: At a fixed point in space, the wave medium undergoes simple harmonic motion 
with angular frequency v = 2p/T  (Fig. 14.8b). Putting this all together, we can write a 
traveling sinusoidal wave in the form

 y1x, t2 = A cos1kx { vt2  1sinusoidal wave2 (14.3)

where we’ve written { so we can describe a wave going in the positive x-direction  
( -  sign) or the negative x-direction ( +  sign). The argument of the cosine is called the 

Figure 14.6 One full cycle passes a given point 
in one wave period T ; the wave speed is 
 therefore v = l /T.

l

v = l>T
l

t = 0

t = T

This one-wavelength
section c

cmoves to 
here in one
period T.

Figure 14.7 The wave pulse moves a  
distance vt in time t, but its shape stays  
the same.

At t = 0, the
peak is at
x = 0.

At t, the peak
is at x = vt.y

v

x = 0 x = vt

vt

y = f (x)

x

Figure 14.8 A sinusoidal wave (a) as a function 
of position at fixed time t = 0 and (b) as a 
function of time at fixed position x = 0.

(a)

(b)
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246 Chapter 14 Wave Motion

wave’s phase. Note that k and v are related to the more familiar wavelength l and pe-
riod T in the same way: k = 2p/l and v = 2p/T. Just as v is a measure of frequency— 
oscillation cycles per unit time, with an extra factor of 2p—so is k a measure of spatial 
frequency—oscillation cycles per unit distance, again with that factor of 2p to make the 
math simpler. The relations between k, l and v, T  allow us to rewrite the wave speed of 
Equation 14.1 in terms of k and v:

 v =
l

T
=

2p/k

2p/v
=

v

k
 (14.4)

GoT IT? 14.2 The figure shows  snapshots 
of two waves propagating with the same 
speed. Which has the greater (1) amplitude,  
(2)  wavelength, (3) period, (4) wave number, 
and (5)  frequency?

The Wave Equation
We argued our way to Equation 14.3 for a sinusoidal wave on mathematical grounds 
alone. Whether such waves are actually possible depends on the physical properties of the 
 medium. Many media do, in fact, support waves as described by Equation 14.3. We’ll explore 
one case in detail in the next section. More generally, physicists analyze the behavior of a  

v
u

v
u

A surfer paddles out beyond the breaking surf to where the waves are 
sinusoidal in shape, with crests 14 m apart. The surfer bobs a vertical 
distance 3.6 m from trough to crest, a process that takes 1.5 s. Find the 
wave speed, and describe the wave using Equation 14.3.

Interpret This is a problem about a simple harmonic wave—that is, 
a wave with sinusoidal shape.

Develop We’ll take x = 0 at the location of a wave crest when 
t = 0, so Equation 14.3, y1x, t2 = A cos1kx { vt2, applies. Let’s 
take the positive x-direction toward shore, so we’ll use the minus sign 
in Equation 14.3. In Fig. 14.9a we sketched a “snapshot” of the wave, 
showing the spatial information we’re given. Figure 14.9b shows the 
temporal information.

evaluate The 1.5-s trough-to-crest time in Fig. 14.9b is half the 
full crest-to-crest period T, so T = 3.0 s. The crest-to-crest distance 
in Fig. 14.9a is the wavelength l, so l = 14 m. Then Equation 14.1 
gives

v =
l

T
=

14 m

3.0 s
= 4.7 m/s

To describe the wave with Equation 14.3 we need the amplitude A, 
wave number k, and angular frequency v. The amplitude is half the 
crest-to-trough displacement, or A = 1.8 m, as shown in Fig. 14.9a. 
The wave number k and angular frequency v then follow from l and 
T: k = 2p/l = 0.449 m-1 and v = 2p/T = 2.09 s-1. Then the wave 

description is

y1x, t2 = 1.8 cos10.449x - 2.09t2
with y and x in meters and t in seconds.

assess As a check on our answer, let’s see whether our values of v  
and k satisfy Equation 14.4: v = v/k = 2.09 s-1/0.449 m-1 = 4.7 m/s. 
Thus the pairs l, T  and v, k are equivalent ways to describe the same 
wave. ■

Figure 14.9 Our sketch of displacement versus (a) position and (b) time.

Crest to trough is 3.6 m.

It takes 1.5 s
from trough
to crest.

ExAMPLE 14.1  Describing a Wave: Surfing
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14.3 Waves on a String 247

medium in response to disturbances. Often the analysis results in an equation relating the 
space and time derivatives of the disturbed quantity:

 
02y

0x2 =
1

v2 
02y

0t2  1wave equation2 (14.5)

This is the wave equation for waves propagating in one dimension. Here y is the wave 
disturbance—the height of a water wave, the pressure in a sound wave, and so on. The 
quantity v is the wave speed, which usually appears as a combination of quantities  related 
to properties of the medium, and thus allows physicists to deduce the wave speed.  Because 
the wave disturbance is a function of the two variables x (spatial position) and t (time), 
the derivatives here are partial derivatives, designated with the symbol 0 and  indicating 
differentiation with respect to one variable while the other is held constant. Thus the 
wave equation is a partial differential equation. Solving such equations requires more 
 advanced math courses, but you can show directly (Problem 69) that Equation 14.3 
 satisfies the wave equation, with wave speed v = v/k. More generally, any function of 
the form f 1x {  vt2 satisfies the wave equation, as you can show in Problem 70. You’ll 
encounter the wave equation again in Chapter 29, when you study electromagnetic waves.

14.3 Waves on a String
Scientists and engineers generally explore wave possibilities in a medium by applying 
the laws of physics and deriving a wave equation similar to Equation 14.5. Such analysis 
 reveals the wave speed and other wave properties. Here we’ll take a simpler approach to 
one special case: transverse waves on a stretched string. Our results are directly applicable 
to musical instruments, climbing ropes, bridge cables, and other elongated structures.

Our string has mass per unit length m in kilograms per meter, and it’s stretched to a 
tension force F. Consider a wave pulse propagating to the right, as shown in Fig. 14.10a. 
We’ll use Newton’s law to analyze the string’s motion and determine the speed of the 
pulse. It’s easiest to do this in a frame of reference moving with the pulse; in that frame, 
the entire string moves leftward with the pulse speed v. At the pulse location,  however, 
the string’s motion deviates from horizontal as it rides up and down over the pulse  
(Fig. 14.10b).

Whatever the pulse shape, a small section at the top forms a circular arc of some radius 
R, as shown in Fig. 14.10c. Then the string right at the top of the pulse undergoes circular 
motion with speed v and radius R; if its mass is m, Newton’s law requires that a force of 
magnitude mv2/R act toward the center of curvature to keep the string on its circular path. 
This force is provided by the difference in the direction of the string tension between the 
two ends of the section; as Fig. 14.10c shows, the tension at each end contributes a down-
ward component F sin u. Then the net force on the segment has magnitude 2F sin u and 
points toward the center of curvature.

Now we make an additional assumption: that the disturbance of the string is small, in 
the sense that the string remains almost horizontal even at the pulse. Then the angle u is 
small, and we can apply the approximation sin u ≃  u. Therefore, the net force on the string 
 section becomes approximately 2Fu. Furthermore, the small-disturbance approximation 
means that the tension doesn’t vary significantly from its undisturbed value, so F in this 
expression is essentially the same F we’re using to characterize the tension throughout the 
string.  Finally, our curved string section forms a circular arc whose length, from Fig. 14.10c, 
is 2uR.  Multiplying by the mass per unit length m gives its mass: m = 2uRm. Now we can 
apply Newton’s law, equating the net force 2Fu to the mass times acceleration:

2Fu =
mv2

R
=

2uRmv2

R
= 2umv2

Solving for the wave speed v then gives

 v = AF
m

 (14.6)
Figure 14.10 A wave pulse moving on a string. 
In (c), each of the diagonal forces shown 
 contributes a downward component F sin u.

v
u

v
u

Fnet
S

F
S

F
S

u

u u

u

A pulse moves 
to the right.

In the pulse’s
reference frame,
the string moves
left, up, and
over the pulse.

The top of the
string undergoes
circular motion.

The length of
the segment 
is 2uR.

The string
tension here
is down and
to the left c

cwhile here
it’s down and
to the right c

cgiving a net 
downward force.

(a)

(b)

(c)

R R

C

PheT: Wave on a String
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248 Chapter 14 Wave Motion

Does this make sense? The greater the tension F, the greater the string’s acceleration, 
and the more rapidly the wave should propagate. The string’s inertia, on the other hand, 
limits the acceleration, and therefore a greater mass per unit length should slow the wave. 
Equation 14.6, with F in the numerator and m in the denominator, reflects both these trends.

We’ve made no assumptions here other than to assume that the disturbance is small. 
Therefore, Equation 14.6 applies to small-amplitude pulses, continuous waves, and wave 
trains of any shape.

ExAMPLE 14.2  Wave Speed and Tension Force: Rock Climbing

A 43-m-long rope of mass 5.0 kg joins two climbers. One climber 
strikes the rope, and 1.4 s later the second climber feels the effect. 
What’s the rope tension?

Interpret We’re asked for the rope tension. Although wave speed 
isn’t mentioned explicitly, we just learned to relate wave speed and 
rope tension. Striking the rope produces a wave, which the second 
climber feels. We’re given the time it takes that wave to propagate 
along the rope.

Develop Equation 14.6, v = 1F/m, gives the relations among rope 
tension, mass per unit length, and wave speed. Our plan is to solve 
for the rope tension, but first we need to find m and v from the given 
information.

evaluate We’re given the rope’s mass m and length L, so its mass 
per unit length is m = m/L. We’re given the time t for the wave to 
travel the rope length L, so the wave speed is v = L/t. Solving 
 Equation 14.6 for F then gives

F = mv2 = am

L
baL

t
b

2

=
mL

t2 =
15.0 kg2143 m2

11.4 s22 = 110 N

assess Is this number reasonable? A typical adult weighs around 
700 N, so the rope is supporting only a small fraction of the lower 
climber’s weight—a reasonable situation. ■

Wave Power
Waves carry energy. For a wave on a string, the vertical component of the tension force 
does work that transfers energy along the string. Figure 14.11 shows that the vertical force 
on the string at the left side of the pulse is approximately -Fu. As we showed in  Chapter 6, 
power—the rate of doing work—is the product of force and velocity, so the power here is 
P = -Fuu, where u is the vertical velocity of the string—not the wave speed. Rather, the 
vertical velocity is the rate of change of the string displacement y. For a simple  harmonic 
wave, y1x, t2 = A cos1kx - vt2. We can differentiate this to get

u =
dy

dt
= Av sin1kx - vt2

where we used the chain rule, differentiating cosine to -sine and then multiplying by 
the derivative, -v, of the cosine’s argument kx - vt. As Fig. 14.11 shows, the tan-
gent of the angle u is the slope, dy/dx, of the string. For small angles, tan u ≃ u so 
u ≃ dy/dx = -kA sin1kx - vt2. Putting these results for u and u in our expression for 
power gives P = -Fuu = FvkA2 sin21kx - vt2. The sine term shows that the power 
fluctuates in space and time. Usually we’re interested in the average power, P = 1

2 FvkA2, 
which follows because the average value of sin2 is 12 (Fig. 14.12). We can give this a more 
physical meaning if we use Equations 14.4 and 14.6 to write k = v/v and F = mv2, with 
v the wave speed. Then we have

 P = 1
2 mv2A2v (14.7)

This equation gives the sensible result that wave power is directly proportional to the 
speed v at which energy moves along the wave.

Wave Intensity
Total power is useful in describing waves confined to narrow structures like strings for 
 mechanical waves or optical fibers for electromagnetic waves. But for waves in three-
dimensional media, like sound in air, it makes more sense to talk about the intensity, 

Figure 14.11 The vertical force component 
does work on the string; for small u, sin u ≃ u, 
so Fy ≃ Fu.

v
u

F
S

u

u cso only the vertical 
force Fy does work.

String is moving 
downward as 
the pulse moves 
to the right c

Fy = -F sinu ≃ -Fu

x

y

Figure 14.12 The function sin2 x swings 
 symmetrically between 0 and 1, so its average 
value is 12.

1
2

1

0 x

si
n2 x
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14.3 Waves on a String 249

or the rate at which the wave carries energy across a unit area perpendicular to the 
wave  propagation. Intensity is thus power per unit area, measured in watts per square  
meter 1W/m22.

Wavefronts are surfaces on which the wave phase is constant—for example, wave 
crests. A plane wave is one whose wavefronts are planes. Since the wave doesn’t spread 
out, its intensity remains constant (Fig. 14.13a). But as waves propagate from a  localized 
source, they spread and their intensity drops. Spherical waves originate from point 
sources and spherical wavefronts spread in all directions. Since the area of a sphere is 
4pr2, the  intensity of a spherical wave decreases as the inverse square of the distance from 
its source:

 I =
P

A
=

P

4pr2  1spherical wave2 (14.8)

Note that energy isn’t lost here; rather, the same energy is spread over ever-larger areas as 
the wave propagates (Fig. 14.13b). Table 14.1 lists some typical wave intensities.

Table 14.1 Wave Intensities

Wave intensity, W/m2

Sound, 4 m from loud rock band 1

Sound, jet aircraft at 50 m 10

Sound, whisper at 1 m 10-10

Light, sunlight at Earth’s orbit 1364

Light, sunlight at Jupiter’s orbit 50

Light, 1 m from typical camera flash 4000

Light, at target of laser fusion experiment 1018

TV signal, 5 km from 50-kW transmitter 1.6 * 10-4

Microwaves, inside microwave oven 6000

Earthquake wave, 5 km from Richter 7.0 quake 4 * 104

Figure 14.13 (a) Plane and (b) spherical waves.

Source

The plane wave doesn't
spread, so its intensity
remains constant.

The spherical wave spreads over
ever-larger areas, so its intensity
decreases.

(a)

(b)

ExAMPLE 14.3 Evaluating Wave Intensity: A Reading Light

Your book is 1.9 m from a 9.2-W LED lamp, and the light is barely adequate for reading. How far 
from a 4.9-W LED would the book have to be to get the same intensity at the page?

Interpret This is a problem about wave intensity, and we identify the LEDs as sources of 
spherical waves.

Develop Equation 14.8, I = P/14pr22, gives the intensity. We want both LEDs to produce the 
same intensity, so we have I = P9.2/14pr9.2

2 2 = P4.9/14pr4.9
2 2.

evaluate We then solve for the unknown distance r40:

r4.9 = r9.2AP4.9

P9.2
= 11.9 m2A4.9 W

9.2 W
= 1.4 m

assess Make sense? Although the 4.9-W LED has only about half the power output, the  decrease 
in distance isn’t as great as you might expect because the intensity depends on the  inverse square 
of the distance. By the way, those energy-efficient LEDs are approximately equivalent to 75-W 
and 40-W incandescent bulbs, respectively. ■

GoT IT? 14.3 Two identical stars are different distances from Earth, and the 
 intensity of the light from the more distant star as received at Earth is only 1% that of the 
closer star. Is the more distant star (a) twice as far away, (b) 100 times as far away, (c) 10 
times as far away, or (d) 110 times as far away?
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250 Chapter 14 Wave Motion

14.4 Sound Waves
Sound waves are longitudinal mechanical waves that propagate through gases, liquids, 
and solids. Most familiar is sound in air. Here the wave disturbance comprises a small 
change in air pressure and density accompanied by a back-and-forth motion of the air 
(Fig. 14.14). The speed of sound in air and other gases depends on the background pres-
sure P (force per unit area) and density r (mass per unit volume):

 v = AgP

r
 (14.9)

where g is a constant characteristic of the gas. For air and other diatomic gases, g is 75; for 
monatomic gases like helium, it’s 53. Sound propagates faster in liquids and solids because 
they’re less compressible.

Sound and the Human Ear
The human ear responds to a wide range of sound intensities and frequencies, as shown 
in Fig. 14.15. Audible frequencies range from around 20 Hz to 20 kHz, although the 
 upper limit drops with age. Figure 14.15 shows that the minimum intensity for sound 
to be  audible increases at high and low frequencies; that’s the reason for the “loudness” 
switch on your stereo system, which boosts lows and highs to make the sound richer at 
low volumes. Dolphins, bats, and other creatures can hear much higher frequencies than 
we humans; bats locate their prey with sound waves at frequencies approaching 100 kHz. 
Medical ultrasound frequencies extend to tens of MHz.

Decibels
Figure 14.15 shows that the human ear responds to an extremely broad range of sound 
intensities, covering some 12 orders of magnitude; that’s why Fig. 14.15 has a logarithmic 
scale. We therefore quantify sound levels using a logarithmic unit called the decibel (dB). 
The sound intensity level b in decibels is defined by

 b = 10 log a I

I0
b  (14.10)

where I is the intensity in W/m2 and I0 = 10-12 W/m2 is a reference level chosen as the 
approximate threshold of hearing at 1 kHz. Since the logarithm of 10 is 1, an increase of 
10 dB corresponds to a factor-of-10 increase in the intensity I. Your ears, however, don’t 
respond linearly, and for intensity levels above about 40 dB, you perceive a 10-dB increase 
as making the sound roughly twice as loud.

Figure 14.14 A sound wave consists of 
 alternating regions of compression (higher 
density and pressure) and rarefaction (lower 
density and pressure) propagating through 
the air.
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Figure 14.15 The human ear responds to sound 
whose intensity and frequency lie within the 
shaded region.
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ExAMPLE 14.4  Decibels: Turn Down the TV!

Your sister is watching TV, the sound blasting at 75 dB. You yell to her 
to turn down the volume, and she lowers the intensity level to 60 dB.  
By what factor has the power dropped?

Interpret This problem is about the relation between power and 
sound intensity level as measured in decibels.

Develop Equation 14.10, b = 10 log1I/I02, relates the decibel level 
to the intensity, or power per unit area. At a fixed distance, the sound 
intensity is proportional to the power from the TV speaker, so in this 
example we can replace I by P in Equation 14.10.

evaluate Call the original 75-dB level b1; then Equation 14.10 
reads b1 = 10 log1P1/P02 = 10 log P1 - 10 log P0, where P1 is the 
corresponding power and P0 is the reference-level power. At the 
turned-down power P2, the equation reads b2 = 10 log P2 - 10 log P0. 
Subtracting our two equations gives

b2 - b1 = 10 log P2 - 10 log P1 = 10 log aP2

P1
b

Therefore ,  log1P2/P12 = 1b2 - b12/10 = 160 - 752/10 = -1.5. 
The answer we want is the ratio P2/P1, and because logarithms and 
exponentials are inverses, we have P2/P1 = 10-1.5 = 0.032.
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GoT IT? 14.4 Your band needs a new guitar amplifier, and the available models 
range from 25 W to 250 W of audio power. Will the sound intensity level for the most 
powerful amplifier compared with the least powerful be (a) 10 times greater, (b) greater by 
2.25 dB, or (c) greater by 1 dB?

14.5 Interference
Figure 14.16 shows two wave trains approaching from opposite directions. Where they 
meet, experiment shows that the net displacement is the sum of the individual displace-
ments. This is true for most waves, at least when the amplitude isn’t too large. Waves 
whose displacements simply add are said to obey the superposition principle.

At the point shown in Fig. 14.16b, the wave crests coincide and so do the troughs. 
The resulting wave is, momentarily, twice as big. This is constructive interference—two 
waves superposing to produce a larger wave displacement. A little later, in Fig. 14.16c, the 
two waves cancel; this is destructive interference. Wave interference occurs throughout 
physics, from mechanical waves to light and even with the quantum-mechanical waves 
that describe matter at the atomic scale. Here we take a quick look at wave interference; 
we’ll consider the interference of light waves in more detail in Chapter 32.

assess Although we worked this problem using Equation 14.10, 
you can often do decibels in your head. Here the intensity level has 
dropped by 15 dB, corresponding to 1.5 orders of magnitude in ac-
tual intensity. So the intensity—and therefore the TV’s power—has 

dropped by a factor of 10-1.5, or 1/1101102. Since 110 is about 3, 
that’s about 1/30. Because you perceive each 10-dB change as a fac-
tor of about 2 in loudness, the reduced volume will sound somewhere 
between one-fourth and one-half as loud as before. ■

Figure 14.16 Wave superposition showing (b) constructive interference and (c) destructive interference.

(b)(a)

(d)(c)

Two waves approach.

Now the waves cancel.
They go their separate ways.

Their crests coincide,
resulting in a larger wave.

Fourier Analysis
The superposition principle lets us build complex wave shapes by superposing simpler 
ones. The French mathematician Jean Baptiste Joseph Fourier (1768–1830) showed that 
any periodic wave can be written as a sum of simple harmonic waves, a process now 
known as Fourier analysis. Figure 14.17 shows a square wave—important, for example, 
as the “clock” signal that sets the speed of your computer—represented as a superposition 
of individual sine waves. Fourier analysis has applications ranging from music to struc-
tural engineering to communications because it helps us understand how a complex wave 
behaves if we know how its harmonic components behave. The mix of Fourier compo-
nents in the waveform from a musical instrument determines the exact sound we hear and 
accounts for the different sounds from different instruments even when they’re playing the 
same note (Fig. 14.18).

Figure 14.17 A square wave built up as a sum of  
simple harmonic waves. In this case the sum has  
the form y1t2 = A sin1vt2 + 1

3  A sin13vt2 +
1
5  A sin15vt2 + g. Only the first three terms 
are shown.

The darker wave here c

 cis the sum of
the 3 lighter waves.

With more terms the sum
approaches the square wave.

APPLICATIon   noise-
Cancelling 
Headphones

Why does the airline passenger in the photo 
look so content? Because he’s wearing noise- 
cancelling headphones. These devices exploit 
interference to actively cancel ambient noise, 
leaving the headphone signal loud and clear. 
Each headphone contains a tiny microphone 
sensing the ambient sound and an amplifier that 
also inverts the phase of the signal, so crests be-
come troughs and vice versa. The phase-inverted 
signal is fed to the headphones along with the 
desired audio. Since the ambient noise deliv-
ered to the headphone is 
inverted—that is, out of 
phase—relative to the 
noise coming directly 
to the ear, the result is 
destructive interference 
that greatly reduces the 
listener’s perception of 
the ambient noise. Peace 
and quiet!

Video Tutor Demo | Out-of-Phase Speakers

PheT: Sound
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Dispersion
When wave speed is independent of wavelength, the simple harmonic components  making 
up a complex waveform travel at the same speed. As a result, the waveform maintains 
its shape. But for some media, wave speed depends on wavelength. Then, individual 
harmonic waves travel at different speeds, and a complex waveform changes shape as it 
moves. This phenomenon is called dispersion and is illustrated in Fig. 14.19. Waves on 
the surface of deep water, for example, have speed given by

 v = A lg

2p
 (14.11)

where l is the wavelength and g the acceleration of gravity. Because v depends on l, the 
waves are dispersive. Dispersion is also important in communications systems; for exam-
ple, dispersion of the square wave pulses carrying digital data sets the maximum lengths 
for wires and optical fibers used in computer networks.

Figure 14.18 (a) An electric guitar plays the note E, producing a complex waveform. (b) Fourier analysis 
shows the relative strengths of the individual sine waves whose sum produces the waveform.

This mix of higher
frequencies determines

the guitar’s unique
sound.
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Figure 14.19 (a) A wave pulse in a 
 nondispersive medium holds its shape as it 
propagates. (b) In a dispersive medium, the 
pulse shape changes.

(a)

(b)

Beats
When two waves of slightly different frequencies superpose, they interfere constructively at 
some points and destructively at others (Fig. 14.20a). Quantitatively, the combined wave is the 
sum of the two individual waves: y1t2 = A cos v1t + A cos v2t. We can express this in a more 
 enlightening form using the identity cos a + cos b = 2 cos31

21a - b24  cos31
21a + b24  

given in Appendix A. Then we have

y1t2 = 2A cos31
21v1 - v22t4  cos31

21v1 + v22t4
The second cosine factor represents a sinusoidal oscillation at the average of the two 
 individual frequencies. The first term oscillates at a lower frequency—half the difference 

ConCEPTUAL ExAMPLE 14.1 Storm Brewing!

It’s a lovely, sunny day at the coast, but large waves, their crests far 
apart, are crashing on the beach. How do these waves tell of a storm at 
sea that may affect you later?

evaluate The phrase “crests far apart” is a clue: It says we’re deal-
ing with long-wavelength waves. Equation 14.11 shows that longer-
wavelength waves on the ocean surface travel faster. Most ocean 
waves are generated by frictional forces between wind and water, so 
there must be strong winds somewhere out at sea. The longest wave-
lengths travel faster, so they reach shore well in advance of the storm.

assess High-surf warnings often go up in advance of a storm, for 
the very reason elucidated in this example. Incidentally, wind isn’t the 
only source of ocean waves; so are earthquakes. But the tsunamis they 

produce are shallow-water waves that don’t obey Equation 14.11. 
You can explore tsunamis further in the Passage Problems.

MakIng the ConneCtIon A storm develops 600 km offshore and 
starts moving toward you at 40 km/h. Large waves with crests 250 m 
apart are your first hint of the storm. How long after you observe these 
waves will the storm hit?

evaluate At 40 km/h, it’s going to take 15 hours for the storm to 
reach shore. Equation 14.11 gives 71 km/h for the wave speed when 
l = 250 m. So the waves took 8.4 hours to reach shore. The storm is 
then 6.6 hours away.

PheT: Fourier: Making Waves

M14_WOLF4752_03_SE_C14.indd   252 17/06/15   4:10 PM



14.5 Interference 253

of the individual frequencies. If we think of the entire term 2A cos31
21v1 - v22t4  as the 

“amplitude” of the higher-frequency oscillation, then this amplitude itself varies with time, 
as Fig. 14.20b shows. Note that there are two amplitude peaks for each cycle of the slow 
oscillation, so the frequency with which the amplitude varies is simply v1 - v2.

For sound waves, interference of two nearly equal frequencies produces intensity vari-
ations called beats; the closer the two frequencies, the longer the period between beats. 
Pilots, for example, synchronize airplane engines by reducing the beat frequency toward 
zero; musicians use the same trick to tune instruments. Beating of electromagnetic waves 
forms the basis for some very sensitive measurements.

Interference in Two Dimensions
Waves propagating in two and three dimensions exhibit a rich variety of interference 
phenomena. Figure 14.21 shows one of the simplest and most important examples—the 
 interference of waves from two point sources oscillating at the same frequency. Points on 
a perpendicular line midway between the sources are equidistant from both sources, and 
therefore waves arrive at this line in phase. Thus, they interfere constructively, producing a 
large amplitude. Some distance from the center line, the waves arrive exactly half a  period 
out of phase. They therefore interfere destructively, producing a nodal line where the wave 
amplitude is very small. Since waves travel half a wavelength in half a period, the nodal 
line occurs where the distances to the two sources differ by half a wavelength. Additional 
nodal lines occur where those distances differ by 1 12 wavelengths, 2 12 wavelengths, and so 
forth. In practice, two-source interference is observable only when the source separation 
is comparable to the wavelength. If it’s much larger, then the regions of constructive and 
destructive interference are so close that they blur together.

Two-source interference also results when plane waves pass through two closely spaced 
apertures that act as sources of circular or spherical wavefronts. Such two-slit interference 
experiments are important in optics and modern physics and are of historical interest be-
cause they were first used to demonstrate the wave nature of light.

Figure 14.20 The origin of beats.

(a)

(b)

Constructive interference here c

cgives 
a large
amplitude.

Figure 14.21 Water waves from two sources 
interfere to produce regions of low and high 
amplitude.

Nodal lines:
destructive
interference

Large amplitude:
constructive
interference

ExAMPLE 14.5 Wave Interference in Two Dimensions: Calm Water

Ocean waves pass through two small openings, 20 m apart, in a 
 breakwater. You’re in a boat 75 m from the breakwater and initially 
midway between the openings, but the water is pretty rough. You row 
33 m parallel to the breakwater and, for the first time, find yourself in 
relatively calm water. What’s the wavelength of the waves?

Interpret This is a problem about wave interference. The water 
is rough at your initial location because constructive interference 
 produces large-amplitude waves. You find calm water at the first nodal 
line, where destructive interference reduces the wave amplitude.

Develop We sketched the situation in Fig. 14.22. We’ve seen that 
the first nodal line occurs when the path lengths from two sources dif-
fer by half a wavelength. So our plan is to calculate the wavelength by 
applying this fact to the distances AP and BP.

evaluate Applying the Pythagorean theorem gives

 AP = 2175 m22 + 143 m22 = 86.5 m

 BP = 2175 m22 + 123 m22 = 78.4 m

The wavelength is twice the difference between these lengths, so

l = 21AP - BP2 = 2186.5 m - 78.4 m2 = 16 m

assess We expect two-source interference to be obvious when the 
source spacing is comparable to the wavelength. Here the 20-m spac-
ing is indeed comparable to the 16-m wavelength, so our answer 
makes sense. ■

Figure 14.22 Calm water at P implies that paths AP and BP differ by half a 
wavelength.

PheT: Wave Interference
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GoT IT? 14.5 Light shines through two small holes into a dark room, and a screen 
is mounted opposite the holes. The hole spacing is comparable to the wavelength of the 
light. Looking at the screen, will you see (a) two bright spots opposite the two holes or  
(b) a pattern of light and dark patches? Explain.

14.6 Reflection and Refraction
You shout in a mountain valley and hear echoes. You look in a mirror and see your 
 reflection. A metal screen reflects microwaves to keep them in your oven. A physician’s 
ultrasound probes your body, reflecting off internal structures. A bat uses reflected sound 
to home in on its prey. All these are examples of wave reflection.

You can see that wave reflection must occur when a wave hits a medium in which it 
can’t propagate; otherwise, where would the wave energy go? The figures below detail 
the reflection process for waves on a stretched string, in the two cases where the string  
end is clamped at a rigid wall (Fig. 14.23) or, in contrast, free to move up and down  
(Fig. 14.24). In the first case, the wave amplitude must remain zero at the end, so the 
incident and reflected pulses interfere destructively and the reflected wave is therefore 
inverted. In the second case, the displacement is a maximum at the free end, and the 
 reflected wave is not inverted.

Figure 14.23 Reflection of a wave pulse at the 
rigidly clamped end of string.

Here comes 
the pulse.

End is clamped.

It’s beginning
to re�ect.

Incident and

re�ected pulses
cancel.

The re�ected
pulse emerges;

it’s inverted.

And away it goes.

Figure 14.24 Reflection of a wave pulse 
at a free end.

Here comes the pulse.

End is free to slide.

Now the
interference

is constructive c

cand the pulse
emerges upright.

And away it goes.

Between the extremes of a rigid wall and a perfectly free end lies the case of one string 
connected to another with different mass per unit length. In this case, some wave energy 
is transmitted to the second string and some is reflected back along the first (Fig. 14.25).

Figure 14.25 Partial reflection occurs at the 
junction between two strings.

The incoming wave travels
along the lighter string.

Because the string on the right is
heavier, the re�ected wave is inverted.
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The phenomenon of partial reflection and transmission at a junction of strings has its 
analog in the behavior of all sorts of waves at interfaces between different media. For 
example, shallow-water waves are partially reflected if the water depth changes abruptly. 
Light incident on even the clearest glass undergoes partial reflection because of the 
 difference in the light-transmitting properties of air and glass (much more on this in 
 Chapter 30). Partial reflection of ultrasound waves at the interfaces of body tissues with 
different densities makes ultrasound a valuable medical diagnostic.

When waves strike an interface between two media at an oblique angle and are capable 
of propagating in the second medium, the phenomenon of refraction occurs. In refraction, 
the direction of wave propagation changes because of a difference in wave speed between 
the two media (Fig. 14.26). We’ll discuss the mathematics of refraction in Chapter 30.

Figure 14.26 Waves in shallow water refract at the 
interface between two different water depths.

APPLICATIon Probing the Earth

Waves propagating and reflecting inside the Earth help geologists deduce the 
planet’s interior structure. That’s because Earth’s interior supports two types of 
waves. Longitudinal waves, also called P waves, propagate in both solids and 
liquids. Transverse, or S waves, propagate only in solids. Earthquakes generate S 
waves that propagate throughout the solid Earth. But as the figure suggests, they 
can’t get through the liquid outer core, so they leave a “shadow” where seismo-
graphs don’t record any S-wave activity. This effect is our clearest evidence that 
Earth has a liquid core.

P waves, however, do propagate through the liquid core. But they undergo 
partial reflections farther in—evidence for an abrupt change in core density. 
Careful analysis shows that wave speeds in the inner core are consistent with its 
being solid—giving our planet the solid–liquid–solid structure suggested in the 
figure.

Studies of Earth’s large-scale structure generally use earthquake waves, al-
though inner-core evidence also comes from underground nuclear explosions. At 
a smaller scale, explosive charges or machines that “thump” the ground produce 
waves whose reflections from rock layers down to a few kilometers depth help 
reveal oil and gas deposits. S-wave shadow zone

S waves recorded

Earthquake epicenter

105°105°

Solid

Liquid

S waves recorded

GoT IT? 14.6 You’re holding one end of a taut rope, and you can’t see the other 
end. You tweak the rope to give it an upward displacement, sending a pulse down the rope. 
A while later, a pulse comes back toward you. Its displacement is upward, but with con-
siderably lower amplitude than the initial displacement you provided. Assuming there’s no 
energy loss in the rope itself, you can conclude that the far end of the rope is (a) attached 
to a rigid anchor point, (b) attached in such a way that it’s free to slide up and down,  
(c) tied to another rope with less mass per unit length, or (d) tied to another rope with more 
mass per unit length.

14.7 Standing Waves
Imagine a string clamped tightly at both ends. Waves propagate back and forth by reflecting 
at the ends. But because the ends are clamped, the wave displacement at each end must al-
ways be zero. Only certain waves can satisfy this requirement; as Fig. 14.27 suggests, they’re 
waves for which an integer number of half-wavelengths just fits the string’s length L.

The waves in Fig. 14.27 are standing waves, so called because they  essentially 
stand still, confined to the length of the string. At each point the string executes  simple 
 harmonic  motion perpendicular to its undisturbed state. We can describe  standing 
waves  mathematically as arising from the superposition of two waves propagating 
in  opposite directions and  reflecting at the ends of the string. If we take the x-axis to 
 coincide with the string, then we can write the string displacements in two such waves as 
y11x, t2 = A cos1kx - vt2 for the wave propagating in the +x-direction (recall Equation 14.3)  

PheT: Wave on a String
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256 Chapter 14 Wave Motion

and y21x, t2 = -A cos1kx + vt2 for the wave propagating in the -x-direction. (The minus 
sign in y2 accounts for the phase change that occurs on reflection at a rigid boundary, as you 
saw in Fig. 14.23.) Their superposition is then

y1x, t2 = y1 + y2 = A3 cos1kx - vt2 -  cos1kx + vt24
Appendix A lists a trig identity for the difference of two cosines:

cos a - cos b = -2 sin31
21a + b24  sin31

21a - b24
Applying this identity with a = kx - vt and b = kx + vt gives

 y1x, t2 = 2A sin kx sin vt (14.12)

Equation 14.12 is the mathematical description of a standing wave, and it affirms 
our qualitative description that each point on the string simply oscillates up and down. 
Pick any point—that is, any fixed value of x—and Equation 14.12 does indeed describe 
 simple harmonic motion in the y-direction, through the factor sin vt. The amplitude of that 
 motion depends on the point x you’ve chosen, and is given by the factor that multiplies  
sin vt—namely, 2A sin kx.

Because the string is clamped at both ends, the amplitude at the ends must be zero. Our 
amplitude factor 2A sin kx does give y = 0 in Equation 14.12 at x = 0, but what about at 
x = L? Here we’ll get zero only if sin kL = 0—and that requires kL to be a multiple of p. 
So we must have kL = mp, where m is any integer. But the wave number k is related to 
the wavelength l by k = 2p/l. Our condition kL = mp can then be written

 L =
ml

2
, m = 1, 2, 3,  p (14.13)

This is just the condition we already guessed from Fig. 14.27—namely, that the string 
length L be an integer number of half-wavelengths.

Given a particular string length L, Equation 14.13 limits the allowed standing waves 
on the string to a discrete set of wavelengths. Those allowed waves are called modes or 
harmonics, and the integer m is the mode number. The m = 1 mode is the fundamental 
and is the longest-wavelength standing wave that can exist on the string. The higher modes 
are overtones.

Figure 14.27 shows that there are points where the string doesn’t move at all. These 
are called nodes. Points where the amplitude of the wave displacement is a maximum, in 
contrast, are antinodes.

When a string is clamped rigidly at one end but is free at the other, its clamped end is 
a node but its free end is an antinode. Figure 14.28 shows that the string length must then 
be an odd multiple of a quarter-wavelength—a result that you can also get from Equation 
14.12 by requiring sin kL = 1 to give maximum amplitude at x = L.

Standing-Wave Resonance
We’ve discussed standing waves in terms of constraints on the wavelength l rather than on 
the frequency f. But because waves on a string have a fixed speed v, and because fl = v, 
Equation 14.13’s discrete set of allowed wavelengths corresponds to a set of discrete 
frequencies. The lowest allowed frequency, the fundamental, corresponds to the longest 
wavelength; the overtones have higher frequencies.

Because a stretched string can oscillate in any of its allowed frequencies, the resonant 
behavior that we discussed in Chapter 13 can occur close to any of those frequencies. 
Buildings and other structures, in analogy with our simple string, support a variety of 
standing-wave modes. For example, a skyscraper is like the string of Fig. 14.28, with 
its base clamped to Earth but its top free to swing. Engineers must be sure to identify 
all  possible modes of structures they design in order to avoid harmful resonances. The 
 disastrous oscillations of the Tacoma Narrows Bridge shown in Fig. 13.26 are actually 
torsional standing waves.

Figure 14.27 Standing waves on a string 
clamped at both ends; shown are the funda-
mental and four overtones.
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Figure 14.28 When one end of the string is fixed 
and the other free, the string can  accommodate 
only an odd number of  quarter-wavelengths.
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other Standing Waves
Standing waves are common phenomena. Water waves in confined spaces exhibit standing 
waves, and entire lakes can develop very slow oscillations corresponding to low-mode-
number standing waves. Standing electromagnetic waves occur inside closed metal cavi-
ties; in microwave ovens the nodes of the standing-wave pattern would result in “cold” 
spots were not either the food or the source of microwaves kept in motion. Standing sound 
waves in the Sun help astrophysicists probe the solar interior. And even atomic structure 
can be understood in terms of standing waves associated with electrons.

Musical Instruments
Our analysis of standing waves on strings applies directly to stringed musical instruments 
such as violins, guitars, and pianos. Standing-wave vibrations in the instrument strings are 
communicated to the air as sound waves, usually through the intermediary of a sounding 
box or electronic amplifiers. For instruments in the violin family, the body of the instru-
ment itself undergoes standing-wave vibrations, excited by the vibration of the string, that 
establish each individual instrument’s peculiar sound quality (Fig. 14.29). Similarly, the 
stretched membranes of drums exhibit a variety of standing-wave patterns representing the 
allowed modes on these two-dimensional surfaces.

Wind instruments generate standing sound waves in air columns, as suggested in Fig. 
14.30. These must be open at one end to allow sound to escape; in many instruments the 
column is effectively open at both ends. An open end has its pressure fixed at atmos-
pheric pressure; it is therefore a pressure node and thus, from Fig. 14.14, a displacement 
antinode. As a result, an instrument open at one end supports odd-integer multiples of a 
quarter-wavelength (Fig. 14.30a), in analogy with Fig. 14.28. An instrument open at both 
ends, on the other hand, supports integer multiples of a half-wavelength (Fig. 14.30b).

Figure 14.29 Standing waves on a violin, im-
aged using holographic interference of laser 
light waves.

Figure 14.30 Standing waves in wind instruments: (a) open at one end and (b) open 
at both ends.

(a)

(b)

(a)

(b)

ExAMPLE 14.6  Standing-Wave Modes: The Double Bassoon

The double bassoon is the lowest-pitched instrument in a normal or-
chestra. The instrument is “folded” to achieve an effective air column 
5.5 m long, and it acts like a pipe open at both ends. What’s the fre-
quency of the double bassoon’s fundamental note? Assume the sound 
speed is 343 m/s.

Interpret This is a problem about standing-wave modes in a hollow 
pipe open at both ends.

Develop Figure 14.30b applies to a pipe that’s open at both ends. So 
our sketch of the fundamental mode in Fig. 14.31 looks like the upper 
of the two pictures in Fig. 14.30b. We can find the wavelength and 
then use Equation 14.1, v = lf, to get the frequency.

evaluate The wavelength is twice the instrument’s 5.5-m length, or 
11 m. Then Equation 14.1 gives

f =
v

l
=

343 m/s

11 m
= 31 Hz

assess This frequency is the note B0, which lies near the low- 
frequency limit of the human ear. Like most wind instruments, the 
bassoon has a number of holes that, when uncovered, alter the posi-
tions of the antinodes and therefore change the pitch. ■

Figure 14.31 Sketch for Example 14.6.

From
here c

cto here
is half a

wavelength.
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258 Chapter 14 Wave Motion

GoT IT? 14.7 A string 1 m long is clamped tightly at one end and is free to slide 
up and down at the other. Which of the following are possible wavelengths for standing 
waves on this string: 45 m, 1 m, 43 m, 32 m, 2 m, 3 m, 4 m, 5 m, 6 m, 7 m, 8 m?

14.8 The Doppler Effect and Shock Waves
The speed v of a wave is its speed relative to the medium through which it propagates.  
A point source at rest in the medium radiates waves uniformly in all directions  
(Fig. 14.32). But when the source moves, wave crests bunch up in the direction toward 
which the source is moving, resulting in a decreased wavelength (Fig. 14.33). In the op-
posite direction, wave crests spread out and the wavelength increases.

The wave speed is determined by the properties of the medium, so it doesn’t change 
with source motion. Thus the equation v = lf  still holds. This means that an observer in 
front of the moving source, where l is smaller, experiences a higher wave frequency as 
more wave crests pass per unit time. Similarly, an observer behind the source experiences 
a lower frequency. This change in wavelength and frequency from a moving source is the 
Doppler effect or Doppler shift, after the Austrian physicist Christian Johann Doppler 
(1803–1853).

Figure 14.32 Circular waves from a source at 
rest with respect to the medium.

l

Figure 14.33 Origin of the Doppler effect, shown for a source moving with half the 
wave speed.

1
2

Source

A perceives shorter
wavelength,
higher frequency.

B perceives longer
wavelength,
lower frequency.

u =   v

B A
l′approachl′recede

To analyze the Doppler effect, let l be the wavelength measured when the source is 
stationary, and l′ the wavelength when the source is moving at speed u through a medium 
where the wave speed is v. At the source, the time between wave crests is the wave period T,  
and a wave crest moves one wavelength l in this time. But during the same time T, the 
moving source covers a distance uT, after which it emits the next wave crest. So the 
distance between wave crests, as seen by an observer in front of the moving source, is 
l′ = l - uT. Writing T = l/v, we get

 l′ = l - u 
l

v
= l a1 -

u
v
b  1source approaching2 (14.14a)

The situation is similar in the direction opposite the source motion, except that now the 
wavelength increases by the amount lu/v, giving

 l′ = l a1 +
u
v
b  1source receding2 (14.14b)

We can recast these expressions in terms of frequency using the relations l = v/f  and 
l′ = v/f  ′, where f  ′ is the frequency of waves from the moving source as measured by an 
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14.8 The Doppler Effect and Shock Waves 259

observer at rest in the medium. Substituting these relations in our expressions for l′ and 
then solving for f ′ gives

 f ′ =
f

1 {  u/v
  1Doppler shift, moving source2 (14.15)

for the Doppler-shifted frequency, where the +  and -  signs correspond to receding and 
approaching sources, respectively.

You’ve probably experienced the Doppler effect for sound when standing near a high-
way. A loud truck approaches with a high-pitched sound “aaaaaaaaaaa.” As it passes, the 
pitch drops abruptly: “aaaaaaaaeioooooooooo,” and stays low as the truck recedes. Practical 
uses of the Doppler effect are numerous. The Doppler shift in reflected ultrasound measures 
blood flow and fetal heartbeat. Police radar uses the Doppler shift of high-frequency radio 
waves reflected from moving cars. The Doppler shift of starlight reveals stellar motions, and 
Doppler-shifted light from distant galaxies is evidence that our entire universe is expanding.

ExAMPLE 14.7  Doppler Effect: The Wrong note

A car speeds down the highway with its stereo blasting. An observer with perfect pitch is 
 standing by the roadside and, as the car approaches, notices that a musical note that should be G 
1f = 392 Hz2 sounds like A (440 Hz). How fast is the car moving?

Interpret This problem is about the Doppler effect in sound from a moving source.

Develop Equation 14.15, f ′ = f /11 {  u/v2, relates the original and shifted frequencies to the 
source speed u, so our plan is to solve this equation for u. We’ll use the minus sign because the 
source is approaching. We’ll also need the sound speed v, which Example 14.6 gave as 343 m/s.

evaluate Solving Equation 14.15 for u gives

u = v a1 -
f

f ′
b = 1343 m/s2a1 -

392 Hz

440 Hz
b = 37.4 m/s

assess Our answer—some 134 km/h or 84 mi/h—seems reasonable for a speeding car, though 
not a particularly safe speed! And it’s a little more than 10% of the sound speed, consistent with 
the roughly 10% change in the sound frequency. ■

Moving observers
A Doppler shift in frequency, but not wavelength, also occurs when a moving observer 
 approaches a stationary source—meaning a source at rest with respect to the wave 
 medium. An observer moving toward a stationary source passes wave crests more often 
than would happen if the observer were at rest, and thus measures a shorter wave period 
and therefore a higher frequency. The result, as you can show in Problem 78, is a shifted 
frequency given by

 f ′ = f  a1 {  
u
v
b  1Doppler shift, moving observer2 (14.16)

with the positive sign for an observer approaching the source and the negative sign for 
an observer receding. For observer velocities u small compared with the wave speed v, 
 Equations 14.15 and 14.16 give essentially the same results.

Waves from a stationary source that reflect from a moving object undergo a Doppler 
shift twice. First, because the frequency as received at the reflecting object is shifted, 
according to Equation 14.16, due to the object’s motion relative to the source. Then a 
stationary observer sees the reflected waves as coming from a moving source, so there’s 
another shift, this time given by Equation 14.15. Police radar and other Doppler-based 
speed measurements make use of this double Doppler shift that occurs on reflection.
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260 Chapter 14 Wave Motion

The Doppler Effect for Light
Although light and other electromagnetic waves do not require a material medium, they, 
too, are subject to the Doppler shift. Both Doppler formulas we derived here apply to elec-
tromagnetic waves, but only as approximations when the relative speed between source 
and observer is much lower than the speed of light.

The Doppler shift for electromagnetic waves is the same whether it’s the source that 
moves or the observer. This reflects a profound fact at the root of Einstein’s relativity: that 
“stationary” and “moving” are meaningful only as relative terms. Electromagnetic waves, 
unlike mechanical waves, do not require a medium—and therefore terms such as “station-
ary source” and “moving observer” are meaningless. All that matters is the relative motion 
between source and observer. We’ll explore this point further in Chapter 33.

Shock Waves
Equation 14.14a suggests that wavelength goes to zero if a source approaches at exactly 
the wave speed. This happens because wave crests can’t get away from the source, so they 
pile up just ahead of it to form a large-amplitude wave called a shock wave (Fig. 14.34). 
When the source moves faster than the wave speed, waves pile up on a cone whose half-
angle is given by sin u = v/u, as shown. The ratio u/v is called the Mach number, and the 
cone angle is the Mach angle.

Figure 14.34 Shock waves form when the source speed u exceeds the wave speed v.

v
u

u
u

This is the Mach angle. Its sine
is vT>uT, or v>u.

Right now the source is here,
about to emit a wave crest.

This is the distance uT that the
source moved in one period.

Here’s where the source 
was one wave period ago, 
when it emitted the circular 
wave crest shown.Here’s where the source was

two wave periods ago. The
crest it emitted then has had
more time to expand outward,
so it's larger.

This is the distance vT that the
wave crest moved in one period.

Wave crests from all source 
locations pile up along this 
line, making a conical 
shock wave.

Figure 14.35 (a) A shock wave trails from a 
supersonic aircraft. The plane is flying low over 
the ocean, and the humid air condenses at the 
shock, making it  visible. (b) The wake trailing 
from this boat is also a shock wave that arises 
because the boat is moving faster than the 
speed of water waves.

Shock waves occur in a wide variety of physical situations (Fig. 14.35). Sonic booms 
are shock waves from supersonic aircraft. The bow wave of a boat is a shock wave on 
the water surface. On a much larger scale, a huge shock wave forms in space as the solar 
wind—a high-speed flow of particles from the Sun—encounters Earth’s magnetic field.

GoT IT? 14.8 In Fig. 14.35, which is moving faster in relation to the wave speed in 
the medium through which they’re traveling, the airplane or the boat?
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Wave period is the time for one complete 
wave cycle. Period and frequency are 
 inverses, and wavelength l, period T or 
frequency f, and wave speed v are all re-
lated:

v =
l

T
= lf

Chapter 14 Summary
Big Idea

Waves are the big idea here. A wave is a propagating disturbance that carries 
energy but not matter. Waves are characterized by their amplitude, wavelength, 
and speed. They can be longitudinal or transverse. Amplitude

A

Speed vWavelength
l

l

Transverse waveLongitudinal wave

Key Concepts and Equations

A simple harmonic wave is sinusoidal in 
shape. The wave disturbance is a function of 
position and time and is most simply described 
in terms of its wave number k and angular 
frequency v:

y1x, t2 = A cos1kx - vt2
They’re related to wavelength and period by

k =
2p

l
  and  v =

2p

T

W
av

e 
di

st
ur

ba
nc

e,
 y

Position, x

A l = 2p>k

T = 2p>v

Time, t

Wave disturbance y(x) at �xed time t = 0

Wave disturbance y(t) at �xed position x = 0

A

Wave intensity is the power per unit area carried by the wave: I = P/A. For a spherical wave that spreads in all directions from a localized source, 
intensity decreases as the inverse square of the distance from the source: I = P/14pr22.

Applications

Wave speed is a characteristic of the medium.

Transverse waves on strings: v = AF
m

Longitudinal sound waves in a gas: v = AgP

r
, about 343 m/s in air 

under standard conditions

Surface waves in deep water: v = A lg

2p

Standing waves on strings
Clamped at both ends, string length is an integer multiple of a half-
wavelength: L = ml/2

Nodes

m = 2; L = l shown

Clamped at one end, string length is an odd-integer multiple of a quarter- 
wavelength:

3
4L =   l shown

Nodes

The Doppler effect is a frequency and/or wave-
length shift due to the motion u of an observer or 
source relative to the medium with wave speed v.

Moving source: f ′ =
f

11 { u/v2,+  for receding, 

-  for approaching; l also changes

Moving observer: f ′ = f11 { u/v2, +  for ap-
proaching, -  for receding; no change in l

B A

Moving source
Shock waves occur when a wave source 1speed u2 
moves through a medium at greater than the wave 
speed 1v2.

v
u

u
u
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262 Chapter 14 Wave Motion

Section 14.2 Wave Math
20. An ocean wave has period 4.1 s and wavelength 10.8 m. Find its 

(a) wave number and (b) angular frequency.
21. Find the (a) amplitude, (b) wavelength, (c) period, and 

(d) speed of a wave whose displacement is given by 
y = 1.3 cos10.69x + 31t2, where x and y are in centimeters and 
t in seconds. (e) In which direction is the wave propagating?

22. Ultrasound used in a medical imager has frequency 4.86 MHz 
and wavelength 0.313 mm. Find (a) the angular frequency,  
(b) the wave number, and (c) the wave speed.

23. A simple harmonic wave of wavelength 18.7 cm and amplitude 
2.34 cm is propagating in the negative x-direction at 38.0 cm/s. 
Find its (a) angular frequency and (b) wave number. (c) Write 
a mathematical expression describing the displacement y of this 
wave (in centimeters) as a function of position and time. Assume 
the maximum displacement occurs when t = 0.

24. Analysis of waves in shallow water (depth much less than wave-
length) yields the following wave equation:

02y

0x2 =
1

gh
 
02y

0t2

where h is the water depth and g the gravitational acceleration. 
Give an expression for the wave speed.

Section 14.3 Waves on a String
25. The main cables supporting New York’s George Washington 

Bridge have a mass per unit length of 4100 kg/m and are under 
250-MN tension. At what speed would a transverse wave propa-
gate on these cables?

26. A transverse wave 1.2 cm in amplitude propagates on a string; 
its frequency is 44 Hz. The string is under 21-N tension and has 
mass per unit length 15 g/m. Determine its speed.

27. A transverse wave with 3.0-cm amplitude and 75-cm wavelength 
propagates at 6.7 m/s on a stretched spring with mass per unit 
length 170 g/m. Find the spring tension.

28. A rope is stretched between supports 18.3 m apart; its tension is 
78.6 N. If one end of the rope is tweaked, the resulting distur-
bance reaches the other end 585 ms later. Find the rope’s mass.

29. A rope with 280 g of mass per meter is under 550-N tension. 
Find the average power carried by a wave with frequency 3.3 Hz 
and amplitude 6.1 cm propagating on the rope.

Section 14.4 Sound Waves
30. Show that 1P/r from Equation 14.9 has the units of speed.
31. Find the sound speed in air under standard conditions with pres-

sure 101 kN/m2 and density 1.20 kg/m3.
32. Timers in sprint races start their watches when they see smoke 

from the starting gun, not when they hear the sound. Why? How 
much error would be introduced by timing a 100-m race from the 
sound of the gun?

33. The factor g for nitrogen dioxide 1NO22 is 1.29. Find the sound 
speed in NO2 at 4.8 * 104@N/m2 pressure and 0.35@kg/m3 density.

34. A gas with density 1.0 kg/m3 and pressure 81 kN/m2 has sound 
speed 368 m/s. Are the gas molecules monatomic or  diatomic?

35. Divers in an underwater habitat breathe a special mixture of oxy-
gen and neon to prevent the possibly fatal effects of nitrogen in 
ordinary air. With pressure 6.2 * 105 N/m2 and density 4.5 kg/m3, 

BIo

BIo

For thought and Discussion
 1. What distinguishes a wave from an oscillation?
 2. Red light has a longer wavelength than blue light. Compare their 

frequencies.
 3. Consider a light wave and a sound wave with the same wave-

length. Which has the higher frequency?
 4. As a wave propagates on a string, the string moves back and forth 

sideways. Is the string speed related to the wave speed? Explain.
 5. If you doubled the tension in a string, what would happen to the 

speed of waves on the string?
 6. A heavy cable is hanging vertically, its bottom end free. How 

will the speed of transverse waves near the top and bottom of the 
cable compare? Why?

 7. The intensity of light from a localized source decreases as the 
inverse square of the distance from the source. Does this mean 
that the light loses energy as it propagates?

 8. Medical ultrasound uses frequencies around 107 Hz, far above the 
range of the human ear. In what sense are these waves “sound”?

 9. If you double the pressure of a gas while keeping its density the 
same, what happens to the sound speed?

10. Water is about a thousand times more dense than air, yet the 
speed of sound in water is greater than in air. Why might this be?

11. If you place a perfectly clear piece of glass in perfectly clear 
 water, you can still see the glass. Why?

12. When a wave source moves relative to the medium, a stationary 
observer measures changes in both wavelength and frequency. 
But when the observer moves and the source is stationary, only 
the frequency changes. Why the difference?

13. Why can a boat easily produce a shock wave on the water  surface, 
while only a very high-speed aircraft can produce a sonic boom?

exercises and problems
Exercises

Section 14.1 Waves and Their Properties
14. Ocean waves with 18-m wavelength travel at 5.3 m/s. What’s 

the time interval between wave crests passing a boat moored at a 
fixed location?

15. Ripples in a shallow puddle propagate at 34 cm/s. If the wave 
frequency is 5.2 Hz, find (a) the period and (b) the wavelength.

16. An 89.5-MHz FM radio wave propagates at the speed of light. 
What’s its wavelength?

17. Calculate the wavelengths of (a) a 1.0-MHz AM radio wave,  
(b) a channel 9 TV signal (190 MHz), (c) a police radar (10 
GHz), (d) infrared radiation from a hot stove 14 * 1013 Hz2,  
(e) green light 16.0 * 1014 Hz2, and (f) 1.0 * 1018@Hz X rays. All 
are electromagnetic waves that propagate at 3.0 * 108 m/s.

18. A seismograph located 1250 km from an earthquake detects seis-
mic waves 5.12 min after the quake occurs. The seismograph os-
cillates in step with the waves, at 3.21 Hz. Find the wavelength.

19. Medical ultrasound waves travel at about 1500 m/s in soft tissue. 
Higher frequencies provide clearer images but don’t penetrate to 
deeper organs. Find the wavelengths of (a) 8.0-MHz ultrasound 
used in fetal imaging and (b) 3.5-MHz ultrasound used to image 
an adult’s kidneys.

BIo

BIo
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Exercises and Problems 263

in this wave train, in terms of the string tension F, the wave am-
plitude A, and the wavelength l.

50. A loudspeaker emits energy at the rate of 50 W, spread in all di-
rections. Find the intensity of sound 18 m from the speaker.

51. Light intensity 3.3 m from a lightbulb is 0.73 W/m2. Find the 
bulb’s power output, assuming it radiates equally in all directions.

52. Light emerges from a 5.0-mW laser in a beam 1.0 mm in diameter. 
The beam shines on a wall, producing a spot 3.6 cm in diameter. 
What is the beam’s intensity (a) at the laser and (b) at the wall?

53. Two waves have the same angular frequency v, wave number k, 
and amplitude A, but they differ in phase: y1 = A cos1kx - vt2 
and y2 = A cos1kx - vt + f2. Show that their superposition is 
also a simple harmonic wave, and determine its amplitude as a 
function of the phase difference f.

54. A wire is under 32.8-N tension, carrying a wave described by 
y = 1.75 sin10.211x - 466t2, where x and y are in centimeters 
and t is in seconds. What are (a) the wave amplitude, (b) the 
wavelength, (c) the wave period, (d) the wave speed, and (e) the 
power carried by the wave?

55. A spring of mass m and spring constant k has an unstretched 
length L0. Find an expression for the speed of transverse waves 
on this spring when it’s been stretched to a length L.

56. When a 340-g spring is stretched to a total length of 40 cm, it 
supports transverse waves propagating at 4.5 m/s. When it’s 
stretched to 60 cm, the waves propagate at 12 m/s. Find (a) the 
spring’s unstretched length and (b) its spring constant.

57. At a point 15 m from a source of spherical sound waves, you 
measure the intensity 750 mW/m2. How far do you need to walk, 
directly away from the source, until the intensity is 270 mW/m2?

58. Figure 14.38 shows two observers 20 m apart on a line that con-
nects them to a spherical light source. If the observer nearer the 
source measures a light intensity 50% greater than the other ob-
server, how far is the nearer observer from the source?

20 m x = ?

Figure 14.38 Problem 58

59. An ideal spring is stretched to a total length L1. When that length 
is doubled, the speed of transverse waves on the spring triples. 
Find an expression for the unstretched length of the spring.

60. Show that the time it takes a wave to propagate up the cable in 
Problem 48 is t = 21L/g, where L is the cable length.

61. You see an airplane 5.2 km straight overhead. Sound from the 
plane, however, seems to be coming from a point back along 
the plane’s path at 35° to the vertical. What’s the plane’s speed, 
 assuming an average sound speed of 330 ms?

62. What are the intensities in W/m2 of sound with intensity levels of 
(a) 65 dB and (b) -5 dB?

63. Show that a doubling of sound intensity corresponds to approxi-
mately a 3-dB increase in the decibel level.

64. Sound intensity from a localized source decreases as the inverse 
square of the distance, according to Equation 14.8. If the distance 
from the source doubles, what happens to (a) the intensity and  
(b) the decibel level?

65. At 2.0 m from a localized sound source you measure the intensity 
level as 75 dB. How far away must you be for the perceived loud-
ness to drop in half (i.e., to an intensity level of 65 dB)?

66. The A-string (440 Hz) on a piano is 38.9 cm long and is clamped 
at both ends. If the string tension is 667 N, what’s its mass?

67. Show that the standing-wave condition of Equation 14.13 is 
equivalent to the requirement that the time it takes a wave to 

CH

CH

CH

the effective g value for the mixture is 1.61. Find the frequency 
in this mixture for a 50-cm-wavelength sound wave, and com-
pare with its frequency in air under normal conditions.

Section 14.5 Interference
36. You’re flying in a twin-engine turboprop aircraft, with its two 

propellers turning at 985 and 993 rpm, respectively. How often to 
you hear a peak in the engine sound?

37. What’s the wavelength of the ocean waves in Example 14.5 if the 
calm water you encounter at 33 m is the second calm region on 
your voyage from the center line?

Section 14.7 Standing Waves
38. A 2.0-m-long string is clamped at both ends. (a) Find the longest-

wavelength standing wave possible on this string. (b) If the wave 
speed is 56 m/s, what’s the lowest standing-wave frequency?

39. When a stretched string is clamped at both ends, its fundamental 
frequency is 140 Hz. (a) What’s the next higher frequency? If the 
same string, with the same tension, is now clamped at one end 
and free at the other, what are (b) the fundamental and (c) the 
next higher frequency?

40. A string is clamped at both ends and tensioned until its funda-
mental frequency is 85 Hz. If the string is then held rigidly at its 
midpoint, what’s the lowest frequency at which it will vibrate?

41. A crude model of the human vocal tract treats it as a pipe closed at 
one end. Find the effective length of a vocal tract whose fundamen-
tal tone is 620 Hz.Take Vsound = 354 m/s at body temperature.

Section 14.8 The Doppler Effect and Shock Waves
42. A car horn emits 380-Hz sound. If the car moves at 17 m/s with 

its horn blasting, what frequency will a person standing in front 
of the car hear?

43. A fire station’s siren is blaring at 85 Hz. What’s the frequency 
perceived by a firefighter racing toward the station at 120 km/h?

44. A fire truck’s siren at rest wails at 1400 Hz; standing by the road-
side as the truck approaches, you hear it at 1600 Hz. How fast is 
the truck going?

45. Red light emitted by hydrogen atoms at rest in the laboratory 
has wavelength 656 nm. Light emitted in the same process on 
a distant galaxy is received at Earth with wavelength 708 nm. 
Describe the galaxy’s motion relative to Earth.

Problems
46. Figure 14.36 shows a simple harmonic wave at time t = 0 and 

later at t = 2.6 s. Write a mathematical description of this wave.

t = 0 s

2 4 6 8 10 12 14 16
x (cm)

t = 2.6 s

1.5

y 
(c

m
)

1
0.5

0
-0.5
-1

-1.5

Figure 14.36 Problem 46

47. Transverse waves propagate at 18 m/s on a string under 14-N  tension. 
What will be the wave speed if the tension is increased to 40 N?

48. A uniform cable hangs vertically under its own weight. Show 
that the speed of waves on the cable is given by v = 1yg, where 
y is the distance from the  bottom of the cable.

49. Figure 14.37 shows a wave 
train consisting of two sine 
wave cycles propagating 
along a string. Obtain an ex-
pression for the total energy 

BIo

CH
l

A

Figure 14.37 Problem 49
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264 Chapter 14 Wave Motion

quantity which, when you plot intensity against it, should give a 
straight line. Make your plot, determine the best-fit line, and use 
its slope to report the total sound power.

Distance (m) 1000 1200 1500 2000 3000 4000

Sound intensity 
level (dB)

80.7 79.4 76.9 74.2 71.6 68.8

Passage Problems
Tsunamis are ocean waves generally produced when earthquakes suddenly 
displace the ocean floor, and with it a huge volume of water. Unlike ordi-
nary waves on the ocean surface, a tsu-
nami involves the entire water column, 
from surface to bottom. To a tsunami, the 
ocean is shallow—and that makes tsuna-
mis shallow-water waves, whose speed 
is v = 1gd, where d is the water depth 
and g the gravitational acceleration. Tsu-
namis can travel thousands of kilometers 
across an ocean to reach the shore with 
their initial energy nearly intact; when 
they do, they can cause massive damage 
and loss of life (Fig. 14.39).

81. As a tsunami approaches shore, it
a. speeds up.
b. slows down.
c. maintains its speed.

82. For a tsunami to behave as a shallow-water wave, its wavelength
a. must be comparable to or longer than the ocean depth.
b. must be shorter than the ocean depth.
c. can have any value.

83. A tsunami is traveling at 450 km/h when the ocean depth abruptly 
doubles. Its new speed is roughly
a. 225 km/h.
b. 320 km/h.
c. 640 km/h.
d. 900 km/h.

84. On the open ocean, a tsunami has relatively small amplitude—
typically 1 m or less. As the tsunami approaches shore, its ampli-
tude increases and its wavelength decreases. As a result,
a. its total energy increases.
b. the rate at which it carries energy shoreward increases.
c. the wave frequency increases.
d. none of these quantities changes.

answers to Chapter Questions

Answer to Chapter opening Question
None. The waves transport energy, but not matter.

Answers to GoT IT? Questions
 14.1 (b) 5 m/s, because that’s the speed of the wave crest
 14.2 (1) upper wave; (2) lower; (3) lower; (4) upper; (5) upper
 14.3 (c)
 14.4 (c)
 14.5 (b) because of interference analogous to Fig. 14.21
 14.6 (d)
 14.7 4

5 m, 43 m, 4 m
 14.8 the boat

make a round trip from one end of the medium to the other and 
back be an integer multiple of the wave period.

68. You’re designing an organ for a new concert hall; the lowest 
note is to be 22 Hz. The architects have asked you to minimize 
the lengths of the organ pipes. How long will the longest pipe 
be if it’s (a) closed at one end and (b) open at both ends?

69. Show by differentiation and substitution that a wave described by 
Equation 14.3 satisfies the wave equation (Equation 14.5), with 
wave speed v = v/k.

70. Show by differentiation and substitution that any function of the 
form y = f1x {  vt2 satisfies the wave equation (Equation 14.5).

71. You’re a marine biologist concerned with the effect of sonic 
booms on plankton, and you need to estimate the altitude of a 
supersonic aircraft flying directly over you at 2.2 times the speed 
of sound. You hear its sonic boom 19 s later. Assuming a constant 
340 m/s sound speed, find the plane’s altitude.

72. A 2.25-m-long pipe has one end open. Among its possible 
standing-wave frequencies is 345 Hz; the next higher fre-
quency is 483 Hz. Find (a) the fundamental frequency and 
(b) the sound speed.

73. A wave source recedes from you at 8.2 m/s, and the wavelength 
you measure is 20% greater than what you would measure if the 
source were at rest. What’s the wave speed?

74. Obstetricians use ultrasound to monitor fetal heartbeat. If  
5.0-MHz ultrasound reflects off the moving heart wall with 
a 100-Hz frequency shift, what’s the speed of the heart wall? 
(Hint: You have two shifts to consider.)

75. You’re in court, trying to argue your way out of a speeding 
ticket. You were stopped going 120 km/h in a 90-km/h zone. A 
technical expert testifies that the 70-GHz police radar signal un-
derwent a 15.6-kHz frequency shift when it reflected off your 
car. You claim that corresponds to an impossible 240 km/h, so 
the radar must be defective. How should the judge rule?

76. You move at speed u toward a wave source that’s stationary with 
respect to the medium in which waves of wavelength l propa-
gate with speed v. Your speed relative to the wave crests is there-
fore v + u. Show that for you, the time between wave crests is 
T′ = l/1v + u2, and from this show that you perceive a fre-
quency given by Equation 14.16, with the +  sign.

77. You’re a meteorologist specifying a new Doppler radar system 
that determines the velocity of distant raindrops by reflecting 
radar signals (which travel at the speed of light) off them and 
measuring the Doppler shift. You need a system that will measure 
speeds as low as 2.5 km/h. A vendor offers a 5.0-GHz radar that 
can detect a frequency shift of only 50 Hz. Is that sufficient?

78. Use a computer to form the sum implied in the caption of Figure 
14.17, taking v = 1 s-1 and using (a) the three terms shown and 
(b) 10 terms (note that only odd harmonics appear in the sum). 
Plot your result over one cycle (t from 0 to 2p) and compare with 
the square wave shown in the figure.

79. Your little sister and her friend build treehouses and stretch a 
rope between them for sending messages. They hang a 1.4-kg 
mass on one end of the rope that passes over a pulley. The other 
end is tied to the second treehouse. When your sister plucks the 
rope, a wave propagates at 18 m/s. The girls deem this too slow; 
they want to increase the wave speed to 30 m/s. Your sister asks, 
“What mass should I use?” What do you reply?

80. An airport neighborhood is concerned about the basing of the 
new F-35 jet fighter. They’ve got the data below for the sound 
intensity level measured at different distances from the plane as 
it takes off. They’d like to know the total sound power emitted 
by the plane. As a physics student, you’re called to help. First, 
convert the sound intensity levels to actual intensity. Then find a 

CH

CH

CH

CH

BIo

comp

DATA

Figure 14.39 People flee as 
the devastating tsunami of 
December 2004 strikes Thailand 
(Passage Problems 81–84).
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Atornado whirls across a darkened sky. A plane flies, supported by air pressure on its wings. 
Gas from a giant star forms a cosmic whirlpool before plunging into a black hole. Fluid in 

your car’s brake system amplifies the force of your foot on the brake pedal. Your own body is 
sustained by air moving into and out of your lungs, and by the flow of blood throughout your 
tissues. All these examples involve fluid motion.

Fluid is matter that flows under the influence of external forces. Fluids include both 
 liquids and gases. The intermolecular forces are weaker in fluids than in solids, and as a result 
the  molecules move around readily. In a liquid, those forces are strong enough to keep the 
 molecules in close contact, while in a gas they’re almost negligible and the molecules are 
usually widely spaced. Mobility of the individual molecules means that a fluid spreads out to 
take the shape of its container.

15.1 Density and Pressure
If we could observe a fluid on the molecular scale, we would find large numbers of 
molecules in continuous motion, colliding with each other and with the walls of their 
containers. This molecular behavior is governed by the laws of mechanics, and in 
 principle we could study fluids by applying those laws to all the individual molecules. 
But even a drop of water contains about 1021 molecules; to calculate the motions of all 
those molecules would take the fastest computers many times the age of the universe!

How You’ll Use It
■ You live at the bottom of an ocean 

of air, and you work frequently with 
liquids. The knowledge you gain here 
will help you understand the behavior 
of these everyday fluids, as well as 
fluids you’ll encounter in such diverse 
fields as engineering, medicine, 
oceanography, astrophysics, climate 
science, and meteorology.

■ You’ll use concepts of pressure and 
density extensively in Part 3 when you 
study thermodynamics.

What You’re Learning
■ You’ll learn to apply Newtonian 

physics to the behavior of fluids.

■ You’ll learn to characterize a fluid by 
its pressure and density.

■ You’ll explore the forces on a fluid in 
static equilibrium.

■ You’ll learn about buoyancy, as 
described by Archimedes’ principle.

■ You’ll learn to express the 
conservation of fluid mass and energy 
through the continuity equation and 
Bernoulli’s equation.

■ You’ll see applications of fluid 
dynamics ranging from blood flow to 
aircraft flight to baseball.

■ You’ll learn about fluid friction or 
viscosity.

What You Know
■ You know how to calculate the net 

force on an object when two or more 
forces are acting.

■ You know how to find the 
gravitational force on an object.

■ You’re familiar with expressions for 
kinetic energy and gravitational 
potential energy.

Fluid Motion

Why is only the “tip of the iceberg” above water?
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266 Chapter 15 Fluid Motion

Because the number of molecules is so large, we approximate a fluid by treating it 
as continuous rather than composed of discrete particles. In this approximation, valid for 
fluid samples large compared with the distance between molecules, we describe the fluid 
by specifying macroscopic properties such as density and pressure.

Density
Density (symbol r, Greek rho) measures the mass per unit volume; its SI units are kg/m3. 
Water’s density is normally about 1000 kg/m3; air’s is about a factor of 1000 smaller. 
 Because their molecules are essentially in contact, liquids are incompressible, meaning 
that their densities remain nearly constant. Gases, in contrast, are compressible: With 
 relatively large intermolecular distances, their densities change readily.

Pressure
Pressure measures the normal force per unit area exerted by a fluid (Fig. 15.1):

 p =
F

A
 1pressure2 (15.1)

The SI pressure unit is N/m2, given the name pascal (Pa) after the French mathematician, 
scientist, and philosopher Blaise Pascal (1623–1662). Another commonly used pressure 
unit is the atmosphere (atm), defined as Earth’s normal atmospheric pressure at sea level 
and equal to 101.3 kPa (in English units, that’s 14.7 pounds per square inch, or psi).

Pressure is a scalar quantity; at a given point in a fluid, pressure is exerted equally 
in all directions (Fig. 15.1), so it makes no sense to associate a direction with it. This 
 property explains an aspect of pressure that you may find puzzling. Although the atmos-
phere bears down on your body with a pressure of 14.7 pounds on every square inch, you 
don’t feel that burden. That’s because the force arising from this pressure is everywhere 
perpendicular to your body, and your body fluids respond by compressing until they’re at 
the same pressure. If you’ve had your ears “pop” in a fast elevator or airplane, or when 
diving  underwater, you know the pain that can develop when the pressure on your body is 
 temporarily imbalanced.

Got It? 15.1 What quantity of water has the same mass as 1 m3 of air under  normal 

conditions? (a) 1 m3; (b) 100 cm3; (c) 1 L; (d) 0.1 m3

15.2 Hydrostatic Equilibrium
For a fluid to remain at rest, the net force everywhere in the fluid must be zero; this 
 condition is hydrostatic equilibrium. In the absence of any external forces, hydro-
static equilibrium requires that the pressure be constant throughout the fluid; otherwise, 
 pressure differences would result in a net force, and the fluid would move in response. 
As Fig. 15.2 suggests, it’s pressure difference, rather than pressure itself, that gives rise to 
forces within fluids.

Hydrostatic Equilibrium with Gravity
Hydrostatic equilibrium in the presence of gravity requires a pressure force to counteract 
the gravitational force. Since forces arise only from pressure differences, the fluid pressure 
must therefore vary with depth.

Figure 15.3 shows the forces on a fluid element of area A, thickness dh,and mass dm. 
A gravitational force acts downward on this fluid element; for it to be in equilibrium there 
must therefore be an upward pressure force—and that requires a greater pressure on the 
bottom. Suppose the pressures at the top and bottom are p and p + dp, respectively. Since 
pressure is force per unit area, the net pressure force is dFpress = 1p + dp2A - pA = A dp. 

Figure 15.1 Pressure, the force per unit area, is 
exerted equally in all directions.

F
S

The �uid exerts pressure
internally as well as on the
container.  The internal 
pressure is the same in all
directions.

F is the force on the area A,
so the pressure is p = F>A.

A

S

Figure 15.2 If pressure varies with position, 
then there’s a net force on a volume of fluid.

Fnet
S

Fnet = 0

Increasing pressure

(a)

Constant pressure

(b)

S S
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15.2 Hydrostatic Equilibrium 267

The gravitational force is dFg = -g dm, where the minus sign designates the downward 
direction. But the mass dm is the density times the volume, so dFg = -g dm = -grA dh. 
Hydrostatic equilibrium requires that these forces sum to zero: A dp -  grA dh = 0, or

 
dp

dh
= rg 1hydrostatic equilibrium2 (15.2)

This equation shows that dp/dh—the variation in pressure with depth h—is positive, 
confirming that pressure increases with depth. For a liquid, which is essentially incompress-
ible, r is constant, and Equation 15.2 shows that pressure increases linearly with depth:

 p = p0 + rg h (15.3)

where p0 is the pressure at the liquid surface.
Equation 15.2 applies to any fluid in a uniform gravitational field; Equation 15.3 fol-

lows from Equation 15.2 for the special case of a liquid. It’s also possible to integrate 
Equation 15.2 to find the pressure in a gas that’s subject to the gravitational force. Because 
the gas density isn’t constant, this is a little more involved mathematically. Problem 70 
explores the variation of pressure with height in Earth’s atmosphere.

Measuring Pressure
Figure 15.4 shows a barometer, in which air pressure acts on the open pool of mercury, 
pushing the liquid into the evacuated tube. Since p0 = 0 in the vacuum at the top of the 
tube, Equation 15.3 becomes simply p = rgh, showing that the height h of the mercury is 
directly proportional to atmospheric pressure p. Standard atmospheric pressure of 101.3 kPa  
supports a mercury column 760 mm or 29.92 in. high. Pressure varies slightly with me-
teorological conditions, and weather forecasters regularly report atmospheric pressure in 
millimeters or inches of mercury. Mercury’s high density makes for a reasonable-sized 
barometer. Example 15.1 shows that a water-filled barometer would need to be 10 m long!

A manometer is a U-shaped tube filled with liquid and used to measure pressure dif-
ferences. A pressure difference between the two ends results in a height difference h be-
tween the liquid surfaces (Fig. 15.5, next page). Equation 15.3 shows that h is directly 
proportional to the pressure difference.

Barometers and manometers are the classic pressure-measuring instruments, and un-
derstanding them will help you grasp the meaning of pressure. But pressure-measuring 

Figure 15.3 Forces on a fluid element in 
 hydrostatic equilibrium.

Fluid element

Pressure force on the bottom
must be greater in order to
balance gravity.

1p + dp2A

pA

dh h

dFg

A

A vacuum
has zero pressure, so
po = 0 at the mercury’s
surface in the tube.

cand pushes mercury
up the tube until the
mercury’s weight balances
the pressure force.

Atmospheric pressure 
presses on surface c

760 mm

Vacuum

Mercury

patmosphere

Figure 15.4 A mercury barometer.

ExAMPLE 15.1 Calculating Pressure: ocean Depths

(a) At what water depth is the pressure twice atmospheric pressure? 
(b) What’s the pressure at the bottom of the 11-km-deep Marianas 
Trench, the deepest point in the ocean? Take atmospheric pressure as 
101 kPa and the density of seawater as 1030 kg/m3.

Interpret This problem is about hydrostatic equilibrium, with 
 water the fluid.

Develop We determine that Equation 15.3, p = p0 + rgh, applies, 
with p0 equal to the atmospheric pressure at the water surface. Then 
at twice atmospheric pressure, p = 2p0, and we can solve for h to an-
swer part (a). Because pressure increases linearly with depth, we can 
extrapolate our result for part (a) to find the answer to part (b).

evaluate Solving our equation for the depth h and substituting the 
given numbers in, we find for part (a):

h =
p - p0

rg
=

2.02 * 105 Pa - 1.01 * 105 Pa

11030 kg/m3219.81 m/s22 = 10.0 m

This result implies that the pressure increases by 100 kPa for every 
10 m of depth. In the Marianas Trench, 11 * 103 m deep, the pressure 
increase is then

111 * 103 m21100 kPa/10 m2 = 110 MPa

which is our answer to (b).

assess This is over a thousand times atmospheric pressure, or more 
than 8 tons per square inch! Creatures living at these depths are in 
pressure equilibrium with their surroundings. To bring them to the 
surface for study, scientists must maintain their natural pressure or 
they’ll explode. A similar plight awaits scuba divers who hold their 
breath while ascending; air in the lungs expands, bursting the alveoli. 
Problem 62 involves film producer James Cameron’s recent dive to 
the bottom of the Marianas Trench. ■
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268 Chapter 15 Fluid Motion

devices today are usually electronic, using the pressure force to alter electrical properties 
and produce an electrical signal proportional to pressure.

The term gauge pressure describes the excess pressure above atmospheric.  Inflation 
instructions for tires and sports equipment specify gauge pressure. A tire inflated to  
200 kPa (about 30 psi) has an absolute pressure of about 300 kPa because of the additional 
100-kPa atmospheric pressure.

Pascal’s Law
Equation 15.3 shows that an increase in surface pressure p0 results in the same  pressure 
 increase throughout the fluid. More generally, a pressure increase anywhere is felt 
throughout the fluid—a fact known as Pascal’s law. Pascal applied this principle in his 
invention of the hydraulic press. Today hydraulic systems, based on Pascal’s law,  control 
machinery ranging from automobile brakes to aircraft wings, bulldozers, cranes, and 
 robots.

Figure 15.5 A manometer used to measure 
the pressure difference between a closed 
container and the atmosphere.

Points at the
same depth in
the �uid have
the same 
pressure p.

h is proportional to the pressure difference
between �uid and atmosphere.

patmosphere

Mercury, water,
or other liquid

Fluid
under
pressure h

ExAMPLE 15.2 Applying Pascal’s Law: A Hydraulic Lift

In the hydraulic lift of Fig. 15.6, a large piston supports a car; the total mass of car and piston is 
3200 kg. What force must be applied to the smaller piston to support the car?

Interpret We interpret this as a problem involving Pascal’s law. Whatever pressure results 
from the force on the smaller piston is transmitted through the fluid to the larger piston and thus 
supports the car.

Develop We’re given a drawing. Having determined that Pascal’s law applies, and neglecting 
pressure variations with depth, we conclude that the pressure is the same throughout the system. 
Our plan, then, is to write expressions involving the pressures at both pistons and use the fact that 
they’re equal to solve for the unknown force. We’ll use the fact that the pressure on a piston is the 
applied force divided by the piston’s area.

evaluate The small piston exerts a pressure p = F1/A1 = F1/pR1
2, where F1 is the unknown 

force. The pressure at the large piston is the same and produces a force F2 = pA2. This force 
 supports the weight mg of piston and car; therefore, we have

mg = pA2 = ppR2
2 =

F1

pR1
2 pR2

2 = F1a
R2

R1
b

2

Solving for F1 gives our answer:

F1 = mg aR1

R2
b

2

= 13200 kg219.8 m/s22 a 15 cm

120 cm
b

2

= 490 N

We used the diameters from Fig. 15.3, rather than the radii, because their ratio is the same.

assess How can a 490-N force—about 100 lb—support the car? Through the constant fluid 
pressure, this smaller force is effectively multiplied by the ratio of the piston areas. What about 
energy? Do we get something for nothing here? GOT IT? 15.2 explores this question. ■

Figure 15.6 A hydraulic lift.

120 cm
15 cm

F1Video Tutor Demo | Pressure in Water and Alcohol

Video Tutor Demo | Water Level in Pascal’s Vases
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15.3 Archimedes’ Principle and Buoyancy 269

Got It? 15.2 Neglecting friction and other nonconservative forces, does the agent 
applying the force F1

S
 in Fig. 15.6 do (a) more, (b) less, or (c) the same work as is done on 

the car? Explain.

15.3 Archimedes’ Principle and Buoyancy
Why do some objects float while others sink? Figure 15.7a shows the upward pressure 
force on an arbitrary fluid volume balancing the downward gravitational force. Now 
 imagine replacing the fluid volume with a solid object of identical shape (Fig. 15.7b). The 
remaining fluid hasn’t changed, so it continues to exert an upward force on the object—a 
force whose magnitude equals the weight of the original fluid volume. This force is the 
buoyancy force, and in giving its magnitude we’ve stated Archimedes’ principle: The 
buoyancy force on an object is equal to the weight of the fluid displaced by the object.

Figure 15.7 The buoyancy force F
S

b arises because pressure increases with depth.

Fb
S

Fb
S

Fg
S

Fg
S

Replace the 
�uid with a 
solid object,
and the 
pressure force
doesn’t change.
But the weight
may.

(a)

(b)

This �uid is
in equilibrium,
so the pressure
force Fb 
balances
its weight Fg.

S

S

Fb
S

Fb
S

Fg
S

Fg
S

Replace the 
�uid with a 
solid object,
and the 
pressure force
doesn’t change.
But the weight
may.

(a)

(b)

This �uid is
in equilibrium,
so the pressure
force Fb 
balances
its weight Fg.

S

S

ExAMPLE 15.3  Finding the Buoyancy Force: Working Underwater

You’re setting up a raft in a swimming area, and you need to move a 60-kg  
concrete block on the lake bottom. What’s the apparent weight of the 
block as you lift it underwater? The density of concrete is 2200 kg/m3.

Interpret We interpret this as a problem about buoyancy; the con-
crete will seem to weigh less underwater because of the upward buoy-
ancy force. We identify the apparent weight as the force you’ll need to 
apply to lift the block off the lake bottom.

Develop Figure 15.8 is our sketch, showing gravity and the buoy-
ancy force on the block; you’ll need to apply a force equal but op-
posite to their sum. Archimedes’ principle applies, giving a buoyancy 
force equal to the weight of water that occupies the same volume as 
the concrete block. So our plan is to find that force and compare it 
with the gravitational force on the block.

evaluate The concrete block’s mass is mc, so its weight is the grav-
itational force Fg = mc g. Its volume is Vc = mc/rc, which also equals 
the volume of the displaced water: Vw = Vc = mc/rc. Archimedes’ 
principle says that the weight of this displaced water is the magnitude 
of the buoyancy force, so Fb = mwg = Vwrwg = mc g1rw/rc2. Then 

the upward buoyancy force and the downward gravitational force sum 
to give a downward force of magnitude:

 Fg - Fb = mc g - mc g arw

rc
b = mc g a1 -

rw

rc
b

 = 160 kg219.8 m/s22a1 -
1

2.2
b = 320 N

Figure 15.8 What’s the apparent weight of the concrete block?

(continued)

If the submerged object weighs more than the displaced fluid, then the gravitational 
force exceeds the buoyancy force and the object sinks. If the object weighs less than the 
displaced fluid, buoyancy is greater and the object rises. Therefore, an object floats or 
sinks depending on whether its average density is greater than or less than that of the fluid. 
In between is the case of neutral buoyancy, when an object’s average density is the same 
as that of the fluid. The Application on this page gives examples of neutral buoyancy.

APPLICAtIon  Swimming Like 
a Fish

Fish glide through the water, maintaining depth 
with little effort and rising or diving at will. 
That’s possible because they’re in neutral buoy-
ancy, with density equal to that of the surround-
ing water. The fish’s swim bladder—a pair of 
gas-filled sacs—expands and contracts under the 
influence of water pressure, maintaining neutral 
buoyancy. Biologists believe that the lungs of 
terrestrial organisms may have evolved from the 
swim bladders of our ancestral fish. The ballast 
tanks of submarines serve a similar function to 
keep these vessels in neutral buoyancy. Analo-
gously, the burner that’s fired periodically to 
heat the air in a hot-air balloon serves the same 
function; by introducing hot, lower-density air, 
the balloonist can keep the craft in neutral buoy-
ancy or induce it to rise.

PheT: Balloons and Buoyancy
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270 Chapter 15 Fluid Motion

Floating objects
Archimedes’ principle still holds for a floating object. But with the object in equilibrium at a 
liquid surface, the buoyancy force now must balance the object’s weight—which will happen 
if the fluid displaced by the submerged part of the object weighs the same as the object. This 
condition determines how high in the water the object floats, as Example 15.4 illustrates.

You have to apply an upward force of equal magnitude to lift the block 
off the bottom.

assess This is about 70 lb—a lot more manageable than the block’s 
weight mg of nearly 600 N or about 130 lb in air. Knowing the 

 apparent weight of a submerged object would let us turn this prob-
lem around to determine its density. Archimedes purportedly used his 
principle in this way to find the density of the king’s crown, and thus 
show that it was not pure gold. ■

ExAMPLE 15.4  Floating objects: the tip of the Iceberg

The average density of a typical arctic iceberg is 0.86 that of seawater. 
What fraction of an iceberg’s volume is submerged?

Interpret We interpret this problem also as being about buoyancy, but 
now we have a floating object with buoyancy balancing gravity. Only the 
submerged portion contributes to the buoyancy force, so the condition of 
force balance will enable us to find how much of the iceberg is submerged.

Develop Figure 15.9 is our sketch, showing gravitational and buoy-
ancy forces of equal magnitude. Archimedes’ principle applies here 
and states that the buoyancy force is equal to the weight of water dis-
placed by the submerged portion of the iceberg. So our plan is to find 
the gravitational and buoyancy forces, and then equate their magni-
tudes to get the submerged volume. Since we’re looking for volume, 
we’ll write any masses as products of density and volume.

evaluate The iceberg’s weight is wice = mice g = riceVice g, where 
Vice is the volume of the entire iceberg. Only the submerged portion dis-
places water, so the volume of displaced water is Vsub, and the weight 
of the displaced water is therefore wwater = mwater g = rwaterVsub g. By 
Archimedes’ principle, wwater is equal in magnitude to the  buoyancy 

force, which balances gravity when the iceberg is in equilibrium. 
Equating the two gives rwaterVsub g = riceVice g, which we solve to get

Vsub

Vice
=

rice

rwater
= 0.86

assess Our result means that 86% of the iceberg’s volume is under 
water, leaving only 14% showing. Tip of the iceberg, indeed! Note 
that the volume ratio is just the density ratio rice  

/rwater, showing that 
the closer an object’s density is to that of water, the lower it floats. ■

Figure 15.9 How much of the iceberg is submerged?

ConCEPtUAL ExAMPLE 15.1  the Shrinking Arctic

Arctic sea ice is melting rapidly as a result of global warming. Does 
this contribute to rising sea levels?

evaluate Your first answer might be “yes,” but think again! Archi-
medes’ principle tells us that the floating ice displaces a volume of 
water whose weight is equal to that of the entire ice—although only 
the submerged portion does the displacing. When the ice melts, it be-
comes water that, because it no longer sticks above the surface, dis-
places a volume equal to its entire weight. But since the weight hasn’t 
changed, the amount of water displaced is the same. That means the 
water level is unchanged.

assess Melting ice doesn’t contribute to sea-level rise—as long as 
it’s sea ice that melts. Land ice is a different story: Melting glaciers 
and “calving” of glaciers to form icebergs together cause about half 
of contemporary sea-level rise. Thermal expansion, which we’ll ex-
plore in 17, causes the rest. According to the Intergovernmental Panel 

on Climate Change, these two processes are expected to result in 
 sea-level rise in the range of 32 cm to almost 1 m by the year 2100.

MakIng the ConneCtIon The land-based Greenland ice cap occu-
pies some 3 million km3, while some 15,000 km3 of ice are afloat in 
the Arctic Ocean. Compare the approximate rise in the world’s oceans 
that would result from complete melting of these two ice volumes.

evaluate As this conceptual example shows, melting sea ice won’t 
contribute to sea-level rise, but land-based ice will add water to the 
oceans. Its volume will be about 86% that of the ice (see Example 
15.4), or about 2.6 million km3. With oceans covering about 71% of 
Earth’s surface area (4pRE

2, where RE is Earth’s radius), the melt-
water will spread in a layer of thickness d and therefore volume 
V = 10.71214pR 2

E 2d. Setting this quantity equal to the 2.6 * 1015@m3 
volume of meltwater and solving for d then gives d = 7 m—enough 
to inundate most of today’s coastal cities.

Video Tutor Demo | Weighing Weights in Water
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Center of Buoyancy
The buoyancy force acts not at the center of mass of a floating object, but at the center of 
mass of the water that would be there if the object weren’t. This point is called the center 
of buoyancy, and for an object to float in stable equilibrium, the center of buoyancy must 
lie above the center of mass. Otherwise, a net torque results that tends to tip the object. 
The stability of watercraft depends critically on this condition (Fig. 15.10).

15.4 Fluid Dynamics
We now turn our attention to moving fluids, described by the flow velocity at each 
point in the fluid and at each instant of time. We illustrate flow velocity by drawing 
 continuous lines called streamlines that are everywhere tangent to the local flow direction 
(Fig. 15.11). Their spacing is a measure of flow speed, with closely spaced streamlines 
 indicating higher speed. Small particles introduced into moving fluids follow streamlines 
and therefore give a visual indication of the flow velocity pattern.

In steady flow, the pattern of fluid motion remains the same at each point, even though 
individual fluid elements are in continuous motion. A river in steady flow always looks the 
same, even though you’re not seeing the same water each time you look. At a given point, 
the water velocity is always the same. Unsteady flow, in contrast, involves fluid motion 
that changes with time. Blood flow in your arteries is unsteady; with each contraction of 
the heart ventricles, the pressure rises and the flow velocity increases. We’ll restrict our 
quantitative description of fluid motion to steady flow.

Like all other motion in classical physics, fluid motion is governed by Newton’s laws. 
It’s possible to write Newton’s second law in a form that involves explicitly the fluid ve-
locity as a function of position and time. But the resulting equation is difficult to solve in 
any but the simplest cases. Instead of applying Newton’s law directly, we’ll approach fluid 
dynamics using energy conservation.

Got It? 15.4 The photo shows smoke 
particles tracing streamlines in a test of a car’s 
aerodynamic properties. Is the flow speed 
greater (a) over the top or (b) at the back?

Conservation of Mass: the Continuity Equation
In mechanics we had no trouble keeping track of the individual objects. But a fluid is con-
tinuous and deformable, so it’s not easy to follow an individual fluid element as it moves. 
Yet fluid is conserved; as it moves, new fluid is neither created nor destroyed.

Consider a steady fluid flow represented by streamlines, as shown in Fig. 15.12a. We 
shaded a flow tube—a small tubelike region bounded on its sides by streamlines and on its 
ends by areas at right angles to the flow. The flow tube has a sufficiently small cross sec-
tion that fluid velocity and other properties don’t vary significantly over any cross section; 
however, fluid properties may vary along the flow tube. Although our flow tube has no 
physical boundaries, it nevertheless acts like a pipe because fluid flows along, not across, 
the streamlines. In steady flow, the rate at which fluid enters the tube at its left end must 
equal the rate at which it exits at the right.

Figure 15.12b shows a small fluid element just about to enter the flow tube, a process 
that will take some time ∆t. Suppose the fluid is moving at speed v1; since it takes time ∆t  

Figure 15.10 A boat’s stability requires the 
center of buoyancy (CB) to be above the 
center of mass (CM).

Fb
S

Fb
S

Fg
S

Fg
S

(a)

(b)

CM

CM

CB

CB

With CB above
CM, torque
tends to right
the boat.

With CB below
CM, torque
tips the boat.

Figure 15.11 Streamlines represent flow 
 velocity in a river.

Flow speed is higher
where streamlines 
are closer.

Figure 15.12 In steady flow, fluid enters and 
leaves a flow tube at the same rate.

A1r1

v1∆t A2

r2

v2∆t

v2
u

v1
u

Two nearby streamlines
de�ne a �ow tube.

These �uid elements have the 
same mass, so they take the same
time ∆t to enter and exit the tube.

(a)

(b)

Got It? 15.3 The density of a rubber ball is three-fifths that of water. When placed 
in water, will the ball (a) float with less than half of it out of the water, (b) float with more 
than half of it out of the water, or (c) sink?
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272 Chapter 15 Fluid Motion

to cross the tube end, its length is v1 ∆t. With cross-sectional area A1, length v1 ∆t, and 
density r1, the mass of the entering fluid is m = r1A1v1 ∆t.

Another fluid element is shown just about to leave the tube. Suppose it has the same 
mass m as the entering fluid element. Then it must exit the tube in the same time ∆t in or-
der to keep the total mass in the tube constant. Its mass can be written as m = r2A2v2 ∆t.

Equating our two expressions for m shows that r1v1A1 = r2v2A2. Since the endpoints 
of the tube are arbitrary, we conclude that the quantity rvA must have the same value 
 anywhere along the flow tube:

 rvA = constant along a flow tube acontinuity equation,
any fluid b  (15.4)

Equation 15.4 is the continuity equation, which expresses the conservation of mass 
in steady fluid flow. The units of rvA here are 1kg/m321m/s21m22, or simply kg/s. This 
 quantity is therefore the mass flow rate or mass of fluid per unit time passing through the 
flow tube. Equation 15.4 says that the mass flow rate is constant in steady flow.

For a liquid, the density r is constant, and the continuity equation becomes simply

 vA = constant along a flow tube acontinuity equation,
liquid b  (15.5)

Now the constant quantity is just vA, with units of 1m/s21m22, or m3/s. This is the volume 
flow rate. Equation 15.5 makes sense: Where a liquid’s cross-sectional area is large, it flows 
slowly to transport a given volume of fluid per unit time. But in a constricted area, it must 
flow faster to carry the same volume. With a gas, obeying Equation 15.4 but not necessarily 
15.5, the situation is slightly more ambiguous because density variations also play a role. 
For flow speeds below the speed of sound in a gas, it turns out that smaller area implies a 
higher flow speed just as for a liquid. But when the gas flow speed exceeds the sound speed, 
density changes become so great that flow speed actually decreases with smaller area.

ExAMPLE 15.5  Using the Continuity Equation: Ausable Chasm

The Ausable River in upstate New York is about 40 m wide. Under 
typical early summer conditions, it’s 2.2 m deep and flows at 4.5 m/s. 
Just before it reaches Lake Champlain, the river enters Ausable 
Chasm, a deep gorge only 3.7 m wide. If the flow rate in the gorge 
is 6.0 m/s, how deep is the river at this point? Assume a rectangular 
cross section with uniform flow speed.

Interpret The concept behind this problem is mass conservation, 
embodied in the continuity equation for a liquid, Equation 15.5. Since 
the flow is uniform over the river’s cross section, we can treat the 
 entire river as a single flow tube.

Develop Equation 15.5 says that the product vA is constant. For the 
river’s rectangular cross section, the area A is the product of width w 

and depth d. Then Equation 15.5 becomes v1w1d1 = v2w2d2, where 
the subscripts indicate values upstream and in the gorge. Our plan is 
to solve for the depth d2 in the gorge.

evaluate Solving gives

d2 =
v1w1d1

v2w2
=

14.5 m/s2140 m212.2 m2
16.0 m/s213.7 m2 = 18 m

assess This is about 60 feet, quite a depth for a small river! But 
 conservation of mass requires it. In the gorge, the river is much 
 narrower but its flow speed is only a little higher, so it’s got to be a lot 
deeper. ■

Conservation of Energy: Bernoulli’s Equation
We now turn to conservation of fluid energy. Figure 15.13 shows the same fluid element as 
it enters and again as it leaves a flow tube. If it enters with speed v1 and leaves with speed v2,  
the change in its kinetic energy is

∆K = 1
2 m1v2

2 - v1
22

The work–kinetic energy theorem (Equation 6.14) equates this change to the net work 
done on the fluid element. As the element enters the tube, it’s subject to a  pressure 
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15.5 Applications of Fluid Dynamics 273

force p1A1 from the fluid to its left. This external force acts over the length ∆x1 of 
the fluid element as it enters, so it does work W1 = p1A1 ∆x1. Similarly, as it leaves 
the tube, the fluid element experiences a force p2A2 from the fluid to its right. Be-
cause this force is opposite the flow direction, it does negative work W2 = -p2A2 ∆x2. 
External forces from adjacent flow tubes act at right angles to the flow, so they do no 
work. Finally, the fluid element rises a distance y2 - y1 as it traverses the tube; there-
fore, gravity does negative work Wg = -mg1y2 - y12. Summing these three contribu-
tions and applying the work–kinetic energy theorem, we have W1 + W2 + Wg = ∆K, 
or p1A1 ∆x1 - p2A2 ∆x2 - mg1y2 - y12 = 1

2  

m1v2
2 - v1

22. The quantities A1 ∆x1 and 
A2 ∆x2 are the volumes of the fluid element as it enters and leaves the flow, respec-
tively. If we restrict ourselves to incompressible fluids, then those volumes are equal. 
Dividing through by this common volume V = A ∆x and noting that m/V = r, we get 
p1 + 1

2 rv1
2 + rgy1 = p2 + 1

2 rv2
2 + rgy2, or

 p + 1
2 rv2 + rgy = constant along a flow tube 1Bernoulli>s equation2 (15.6)

This is Bernoulli’s equation, after the Swiss mathematician Daniel Bernoulli (1700–1782).
What do the terms in Bernoulli’s equation mean? The quantity 12 rv2 looks like kinetic 

energy 1
2 mv2, except it has mass per unit volume r instead of mass m. It’s therefore the 

kinetic energy per unit volume, or kinetic-energy density. Similarly, rgy is the gravita-
tional potential energy per unit volume. Pressure p, too, has the units of energy density and 
represents internal energy of the fluid. Bernoulli’s equation therefore says that the total 
energy per unit volume of fluid is conserved as the fluid moves.

Bernoulli’s equation in the form 15.6 applies to incompressible fluids. It neglects fluid 
friction, also called viscosity, that may dissipate fluid kinetic energy. It also neglects en-
ergy transfers associated with machinery such as turbines or pumps that may extract or 
add to the fluid’s energy. Engineers often include those effects in Bernoulli’s equation.

15.5 Applications of Fluid Dynamics
The laws of mass and energy conservation that we just derived for fluids allow us to ana-
lyze a wide variety of natural and technological phenomena. We’ll usually need both the 
continuity equation and Bernoulli’s equation, considering the values of the appropriate 
constant quantities at two points in a fluid flow. As you study the examples and applica-
tions that follow, remember that they’re ultimately based in the same Newtonian principles 
we’ve been using to describe mechanical systems.

Figure 15.13 A flow tube showing the same 
fluid element entering and leaving. The work 
done by pressure and gravitational forces 
equals the change in kinetic energy of the fluid 
element.

v1
u

v2
u

This is the
same �uid
element. y2A2 p2A2

y1

∆x2

p1A1

∆x1

A1

APPLICAtIon  An Airplane 
Speedometer

A car speedometer works by counting  rotations 
of its wheels as they turn on the road.  But 
 airplanes can’t do that; instead, they use 
 Bernoulli’s principle to measure airspeed—the 
plane’s speed relative to the air. The device that 
accomplishes this is a Pitot tube, which samples 
the pressure of air moving past the plane, as well 
as the pressure of air that’s been stopped rela-
tive to the plane. Bernoulli’s equation relates the 
difference of the two pressures to the relative 
speed of the air and plane, providing the pilots 
with a direct indication of their airspeed. Know-
ing the wind speed—often substantial at aircraft 
altitudes—then lets the plane’s computers deter-
mine the speed relative to the ground. The photo 
shows a pair of external Pitot tubes on an aircraft 
fuselage. You can explore the physics of the Pi-
tot tube in Problem 66, where you’ll also find a 
simplified diagram of the device.

probleM-solvIng strategy 15.1 Fluid Dynamics

The continuity equation and Bernoulli’s equation are the keys to solving problems in fluid 
 dynamics. Here’s a strategy that will help you focus these two equations on a problem.

IntErPrEt The form of Bernoulli’s equation we derived applies only to incompressible fluids. So 
be sure you’re dealing either with a liquid or with a gas flowing at speeds well below its sound speed.

DEvELoP 
•   Identify a flow tube. This may be a physical pipe or other structure, or a mathematical tube 

bounded by streamlines.
•  Draw a sketch of the situation, showing the flow tube.
•   Determine the point where you’re interested in solving for some aspect of the flow, and another 

point where you know the quantities that go into the continuity equation and Bernoulli’s equa-
tion. Note those quantities that you know at each point. Mark the two points on your sketch.

•   Write the continuity equation and Bernoulli’s equation, with the known quantities forming 
the terms on one side and the other side containing your unknown(s).

EvALUAtE Evaluate by solving your equations for the unknown quantity or quantities. Often this 
will involve solving the continuity equation first and then using the result in Bernoulli’s equation.

ASSESS Ask whether your result makes sense. Does flow speed increase at a constriction? 
Does pressure go up when flow speed drops, or vice versa? Are there any limitations that apply, 
or insights to be gained?
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274 Chapter 15 Fluid Motion

venturi Flows and the Bernoulli Effect
A constriction in a pipe carrying incompressible fluid requires that the flow speed increase 
in order to maintain constant mass flow. Such a constriction is a venturi. Because of the 
increased speed, Bernoulli’s equation requires the pressure to be lower in the venturi. The 
next example shows how this effect provides a measure of fluid flow.

ExAMPLE 15.6 Bernoulli’s Equation: Draining a tank

A large, open tank is filled to height h with liquid of density r. Find 
the speed of liquid emerging from a small hole at the base of the tank.

Interpret We’re dealing with a flow of water, an incompress-
ible liquid. So we can apply our problem-solving strategy for fluid 
 dynamics.

Develop We take the tank to be a rather oddly shaped flow tube, and 
Fig. 15.14 is our sketch. We’re interested in the water’s velocity at the 
hole, so the hole is one of the points we’ll use in the fluid equations. 
Since the hole is open to the atmosphere, the pressure at the hole is at-
mospheric pressure pa. The top surface is also open to the atmosphere, 
so here the pressure is also pa. Now, because the hole is very small 
in relation to the tank, the water level drops only slowly. Therefore, 
we can make the approximation v = 0 at the top—and thus we know 
both p and v at the top. Although we didn’t write a formal equation 
here, that approximation follows from the continuity equation be-
cause the ratio of hole to top surface area is so small. We also need the  
potential-energy terms in Bernoulli’s equation. If we take y = 0 at 

the hole, then those terms are zero at the hole and rgh at the top. Then 
Bernoulli’s equation, p + 1

2 rv2 + rgy = constant, becomes

pa + rgh = pa + 1
2 rvhole

2

where the terms on the left are at the top surface and those on the right 
are at the hole. We’ve taken care of the continuity equation through 
our assumption of negligible flow speed at the top.

evaluate Atmospheric pressure cancels, and we solve for the 
 unknown flow velocity at the hole:

vhole = 12gh

assess This is the same result we would get by dropping an object 
from a height h—and for the same reason: conservation of energy. 
Draining a gram of water from the hole is energetically equivalent to 
removing a gram of water from the top and dropping it. Just as the 
speed of a falling object is independent of its mass, so the speed of the 
liquid is independent of its density. As the liquid drains, however, the 
height decreases and so does the flow rate. That’s a calculus challenge 
you can try in Problem 69.

✓tIP Reasonable Approximations

Making reasonable approximations is often important in solving 
realistic problems. Look for opportunities to approximate a physi-
cal quantity, especially when other terms appear more significant. 
But always be sure that your approximations are reasonable. In this 
example, we reasoned that the fluid’s speed at the top of the tank 
was negligible because it’s proportional to the ratio of the hole to 
the top surface area, a very small value.

Figure 15.14 How fast does the liquid emerge from the tank?

The surface area at
the top is much larger
than at the hole, so up
here �uid is hardly
moving.

■

ExAMPLE 15.7 Measuring Flow Speed: A venturi Flowmeter

An incompressible fluid of density r flows through a horizontal pipe 
of cross-sectional area A1. The pipe has a venturi constriction of area 
A2, and a gauge measures the pressure difference ∆p between the 
 unconstricted pipe and the venturi. Find an expression for the flow 
speed in the unconstricted pipe.

Interpret This is a problem about incompressible fluid flow, so our 
strategy applies.

Develop For a flow tube, we choose a section of pipe that 
 includes the venturi. Figure 15.15 is a sketch showing some stream-
lines through this tube. We’re interested in the flow velocity in the 
 unconstricted pipe, so any point outside the venturi will do. The other 

Figure 15.15 Our sketch of a venturi flowmeter.

Gauge measures ∆p.

Video Tutor Demo | Air Jet Blows between 
Bowling Balls
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The occurrence of lower pressure with higher flow speeds, and vice versa—the 
 Bernoulli effect—has numerous manifestations. The dirt around a prairie dog’s hole is 
mounded up in a way that forces wind to accelerate over the hole, resulting in lower pres-
sure above the hole. Biologists speculate that prairie dogs have evolved this design to 
provide natural ventilation. The Bernoulli effect can be strikingly counterintuitive. Fig-
ure 15.16 shows a ping-pong ball suspended by downward airflow in an inverted funnel. 
Rapid divergence of the flow results in lower speed and therefore higher pressure below 
the ball.

Got It? 15.5 A large tank is filled with liquid to the level h1 shown in the figure. It 
drains through a small pipe whose diameter varies; emerging from each section of pipe are 
vertical tubes open to the atmosphere. Although the picture shows the same liquid level in 
each pipe, they really won’t be the same. Rank levels h1 through h4 in order from highest 
to lowest.

h1 h2 h3 h4

point should be in the venturi. The continuity equation then reads 
v1A1 = v2A2, where the subscript 1 refers to the unconstricted pipe 
and 2 to the venturi. The pipe is horizontal, so the potential-energy 
term rgh in Bernoulli’s equation is the same on both sides, and it 
drops out.  Bernoulli’s equation then reads

p1 + 1
2 rv1

2 = p2 + 1
2 rv2

2

evaluate We can eliminate the velocity v2 by solving the con-
tinuity equation: v2 = 1A1/A22v1 = bv1, where we defined b as 
the ratio of the larger to smaller area: b = A1/A2. Using this re-
sult in Bernoulli’s equation gives p1 + 1

2 rv1
2 = p2 + 1

2 rb2v1
2. 

In terms of the pressure difference ∆p = p1 - p2, this becomes 

∆p = 1
2 rb2v1

2 - 1
2 rv1

2 = 1
2 rv1

21b2 - 12. We then solve for v1 to get 
our answer:

v1 = A 2 ∆p

r1b2 - 12
assess Make sense? The pressure difference results from the change 
in speed; no flow, no pressure difference. So it’s reasonable that v 
increases with ∆p. But a given pressure difference ∆p is easier to 
get with a larger area ratio b, so flow speed depends inversely on b. 
Finally, the greater inertia of a denser fluid means a given pressure 
difference produces less acceleration, implying a lower initial speed; 
that’s why r appears in the denominator. ■

Figure 15.16 A ping-pong ball supported by 
downward-flowing air. High-velocity flow is 
inside the narrow part of the funnel.

High v, low p

Low v, high p
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Flight and Lift
Airplanes, helicopters, and birds fly using forces resulting from their dynamic interaction 
with the air. Hydrofoil boats, water skis, and sailboards have analogous interactions with 
water. Projectiles such as baseballs, though not supported by the air, have their trajectories 
substantially modified by aerodynamic forces.

One of the simplest examples of aerodynamic lift is the helicopter (Fig. 15.17). Its 
whirling blades are shaped and tilted so they force air downward as they move, just like a 
giant fan. By Newton’s third law, the air exerts an upward force on the blades, ultimately 
supporting the helicopter. An airplane wing works in the same way, except that it moves 
forward in a straight line instead of describing a circle. Wings are shaped to maximize the 
downward deflection of the air even with the wing horizontal, but in principle even a flat 
board would function as a wing if it were tilted to the oncoming air. Figure 15.18 shows 
the airflow around a wing. Note how the flow, initially horizontal, leaves the wing moving 
downward—a clear indication that the wing has exerted a downward force on the air. The 
third law requires a corresponding upward force, and that’s what supports the plane.

Baseball’s “curve ball” provides another example of aerodynamic lift. Figure 15.19a is 
a top view of the airflow around a baseball that’s not spinning; the flow is symmetric and 
the air isn’t deflected. But if the ball spins as shown in Fig. 15.19b, air is dragged around 
the ball and deflected. A corresponding third-law force then acts on the ball, curving its 
path.

Bernoulli’s equation is frequently invoked to explain lift forces. It’s true, as Figs. 15.18 
and 15.19b suggest, that flow speeds are higher, and therefore—according to Bernoulli’s 
equation—pressures are lower on top of a wing or on one side of a spinning ball. Forces 
associated with that pressure difference provide the lift, so Bernoulli can help explain 
what’s going on. But those pressure differences are manifestations of a simpler underlying 
phenomenon—namely, the paired forces of Newton’s third law.

Figure 15.19 Top views of airflow around a baseball: (a) no spin; (b) spinning, resulting in a curve ball.

F
SSymmetric �ow;

air unde�ected

Air de�ected;  third-law
force on ball

(a) (b)

Figure 15.17 Newton’s third law explains the 
helicopter’s flight.

Air�ow

By Newton’s third law,
air pushes up on blades
when c

cblades push down 
on air.

Figure 15.18 Flow past a wing.

F
S

The wing de�ects the air
downward c

cso the air exerts an 
upward force on the wing.
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15.6 viscosity and turbulence
Moving fluid interacts with the surfaces it contacts, resulting in a kind of fluid friction 
called viscosity. Viscosity also results from the transfer of momentum among adjacent 
layers within a fluid. Viscosity is especially important right near fluid boundaries because 
viscous forces bring the fluid to a complete stop at the boundary (Fig. 15.20). This bound-
ary effect produces drag forces on objects moving through fluids—but it’s the same drag 
at the surfaces of airplane and ship propellers that exerts a force on the fluid. Without vis-
cosity, propellers would spin uselessly and planes and ships would go nowhere.

Viscosity depends on fluid properties and dimensions. Honey is more viscous than wa-
ter, but at the tiny scales of a human capillary or a bacterium wiggling its flagella for 
propulsion, water too can be extremely viscous. Viscosity is also important in stabilizing 
flows that would otherwise become turbulent, or chaotically unsteady. Turbulence results 
from the growth of waves that gain energy at the expense of the flow, turning a smooth 
flow into a chaotic mess (Fig. 15.21). Turbulence is still not fully understood and presents 
ongoing challenges to scientists and engineers.

Figure 15.20 Velocity profiles in 
flows that are (a) inviscid (without 
viscosity) and (b) viscous.

Right at wall, �uid is at rest.

(a)

(b)

Figure 15.21 Smooth flow becomes turbulent, 
shown here in a column of rising smoke.

APPLICAtIon Wind Energy

Wind turbines extract kinetic energy from moving air. In a wind with speed v, 
Bernoulli’s equation shows that the air has kinetic-energy density 1

2 rv2. A chunk 
of air that passes through a wind turbine in time ∆t has length v ∆t and volume 
vA ∆t, where A is the area swept out by the blades. The kinetic energy in this vol-
ume is the energy density times the volume: ∆K = 11

2 rv221vA ∆t2 = 1
2 rv3A ∆t. 

Dividing by A ∆t gives the energy per time per unit area—that is, the power per 
unit area available from the wind:

wind power per unit area = 1
2 rv3

Unfortunately, we can’t extract all this energy because then the air would 
come to a complete stop behind the turbine, halting the flow. A careful analysis 
shows that the maximum rate for wind-energy extraction is 8

27 rv3, about 59% of 
the wind’s energy. Given air’s density of 1.2 kg/m3, this means a 10@m/s wind 
amounts to some 350 W/m2. The factor v3 shows that the available power in-
creases rapidly at higher speeds. The best practical wind turbines can achieve 
about 80% of the theoretical maximum. Wind is the fastest-growing component 
of the world’s energy supply, and in some European countries it provides as much 
as 20% of the electrical energy.
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Streamlines represent a moving fluid.

Closely spaced:
high v

Widely spaced:
low v

Flow tube

The continuity equation describes the conservation of mass along a flow tube:

 rvA = constant 1any fluid2
 vA = constant 1incompressible fluid2

Chapter 15 Summary
Big Idea

Fluid is matter that readily deforms and flows under the influence of forces. 
Pressure, density, and flow velocity characterize fluids. Liquids and slowly 
moving gases are incompressible, meaning their density is essentially con-
stant. A fluid that isn’t moving is in hydrostatic equilibrium. In the presence 
of gravity, equilibrium requires that fluid pressure increase with depth. A solid

maintains its shape.
A liquid takes

the shape of its container.

Increasing
p

A gas �lls
a closed container.

Key Concepts and Equations

Pressure is the force per unit area: p = F/A. 
The pressure in a fluid exerts itself equally in 
all directions.

p

Bernoulli’s equation describes the conservation of energy:

p + 1
2 rv2 + rgy = constant 1incompressible fluid, neglecting viscosity2

Viscosity, or fluid friction, is especially important 
when fluids interact with solid objects.

Applications

Archimedes’ principle states that the buoyancy force F
S

b due to 
pressure on an object has the same magnitude as the weight of the 
displaced fluid. For an object less dense than a fluid, the buoyancy 
force exceeds gravity and the object floats; otherwise, it sinks or is in 
neutral buoyancy.

Here r 6 r�uid
and Fb 7 Fg, so
the object rises.

Floating: 
Submerged volume
displaces water
whose weight equals
object’s weight.

Fb
S

Fg
S

Fb
S

Fg
S

Bernoulli’s principle helps explain lift forces, although ultimately 
these are based in Newton’s third law.

F
S

High v, low p

Low v, high p

Wing

Net upward 
pressure force
on wing

Wing de�ects air
downward;  Newton’s
third law gives upward
force on wing.
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For homework assigned on MasteringPhysics, go to www.masteringphysics.com

BIO Biology and/or medicine-related problems DATA Data problems ENV Environmental problems CH Challenge problems Comp Computer problems

exercises and problems
Exercises

Section 15.1 Density and Pressure
15. The density of molasses is 1600 kg/m3. Find the mass of the 

 molasses in a 0.75-L jar.
16. Atomic nuclei have densities around 1017 kg/m3, while water’s 

density is 103 kg/m3. Roughly what fraction of water’s volume is 
not empty space?

17. Compressed air with mass 8.8 kg is stored in a 0.050@m3  cylinder. 
(a) What’s the density of the compressed air? (b) What volume 
would the same gas occupy at a typical atmospheric density of 
1.2 kg/m3?

18. The pressure unit torr is defined as the pressure that will  support 
a column of mercury 1 mm high. Meteorologists often give 
barometric pressure in inches of mercury, defined analogously. 
Express each of these in SI units. (Hint: Mercury’s density is 
1.36 * 104 kg/m3.)

19. Measurement of small pressure differences—for example, be-
tween the interior of a chimney and the ambient atmosphere—is 
often given in inches of water, where 1 in. of water is the pressure 
that will support a 1-in.-high water column. Express this pressure 
difference in SI units.

20. What’s the weight of a column of air with cross-sectional area 
1 m2 extending from Earth’s surface to the top of the atmos-
phere?

21. A 4680-kg circus elephant balances on one foot. If the foot is 
a circle 42.6 cm in diameter, what pressure does it exert on the 
ground?

22. You unbend a paper clip made from 1.5-mm-diameter wire and 
push the end against the wall. What force must you apply to give 
a pressure of 120 atm?

Section 15.2 Hydrostatic Equilibrium
23. What’s the density of a fluid whose pressure increases at the rate 

of 100 kPa for every 6.0 m of depth?
24. A research submarine can withstand an external pressure of 

62 MPa when its internal pressure is 101 kPa. How deep can it 
dive?

25. Scuba equipment provides a diver with air at the same pressure 
as the surrounding water. But at pressures higher than about  
1 MPa, the nitrogen in air becomes dangerously narcotic. At 
what depth does nitrogen narcosis become a hazard?

26. A vertical tube open at the top contains 5.0 cm of oil with density 
0.82 g/cm3, floating on 5.0 cm of water. Find the gauge pressure 
at the bottom of the tube.

27. A child attempts to drink water through a 36-cm-long straw 
but finds that the water rises only 25 cm. By how much has 
the child reduced the pressure in her mouth below atmospheric 
pressure?

28. Barometric pressure in the eye of a hurricane is 0.91 atm (27.2 
in. of mercury). How does the level of the ocean surface under 
the eye compare with the level under a distant fair-weather region 
where the pressure is 1.0 atm?

For thought and Discussion
 1. Why do your ears “pop” when you drive up a mountain?
 2. Commercial aircraft cabins are usually pressurized to the pres-

sure of the atmosphere at about 2 km above sea level. Why don’t 
you feel the lower pressure on your entire body?

 3. Water pressure at the bottom of the ocean arises from the weight 
of the overlying water. Does this mean that the water exerts pres-
sure only in the downward direction? Explain.

 4. The three containers in Fig. 15.22 are filled to the same level and 
are open to the atmosphere. How do the pressures at the bottoms 
of the three containers compare?

Figure 15.22 For Thought and Discussion 4.

 5. Why is it easier to float in the ocean than in fresh water?
 6. Figure 15.23 shows a cork suspended from the bottom of a sealed 

container of water. The container is on a turntable rotating about 
a vertical axis, as shown. Explain the position of the cork.

v

Figure 15.23 For Thought and Discussion 6.

 7. Meteorologists in the United States usually report barometer 
readings in inches. What are they talking about?

 8. A mountain stream, frothy with entrained air bubbles, presents a 
serious hazard to hikers who fall into it, for they may sink in the 
stream where they would float in calm water. Why?

 9. Why are dams thicker at the bottom than at the top?
 10. It’s not possible to breathe through a snorkel from a depth greater 

than a meter or so. Why not?
11. A helium-filled balloon stops rising long before it reaches the 

“top” of the atmosphere, but a cork released from the bottom of a 
lake rises all the way to the surface. Why the difference?

12. A barge filled with steel beams overturns in a lake, spilling its 
cargo. Does the water level in the lake rise, fall, or remain the 
same?

13. Why do airplanes take off into the wind?
14. Is the flow speed behind a wind turbine greater or less than in 

front? Is the pressure behind the turbine higher or lower than in 
front? Is this a violation of Bernoulli’s principle? Explain.

M15_WOLF4752_03_SE_C15.indd   279 17/06/15   4:16 PM



280 Chapter 15 Fluid Motion

44. You’re a robotics engineer designing a hydraulic system to move a 
robotic arm. The hydraulic cylinder that drives the arm has diameter 
5.0 cm and can exert a maximum force of 5.6 kN. Hydraulic tub-
ing comes rated in multiples of 1/2 MPa, and for safety, you’re to 
specify tubing capable of withstanding 50% greater pressure than it 
will ever experience in use. What  pressure rating do you specify?

45. A garage lift has a 45-cm-diameter piston supporting the load. 
Compressed air with maximum pressure 500 kPa is applied to a 
small piston at the other end of the hydraulic system. What’s the 
maximum mass the lift can support?

46. Archimedes purportedly used his principle to verify that the king’s 
crown was pure gold by weighing the crown submerged in water. 
Suppose the crown’s actual weight was 25.0 N. What would be its 
apparent weight if it were made of (a) pure gold and (b) 75% gold 
and 25% silver, by volume? The densities of gold, silver, and water 
are 19.3 g/cm3, 10.5 g/cm3, and 1.00 g/cm3,  respectively.

47. You’re testifying in a drunk-driving case for which a blood al-
cohol measurement is unavailable. The accused weighs 140 lb, 
and would be legally impaired after consuming 36 oz of beer. 
The accused was observed at a beach party where a keg with in-
terior diameter 40 cm was floating in the lake to keep it cool. 
After the accused’s drinking stint, the keg floated 1.2 cm higher 
than before. Beer’s density is essentially that of water. Does your 
 testimony help or hurt the accused’s case?

48. A glass beaker measures 14 cm high by 5.0 cm in diameter. 
Empty, it floats in water with one-third of its height submerged. 
How many 12-g rocks can be placed in the beaker before it sinks?

49. A typical supertanker has mass 2.0 * 106 kg and carries twice 
that much oil. If 9.0 m of the ship is submerged when it’s empty, 
what’s the minimum water depth needed for it to navigate when 
full? Assume the sides of the ship are vertical.

50. A balloon contains gas of density rg and is to lift a mass M, 
 including the balloon but not the gas. Show that the minimum 
mass of gas required is mg = Mrg/1ra - rg2, where ra is the 
atmospheric density.

51. (a) How much helium (density 0.18 kg/m3) is needed to lift a  balloon 
carrying two people, if the total mass of people,  basket, and balloon 
(but not gas) is 280 kg? (b) Repeat for a hot-air  balloon whose air 
density is 10% less than that of the surrounding atmosphere.

52. A 55-kg swimmer climbs onto a Styrofoam block of  density 
160 kg/m3. If the water level comes right to the top of the 
 Styrofoam, what’s the block’s volume?

53. If the blood pressure in the unobstructed artery of Exercise 37 
is 16 kPa gauge (about 120 mm of mercury, the unit commonly 
reported by doctors), what will it be at the clot? (Note: Blood’s 
density is 1.06 g/cm3.)

54. You’re a consultant for maple syrup producers. They tap maple 
trees and collect sap with plastic tubing that connects to a common 
pipe delivering sap to an evaporator. There it’s boiled to produce 
thick, tasty syrup. The system can be modeled as a pipe with one 
end, of cross-sectional area A, exposed to atmospheric pressure. 
The pipe drops through a vertical distance h1 while its area de-
creases to A/2, as shown in Fig. 15.25. A small vertical glass tube 
extends from the lower portion, as shown, and is open to atmos-
pheric pressure. You’re asked to provide a formula for the volume 
flow rate of the sap as a function of the height h2 of sap in the tube.

h2

h1

A

1
2A

Figure 15.25 Problem 54

BIO

Section 15.3 Archimedes’ Principle and Buoyancy
29. On land, the most massive concrete block you can carry is 25 kg. 

Given concrete’s 2200@kg/m3 density, how massive a block could 
you carry underwater?

30. A 5.4-g jewel has apparent weight 32 mN when submerged in 
water. Could the jewel be a diamond (density 3.51 g/cm3)?

31. Styrofoam’s density is 160 kg/m3. What percent error is intro-
duced by weighing a Styrofoam block in air (density 1.2 kg/m3), 
which exerts an upward buoyancy force, rather than in vacuum?

32. A steel drum has volume 0.23 m3 and mass 16 kg. Will it float 
in water when filled with (a) water or (b) gasoline (density 
860 kg/m3)?

Sections 15.4 and 15.5 Fluid Dynamics and Applications
33. Water flows through a 2.5-cm-diameter pipe at 1.8 m/s. If the 

pipe narrows to 2.0-cm diameter, what’s the flow speed in the 
constriction?

34. Show that pressure has the units of energy density.
35. A typical mass flow rate for the Mississippi River is 1.8 * 107 kg/s. 

Find (a) the volume flow rate and (b) the flow speed in a region 
where the river is 2.0 km wide and averages 6.1 m deep.

36. A fire hose 10 cm in diameter delivers water at 15 kg/s. The hose 
terminates in a 2.5-cm-diameter nozzle. What are the flow speeds 
(a) in the hose and (b) at the nozzle?

37. A typical human aorta, the main artery from the heart, is 1.8 cm 
in diameter and carries blood at 35 cm/s. Find the flow speed 
around a clot that reduces the flow area by 80%.

Problems
38. When a couple with total mass 120 kg lies on a water bed, pres-

sure in the bed increases by 4700 Pa. What surface area of the 
two bodies is in contact with the bed?

39. A fully loaded Volvo station wagon has mass 1950 kg. If each of 
its four tires is inflated to a gauge pressure of 230 kPa, what’s the 
total tire area in contact with the road?

40. You’re stuck in the exit row on a long flight, and you suddenly worry 
that your seatmate, who’s next to the window, might pull the emer-
gency window inward while you’re in flight. The window measures 
40 cm by 55 cm. Cabin pressure is 0.77 atm, and atmospheric pres-
sure at the plane’s altitude is 0.22 atm. Should you worry?

41. A vertical tube 1.0 cm in diameter and open at the top contains 
5.0 g of oil (density 0.82 g/cm3) floating on 5.0 g of water. Find 
the gauge pressure (a) at the oil–water interface and (b) at the 
bottom.

42. Dam breaks present a serious risk of widespread property dam-
age and loss of life. You’re asked to assess a 1500-m-wide dam 
holding back a lake 95 m deep. The dam was built to withstand 
a force of 100 GN, which is supposed to be at least 50% over 
the force it actually experiences. Should the dam be reinforced? 
(Hint: You’ll need your calculus skills.)

43. A U-shaped tube open at both ends contains water and a quantity 
of oil occupying a 2.0-cm length of the tube, as shown in Fig. 
15.24. If the oil’s density is 82% of water’s, what’s the height 
 difference h?

Water

2.0 cmOil
h = ?

Figure 15.24 Problem 43

BIO
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Exercises and Problems 281

64. Water emerges from a faucet of diameter d0 in steady, near- 
vertical flow with speed v0. Show that the diameter of the falling 
water column is given by d = d03v 2

0 /1v 2
0 + 2gh241/4, where h is 

the distance below the faucet (Fig. 15.27).

Figure 15.27 Problem 64

65. Assuming normal atmospheric pressure, how massive an object 
can a 5.0-cm-diameter suction cup support on a vertical wall, if 
the coefficient of friction between cup and wall is 0.72?

66. Figure 15.28 shows a simplified diagram of a Pitot tube, used for 
measuring aircraft speeds. The tube is mounted on the aircraft 
with opening A at right angles to the flow and opening B point-
ing into the flow. The gauge prevents airflow through the tube. 
Use Bernoulli’s equation to show that the plane’s speed relative 
to the air is v = 12 ∆p/r, where ∆p is the pressure difference 
 between the tubes and r is the density of air. (Hint: The flow 
must be stopped at B, but continues past A with its normal speed.)

Pressure
difference
indicator

Fuselage

Air�ow

A

B

Figure 15.28 Problem 66

67. At a hearing on a proposed wind farm, a wind-energy advocate 
says an installation of 800 turbines, with blade diameter 95 m, 
could displace a 1-GW nuclear power plant. You’re asked if that’s 
really possible. How do you answer, given an average wind speed 
of 12 m/s and a turbine power output that averages 30% of the 
theoretical maximum?

68. A pencil is weighted so it floats vertically with length L 
 submerged. It’s pushed vertically downward without being to-
tally submerged, then released. Show that it undergoes simple 
harmonic motion with period T = 2p1L/g.

69. A can of height h and cross-sectional area A0 is initially 
full of water. A small hole of area A1 66 A0 is cut in the 
 bottom of the can. Find an expression for the time it takes all  
the water to drain from the can. (Hint: Call the water depth y, use 
the continuity equation, and integrate.)

70. Density and pressure in Earth’s atmosphere are proportional: 
r = p/h0 g, where h0 = 8.2 km is a constant called the scale 
height and g is the gravitational acceleration. (a) Integrate 
 Equation 15.2 for this case to show that atmospheric pressure as 
a function of height h above the surface is given by p = p0 e

- h/h0, 
where p0 is the surface pressure. (b) At what height will the 
 pressure have dropped to half its surface value?

71. (a) Use the result of Problem 70 to express Earth’s atmospheric 
density as a function of height. (b) Use your result from (a) to 

CH

CH

CH

CH

CH

55. The water in a garden hose is at 140-kPa gauge pressure and 
is moving at negligible speed. The hose terminates in a sprin-
kler consisting of many small holes. Find the maximum height 
reached by the water emerging from the holes.

56. The venturi flowmeter shown in Fig. 15.26 is used to measure the 
flow rate of water in a solar collector system. The flowmeter is in-
serted in a pipe with diameter 1.9 cm; at the venturi the diameter is 
0.64 cm. The manometer tube contains oil with density 0.82 times 
that of water. If the difference in oil levels on the two sides of the 
manometer tube is 1.4 cm, what’s the volume flow rate?

Oil

Water

Flow

Figure 15.26 Problem 56

57. A 1.0-cm-diameter venturi flowmeter is inserted in a 2.0-cm-
diameter pipe carrying water (density 1000 kg/m3). Find (a) the 
flow speed in the pipe and (b) the volume flow rate if the pres-
sure difference between venturi and unconstricted pipe is 17 kPa.

58. A balloon’s mass is 1.6 g when it’s empty. It’s inflated with he-
lium (density 0.18 kg/m3) to form a sphere 28 cm in diameter. 
How many 0.63-g paper clips can you hang from the balloon 
 before it loses buoyancy?

59. Blood with density 1.06 g/cm3 and 10-kPa gauge pressure flows 
through an artery at 30 cm/s. It encounters a plaque deposit 
where the pressure drops by 5%. What fraction of the artery’s 
area is obstructed?

60. A venturi flowmeter in an oil pipeline has radius half that of the 
pipe. Oil flows in the unconstricted pipe at 1.9 m/s. If the pres-
sure difference between unconstricted flow and venturi is 16 kPa, 
what’s the oil’s density?

61. A drinking straw 20 cm long and 3.0 mm in diameter stands ver-
tically in a cup of juice 8.0 cm in diameter. A section of straw  
6.5 cm long extends above the juice. A child sucks on the straw, and 
the juice level begins dropping at 2.0 mm/s. (a) By how much does 
the pressure in the child’s mouth differ from atmospheric pressure? 
(b) What’s the greatest height above the water surface from which 
the child could drink, assuming this same mouth pressure?

62. In 2012, film producer James Cameron (Terminator, Titanic, 
Avatar) rode his submersible Deepsea Challenger to the bottom 
of the 11-km-deep Marianas Trench, the deepest spot in Earth’s 
oceans. Cameron could barely fit into Deepsea Challenger’s 
crew compartment, a steel sphere with inside diameter 109 cm 
and walls 6.4 cm thick. Find the total pressure force exerted on 
the sphere at the bottom of the trench. (The total force is the sum 
of all pressure forces without regard to direction; it’s not the 
same as the buoyancy force, which is the net pressure force—a 
vectorial sum.)

63. A probe descending through Mar’s atmosphere records pressure 
as a function of altitude; the data are in the table below. Plot the 
natural logarithm of the pressure versus altitude and fit a line to 
your plotted points. Mars’s atmospheric pressure is governed by 
the same equation that describes Earth’s; see Problem 70. Use 
your fitted line, in connection with that equation, to determine  
(a) Mars’s surface pressure and (b) the scale height h0.

Altitude (km) 10 20 30 40 50 60

Pressure (Pa) 242 98.7 37.6 16.2 7.21 2.38

BIO
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282 Chapter 15 Fluid Motion

Passage Problems
Arterial stenosis is a constriction of an artery, often due to plaque 
buildup on the artery’s inner walls. Serious medical conditions can 
 result, depending on the affected artery. Stenosis of the carotid  arteries 
that supply blood to the brain is a leading cause of stroke, while 
 stenosis of the renal arteries can lead to kidney failure.  Pulmonary 
 artery stenosis results from birth defects, and can result in insufficient 
oxygen supply. Because the heart has to work harder to get blood 
through a constricted artery, stenosis can contribute to high blood 
pressure.

In answering the questions below, assume steady flow (which is 
true in arteries only on short timescales).

80. How does the volume flow rate of blood at a stenosis compare 
with the rate in the surrounding artery?
a. lower
b. the same
c. higher

81. How does the blood flow speed at a stenosis compare with the 
speed in the surrounding artery?
a. lower
b. the same
c. higher

82. Which of the following medical problems is more likely to 
 occur?
a. An artery might collapse because of lower blood pressure at 

the stenosis.
b. An artery might burst because of higher blood pressure at the 

stenosis.
c. Neither; pressure at the stenosis is the same as in the sur-

rounding artery.
83. If the artery has circular cross section even at the stenosis, but the 

diameter at the stenosis is half that in the surrounding artery, the 
blood flow speed in the stenosis will be
a. one-fourth that in the surrounding artery.
b. one-half that in the surrounding artery.
c. the same as in the surrounding artery.
d. 12 times that in the surrounding artery.
e. four times that in the surrounding artery.

answers to Chapter Questions

Answer to Chapter opening Question
Because the density of ice is only slightly less than that of water.

Answers to Got It? Questions
 15.1 (c)

 15.2 (c) F
S

moves the small piston a lot farther than the upward pres-
sure force moves the large piston; the products of force and dis-
placement are the same for both pistons, so the work done is the 
same.

 15.3 (a)
 15.4 (a) over the top where the streamlines are closer together
 15.5 h1 7 h4 7 h2 7 h3 reflecting higher pressure with lower flow 

speed

find the height below which half of Earth’s atmospheric mass lies 
(this will require integration).

72. A circular pan of liquid with density r is centered on a horizontal 
turntable rotating with angular speed v, as shown in Fig. 15.29. 
Atmospheric pressure is pa. Find expressions for (a) the pressure 
at the bottom of the pan and (b) the height of the liquid surface, 
both as functions of the distance r from the axis, given that the 
height at the center is h0.

v

h0

Figure 15.29 Problem 72

73. A solid sphere of radius R and mass M has density r that varies 
with distance r from the center: r = r0 e

-r/R. Find an expression 
for the central density r0 in terms of M and R.

74. The difference in air pressure between the inside and outside of a 
ball is a constant ∆p. Show by direct integration that the net pres-
sure force on one hemisphere is pR2 ∆p, with R the ball’s radius.

75. Find the torque that the water exerts about the bottom edge of the 
dam in Problem 42.

76. One vertical wall of a swimming pool is a regular trapezoid, with 
its bottom 15 m long and its top 22 m long. The pool is 3.3 m 
deep, and it’s full to the brim with water. Find the pressure force 
the water exerts on this side of the pool.

77. You’re a private investigator assisting a large food manufacturer 
in tracking down counterfeit salad dressing. The genuine dress-
ing is by volume one part vinegar (density 1.0 g/cm3) to three 
parts olive oil (density 0.92 g/cm3). The counterfeit dressing is 
diluted with water (density 1.0 g/cm3). You measure the density 
of a dressing sample and find it to be 0.97 g/cm3. Has the dress-
ing been altered?

78. A plumber comes to your ancient apartment building where you have 
a part-time job as caretaker. He’s checking the hot-water heating 
system, and notes that the water pressure in the basement is 18 psi.  
He asks, “How high is the building?” “Three stories, each about 
11 feet,” you reply. “OK, about 33 feet,” he says, pausing to do 
some calculations in his head. “The pressure is fine,” he declares. 
On what basis did he come to that conclusion?

79. Your class in naval architecture is working on the design for a 
ship with a V-shaped cross section, as shown in Fig. 15.30. The 
ship has total length L and keel-to-deck height h0. When empty, 
the distance from waterline to keel is h1. You’re asked for the 
maximum load the ship can carry below deck if water is not  
to come over the deck. Answer in terms of h0, h1, L, u, and the 
water density r.

uh0 h1

Figure 15.30 Problem 79
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Moving fluids obey conservation of mass and, in the absence of fluid friction (viscosity), they 
also conserve energy.

In fluid dynamics, the continuity equation and Bernoulli’s equation express these conserva-
tion laws. Both equations hold along a flow tube:

Continuity: rvA = constant

Bernoulli:

p + 1
2 rv2 + rgy = constant

Part two Challenge Problem
A cylindrical log of total mass M and uniform diameter d has an uneven mass distribution that causes it to float in a verti-
cal position, as shown in the figure. (a) Find an expression for the length L of the submerged portion of the log when it’s 
floating in equilibrium, in terms of M, d, and the water density r. (b) If the log is displaced vertically from its equilibrium 
position and released, it will undergo simple harmonic motion. Find an expression for the period of this motion, neglect-
ing viscosity and other frictional effects.

Oscillatory motion describes the back-and-forth motion of a system 
disturbed from a stable equilibrium.

When the force or torque tending to restore equilibrium is directly pro-
portional to the displacement, the result is simple harmonic  motion.

2p

v
T = 

v = 

F = -kx

x = A cosvt

k
m

t
A

k

mA

A wave is a propagating disturbance 
that carries energy but not matter.

Simple harmonic waves are sinusoidal:

y1x, t2 = A cos1kx - vt2

Angular frequency: v = 2pf

Wave number: k =
2p

l

Wave period: T =
1

f

Wave speed: v =
v

k
=

l

T
= fl

When waves overlap, the result is interfer-
ence, which is constructive when the waves 
reinforce and destructive when they tend to 
cancel.

Standing waves occur when the medium has limited extent. Only certain wavelengths and 
frequencies are allowed, depending on the medium’s length:

Two of the
allowed standing
waves on a string
�xed at both ends.

This wavelength
isn’t allowed.

Fluids in hydrostatic equilibrium exhibit a 
depth-dependent pressure that results in an up-
ward buoyancy force F

S
b.

Archimedes’  pr inciple 
states that the buoyancy 
force is equal to the weight 
of the displaced fluid.

 concepts of force, mass, and energy and their roles in characterizing 
motion.

Part Two has extended Newtonian mechanics to systems that  undergo 
oscillatory motion and wave motion or that involve the motion of 
 fluids. Behind these more complex motions are the fundamental 

part two Summary oscillations, waves, and Fluids

y

y

x

v
A

Wavelength
l

Wave in
space

Wave in
time

t

Period
TA

Nodal lines:
destructive
interference

Large amplitude:
constructive
interference

Fb
S

Fg
S

Closely spaced:
high v

Widely spaced:
low v

Flow tube

d

L
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OverviewPart three

thermodynamics

Humanity consumes energy at the prodigious rate of some 1013 watts. Nearly all 
that energy comes from the combustion of fossil fuels—a process governed by 

the laws of thermodynamics. Engines that extract mechanical energy from burning 
fuels propel our cars, trucks, and airplanes, and produce most of our electricity. Despite 
the efforts of the cleverest engineers, the laws of thermodynamics set fundamental 
limitations on our ability to convert thermal energy to mechanical energy. Many of 
the energy and environmental challenges humanity faces today are grounded in 
 thermodynamics.

Many natural systems are also thermodynamic. Without the Sun’s energy, radiated 
across a hundred million miles of empty space, Earth would be a lifeless, frozen rock. 
Heat flowing throughout Earth, its oceans, and its atmosphere governs processes 
ranging from continental drift to ocean currents to weather and climate. Concern 
over human-induced climate change is rooted in thermodynamic properties of the 
atmosphere as they affect energy flows. On a grander scale, thermodynamic principles 
govern much of the energy that flows throughout the universe.

Thermodynamics—the study of heat and its connection to the all-important 
 concept of energy—is the subject of the next four chapters.

This huge steam turbine converts the energy 
of high-pressure steam to mechanical 
energy and then, via the generator at 
the right end of the system, to electricity. 
The inset shows the turbine blades that 
spin when struck by high-pressure steam. 
Systems like this one produce nearly all 
the world’s electrical energy, and their 
operation and efficiency are governed by 
the laws of thermodynamics.
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Temperature and Heat

16

What You Know
■ You understand the concept of energy, 

especially kinetic and potential energy.

■ You’ve had a brief introduction to 
internal energy.

■ You recognize that power is a rate  
of energy use, flow, conversion, and 
so on.

■ You’re familiar with pressure and 
density from your study of fluids in 
Chapter 15.

Your own body gives you a good sense of “hot” and “cold.” Questions about heat and 
 temperature are ultimately about energy, and these concepts are crucial to understand-

ing the energy flows that drive natural systems like Earth’s climate and technologies such as 
engines, power plants, and refrigerators.

Properties like mass and kinetic energy apply equally to microscopic atoms and  molecules 
and to cars and planets. But other properties, including temperature and pressure, apply only 
to macroscopic systems. It makes no sense to talk about the temperature or pressure of a  single 
air molecule. Thermodynamics is the branch of physics that deals with these  macroscopic 
properties. Ultimately, the thermodynamic behavior of matter follows from the motions of 
its constituent particles in response to the laws of mechanics. Statistical  mechanics relates 
the macroscopic description of matter to the underlying microscopic processes. Historically, 
thermodynamics developed before the atomic theory of matter was fully established. The 
subsequent explanation of thermodynamics through statistical mechanics—the mechanics 
of atoms and molecules—was a triumph for physics.

16.1 Heat, Temperature, and  
Thermodynamic Equilibrium
Take a bottle of soda from the refrigerator, and eventually it reaches room  temperature. 
At that point the soda and the room are in thermodynamic equilibrium, a state 
in which their macroscopic properties are no longer changing. To check for 
 thermodynamic equilibrium we can consider any macroscopic property—length, 
 volume,  pressure, electrical resistance, whatever. If any macroscopic property changes 

What You’re Learning
■ You’ll refine your everyday notions of 

temperature and heat, honing them 
into precise physics definitions.

■ You’ll learn about temperature scales 
and how they’re established.

■ You’ll see how a material’s specific heat 
determines the energy needed to 
change its temperature.

■ You’ll learn three mechanisms of heat 
transfer:  conduction, convection, and 
radiation.

■ You’ll see how a system’s temperature 
is determined by thermal-energy 
balance with its surroundings, with 
application to systems ranging from 
buildings to planetary climates.

How You’ll Use It
■ The ideas in this chapter will serve 

as the groundwork for your study of 
thermodynamics in Chapters 17, 18, 
and 19.

■ Thermodynamics will have many 
applications in subsequent work 
you might do in engineering, 
environmental science, biology, 
chemistry, and physics.

How does this infrared photo reveal heat loss 
from the house? And how can you tell that the 
car was recently driven?

M16_WOLF4752_03_SE_C16.indd   285 17/06/15   4:25 PM



286 Chapter 16 Temperature and Heat

when two systems are placed together, then they weren’t originally in thermodynamic 
equilibrium. When changes cease, the systems have reached equilibrium.

The phrase “placed together” here has a definite meaning, stated more precisely as 
“placed in thermal contact.” Two systems are in thermal contact if heating one of them re-
sults in macroscopic changes in the other. If that doesn’t readily happen—for example, with 
a Styrofoam cup of coffee and its surroundings—then the systems are thermally insulated.

We can now begin to define temperature: Two systems have the same temperature 
if they are in thermodynamic equilibrium. Consider two systems A and C in thermal 
 contact with a third system B but not with each other (Fig. 16.1a). Even though they’re 
not in direct contact, A and C have the same temperature; that is, if you place A and C 
in  thermal contact (Fig. 16.1b), no further changes occur. This fact—that two systems 
in equilibrium with a third system are therefore in equilibrium with each other—is so 
 fundamental that it’s called the zeroth law of thermodynamics.

A thermometer is a system with a conveniently observed macroscopic property that 
changes with temperature. It could be the length of a mercury column, gas  pressure,  electrical 
resistance, or the bending of a bimetal strip in a dial thermometer. Let the  thermometer come 
to equilibrium with some system, and its temperature-dependent  physical property provides 
a measure of temperature. The zeroth law assures consistency, in that two systems for which 
the thermometer gives the same reading must have the same temperature.

The Kelvin Scale and Gas Thermometers
One of the most versatile thermometers is the constant-volume gas thermometer (Fig. 16.2), 
in which the pressure of a gas provides an indication of temperature. Gas thermometers func-
tion over a wide range, including very low temperatures, and they currently provide the defini-
tion of the Kelvin temperature scale used in the SI system. As Fig. 16.3 shows, the zero of the 
Kelvin scale is defined as the temperature at which the gas pressure would become zero. Since 
a gas can’t have negative pressure, this point is defined as absolute zero—a concept whose 
meaning we’ll explore further in Chapter 19. A second fixed temperature is provided by the 
so-called triple point of water, the unique temperature at which solid, liquid, and gaseous water 
can coexist in equilibrium (more on this in Chapter 17). In the current SI definition, water’s 
triple point is defined to be exactly 273.16 kelvin (symbol K; not “degrees kelvin or °K). Other 
temperatures then followed by linear extrapolation, as suggested in Fig. 16.3. Although the 
triple-point definition of the kelvin is, in principle, a reproducible operational standard, issues 
with purity and the isotopic composition of water have made this standard less than ideal.

In the ongoing revision of the SI unit system, the kelvin will be given a new explicit-
constant definition, by setting an exact value for the so-called Boltzmann constant. This 
constant establishes a direct relation between temperature and molecular energy, which 
we’ll explore further in Chapter 17. With this new definition, the triple point of water 
becomes a measured quantity very close to 273.16 K but, as with all measured quantities, 
involving some uncertainty.

Figure 16.1 The zeroth law of thermodynamics.

Systems A and C
are each in 
thermodynamic
equilibrium with B.

If A and C are placed in
thermal contact, their
macroscopic properties
don’t change—showing
that they’re already in
equilibrium.

(a) (b)

A B C A C

Figure 16.2 A constant-volume gas 
thermometer.

Gas

Mercury

Vacuum

Flexible tube

h

System whose 
temperature is 
to be measured

The mercury level in the left-hand side 
of the tube is maintained constant at 
this level c

cby moving the right-
hand side up or down.

The height difference h between the two 
mercury levels is a measure of the gas 
pressure and therefore of the temperature.

Figure 16.3 Two points establish a temperature scale. Until the ongoing SI revision is complete, the kelvin 
scale is defined by the values of absolute zero and the unique temperature of water’s triple point, whose 
pressure is designated p3 and whose temperature is defined as 273.16 K.
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16.2 Heat Capacity and Specific Heat 287

Temperature Scales
Other temperature scales include Celsius 1°C2, Fahrenheit 1°F2, and Rankine 1°R2  
(Fig. 16.4). One Celsius degree represents the same temperature difference as one kelvin, 
but the zero of the Celsius scale occurs at 273.15 K, so

 TC = T - 273.15 (16.1)

where T is the temperature in kelvins. On the Celsius scale the melting point of ice at 
standard atmospheric pressure is exactly 0°C, while the boiling point is 100°C. The triple 
point of water occurs at 0.01°C, which accounts for the 273.15 difference between the 
kelvin and Celsius scales. Equation 16.1 shows that absolute zero occurs at -273.15°C.

The Fahrenheit and Rankine scales, from the British unit system, are used primarily 
in the United States. Fahrenheit has water melting at 32°F and boiling at 212°F, so the 
 relation between Fahrenheit and Celsius temperatures is

 TF = 9
5 TC + 32 (16.2)

A Rankine degree is the same size as a Fahrenheit degree, but the zero of the Rankine 
scale is at absolute zero (Fig. 16.4). Engineers in the United States often use Rankine.

Heat and Temperature
A match will burn your finger, but it doesn’t provide much heat. This example shows 
our intuitive sense of temperature and heat: Heat measures an amount of “something,” 
whereas temperature is the intensity of that “something.”

Scientists once considered heat to be a material fluid, called caloric, that flowed from 
hot bodies to colder ones. But in the late 1700s, the American-born scientist Benjamin 
Thompson observed essentially limitless amounts of heat being produced in the boring 
of cannon, and he concluded that heat could not be a conserved fluid. Instead, Thomp-
son suggested, heat was associated with mechanical work done by the boring tool. In the 
next half-century, a series of experiments confirmed the association between heat and en-
ergy. These culminated in the work of the British physicist James Joule (1818–1889), who 
quantified the relation between heat and energy. In so doing, Joule brought thermal phe-
nomena under the powerful conservation-of-energy principle. In recognition of this major 
synthesis in physics, the SI energy unit bears Joule’s name. The redefinition of the kelvin 
will formalize the relation between temperature and energy, since the Boltzmann constant, 
which will establish the kelvin’s definition, has the units of J/K.

We rarely make statements about the amount of “heat” in an object; we’re more  concerned 
that the temperature be appropriate. Rather, we think of heat as something that gets trans-
ferred from one object to another, causing a temperature change. The  scientific definition 
reflects this sense of heat as energy in transit: Heat is energy being  transferred from one 
object to another because of a temperature difference alone. Strictly  speaking, heat refers 
only to energy in transit. Following heat transfer, we say that the internal energy or thermal 
energy of the object has increased, not that it contains more heat. This distinction reflects the 
fact that processes other than heating—such as transfer of mechanical or electrical energy—
can also change an object’s temperature. We briefly explored internal energy and its relation 
to mechanical energy transfers when we dealt with nonconservative forces in Chapter 7.

GoT IT? 16.1 Is there (a) no temperature, (b) one temperature, or (c) more than one 
temperature where the Celsius and Fahrenheit scales agree?

16.2 Heat Capacity and Specific Heat
Because temperature and energy are related, it’s not surprising that the heat energy 
Q  transferred to an object and the resulting temperature change ∆T  are proportional: 
Q = C ∆T, where the proportionality constant C is called the heat capacity of the object. 

Figure 16.4 Relationships among four 
temperature scales.
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288 Chapter 16 Temperature and Heat

Table 16.1 Specific Heats of Some Common Materials*

Specific Heat, c

Substance Si units: J/kg #K cal/g #°C, kcal/kg #°C, or Btu/lb #°F

Aluminum 900 0.215

Concrete (varies with mix) 880 0.21

Copper 386 0.0923

Iron 447 0.107

Glass 753 0.18

Mercury 140 0.033

Steel 502 0.12

Stone (granite) 840 0.20

Water: 
 Liquid

 
4184 1.00

 Ice, -10°C 2050 0.49

Wood 1400 0.33

*Temperature range 0°C to 100°C except as noted.

Since heat is a measure of energy transfer, the units of heat capacity are J/K. The heat 
capacity C applies to a specific object and depends on its mass and on the substance from 
which it’s made. We characterize different substances in terms of their specific heat c, or 
heat capacity per unit mass. The heat capacity of an object is then the product of its mass 
and specific heat, so we can write

 Q = mc ∆T  (16.3)

The SI units of specific heat are J/kg #K. Table 16.1 lists specific heats of common materials.
Scientists first studied thermodynamic phenomena before they knew the relation 

 between heat and energy, and they used other units for heat. The calorie (cal) was de-
fined as the heat needed to raise the temperature of 1 g of water from 14.5°C to 15.5°C; 
 consequently, the specific heat of water is 1 cal/g 

#
 °C. Several different definitions of the 

calorie exist today, based on different methods for establishing the heat–energy equiva-
lence. In this book we use the so-called thermochemical calorie, defined as exactly 4.184 J.  
The “calorie” used in describing the energy content of foods is actually a kilocalorie. In 
the British system, still widely used in engineering in the United States, the unit of heat 
is the British thermal unit (Btu). One Btu is the amount of heat needed to raise the tem-
perature of 1 lb of water from 63°F to 64°F, and is equal to 1054 J.

Your whole family has showered before you, dropping the temperature 
in the water heater to 18°C. If the heater holds 150 kg of water, how 
much energy will it take to bring it up to 50°C? If the energy is sup-
plied by a 5.0-kW electric heating element, how long will that take?

Interpret Here we’re interested in the energy it takes to raise the  water 
temperature, so we interpret this problem as involving specific heat. For 
the second part, we’re given the heater’s power output and asked for the 
time, so we need to recall (Chapter 6) that power is energy per time.

Develop Equation 16.3, Q = mc ∆T, relates energy and tempera-
ture change via specific heat, so our plan is to calculate the required 
energy from this equation. We’ll then use the relation between power 
and energy to find the time.

evaluate Equation 16.3 gives the energy:

Q = mc ∆T = 1150 kg214184 J/kg 

#
 K2150°C - 18°C2 = 20 MJ

where we found the specific heat of water in Table 16.1. The heating 
element supplies energy at the rate of 5.0 kW or 5.0 * 103 J/s. At that 
rate the time needed to supply 20 MJ is

∆t =
2.0 * 107 J

5.0 * 103 J/s
= 4000 s

or a little over an hour.

assess That’s a long time to wait, but it’s not an unreasonable  answer!

✓TIp Is That °C or K?

It doesn’t matter when we’re talking about temperature differences. 
That’s why we could mix units, multiplying the specific heat in 
J/kg 

#
 K by the difference of Celsius temperatures.

ExampLE 16.1  Specific Heat: Waiting to Shower

■

Video Tutor Demo | Heating Water and Aluminum

Video Tutor Demo | Water Balloon Held 
over Candle Flame
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16.3 Heat Transfer 289

For common materials around room temperature, specific heat is nearly constant 
over a substantial temperature range. But at very low temperatures, specific heat varies 
 significantly with temperature. When that’s the case, we write Equation 16.3 in terms of 
infinitesimal heat flows dQ and corresponding temperature changes dT: dQ = mc1T2 dT .  
We can then integrate to relate the overall heat flow and temperature change over a wide 
temperature range. Problems 73 and 74 explore this situation.

Specific heat also depends on whether an object’s pressure or its volume changes when 
it’s heated. For solids and liquids, which don’t expand much, that distinction isn’t very 
important. But it makes a big difference whether a gas is confined or allowed to expand 
when heated. Consequently, gases have two different specific heats, depending on whether 
volume or pressure is constant. We’ll deal with that issue in Chapter 18, where we explore 
the thermodynamic behavior of gases.

The Equilibrium Temperature
When objects at different temperatures are in thermal contact, heat flows from the hotter 
object to the cooler one until they reach thermodynamic equilibrium. If the objects are 
thermally insulated from their surroundings, then all the energy leaving the hotter object 
ends up in the cooler one. Mathematically, this statement reads

 m1c1 ∆T1 + m2c2 ∆T2 = 0 (16.4)

For the hotter object, ∆T  is negative, so the two terms in Equation 16.4 have opposite 
signs. One term represents the outflow of heat from the hotter object, the other inflow 
into the cooler one. Example 16.2 explores the application of Equation 16.4 in finding the 
equilibrium temperature.

GoT IT? 16.2 A hot rock with mass 250 g is dropped into an equal mass of cool 
 water. Which temperature changes more, that of (a) the rock or (b) the water? Explain.

ExampLE 16.2  Finding the Equilibrium Temperature: Cooling Down

An aluminum frying pan of mass 1.5 kg is at 180°C when it’s plunged 
into a sink containing 8.0 kg of water at 20°C. Assuming that none of 
the water boils and that no heat is lost to the surroundings, find the 
equilibrium temperature of the water and pan.

Interpret Here we have two objects, initially at different tempera-
tures, that come to thermal equilibrium. So this is a problem about the 
equilibrium temperature, with the system of interest comprising the 
pan and the water.

Develop Equation 16.4, m1c1 ∆T1 + m2c2 ∆T2 = 0, applies. How-
ever, we’re asked for the common equilibrium temperature T, so we 
write the temperature differences ∆T  in terms of T and the initial tem-
peratures Tp and Tw of pan and water. Equation 16.4 then becomes 
mpcp1T - Tp2 + mwcw1T - Tw2 = 0.

evaluate We now solve for the equilibrium temperature T:

T =
mpcpTp + mwcwTw

mpcp + mwcw

Using the given values of mp, Tp, mw, and Tw, and taking cp and cw 
from Table 16.1, we get T = 26°C.

assess The water has much greater mass and higher specific heat, 
so it makes sense that its 6°C temperature change is a lot less than the 
154°C drop in the pan’s temperature. ■

16.3 Heat Transfer
How is heat transferred? Engineers need to know so they can design heating and cooling 
systems. Scientists need to know so they can anticipate temperature changes, as in global 
warming. Here we’ll consider three common heat-transfer mechanisms: conduction, con-
vection, and radiation. In some situations, a single mechanism dominates; in other cases, 
we may need to take all three into account.
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290 Chapter 16 Temperature and Heat

Table 16.2 Thermal Conductivities*

Thermal Conductivity, k

Material Si units: W/m  

#
 K British units: Btu  

#
 in / h 

#
 ft2 #  °F

Air 0.026 0.18

Aluminum 237 1644

Concrete (varies with mix) 1 7

Copper 401 2780

Fiberglass 0.042 0.29

Glass 0.7–0.9 5–6

Goose down 0.043 0.30

Helium 0.14 0.97

Iron 80.4 558

Steel 46 319

Styrofoam 0.029 0.20

Water 0.61 4.2

Wood (pine) 0.11 0.78

*Temperature range 0°C to 100°C.

Conduction
Conduction is heat transfer through direct physical contact. It occurs as molecules in 
a  hotter region collide with and transfer energy to those in an adjacent cooler region. 
 Thermal conductivity (symbol k; SI unit W/m 

#
 K) characterizes this process. Common 

materials exhibit a broad range of thermal conductivities, from about 400 W/m 

#
 K for 

 copper—a good conductor—to 0.029 W/m 

#
 K for Styrofoam, a good thermal insulator. 

Table 16.2 lists some thermal conductivities; they’re given in both SI and British units 
because the latter are widely used in heat-loss calculations for buildings. The k values 
in Table 16.2 reflect physical properties of the materials. Metals, for example, are good 
thermal conductors because they contain free electrons that move quickly. Insulators like 
fiberglass and Styrofoam owe their insulating properties to a physical structure that traps 
small volumes of air or other gas.

Figure 16.5 shows a slab of thickness ∆x and area A. One side is at temperature T 
and the other at T + ∆T. The temperature difference ∆T  drives a conductive heat flow 
through the slab. That heat flow is proportional to the temperature difference, the slab 
area, and the thermal conductivity k. The thicker the slab, on the other hand, the more 
 resistance to heat flow, so the flow depends inversely on thickness. Therefore,

 H = -kA
∆T

∆x
 1conductive heat flow2 (16.5)

where H = dQ/dt is the rate of heat flow in watts, and where the minus sign shows 
that the flow is opposite the direction of increasing temperature—that is, from hotter to 
cooler.

Figure 16.5 Heat flows from the hotter to the 
cooler face of the slab.

Area A
Temperature T

H

∆x

x

Temperature
T + ∆T

ExampLE 16.3 Conduction: Warming a Lake

A lake with a flat bottom and steep sides has surface area 1.5 km2 and is 
8.0 m deep. On a summer day, the surface water is at 30°C and the bot-
tom water at 4.0°C. What’s the rate of heat conduction through the lake?

Interpret This is a problem about heat conduction.

Develop Our sketch, Fig. 16.6, shows that we can treat the lake like 
the slab shown in Fig. 16.5, provided we neglect heat flow out the 
sides. Then Equation 16.5, H = -kA1∆T/∆x2, will give the heat-
flow rate.

M16_WOLF4752_03_SE_C16.indd   290 17/06/15   4:25 PM
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evaluate Substituting numerical values, including water’s thermal 
conductivity from Table 16.2, we get

 H = -kA  

∆T

∆x

 = -10.61 W/m # K211.5 * 106 m22 

30°C - 4.0°C
8.0 m

= -3.0 MW

assess This is a significant energy flow, but with direct sunlight 
 averaging about 1 kW on every square meter, the lake’s 1.5@km2  surface 
area absorbs plenty of solar energy, and that’s what maintains the 
 temperature difference that drives the conductive heat flow. Figure 16.5 
shows x increasing in the direction of increasing temperature, so the nega-
tive sign in our answer indicates that the flow is downward. ■

Figure 16.6 Our sketch for Example 16.3.

Equation 16.5 is strictly correct only when the temperature varies uniformly from one 
surface to the other. That’s the case when two surfaces at different temperatures have the 
same area. With other geometries—as in the insulation surrounding a cylindrical pipe—we 
need to write ∆T/∆x as the derivative dT/dx and integrate to find the heat flow.  Problems 
76 and 80 explore this situation.

Often heat flows through several different materials. A building wall, for example, may 
contain wood, drywall, and fiberglass insulation. Figure 16.7 shows such a composite 
structure, with temperature T1 on one side and T3 on the other. The heat-flow rate H must 
be the same through both slabs so energy doesn’t accumulate at the interface between the 
two. Then Equation 16.5 gives

 H = -k1 A 

T2 - T1

∆x1
= -k2 A 

T3 - T2

∆x2
 

where k1 and k2 are the thermal conductivities of the two materials, and T2 is the tempera-
ture at the interface. We can express the heat-flow rate in terms of the surface temperatures 
T1 and T3 alone if we define the thermal resistance R of each slab:

 R =
∆x

kA
 (16.6)

The SI units of R are K/W. Unlike the thermal conductivity k, which is a property of a 
 material, R is a property of a particular piece of material, reflecting both its conductivity 
and its geometry. In terms of thermal resistance, our heat-flow equation becomes

H = -
T2 - T1

R1
= -

T3 - T2

R2

so R1H = T1 - T2 and R2H = T2 - T3. Adding these two equations gives

1R1 + R22H = T1 - T2 + T2 - T3 = T1 - T3

or

 H =
T1 - T3

R1 + R2
 (16.7)

Equation 16.7 shows that the composite slab acts like a single slab whose thermal resist-
ance is the sum of the resistances of the two slabs that compose it. We could easily extend 
this treatment to show that the thermal resistances of three or more slabs add when the 
slabs are arranged so the same heat flows through all of them.

Figure 16.7 A composite slab.

If H weren’t the same through both
slabs, energy would accumulate
at the interface.

T3

T2

Area A
Temperature T1

∆x1

H

∆x2

R1

R2
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292 Chapter 16 Temperature and Heat

GoT IT? 16.3 The figure shows three slabs with the 
same thickness but different thermal conductivities: k, 3k, 
and 2k; the left side is hotter, as shown. Rank in order, from 
 smallest to largest, the three temperature differences ∆T.

Insulating properties of building materials are described by the R@factor, which is the 
thermal resistance for a slab of unit area:

 R = RA =
∆x

k
 (16.8)

The SI units of R are m2  #  K/W, and that’s how you’ll find it listed if you buy insulation in 
Europe or other SI-based regions. In the United States, R is in ft2  #  °F 

#
 h/Btu, although the 

units are almost never stated. This means that R@19 fiberglass insulation loses 1
19 Btu per 

hour for each square foot of insulation for each degree Fahrenheit temperature difference 
across the insulation (Fig. 16.8). The inverse of the R@factor is the U value, often used in 
characterizing heat loss through windows.

Hot
Cool

∆T1

∆T2

∆T3

k 3k
2k

Figure 16.8 Each square foot of this R-19 
fiberglass insulation loses 1

19 Btu per hour for 
every °F of temperature difference ∆T.

1 ft2

H
∆T

ExampLE 16.4  Calculating Heat Loss: The Cost of oil

Figure 16.9 shows a house whose walls consist of drywall  
1R = 0.452, R@11 fiberglass insulation, plywood 1R = 0.652, and 
cedar shingles 1R = 0.552. The roof has the same  construction 
 except it uses R@30 fiberglass insulation. The average outdoor 
 temperature in winter is 20°F, and the house is maintained at 70°F. 
The house’s oil furnace produces 100,000 Btu for every gallon of 
oil, and oil costs $3.48 per gallon. How much does it cost to heat the 
house for a month?

Interpret Although the problem asks for the monthly cost of oil, 
this isn’t economics! We interpret this as a problem about heat loss 
and identify the walls and roof as systems for which we need to know 
the heat flow. This is a rare case of a problem stated in English units.

Develop We’re given the drawing in Fig. 16.9. We have the 
R@factors; in English units, their inverses give the heat-loss rate on a 
square-foot basis. So our plan is to find the square footage of the walls 

and roof separately, calculate the total heat-loss rate, and then find the 
amount and cost of oil to compensate for a month’s heat loss.

evaluate The R@factors for the wall materials sum to give 
Rwall = 12.65; similarly, Rroof = 31.65. The perimeter of the 
house measures 2 * 28 ft + 2 * 36 ft = 128 ft, so the 10-ft vertical 
walls have area 1280 ft2. There are also the triangular gables. Since 
there are two of them, each with area 1

2 bh, they give another bh or 
128 ft2114 ft tan 30°2 = 226 ft2, so Awall = 1506 ft2. These R@12.65 
walls lose 1/12.65 Btu/h/ft2/°F. With 1506 ft2 and a temperature dif-
ference of 50°F, the total heat-loss rate through the walls is

Hwall = 1 1
12.65  

Btu/h/ft2/°F211506 ft22150°F2 = 5953 Btu/h

The area of the pitched roof is larger than that of a flat roof by the 
 factor 1/cos 30°, so the heat-loss rate through the roof is

Hroof = 1 1
31.65  

Btu/h/ft2/°F2  

136 ft2128 ft2
cos 30°

 150°F2 = 1839 Btu/h

The total heat-loss rate is then 7792 Btu/h. In a month, this results  
in a heat loss of Q = 17792 Btu/h2130 days/month2124 h/day2 =
5.61 MBtu.

Now for the oil: With 105 Btu (0.1 MBtu) per gallon, we’ll burn 
56.1 gallons per month to produce that 5.61 MBtu. At +3.48/gal, that 
will cost $195.

assess If you’ve paid for heat in a northern climate, you know that 
this figure is, if anything, low. That’s because we neglected heat losses 
through windows, doors, and the floor, as well as cold-air  infiltration. 
On the other hand, we also left out any solar energy gained through 
the windows on sunny days. Problem 69 provides a more realistic 
look at this house. ■Figure 16.9 House for Example 16.4.

1 14 ft
cos302

10 ft

30°

28 ft

h = 14 ft * tan30

A = 136 ft2

36 ft
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16.3 Heat Transfer 293

Convection
Convection is heat transfer by fluid motion. It occurs as heated fluid becomes less dense 
and therefore rises. Figure 16.10a shows two plates at different temperatures, with fluid 
between them. Fluid heated by the lower plate rises and transfers heat to the upper plate. 
The cooled fluid sinks, and the process repeats. The pattern of rising and sinking fluid of-
ten acquires a striking regularity, as shown in Fig. 16.10b.

Convection is important in many technological and natural environments. When you 
heat water on a stove, convection carries heat through the water. Houses usually rely on 
convection from heat sources near floor level to circulate warm air throughout a room. In-
sulating materials trap air and thereby inhibit convection that would otherwise cause exces-
sive heat loss. Convection associated with solar heating of Earth’s surface drives the vast 
air movements that establish our overall climate. Violent convection, as in thunderstorms, 
is associated with localized temperature differences. On a much longer time scale, convec-
tion in Earth’s mantle drives continental drift. Convection plays a crucial role in many 
astrophysical processes, including the generation of magnetic fields in stars and planets.

As with conduction, the convective heat-loss rate often is approximately proportional 
to the temperature difference. But the calculation of convective heat loss is complicated 
because of the associated fluid motion. The study of convection processes is an important 
research area in many fields of contemporary science and engineering.

Radiation
Turn a stove burner to “high” and it glows brightly; turn it to “low” and you can still sense 
its heat although it doesn’t glow visibly. Either way, the burner loses energy by emitting 
electromagnetic waves, or radiation. The radiated power P increases rapidly with tem-
perature, as described by the Stefan–Boltzmann law:

 P = es AT4 aStefan-Boltzmann law;
radiated power b  (16.9)

where A is the area of the emitting surface, T the temperature in kelvins, and s the 
 Stefan–Boltzmann constant, approximately 5.67 * 10-8 W/m2 #  K4. The quantity e is the 
 emissivity, a number from 0 to 1 that measures the material’s effectiveness in emitting 
radiation. For radiation of a given wavelength, a material is equally good at emitting and 
absorbing radiation. A perfect emitter has e = 1 and is also a perfect absorber. Such an 
object would appear black at room temperature and is therefore called a blackbody. A 
shiny object, in contrast, reflects most of the radiation that hits it and is therefore also a 
poor emitter. Wood stoves are often painted black to increase their emissivity; Thermos 
bottles, on the other hand, have a shiny coating to reduce radiation.

Because of the strong T4 temperature dependence, radiation is generally the  dominant 
heat-loss mechanism at high temperatures but is less important at low temperatures. 
 Radiation also dominates for objects in vacuum, since there’s no material to carry 
 conductive or convective heat flows; that makes Equation 16.9 crucial in understanding 
the climates of Earth and other planets.

Objects also absorb radiant energy from their surroundings, at a rate given by Equation 16.9 
using the ambient temperature Ta, so the net radiated power becomes P = esA1T4 - T4

a2. 
For an object that’s much hotter than its surroundings, the second term is negligible. But for 
an object that’s only a little warmer, like a human body, it’s significant.

It’s not just the amount of radiation that changes with temperature; as our stove burner 
example suggests, it’s also the wavelength. Objects at room temperature, for example, 
emit mostly invisible infrared radiation, while very hot objects like the Sun emit more 
 visible light. We’ll take a quantitative look at this relation in Chapter 34.

GoT IT? 16.4 Name the dominant form of heat transfer from (1) a red-hot stove 
burner with nothing on it, (2) a burner in direct contact with a pan of water, and (3) the 
bottom to the top of the water in the pan once it’s begun to boil.

Figure 16.10 (a) Convection between two 
plates at different temperatures. (b) Top view 
of convection cells in a laboratory experiment. 
Fluid rises at the centers and sinks at the edges 
of the convection cells.
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(b)
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Video Tutor Demo | Candle Chimneys

PheT: Blackbody Spectrum
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294 Chapter 16 Temperature and Heat

ExampLE 16.5  Calculating Radiation: The Sun’s Temperature

The Sun radiates energy at the rate P = 3.9 * 1026 W, and its radius is 
7.0 * 108 m. Treating the Sun as a blackbody 1e = 12, find its surface 
temperature.

Interpret This is a problem about the radiation from a hot object.

Develop The Stefan–Boltzmann law, Equation 16.9, gives the 
 radiated power in terms of the temperature, emissivity, and surface 
area: P = esAT4. Our plan is to solve this equation for T. For the 
Sun, radiation comes from the entire spherical surface of area 4pR2, 
as our sketch shows (Fig. 16.11).

evaluate Using the Sun’s spherical surface area and solving Equa-
tion 16.9 for T gives

 T = a P

4pR2s
b

1/4

 = c 3.9 * 1026 W

4p17.0 * 108 m2215.7 * 10-8 W/m2 # K42 d
1/4

= 5.8 * 103 K

assess Make sense? Yes: Our answer has the unit of temperature 
and agrees with observational measurements. Despite its bright glow, 
the Sun is essentially a blackbody, because it absorbs all radiation 
 incident on it. But the Sun is so much hotter than its surroundings that 
we can neglect absorbed radiation in this calculation. ■

Figure 16.11 The Sun radiates from its spherical surface area 4pR2.

ConCEpTUaL ExampLE 16.1 Energy-Saving Windows

Why do double-pane windows reduce heat loss greatly compared 
with single-pane windows? Why is a window’s R-factor higher if the 
 spacing between panes is small? And why do the best windows have 
“low-E” coatings?

evaluate Table 16.2 gives glass’s thermal conductivity as around 
0.8 W/m#K, while good insulators like air and Styrofoam have 
k ∼ 0.03 W/m 

#
 K. That’s why a layer of air between window panes 

greatly increases the window’s R-factor. But if the pane spacing is 
too great, convection currents develop between the sheets of glass, 
transferring heat from the warmer to the cooler surface; that’s why 
narrower pane spacing is better. Finally, warm glass loses energy by 
radiation, and a thin coating of material with low emissivity (“low-E”) 
reduces radiant heat loss.

assess High-quality windows include all three features described 
here, so they suppress all three kinds of heat loss we’ve discussed. 
The best windows also use an inert gas—usually argon—between 
panes to reduce heat loss further.

MakIng the ConneCtIon Compare the R-factor for a single-pane 
window made from 3.0-mm-thick glass with that of a double-pane 
window made from the same glass with a 5.0-mm air gap between 
panes.

evaluate Compute the R-factors for the glass and air space, and 
you’ll get about 0.004 m2 #  K/W for the single pane and, adding two 
layers of glass and the air space, 0.2 m2 #  K/W for the double-pane 
window. That’s a factor of 50 improvement! In English units our an-
swers translate into R-factors of 0.02 and 1.1—although again they’re 
lower than for actual windows because they neglect “dead air” layers 
and the other improvements discussed above. The best commercially 
available windows, in fact, achieve R-factors of 5 and higher, and 
some multilayer windows exceed R10.

16.4 Thermal-Energy Balance
You keep your house at a comfortable temperature in winter by balancing heat loss with 
energy from your heating system (Fig. 16.12). This state of thermal-energy  balance 
 occurs throughout science and engineering. Understanding thermal-energy balance 
 enables engineers to specify a building’s heat sources and helps scientists predict Earth’s 
future climate.

Engineered systems actively control the thermal-energy balance to achieve a desired 
temperature. But even without active control, systems with a fixed rate of energy input nat-
urally tend toward energy balance. That’s because all heat-loss mechanisms give increased 
loss with increasing temperature. If the rate of energy input to a system is greater than the 
loss rate, then the system gains energy and its temperature increases—and so, therefore, 
does the loss rate. Eventually the two come to balance at some fixed  temperature. If the 
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Figure 16.12 A house in thermal-energy balance.

Energy from the
furnace c cbalances

loss through
walls and roof c

cthus 
maintaining
a comfortable
temperature c

ccompared
with outside.

loss exceeds the gain, the system cools until again it’s in balance. Problems involving 
thermal-energy balance are similar regardless of the energy-loss mechanism or whether 
the application is to a technological or a natural system.

probleM-solvIng strategy 16.1 Thermal-Energy Balance

InTERpRET Interpret the problem to be sure it deals with heat gains and losses. Identify the 
system of interest, the source(s) of energy input to the system, and the significant heat-loss 
mechanism(s).

DEvELop Determine which equation(s) govern the heat loss; these will necessarily involve the 
system’s temperature. Your plan is then to equate the rate of energy loss with the rate of energy 
input.

EvaLUaTE Write an equation that expresses equality of energy loss and input. Then evaluate 
by solving for the quantity the problem asks for—often the system’s temperature.

aSSESS If your answer is a temperature, does it seem reasonable? Is the temperature of a 
heated system higher than that of its surroundings?

ExampLE 16.6 Thermal-Energy Balance: Hot Water

A poorly insulated electric water heater loses heat by conduction at 
the rate of 120 W for each Celsius degree difference between the 
 water and its surroundings. It’s heated by a 2.5-kW electric heating 
element and is located in a basement kept at 15°C. What’s the water 
temperature if the heating element operates continuously?

Interpret The concept here is energy balance, and we identify 
the system of interest as the water. Its energy input comes from the 
 heating element at the rate of 2.5 kW. The heat loss is by conduction.

Develop Figure 16.13 is a sketch suggesting energy balance in the 
heater. We’re given the conductive heat loss of 120 W/ °C, meaning that 
the total heat-loss rate is H = 1120 W/ °C21∆T2. We then equate the 
heat-loss rate to the energy-input rate: 1120 W/ °C21∆T2 = 2.5 kW.

evaluate Solving for ∆T  gives

∆T =
2.5 kW

120 W/ °C
= 21°C

With the basement at 15°C, the water temperature is then 36°C.

assess Is this answer reasonable? Not if you want a hot shower; our 
answer is 1°C below body temperature! But we’re told the insulation 
is bad, so it’s time for a new water heater! ■

Figure 16.13 Balance between the heat supplied by the electric element and 
the conductive loss determines the water temperature.
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GoT IT? 16.5 A house’s thermostat fails, leaving the furnace running continuously. 
As a result, will the temperature of the house (a) increase indefinitely, (b) eventually stabi-
lize, or (c) drop below the thermostat setting? Explain.

appLICaTIon The Greenhouse Effect and Global Warming

The Earth–atmosphere system absorbs energy from the Sun at an average rate 
of 960 watts for each square meter of the planet’s cross-sectional area, pR 2

E ,  
where RE is Earth’s radius (see the diagram). This quantity is designated S, so 
we write S = 960 W/m2. This value accounts for night and day; for clouds; 
and for the reflection of sunlight from ice, snow, deserts, and other highly 
reflective surfaces and especially from particulate matter in the atmosphere. 
Therefore, the rate at which the entire Earth–atmosphere system absorbs en-
ergy is Pincoming = pR 2

E S. This incoming energy causes Earth to warm until 
it loses energy at the same rate. Since it’s surrounded by the vacuum of space, 
Earth can only lose energy by radiation. Since Earth is much cooler than the  
Sun, that radiation is in the form of invisible infrared. Furthermore, as the 
 diagram shows, Earth radiates from its entire surface area, 4pR 2

E . Earth’s 

emissivity for infrared radiation is essentially 1, so Earth radiates energy at a 
rate given by the Stefan–Boltzmann law, Equation 16.9:

Poutgoing = s4pR 2
E T4

where T is Earth’s average temperature. Equating this outgoing power to the 
rate at which solar energy arrives from the Sun gives a statement of energy 
balance:

pR 2
E S = s4pR 2

E T4

Solving for the temperature then gives T = 255 K = -18°C or 0°F. Is 
this reasonable? It’s certainly in the right ballpark—not so hot as to boil the 
oceans or so cold as to freeze the atmosphere. But 0°F seems a bit cold for a 
global average temperature. And it is: Earth’s average temperature is around 
15°C or 59°F. Why the discrepancy?

The answer lies with Earth’s atmosphere. The dominant atmospheric gases, 
nitrogen and oxygen, are largely transparent to both incoming sunlight and out-
going infrared. But others—the so-called greenhouse gases, especially water 
vapor and carbon dioxide—let sunlight pass through but impede outgoing in-
frared. As a result, Earth’s surface temperature has to be higher to get the same 
total radiation to space. This is the natural greenhouse effect, and it explains 
the 33°C temperature difference between our simple calculation and Earth’s 
actual surface temperature. Neighbor planets confirm this reasoning. Mars, 
with very little atmosphere, exhibits almost no greenhouse warming. Venus, 
whose atmosphere is 100 times denser than Earth’s and largely CO2, has a 

Sunlight is absorbed by an
effective area equal to Earth’s
cross-sectional area pRE

2 c

cbut it’s radiated from the planet’s
entire surface area, 4pRE

2

Incident sunlight

Outgoing infrared

ExampLE 16.7  Thermal-Energy Balance: a Solar Greenhouse

A solar greenhouse has 300 ft2 of opaque R@30 walls and 250 ft2 of 
R@1.8 double-pane glass that admits solar energy at the average rate 
of 40 Btu/h/ft2. Find the greenhouse temperature on a day when the 
outdoor temperature is 15°F.

Interpret Again the concept is energy balance, now with the green-
house as the system of interest. We’re given R@factors, suggesting that 
the energy loss is by conduction through walls and glazing. The en-
ergy input is sunlight.

Develop As we saw in Example 16.4, the R@factor determines a 
heat-loss rate that is related directly to area and temperature difference 
and inversely to the R@factor. So we have

Hw =
Aw ∆T

Rw
= a300

30
b∆T = 110 Btu/h/°F2∆T

for the heat loss through the walls and

Hg =
Ag ∆T

Rg
= a250

1.8
b∆T = 1139 Btu/h/°F2∆T

for the heat loss through the glass, giving a total heat loss 
H = 1149 Btu/h/°F2∆T. Meanwhile, the energy input through the 

 entire 250 ft2 of glass is 140 Btu/h/ft221250 ft22 = 1.0 * 104 Btu/h. 
Our plan is to equate energy input and loss and then solve for ∆T.

evaluate Equating loss and gain gives

1149 Btu/h/°F2∆T = 1.0 * 104 Btu/h.

We then solve for ∆T:

∆T =
1.0 * 104 Btu/h

149 Btu/h/°F
= 67°F

So when it’s 15°F outside, the greenhouse is at a tropical 82°F.

assess This seems a reasonable greenhouse temperature. Our 
 calculation assumes that solar input remains constant; in a real 
 greenhouse the temperature would fluctuate as the Sun’s angle 
changes and clouds pass over. We could minimize these fluctuations 
by giving the greenhouse a large heat capacity, perhaps by incorporat-
ing a massive concrete slab or concrete walls. ■

PheT: The Greenhouse Effect
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“runaway” greenhouse effect that keeps its surface hotter than an oven. You 
can explore the climates of our neighbor planets in Problem 75.

As the graph shows, we humans have increased atmospheric carbon dioxide 
some 40% since the start of the industrial era, to a level—now exceeding 400 

parts per million—that the planet has not seen for millions of years. Combus-
tion of fossil fuels is the dominant source of this CO2, although processes like 
deforestation also contribute, as do other greenhouse gases such as methane. 
Basic physics then dictates that Earth’s surface temperature should rise. How 
much and how fast depend on complex interactions among atmosphere, surface, 
oceans, and life, and on future greenhouse-gas emissions. Nevertheless, a con-
sensus among climate scientists suggests that Earth has warmed by some 0.85°C 
since the mid-19th century, with most of this warming attributable to human ac-
tivities—especially combustion of fossil fuels and the resulting CO2 emissions 
(see the graph). Further warming in the range of 1.5°C95°C is projected by the 
year 2100, with the low end requiring substantial curtailing of greenhouse-gas 
emissions and the high end corresponding to “business as usual.”

Although even a 5°C increase may seem modest, the rate of increase in all 
scenarios for the 21st century is far greater than most natural climate change. 
Furthermore, as the map shows, warming will not be distributed evenly over 
the globe but will be greatest in the arctic and over most land masses. One of 
many serious consequences of this rapid warming is a rise in sea level, which 
is already occurring substantially more rapidly than its average rate over the 
past 2000 years. During the last so-called interglacial warm period, some 
120,000 years ago, sea level was between 5 and 10 m higher than it is today—
enough to swamp Earth’s coastal cities. The temperature at that time was likely 
only a little more than 2°C above the pre-industrial temperature of the 18th and 
19th centuries. Considerations such as this have led the world’s governments 
to adopt the goal of limiting the planet’s industrial-era temperature rise to no 
more than 2°C. Given that we’re almost halfway there already, achieving this 
goal will require drastic changes in the way we produce energy.

Atmospheric CO2 concentration (black) and global temperature (color) 
from 1000–2015 a.d. Temperature is given as a deviation from the average 
for 1961–1990. Data through 1849 are reconstructed based on tree rings 
and other proxies; data from 1850 on are from thermometer records. The 
industrial era began around 1750.
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ChaPter 16 Summary
Big Ideas

The big ideas here are temperature and heat. Temperature is a property common to 
systems in thermodynamic equilibrium. Temperature is quantified in SI units using 
the kelvin scale, currently defined in terms of gas-based thermometers.

Systems A and B
have been in thermal
contact with no
further macroscopic
changes.

They’ve reached
thermodynamic
equilibrium and
so have the same
temperature.

A B

Heat is energy in transit as a result of a temperature 
difference.

For TA 7 TB, heat �ows
from A to B.

A

TA TB

B

Key Concepts and Equations

Heat capacity and specific heat quantify the energy 
Q required to raise an object’s temperature by ∆T:

Q = mc ∆T

Mass m
Add energy

QSpeci�c
heat c

Temperature T

Temperature
increase ∆T

Q = mc ∆T

Three important heat-transfer mechanisms are:

 Conduction Convection Radiation

A, T

T

Area AT + ∆T

H

∆x

Cool

Hot

Sinking
�uid

Rising
�uid

A, T

T

Area AT + ∆T

H

∆x

Cool

Hot

Sinking
�uid

Rising
�uid

A, T

T

Area AT + ∆T

H

∆x

Cool

Hot

Sinking
�uid

Rising
�uid

H = -kA 
∆T

∆x
    1conductive heat flow2 P = esAT4  aStefan-Boltzmann law;

radiated power b

applications

Temperature scales include Kelvin (K), 
 Celsius 1°C2, Fahrenheit 1°F2, and Rankine 
1°R2.
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Mercury
boils

Steam
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boils
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630
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77

273

373
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The Kelvin and Celsius scales are related 
by TC = T - 273.15.  The relat ion be-
tween Fahrenheit and Celsius scales is 
TF = 9

5 TC + 32.

Incident sunlight

Outgoing infrared

Equilibrium temperature:  Combining two  
systems at different temperatures  results in 
a common equilibrium temperature given 
by m1c1 ∆T1 + m2c2 ∆T2 = 0.

T

m2, c2, T2

m1, c1, T1

Insulated Same T

T

Energy balance: A system experiencing 
both energy input and energy loss comes to 
energy balance at the temperature for which 
the energy-loss rate equals the rate of energy 
input.

Energy in

Energy
out

M16_WOLF4752_03_SE_C16.indd   298 17/06/15   4:25 PM



Exercises and Problems 299

For homework assigned on MasteringPhysics, go to www.masteringphysics.com

BIO Biology and/or medicine-related problems DATA Data problems ENV Environmental problems CH Challenge problems Comp Computer problems

Section 16.2 Heat Capacity and Specific Heat
22. Find the heat capacity of a 55-tonne concrete slab.
23. Find the energy needed to raise the temperature of a 2.0-kg chunk 

of aluminum by 18°C.
24. What’s the specific heat of a material if it takes 7.5 kJ to increase 

the temperature of a 1-kg sample by 3.0°C?
25. The average human diet contains about 2000 kcal per day. If all 

this food energy is released rather than stored as fat, what’s the 
approximate average power output of the human body?

26. Walking at 3 km/h requires an energy expenditure rate of about 
200 W. How far would you have to walk to “burn off” a 420-kcal 
hamburger?

27. You bring a 350-g wrench into the house from your car. The 
house is 15°C warmer than the car, and it takes 2.52 kJ to warm 
the wrench by this amount. Find (a) the heat capacity of the 
wrench and (b) the specific heat of the metal it’s made from.

28. (a) How much heat does it take to bring a 3.4-kg iron skillet from 
20°C to 130°C? (b) If the heat is supplied by a stove burner at the 
rate of 2.0 kW, how long will it take to heat the pan?

Section 16.3 Heat Transfer
29. Building heat loss in the United States is usually expressed in 

Btu/h. What’s 1 Btu/h in SI units?
30. Find the heat-loss rate through a slab of (a) wood and (b) Styro-

foam, each 2.0 cm thick, if one surface is at 20°C and the other  
at 0°C.

31. The top of a steel wood stove measures 90 cm by 40 cm and 
is 0.45 cm thick. The fire maintains the inside surface of the 
stovetop at 310°C, while the outside surface is at 295°C. Find the 
heat conduction rate through the stovetop.

32. You’re a builder who’s advising a homeowner to have her foun-
dation walls insulated with 2 inches of Styrofoam. To make 
your point, you tell her how thick the concrete walls (normally 
8 inches) would have to be to have the same insulating value as 2 
inches of Styrofoam. What’s this thickness?

33. An 8.0 m by 12 m house is built on a concrete slab 23 cm thick. 
Find the heat-loss rate through the floor if the interior is at 20°C 
while the ground is at 10°C.

34. Find the R-factor for a wall that loses 0.040 Btu each hour 
through each square foot for each °F temperature difference.

35. Compute the R-factors for 1-inch thicknesses of air, concrete, 
fiberglass, glass, Styrofoam, and wood.

36. A horseshoe has surface area 50 cm2, and a blacksmith heats it to 
a red-hot 810°C. At what rate does it radiate energy?

Section 16.4 Thermal-Energy Balance
37. An oven loses energy at the rate of 14 W per °C temperature 

difference between its interior and the 20°C temperature of the 
kitchen. What average power must be supplied to maintain the 
oven at 180°C?

38. You’re having your home’s heating system replaced, and the 
heating contractor has specified a new system that supplies en-
ergy at the maximum rate of 40 kW. You know that your house 
loses energy at the rate of 1.3 kW per °C temperature difference 
between interior and exterior, and the minimum winter tempera-
ture in your area is -15°C. You’d like to maintain 20°C 168°F2 
indoors. Should you go with the system your contractor recom-
mends?

BIO

BIO

ENV

For thought and Discussion
 1. If system A is not in thermodynamic equilibrium with system B, 

and B is not in equilibrium with C, can you draw any conclusions 
about the temperatures of the three systems?

 2. Does a thermometer measure its own temperature or the tempera-
ture of its surroundings? Explain.

 3. Compare the relative sizes of the kelvin, the degree Celsius, the 
degree Fahrenheit, and the degree Rankine.

 4. If you put a thermometer in direct sunlight, what do you meas-
ure: the air temperature, the temperature of the Sun, or some 
other temperature?

 5. Why does the temperature in a stone building usually vary less 
than in a wooden building?

 6. Why do large bodies of water exert a temperature-moderating 
 effect on their surroundings?

 7. A Thermos bottle consists of an evacuated, double-wall glass 
liner, coated with a thin layer of aluminum. How does it keep 
liquids hot?

 8. Stainless-steel cookware often has a layer of aluminum or copper 
embedded in the bottom. Why?

 9. What method of energy transfer dominates in baking? In broiling?
10. After a calm, cold night, the temperature a few feet above ground 

often drops just as the Sun comes up. Explain in terms of convection.
11. Glass and fiberglass are made from the same material, yet have 

dramatically different thermal conductivities. Why?
12. To keep your hands warm while skiing, you should wear mittens 

instead of gloves. Why?
13. Since Earth is exposed to solar radiation, why doesn’t Earth have 

the same temperature as the Sun?
14. Global warming at Earth’s surface is generally producing greater 

temperature rises over land than over the oceans. Why might this 
be?

exercises and Problems
Exercises

Section 16.1 Heat, Temperature, and Thermodynamic 
Equilibrium
15. In its 2014 report, the Intergovernmental Panel on Climate 

Change projected a global temperature increase of 1.4°C to 3.1°C 
during the 21st century, for a scenario in which atmospheric car-
bon dioxide reaches about 700 parts per million by 2100 (it’s 
now about 400 ppm and rising at about 2.4 ppm/year). Translate 
this range into Fahrenheit.

16. A Canadian meteorologist predicts an overnight low of -15°C. 
How would a U.S. meteorologist express that prediction?

17. Normal room temperature is 68°F. What’s this in Celsius?
18. The outdoor temperature rises by 10°C. What’s that rise in Fahr-

enheit?
19. At what temperature do the Fahrenheit and Celsius scales 

 coincide?
20. The normal boiling point of nitrogen is 77.3 K. Express this in 

Celsius and Fahrenheit.
21. A sick child’s temperature reads 39.1 on a Celsius thermometer. 

What’s the temperature in Fahrenheit?
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300 Chapter 16 Temperature and Heat

52. When a nuclear power plant’s reactor is shut down, radioactive 
decay continues to produce heat at about 10% of the  reactor’s 
normal power level of 3.0 GW. In a major accident, a pipe 
breaks and all the reactor cooling water is lost. The reactor is 
immediately shut down, the break is sealed, and 420 m3 of 20°C 
water is injected into the reactor. If the water were not  actively 
cooled, how long would it take to reach its normal boiling 
point?

53. A 1.2-kg iron tea kettle sits on a 2.0-kW stove burner. If it takes 
5.4 min to bring the kettle and the water in it from 20°C to the 
boiling point, how much water is in the kettle?

54. The temperature of the eardrum provides a reliable measure of 
deep body temperature and is measured quickly with ear ther-
mometers that sense infrared radiation. A thermometer that 
“views” 1 mm2 of the eardrum requires 100 µJ of energy for a re-
liable reading at normal 37°C body temperature. How long does 
the measurement take?

55. A 1500-kg car moving at 40 km/h is brought to a sudden stop. If 
all the car’s energy is dissipated in heating its four 5.0-kg steel 
brake disks, by how much do the disk temperatures increase?

56. Your young niece complains that her cocoa, at 90°C, is too hot. 
You pour 2 oz of milk at 3°C into the 6 oz of cocoa. Assuming 
milk and cocoa have the same specific heat as water, what’s the 
cocoa’s new temperature?

57. A piece of copper at 300°C is dropped into 1.0 kg of water at 
20°C. If the equilibrium temperature is 25°C, what’s the mass of 
the copper?

58. While camping, you boil water to make spaghetti. Your pot con-
tains 2.5 kg of water initially at 10°C. You stoke up the camp-
fire, and as a result the water gains energy at an increasing rate: 
P = a + bt, where a = 1.1 kW, b = 2.3 W/s, and t is the time 
in s. To the nearest minute, how long will it take to bring the wa-
ter to a boil?

59. A biology lab’s walk-in cooler measures 3.0 m by 2.0 m by 
2.3 m and is insulated with 8.0-cm-thick Styrofoam. If the sur-
rounding building is at 20°C, at what average rate must the 
cooler’s refrigeration unit remove heat in order to maintain 
4.0°C in the cooler?

60. One end of an iron rod 40 cm long and 3.0 cm in diameter is in 
ice water, the other in boiling water (Fig. 16.15). The rod is well 
insulated so no heat is lost out the sides. Find the heat-flow rate 
along the rod.

Iron rod

Ice water Boiling water

Figure 16.15 Problem 60

61. You arrive for a party on a night when it’s 8°C outside. Your hosts 
meet you at the door and say the party may need to be cancelled, 
because the heating system has failed and they don’t want to dis-
comfort their guests. You say, “Not so fast!” A total of 36 peo-
ple are expected, the average power output of a human body is 
100 W, and the house loses energy at the rate 320 W/°C. Will the 
house remain comfortable?

62. An electric stove burner has surface area 325 cm2 and emissivity 
e = 1. The burner consumes 1500 W and is at 900 K. If room 
temperature is 300 K, what fraction of the burner’s heat loss is 
from radiation?
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39. The filament of a 100-W lightbulb is at 3.0 kK. What’s the fila-
ment’s surface area?

40. A typical human body has surface area 1.4 m2 and skin tempera-
ture 33°C. If the body’s emissivity is about 1, what’s the net ra-
diation from the body when the ambient temperature is 18°C?

problems
41. A constant-volume gas thermometer is filled with air whose pres-

sure is 101 kPa at the normal melting point of ice. What would its 
pressure be at (a) the normal boiling point of water (373 K), (b) 
the normal boiling point of oxygen (90.2 K), and (c) the normal 
boiling point of mercury (630 K)?

42. A constant-volume gas thermometer is at 55-kPa pressure at the 
triple point of water. By how much does its pressure change for 
each kelvin temperature change?

43. In Fig. 16.2’s gas thermometer, the height h is 60.0 mm at the tri-
ple point of water. When the thermometer is immersed in boiling 
sulfur dioxide, the height drops to 57.8 mm. What is the boiling 
point of SO2 in kelvins and in degrees Celsius?

44. If your mass is 60 kg, what’s the minimum number of Calories 
(kcal) you would “burn off” climbing a 1700-m-high mountain? 
(Note: The actual metabolic energy used would be much greater.)

45. Typical fats contain about 9 kcal per gram. If the energy in body 
fat could be utilized with 100% efficiency, how much mass 
would a runner lose in a 26.2-mile marathon while consuming 
125 kcal/mile?

46. A circular lake 1.0 km in diameter is 10 m deep (Fig. 16.14). Solar 
energy is incident on the lake at an average rate of 200 W/m2. If 
the lake absorbs all this energy and does not exchange heat with its 
surroundings, how long will it take to warm from 10°C to 20°C?

1.0 km

10 m

Figure 16.14 Problem 46

47. How much heat is required to raise an 800-g copper pan from 
15°C to 90°C if (a) the pan is empty or contains (b) 1.0 kg of 
water and (c) 4.0 kg of mercury?

48. Initially, 100 g of water and 100 g of another substance listed in 
Table 16.1 are at 20°C. Heat is then transferred to each substance 
at the same rate for 1.0 min. At the end of that time, the water 
is at 32°C and the other substance at 76°C. (a) What’s the other 
substance? (b) What’s the heating rate?

49. You draw 330 mL of 10°C water from the tap and pop it into 
a 900-W microwave oven to heat for tea. How long should you 
microwave the water so it just reaches the boiling point?

50. Two neighbors return from Florida to find their houses at a frigid 
35°F. Each house has a furnace that can supply 100,000 Btu/h. 
One house is made of stone and weighs 75 tons. The other is 
wood and weighs 15 tons. How long does it take each house to 
reach 65°F? Neglect heat loss, and assume the entire house mass 
reaches a uniform temperature.

51. You’re arguing with your roommate about whether it’s quicker to 
heat water on a stove burner or in a microwave. The burner sup-
plies energy at the rate of 1.0 kW, the microwave at 625 W. You 
can heat water in the microwave in a paper cup of negligible heat 
capacity, but the stove requires a pan with heat capacity 1.4 kJ/K. 
How much water do you need before it becomes quicker to heat 
on the stovetop? Neglect energy loss to the surroundings.

BIO

BIO

BIO

ENV

M16_WOLF4752_03_SE_C16.indd   300 17/06/15   4:26 PM



Exercises and Problems 301

74. At low temperatures the specific heats of solids are approximately 
proportional to the cube of the temperature: c1T2 = a1T/T023.  
For copper, a = 31 J/g 

#
 K and T0 = 343 K. Find the heat re-

quired to bring 40 g of copper from 10.0 K to 25.0 K.
75. The Application on global warming (page 296) gives 960 W/m2 

as the average rate at which solar energy reaches Earth. You can 
approximate the solar energy rate reaching other planets by scal-
ing this quantity by the inverse square of the planet’s distance 
from the Sun (see Appendix E)—although what you’ll get is 
only an approximation because that 960 W/m2 includes effects 
of clouds and reflection that are unique to Earth and, more im-
portantly, it neglects the greenhouse effect. Follow the procedure 
used in the Application to find approximations to the tempera-
tures of Mars and Venus, and compare with their mean measured 
surface temperatures (you’ll have to research those). Your results 
suggest that Mars has very little greenhouse effect, while Venus 
exhibits a “runaway” greenhouse effect resulting in a very high 
surface temperature.

76. In a cylindrical pipe where area isn’t constant, Equation 16.5 
takes the form H = -kA1dT/dr2, where r is the radial coordi-
nate  measured from the pipe axis. Use this equation to show 
that the heat-loss rate from a cylindrical pipe of radius R1 and 
length L is

H =
2pkL1T1 - T22

 ln 1R2/R12

where the pipe is surrounded by insulation of outer radius R2 
and thermal conductivity k and where T1 and T2 are the tem-
peratures at the pipe surface and the outer surface of the in-
sulation, respectively. (Hint: Consider the heat flow through a 
thin section of pipe, with thickness dr, as shown in Fig. 16.16. 
Then integrate.)

Insulation

dr

T + dT
T

r

R2

R1

Figure 16.16 Problem 76

77. A friend who’s skeptical about climate change argues that the 
roughly 0.85°C increase in Earth’s temperature during the in-
dustrial era could be caused by an increase in the Sun’s power 
output. The Sun’s average power has, in fact, increased by about 
0.05% during this time. Could your friend be right?

78. Your family is winterizing its lakefront camp, and you want at 
least R-19 insulation in the walls. You’ve got some European-
made insulation with R-factor 3.5 m2 #  K/W. Will it do?

79. Your niece from Problem 56 keeps her pet rabbit in a backyard 
hutch with thermal resistance 0.25 K/W. On a day when the out-
side temperature is -15°C, she’s worried that the rabbit’s water 
will freeze, so you put a 50-W heat lamp in the hutch. Will the 
bunny be able to drink its water? Neglect the heat due to the ani-
mal’s metabolism.
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63. An electric current passes through a metal strip 0.50 cm by 
5.0 cm by 0.10 mm, heating it at a rate of 50 W. The strip has 
 emissivity e = 1 and its surroundings are at 300 K. What will 
be the strip’s temperature if it’s enclosed in (a) a vacuum bottle 
transparent to all radiation and (b) an insulating box with thermal 
resistance R = 8.0 K/W that blocks all radiation?

64. You’re considering purchasing a new sleeping bag whose manu-
facturer claims will keep you warm to -10°F. The bag has down 
insulation with 4.0-cm loft (thickness). Your body produces heat 
at the rate of 100 W and has area 1.5 m2. Considering only con-
ductive heat loss, will you be able to maintain normal body tem-
perature in the bag at -10°F?

65. A blacksmith heats a 1.1-kg iron horseshoe to 550°C, then 
plunges it into a bucket containing 15 kg of water at 20°C. 
What’s the equilibrium temperature?

66. What’s the power output of a microwave oven that can heat 430 g  
of water from 20°C to the boiling point in 2.5 min? Neglect the 
container’s heat capacity.

67. A cylindrical log 15 cm in diameter and 65 cm long is glow-
ing red hot in a fireplace. The log’s emissivity is essentially 1. 
If it’s emitting radiation at the rate of 34 kW, what’s its tem-
perature?

68. A blue giant star whose surface temperature is 23 kK radiates en-
ergy at the rate of 3.4 * 1030 W. Find the star’s radius, assuming it 
behaves like a blackbody.

69. Rework Example 16.4, now assuming the house has 10 single-
glazed windows, each measuring 2.5 ft by 5.0 ft. Four of the 
windows are on the south, and each admits solar energy at the 
average rate of 30 Btu/h 

#
 ft2. All the windows lose heat; their  

R-factor is 0.90. (a) Find the total heating cost for the month.  
(b) How much is the solar gain worth?

70. A black wood stove with surface area 4.6 m2 is made from cast 
iron 4.0 mm thick. Its interior wall is at 650°C, while the exterior 
is at 647°C. (a) What’s the rate of heat conduction through the 
stove wall? (b) What’s the rate of heat loss by radiation from the 
stove? (c) Use the results of (a) and (b) to find how much heat the 
stove loses by a combination of conduction and convection in the 
surrounding air.

71. Estimate the average temperature on Pluto, treating the dwarf 
planet as a blackbody whose great distance from the Sun 
means that it receives energy from the Sun at the rate of only 
0.876 W/m2.

72. The table below shows temperature versus time for 500 g 
of  water heated in a microwave oven. In a microwave, essen-
tially all the microwave energy goes into the water-containing 
food in the oven. Plot the data, determine a best-fit line, and 
use the slope of your line to determine the microwave power of 
this  particular oven. Assume that water’s specific heat is inde-
pendent of temperature (which is only approximately true; see 
 Problem 73).

Time (s) 0 25 60 95 125 160 190

Temperature (°C) 12 20 39 53 64 83 93

73. Water’s specific heat in the range from 0°C to 100°C is 
g ive n  ve r y  n e a r l y  b y  c1T2 = c0 + aT + bT2 ,  w h e r e 
c0 = 4207.9 J/kg #K, a = -1.292 J/kg #K2, and b = 0.01330 J/kg #K3. 
Use this expression to find the heat required to raise the tempera-
ture of 1.000 kg of water from 0°C to 100°C. By what percentage 
does this differ from the result you would get using the value of c 
in Table 16.1 over the entire temperature range?
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302 Chapter 16 Temperature and Heat

Figure 16.18 End view of a slab of fiberglass insulation (Passage  
Problems 83–86).

83. Fiberglass insulation owes its insulating quality primarily to
a. the low thermal conductivity of glass.
b. its ability to block cold air infiltration.
c. the low thermal conductivity of air trapped between the glass 

fibers.
84. One purpose of foil facing on fiberglass insulation is to reduce 

heat loss by
a. conduction.
b. convection.
c. radiation.

85. Fiberglass insulation for attics is available in 12-inch thickness. 
Its R-factor is
a. 38.
b. 76.
c. 29.

86. Since fiberglass insulation is readily compressible, you could 
squash two slabs initially 6 inches wide into a 6-inch wall space. 
This would
a. double the overall R-factor.
b. increase the overall R-factor but not double it.
c. decrease the overall R-factor.
d. not change the overall R-factor.

answers to Chapter Questions

answer to Chapter opening Question
The photo is taken in infrared light, and the amount of infrared 
 radiation increases rapidly with increasing temperature. The car’s 
wheels are glowing with infrared, a result of frictional heating when 
the brakes were recently applied.

answers to GoT IT? Questions
 16.1 (b)
 16.2 (a) The rock’s temperature changes more because its specific 

heat is lower.
 16.3 ∆T2 6 ∆T3 6 ∆T1; Since H and ∆x are the same for each 

slab, the product k ∆T  must be constant, so a higher conductiv-
ity means a lower ∆T.

 16.4 (1) Radiation; (2) conduction; (3) convection
 16.5 (b) Because as the temperature rises so does the heat-loss 

rate—eventually bringing the house into energy balance.

80. Use the method outlined in Problem 76 to show that the steady 
heat-flow rate in the direction of the axis of a truncated cone 
with conductivity k, faces of radii R1 and R2, and length L is 
H = pkR1R21T1 - T22/L. Here, T1 and T2 are the temperatures 
on the two faces, and insulation prevents any heat flow out the 
sides (Fig. 16.17).

Insulation

R1

R2

L

Figure 16.17 Problem 80

81. A house is at 20°C on a winter night when the outside tempera-
ture is a steady -15°C. The house’s heat capacity is 6.5 MJ/K 
and its thermal resistance is 6.67 mK/W. If the furnace sud-
denly fails, how long will it take the house temperature to reach 
the freezing point? (Hint: Combine the differential forms of 
 Equations 16.3 and 16.5 to show that the rate of temperature 
change is proportional to the temperature difference between the 
house and its surroundings. This relation is known as Newton’s 
law of  cooling.)

82. A more realistic approach to the solar greenhouse of Example 
16.7 considers the time dependence of the solar input. A function 
that approximates the solar input is 140 Btu/h/ft22 sin21pt/242, 
where t is the time in hours, with t = 0 at midnight. Then the 
greenhouse is no longer in energy balance, but is described in-
stead by the differential form of Equation 16.3 with Q the time-
varying energy input. Use computer software or a calculator with 
differential-equation-solving capability to find the time-depend-
ent temperature of the greenhouse, and determine the maximum 
and minimum temperatures. Assume the same numbers as in Ex-
ample 16.7, along with a heat capacity C = 1500 Btu/°F for the 
greenhouse. You can assume any reasonable value for the initial 
temperature, and after a few days your greenhouse temperature 
should settle into a steady oscillation independent of the initial 
value.

Passage Problems
Fiberglass is a popular, economical, and fairly effective  building 
 insulation. It consists of fine glass fibers—often including  recycled 
glass—formed loosely into rectangular slabs or rolled into  blankets 
(Fig. 16.18). One side is often faced with heavy paper or  aluminum 
foil. Fiberglass insulation comes in thicknesses compatible with com-
mon building materials—for example, 3.5 inch and 6 inch for wood-
framed walls. Standard 6-inch fiberglass has an R-factor of 19.
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Matter responds to heating in several ways. It may get hotter or may melt. It may change 
size, shape, or pressure. This chapter explores the thermal behavior of matter. We start 

with a simple gaseous state, whose behavior follows from Newtonian mechanics at the 
 molecular level. We then move to liquids and solids, whose behavior is still grounded in the 
molecular properties of matter, but whose description is more empirical.

17.1 Gases
Gases are simple because their molecules are far apart and only rarely interact. 
That makes gas behavior and its physical explanation particularly straightforward. 
 Developing that explanation will clarify the relation between macroscopic  properties—
such as temperature and pressure—and the underlying microscopic properties of gas 
 molecules.

The Ideal-Gas Law
The macroscopic state of a gas in thermodynamic equilibrium is determined by its 
temperature, pressure, and volume. Moreover, it turns out that all gases exhibit, to a 
very good approximation, the same relation among these three quantities.

A simple system for studying gas behavior consists of a gas-filled cylinder sealed 
by a movable piston (Fig. 17.1). This is not just a pedagogical abstraction: Practical 
devices including engines, pumps, and air compressors contain piston–cylinder sys-
tems, while lungs, balloons, gas bubbles, and many other natural systems are analo-
gous to our piston–cylinder system.

If we maintain the system of Fig. 17.1 at constant temperature and move the piston 
to vary the gas volume, we find that the pressure varies inversely with the volume. If 
we increase the temperature while holding the volume fixed, the pressure rises in direct 

How You’ll Use It
■ In Chapter 18 you’ll see how heat and 

work combine into a new statement 
of energy conservation.

■ You’ll also explore the 
thermodynamics of ideal gases.

■ You’ll see how details of molecular 
structure affect the thermodynamic 
behavior of gases.

What You’re Learning
■ You’ll gain an understanding of ideal 

gases based on both experiments 
and Newtonian physics applied to gas 
molecules.

■ You’ll see how temperature and 
molecular energy are intimately 
related.

■ You’ll learn about the heat involved 
in phase changes among solid, liquid, 
and gaseous forms of a substance and 
how to interpret phase diagrams.

■ You’ll explore the phenomenon of 
thermal expansion.

What You Know
■ You understand the concepts of 

temperature, heat, and internal 
energy.

■ You can use specific heats to 
determine the heat involved in 
temperature changes.

■ You recognize three heat-transfer 
mechanisms: conduction, convection, 
and radiation.

■ You can analyze systems in thermal-
energy balance.

The Thermal Behavior of Matter

17

What unusual property of water is evident in 
this photo?

PhET: Gas Properties
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304 Chapter 17 The Thermal Behavior of Matter

proportion to the temperature. If we double the amount of gas while holding temperature 
and volume constant, the pressure doubles. Putting all these results together, we can write

 pV = NkT  1ideal@gas law2 (17.1)

with p, V, and T the pressure, volume, and temperature, respectively, and N the number of 
molecules in the gas. Equation 17.1 is the ideal-gas law. Most real gases obey this law to a 
very good approximation. The constant k that appears in the ideal-gas law is  Boltzmann’s 
constant, named for the Austrian physicist Ludwig Boltzmann (1844–1906), who was 
instrumental in developing the microscopic description of thermal phenomena. In the 
 upcoming revision of the SI unit system, k will be given an the exact value, close to its 
current value of approximately 1.38 * 10-23 J/K. Since the joule (J) can be expressed in 
terms of the fundamental units kilograms, meters, and seconds, the value of k will then 
provide an explicit-constant definition of the kelvin. That definition—relating joules and 
kelvins—reflects a fundamental relationship between temperature and energy, which we’ll 
develop very soon.

Because the number of molecules N in a typical gas sample is astronomically large, we 
often express the ideal-gas law in terms of the number of moles (mol) of gas  molecules. 
One mole is an SI unit equal to Avogadro’s number, NA = 6.022 * 1023, of atoms or 
 molecules.

If we have n moles of a gas, then N = nNA is the number of molecules, so the ideal-gas 
law becomes

 pV = nNAkT = nRT  (17.2)

where R = NAk = 8.314 J/K 

#
 mol is called the universal gas constant.

Gas

FigurE 17.1 A piston–cylinder system.

ExaMpLE 17.1  The Ideal-Gas Law: STp

What volume is occupied by 1.00 mol of an ideal gas at standard tem-
perature and pressure (STP), where T = 0°C and p = 101.3 kPa?

Interpret We’re dealing with an ideal gas, and we’re given the 
amount of gas, the temperature, and the pressure.

Develop Because we’re given the number of moles n, we’ll use the 
ideal-gas law in the form of Equation 17.2, pV = nRT, to find the 
volume.

evaluate Solving for V gives

 V =
nRT

p
=

11.00 mol218.314 J/K # mol21273.15 K2
1.013 * 105 Pa

 = 22.4 * 10-3 m3 = 22.4 L

where we expressed T = 0°C as 273.15 K.

assess This result may be familiar from earlier chemistry or 
 physics courses: 1 mole of any ideal gas—no matter what its chemical 
 composition—occupies 22.4 L at standard temperature and pressure. ■

The ideal-gas law is remarkably simple. Neither its form nor the constants k and R 
depend on the substance making up the gas or on the mass of the gas molecules. Yet most 
real gases follow the ideal-gas law very closely over a wide range of pressures. This nearly 
ideal behavior is what gives gas thermometers their high precision over a wide tempera-
ture range.

Kinetic Theory of the Ideal Gas
Why do gases obey such a simple relation among temperature, pressure, and volume? 
Here we answer that question with an analysis based ultimately on Newtonian mechanics.

We start with some simplifying assumptions:

 1.  The gas consists of many identical molecules, each with mass m but negligible size 
and no internal structure. This assumption is approximately true for real gases when 
the distance between molecules is large compared with their size. This allows us 
to neglect intermolecular collisions, an assumption that simplifies our analysis but 
isn’t crucial to the ideal gas.
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17.1 Gases 305

 2.  The molecules don’t exert action-at-a-distance forces on each other. Thus there’s 
no intermolecular potential energy, and therefore the molecules have only kinetic 
 energy. This assumption is fundamental to an ideal gas.

 3.  The molecules move in random directions with a distribution of speeds that’s 
 independent of direction.

 4.  Collisions with the container walls are elastic, conserving the molecules’ energy 
and momentum. Here’s where we tie our gas model to Newtonian mechanics.

Consider N molecules confined to a rectangular box with length L (Fig. 17.2). Each 
molecule that collides with a wall exerts a force. There are so many molecules that 
 individual collisions aren’t evident; instead the wall experiences an essentially constant 
average force. The gas pressure p is a measure of this force on a unit area. We’re going 
to find an expression for p and use it to gain deep insights into the ideal-gas law and the 
meaning of temperature.

Figure 17.3 shows one molecule colliding with the right-hand wall. Since the  collision 
is elastic, the y-component of the molecule’s velocity is unchanged, while the x- component 
reverses sign. Thus the molecule undergoes a momentum change of magnitude 2mvxi, 
where i labels this particular molecule. After the molecule collides with the right-hand 
wall, nothing will change its x velocity until it hits the left-hand wall and its x velocity 
again reverses. So it will be back at the right-hand wall in the time ∆ti = 2L/vxi that it 
takes to go back and forth along the container.

Now each time our molecule collides with the right-hand wall, it delivers momentum 
2mvxi to the wall. Newton’s second law says that force is the rate of change of momentum. 
So we can calculate the average force Fi due to one molecule by dividing the momentum 
delivered, 2mvxi, by the time, 2L/vxi, between collisions:

Fi =
2mvxi

2L /vxi
=

mvxi
2

L

To get the total force on the wall, we sum over all N molecules with their different x 
 velocities. Dividing by the wall area A then gives the pressure:

p =
F

A
= a  Fi

A
= a  mvxi

2/L

A
=

ma  vxi
2

AL

The last step follows because the box length L and molecular mass m are the same for all 
molecules, so they factor out of the sum. We can simplify by noting that the denominator 
AL is just the volume V. Let’s also multiply by 1 in the form N/N, with N the number of 
molecules. Then we have

p =
ma  vxi

2

AL
=

mN

V
 a  vxi

2

N

In the final expression here, the term g  vxi
2   /N is the average of the squares of all the x  velocity 

components of all the molecules; we designate this quantity vx
2. So the pressure becomes

p =
mN

V
 vx

2

We still haven’t used assumption 3—that the molecules move in random directions 
with speeds independent of direction. If we grab a molecule at random, that means we’re 
just as likely to find it moving in the x-direction, the y-direction, the z-direction, or any 
direction in between—and its speed, on average, won’t depend on its direction of motion. 
So the average quantities vx

2, vy
2, and vz

2 must be equal. Since the three directions x, y, and 
z are perpendicular, the average of the molecular speeds squared is v2 = vx

2 + vy
2 + vz

2. 
We’ve just argued that all three terms on the right are equal, so we can write v2 = 3vx

2, or 
vx

2 = 1
3 v2. Then our expression for pressure becomes

p =
mN

3V
  v2

FigurE 17.2 Gas molecules confined to a 
 rectangular box.

Surface
area A

x

L

FigurE 17.3 A molecule undergoes an elastic 
collision, reversing its x-component and 
 transferring momentum 2mvx to the wall.
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306 Chapter 17 The Thermal Behavior of Matter

Multiplying through by V and by 1 in the form 2/2, we have

pV = 2
3 N 11

2  

mv22
This looks a lot like the ideal-gas law (Equation 17.1), except that instead of kT we have 
2
311

2 mv22 . Take a good look at the quantity in parentheses: You’ll see that it’s just the aver-
age kinetic energy of a gas molecule.

Think about what we’ve done here. We applied the fundamental laws of mechanics 
to an ideal gas and came up with an equation that looks like the experimentally verified 
ideal-gas law, except that it’s expressed in terms of a microscopic quantity—molecular 
kinetic energy—rather than the macroscopic quantity temperature. Since our equation de-
scribes the behavior of an ideal gas, it must be the ideal-gas law. Comparing with the ideal-
gas law in the form 17.1, we must therefore have

 1
2 mv2 = 3

2 kT 1temperature and molecular energy2 (17.3)

Our derivation shows why, in terms of Newtonian mechanics, a gas obeying our four 
assumptions should obey the ideal-gas law. In Equation 17.3 we get an added bonus—a 
microscopic understanding of the meaning of temperature: Temperature measures the 
average kinetic energy associated with random translational motion of the molecules.

This fundamental connection between temperature and energy is what lies behind the 
upcoming redefinition of the kelvin in terms of Boltzmann’s constant. In Chapter 18 you’ll 
see how, with more complex molecules, we need to broaden energy here to include other 
forms of molecular energy in addition to translational kinetic energy.

ExaMpLE 17.2  Molecular Energy and Speed: an air Molecule

Find the average kinetic energy of a molecule in air at room tempera-
ture (20°C or 293 K), and determine the speed of a nitrogen molecule 
1N22 with this energy.

Interpret This problem asks about the linkage between thermody-
namic quantities and molecular energy. We just found that linkage: 
The temperature of a gas is a measure of the average kinetic energy of 
its molecules.

Develop Equation 17.3, 1
2  mv2 = 3

2  kT, quantifies the relation be-
tween temperature and molecular kinetic energy. Once we find the 
molecular kinetic energy, we’ll need the molecular mass to determine 
the speed. We can get that using the atomic weight of nitrogen and the 
fact that an N2 molecule contains two atoms.

evaluate We first evaluate the average molecular kinetic energy:

K = 1
2 mv2 = 3

2 kT = 3
211.38 * 10-23 J/K21293 K2 = 6.07 * 10-21 J

We can solve for the corresponding speed if we know the molecular 
mass m. A nitrogen molecule consists of two atoms each with mass  
14 u (see Appendix D), so its mass is

m = 2114 u211.66 * 10-27 kg/u2 = 4.65 * 10-26 kg

Since K = 1
2 mv2, the speed corresponding to this kinetic energy is

v = A2K

m
= D216.07 * 10-21 J2

4.65 * 10-26 kg
= 511 m/s

assess Make sense? Not surprisingly, the answer is the same  order 
of magnitude as the speed of sound 1∼340 m/s2 in air at room temper-
ature. At the microscopic level, the speed of the individual molecules 
limits the rate at which information can be transmitted by distur-
bances—sound waves—propagating through the gas. ■

We call the speed calculated in Example 17.2 the thermal speed. In terms of tempera-
ture, Equation 17.3 shows

 vth = A3kT
m

 (17.4)

GoT IT? 17.1 If you double the kelvin temperature of a gas, what happens to the 
thermal speed of the gas molecules? (a) it doubles; (b) it quadruples; (c) it increases  
by 22
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17.2 Phase Changes 307

The Distribution of Molecular Speeds
The thermal speed vth is a typical molecular speed, but it doesn’t tell us much about the 
distribution of speeds. Are molecular speeds limited to a narrow band about vth? Or are 
lots of molecules moving much faster or much slower?

In the 1860s, the Scottish physicist James Clerk Maxwell showed that elastic collisions 
among molecules result in a speed distribution that peaks near the thermal speed but may 
extend considerably higher. Figure 17.4 plots this Maxwell–Boltzmann distribution for 
two different temperatures. Note that increasing temperature results in a higher thermal 
speed, as expected, but that it also broadens the distribution so there are more molecules at 
lower and higher speeds. The high-speed “tail” of the distribution is especially important 
to chemists because high-energy molecules participate most readily in chemical reactions. 
The rapid extension of the high-energy tail with increasing temperature shows why reac-
tion rates are strongly temperature sensitive, and therefore explains why foods keep much 
longer with even modest refrigeration. High-energy molecules are also the first to evapo-
rate from a liquid, leaving slower, cooler molecules behind. This explains the phenomenon 
of evaporative cooling, which your own body uses as you sweat. Without evaporative cool-
ing, Earth’s atmosphere would be much drier and it would rain far less frequently. You can 
explore the Maxwell–Boltzmann distribution quantitatively in Problem 76.

Real Gases
The ideal-gas law is a good approximation to the behavior of most real gases, but it’s 
not perfect because our assumptions aren’t entirely realistic. Two factors are especially 
 important. First, real molecules take up space. This reduces the available volume, altering 
the ideal-gas law. Second, electrical effects that we’ll explore in Chapter 20 result in a weak 
attractive force between nearby molecules. As they move apart, molecules do work against 
this van der Waals force, and their kinetic energy drops. This, too, results in a deviation 
from ideal-gas behavior. You can learn more about these effects by working Problem 77.

17.2 phase Changes
Step out of a steamy shower, and you’ll find the mirror fogged with water condensed on 
the cool glass. Climb a mountain in winter, and you’ll be treated to the lovely spectacle of 
every branch and pine needle covered with a delicate coating of frost that’s formed right 
from the air. Burn a rewritable CD or DVD, and you’ve stored information with a laser 
that melts tiny spots on the spinning disc. These examples involve phase changes between 
gas and liquid, gas and solid, and solid and liquid.

Heat and phase Changes
Drop ice cubes into a drink and stir. What’s the temperature of the drink? It’s 0°C, and 
it stays at 0°C as long as any ice remains. The melting of a pure solid occurs at a fixed 
temperature. During the process, energy goes into breaking the molecular bonds that hold 
the material in its solid form. This increases the molecules’ potential energy but not their 
kinetic energy. Since temperature is a measure of molecular kinetic energy, that means the 
temperature doesn’t change either.

The energy per unit mass required to change phase is called a heat of transformation 
and is given the symbol L; for the solid–liquid change it’s the heat of fusion Lf, and for 
liquid–gas it’s the heat of vaporization Lv, Less familiar is the heat of sublimation for 
the transition from solid directly to gas. These quantities have units of J/kg, so the energy 
required to change the phase of a mass m is

 Q = Lm 1heat of transformation2 (17.5)

To reverse the change requires removing the same energy. Table 17.1 lists heats of 
 transformation for some common materials. These quantities are typically quite large; 
 water’s heat of fusion, for example, is 334 kJ/kg or 80 cal/g—meaning it takes as much 
energy to melt 1 gram of ice as to heat the resulting water to 80°C.

FigurE 17.4 Maxwell–Boltzmann distribution 
of molecular speeds for nitrogen 1N22 at 
 temperatures of 80 K and 300 K.
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308 Chapter 17 The Thermal Behavior of Matter

Table 17.1 Heats of Transformation (at Atmospheric Pressure)

Substance Melting Point (K) Lf (kJ/kg) Boiling Point (K) Lv (kJ/kg)

Alcohol, ethyl 159 109 351 879

Copper 1357 205 2840 4726

Lead 601 24.7 2013 858

Mercury 234 11.3 630 296

Oxygen 54.8 13.8 90.2 213

Sulfur 388 53.6 718 306

Water 273.15 334 373.15 2257

Uranium dioxide 3120 259 3815 1533

GoT IT? 17.2 You bring a pot of water to boil and then forget about it. Ten minutes 
later you come back to the kitchen to find the water still boiling. Is its temperature (a) less 
than, (b) greater than, or (c) equal to 100°C?

ExaMpLE 17.3 The Heat of Fusion: Meltdown!

A nuclear power plant’s reactor vessel cracks, and all the cooling 
 water drains out. Although nuclear fission stops, radioactive decay 
continues to heat the reactor’s 2.5 * 105 kg of uranium-dioxide fuel 
at the rate of 120 MW. Once the melting point is reached, how much 
energy will it take to melt the fuel? How long will this take?

Interpret Since this problem is about melting, it must involve the 
heat of fusion. We identify the material as uranium dioxide 1UO22.

Develop Our plan is to find UO2>s heat of fusion in Table 17.1 and 
then use Equation 17.5, Q = Lm, to calculate the energy required for 

melting. We’re given the rate of energy generation by radioactive de-
cay, and from that we’ll be able to get the time.

evaluate Using UO2>s Lf value from Table 17.1 in Equation 17.5, 
we have

Q = Lf 

m = 1259 kJ/kg212.5 * 105 kg2 = 65 GJ

With a heating rate of 120 MW or 0.12 GJ/s, the time to melt the fuel 
is 165 GJ2/10.12 GJ/s2 = 542 s.

assess The time to meltdown is just under 10 minutes! Failsafe emer-
gency cooling systems are essential to prevent nuclear meltdowns. ■

ConCEpTUaL ExaMpLE 17.1 Water phases

FigurE 17.5 Temperature versus time for what’s initially a block of  
ice at -20°C, supplied with energy at a constant rate. The process takes 
place at atmospheric pressure.

During phase 
changes the
temperature is
constant.

Gap suggests a
long boiling time.

You put a block of ice initially at -20°C in a pan on a hot stove with a 
constant power output, and heat it until it has melted, boiled, and evapo-
rated. Make a sketch of temperature versus time for this experiment.

evaluate As the ice starts heating, its temperature goes up, so our 
graph (Fig. 17.5) begins with an upward slope. At 0°C the ice starts 

melting, and while that’s happening its temperature doesn’t change, 
so the graph stays horizontal for a while. When the ice is all melted, 
the water starts to warm. Table 16.1 shows that liquid water’s spe-
cific heat is about twice that of ice; given the same power input, that 
means the water heats more slowly than the ice. So our graph has a 
lower slope as the water goes from 0°C to the boiling point at 100°C. 
Then it starts turning to vapor, and stays at 100°C until it’s all evap-
orated.  Table 17.1 shows that water’s heat of vaporization is much 
greater than its heat of fusion, so it takes much more time to boil the 
water away than it did to melt the ice. Our graph reflects that time 
 difference.

assess Makes sense: It takes a lot longer to boil a pan dry than to 
bring it to a boil.

MakIng the ConneCtIon If you start with 0.95 kg of ice at -20°C 
and supply heat at the rate of 1.6 kW, how much time will it take until 
you’re left with only water vapor?

evaluate Use Equation 16.3 for heating, with specific heats from 
Table 16.1. Use Equation 17.4 for phase changes, with heats of 
 transformation from Table 17.1. The result is 2.9 MJ of heat required 
for the whole process; at 1.6 kW or 1.6 kJ/s, that takes 1.8 ks, or half 
an hour.
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17.2 Phase Changes 309

Often we’re interested in the total energy needed to bring a material to its transition 
point and then to make the phase transition. Then we need to combine specific-heat con-
siderations of Chapter 16 with the heats of transformation introduced here.

ExaMpLE 17.4 Heating and phase Change: Enough Ice?

When 200 g of ice at -10°C are added to 1.0 kg of water at 15°C, is 
there enough ice to cool the water to 0°C? If so, how much ice is left 
in the mixture?

Interpret This problem involves both a temperature rise and a 
phase change. We identify water as the substance involved.

Develop Equation 16.3, Q = mc ∆T, determines the energy for the 
temperature rise, and Equation 17.5, Q = Lm, determines the phase-
change energy. But we don’t know whether all the ice melts. So our 
plan is to find the energy that it would take to heat the ice to 0°C and 
then melt all of it; if more than that much is available in cooling the 
water to 0°C, we’ll know that we end up with all water at T 7 0°C. 
But if there isn’t sufficient energy, then we’ll have a mixture with 
both ice and water at 0°C, and we can use the energy extracted in 
cooling the water to find out how much ice melts.

evaluate We begin by evaluating the energy Q1 to heat the ice and 
then melt it all, adding the energies from Equations 16.3 and 17.5 and 
then getting the specific heat and heat of fusion from Tables 16.1 and 
17.1, respectively:

 Q1 = micecice ∆Tice + miceLf

 = 10.20 kg212.05 kJ/kg # K2110 K2 + 10.20 kg21334 kJ/kg2
 = 4.1 kJ + 66.8 kJ = 70.9 kJ

Cooling the water to 0°C would extract energy Q2 given by Equa-
tion 16.3:

Q2 = mwater 

cwater 

∆Twater = 11.0 kg214.184 kJ/kg # K2115 K2 = 62.8 kJ

This is far more than the 4.1 kJ needed to bring the ice to 0°C, but not 
quite the 70.9 kJ needed to leave it all melted. So there’s enough ice to 
cool the water to 0°C, with some left over. How much? Our calcula-
tion of Q1 shows that 4.1 kJ go into raising the ice temperature. Of the 
62.8 kJ extracted from the water, the remaining 58.7 kJ go to melting 
ice. From Equation 17.5, the amount of ice melted is then

mmelted =
Q

Lf
=

58.7 kJ

334 kJ/kg
= 0.176 kg = 176 g

So we’re left with 24 g of ice in 1176 g of water, all at 0°C.

assess Make sense? Our 62.8 kJ was nearly enough to bring all the 
ice to the liquid phase, so it makes sense that only a small fraction of 
the ice remains. ■

phase Diagrams
Why can’t mountaineers enjoy piping hot coffee? Because water’s boiling point drops 
with the decreasing pressure at high altitudes. In general, the temperatures at which phase 
changes occur depend on pressure. A phase diagram shows the different phases on a plot 
of pressure versus temperature. Figure 17.6 is a phase diagram for a typical substance. 
Most phase diagrams are similar, although water’s is slightly unusual for reasons we’ll 
discuss in the next section.

The phase diagram divides pressure–temperature space into regions corresponding to 
solid, liquid, and gas phases. Lines separating these regions mark the phase transitions. 
Everyday experience suggests that heating takes a substance from solid, to liquid, to gas—
as with water in Fig. 17.5. But Fig. 17.6 shows that this sequence doesn’t always occur. 
At low pressure (line AB in Fig. 17.6) the substance goes directly from solid to gas. This 
is sublimation. We don’t see this with water because normal atmospheric pressure is too 
high. For carbon dioxide, though, atmospheric pressure is low in the phase diagram, which 
is why “dry ice” turns directly into gaseous CO2 without becoming liquid. At higher pres-
sures (line CD) we get the familiar solid–liquid–gas sequence. Higher still (line EF), we’re 
above the critical point, where the abrupt distinction between liquid and gas disappears. 
Instead, the substance starts out as a thick fluid whose properties change gradually from 
liquidlike to gaslike as it’s heated.

We think of changing phase by applying heat, but Fig. 17.6 shows we can also change 
phase by changing pressure. Lowering pressure along line GH, for example, takes the sub-
stance from liquid to gas while the temperature remains constant. Since heat requires a 
temperature difference, there’s no heat involved in this constant-temperature phase transi-
tion. You may have seen a demonstration of water boiling vigorously at room temperature 
in a closed container pumped down to low pressure.

FigurE 17.6 A phase diagram showing solid, 
liquid, and gas phases on a plot of pressure 
versus temperature.
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310 Chapter 17 The Thermal Behavior of Matter

Don’t let Fig. 17.6 fool you into thinking that phase transitions occur instantaneously. 
Those heats of transformation are large, and a substance moving, say, along line CD in 
response to heating will linger at each phase transition until all of it has changed phase; 
that’s what the level portions of Fig. 17.5 showed.

The dividing curves in Fig. 17.6 show where two phases can coexist simultaneously, 
like ice floating in water at 0°C and atmospheric pressure. It’s because phase changes occur 
along curves that terms like “melting point” and “boiling point” are meaningless unless pres-
sure is specified. But there’s one unique triple point where solid, liquid, and gas all coexist 
in equilibrium. Here temperature and pressure have unique, unambiguous values—which is 
why the 273.16-K triple point of water helps provide an operational  definition of the kelvin.

17.3 Thermal Expansion
We’ve seen how heating causes changes in temperature and phase. But heating also results 
in pressure or volume changes. For a gas at constant pressure, for example, the ideal-gas law 
shows that volume increases in direct proportion to temperature. The volume and pressure 
relations for liquids and solids aren’t so simple. Because their molecules are closely spaced, 
liquids and solids aren’t very compressible, so thermal expansion is less pronounced.

We characterize the change in the volume with temperature using the coefficient of 
volume expansion b, defined as the fractional change in volume when a substance under-
goes a small temperature change ∆T:

 b =
∆V/V

∆T
 (17.6)

This equation assumes that b is independent of temperature; if it varies significantly, then 
we would need to define b in terms of the derivative dV/dT  (Problem 68). Our definition 
of b also assumes constant pressure; we could entirely inhibit thermal expansion with 
 appropriate pressure increases.

Often we want to know how one linear dimension of a solid changes with temperature. This 
is especially true with long structures, where the absolute change is greatest along the long 
dimension (Fig. 17.7). We then speak of the coefficient of linear expansion a, defined by

 a =
∆L/L

∆T
 (17.7)

The volume- and linear-expansion coefficients are related in a simple way: b = 3a, as you 
can show in Problem 71. However, the linear-expansion coefficient a is really meaningful 
only with solids, because liquids and gases deform and don’t expand proportionately in all 
directions. Table 17.2 lists the expansion coefficients for some common substances.

FigurE 17.7 Thermal expansion distorted these 
tracks, causing a derailment. Expansion of long 
structures like this is best described using the 
coefficient of linear expansion.

Table 17.2 Expansion Coefficients*

Solids A (K−1) Liquids and gases B (K−1)

Aluminum 24 * 10-6 Air 3.7 * 10-3

Brass 19 * 10-6 Alcohol, ethyl 75 * 10-5

Copper 17 * 10-6 Gasoline 95 * 10-5

Glass (Pyrex) 3.2 * 10-6 Mercury 18 * 10-5

Ice 51 * 10-6 Water, 1°C -4.8 * 10-5

Invar† 0.9 * 10-6 Water, 20°C 20 * 10-5

Steel 12 * 10-6 Water, 50°C 50 * 10-5

*At approximately room temperature unless noted.
†Invar, consisting of 64% iron and 36% nickel, is an alloy designed to minimize thermal expansion.

GoT IT? 17.3 The figure shows a donut-shaped object. If it’s 
heated, will the hole get (a) larger or (b) smaller?
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17.3 Thermal Expansion 311

ExaMpLE 17.5  Thermal Expansion: Spilled Gasoline

A steel gas can holds 20 L at 10°C. It’s filled to the brim with gas at 
10°C. If the temperature now increases to 25°C, by how much does 
the can’s volume increase? How much gas spills out?

Interpret This is a problem about thermal expansion. Since it in-
volves volume, we identify the relevant quantity as the coefficient of 
volume expansion b.

Develop Equation 17.6, b = 1∆V/V2/∆T, determines the volume 
change. Our plan is to calculate the expanded volume of the tank and 
then of the gasoline. The difference will be the amount that spills out. 
Table 17.2 lists b for gasoline but a for steel; therefore, we’ll use the 
equation b = 3a for the steel.

evaluate First we use Equation 17.6 to evaluate the volume change 
∆V of the steel can. Using b = 3a, we have

∆Vcan = bV ∆T = 132112 * 10-6 K-12120 L2115 K2 = 0.0108 L

Similarly, for the gasoline,

∆Vgas = bV ∆T = 195 * 10-5 K-12120 L2115 K2 = 0.285 L

We therefore lose 0.275 L.

assess Make sense? The thermal-expansion coefficient for gasoline 
is so much greater than for steel that the can’s expansion is negligible 
and the gas has nowhere to go. By the way, that spill wastes nearly  
10 MJ of energy! ■

Thermal Expansion of Water
The entry for water at 1°C in Table 17.2 is remarkable, the negative expansion  coefficient 
showing that water at this temperature actually contracts on heating. This unusual  behavior 
occurs because ice has a relatively open crystal structure (Fig. 17.8) and therefore is less 
dense than liquid water. That’s why ice floats. Immediately above the melting point, the 
intermolecular forces that bond H2O molecules in ice still exert an influence, giving cold 
liquid water a lower density than at slightly higher temperatures. At 4°C water reaches its 
maximum density, and above this temperature the effect of molecular kinetic energy in 
keeping molecules apart wins out over intermolecular forces. From there on,  water exhib-
its the more normal behavior of expansion with increasing temperature.

This unusual property of water near its melting point is reflected in its phase diagram, 
shown in Fig. 17.9. Note that the solid–liquid boundary extends leftward from the triple point, 
in contrast to the more typical behavior in Fig. 17.6. That means that ice at a fixed temperature 
will melt if the pressure is increased—an unusual property known as pressure melting.

FigurE 17.8 Water molecules in an ice crystal 
form an open structure, giving solid water a 
lower density than the liquid.

FigurE 17.9 Phase diagram for water.  
Compare the solid–liquid boundary  
with that of Fig. 17.6.
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appLICaTIon aquatic Life and Lake Turnover

The anomalous behavior of water has important consequences for life. If ice 
didn’t float, then ponds, lakes, and even oceans would freeze solid from the 

bottom up, making aquatic life impossible. What actually happens, instead, is 
that a thin layer of ice forms on the surface, insulating the water below and 
keeping it liquid; as a result, ice cover in temperate climates rarely exceeds a 
meter or so. Because water’s density is greatest at 4°C, water at this tempera-
ture sinks to the bottom. At lake depths greater than a few meters, sunlight is 
inadequate to raise the temperature, which therefore remains year-round at 4°C.

Water’s unusual density behavior also causes the twice-yearly turnover of 
lakes in temperate climates. In the summer, a lake’s surface water is warm, but 
deep water remains at 4°C. In the winter, water just beneath the ice is at 0°C, 
while the bottom water is still at 4°C. Both situations are stable, with less dense 
and therefore more buoyant water at the surface. But in the spring, ice melts 
and the surface water warms. When that water reaches 4°C, there’s no density 
variation and the lake water mixes freely. This is the spring overturning. A 
similar overturning occurs in the fall, as the surface water cools through 4°C. 
Turnover is important to aquatic life because it brings up nutrients that would 
otherwise be trapped in the deep water.
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Chapter 17 Summary
Big Idea

The big idea here is that matter responds to heating in a variety of ways in 
addition to changing temperature. Other responses include changes of phase 
and of volume and/or pressure. The ideal gas provides a particularly simple 
system for understanding volume and pressure changes. Analyzing ideal-gas 
behavior provides a link between the Newtonian mechanics of molecules and 
macroscopic thermodynamics, showing that temperature is a measure of the 
average molecular kinetic energy.

Cool gas Hot gas

Molecules in the
hotter gas have
higher kinetic
energy and hence
speed.

Key Concepts and Equations

The ideal-gas law relates pressure, volume, temperature, and the 
number of molecules in a gas:

pV = NkT  1ideal@gas law2
where Boltzmann’s constant k is approximately 1.381 * 10-23 J/K.

Pressure p

Temperature T
(molecular
energy)

Number of molecules N

Volume V

In terms of the number of moles n, the ideal-gas law is

pV = nNAkT = nRT

where the universal gas constant R = NAk = 8.314 J/K 

#
 mol.

Heats of transformation L describe the energy per unit mass needed to 
effect phase changes. The total energy required to change the phase of 
a mass m is given by

Q = Lm  1heat of transformation2

Phase diagrams plot solid, liquid, and gas phases against tempera-
ture and pressure, and reveal the triple point, where all three phases 
can  coexist, and the critical point, where the liquid–gas distinction 
 disappears.

Triple point

Gas

Liquid
Solid

Temperature

Pr
es

su
re

Critical point

The temperature of an ideal gas is a measure of the gas  molecules’ 
average kinetic energy:

1
2  mv2 = 3

2 kT  1temperature and molecular energy2

Thermal expansion is characterized by the coefficient of volume 
expansion and its linear counterpart. The volume-expansion coeffi-
cient relates the fractional volume change ∆V/V  to the temperature 
change ∆T:

b =
∆V/V

∆T
 1volume@expansion coefficient2

while the coefficient of linear expansion relates the fractional length 
∆L/L change to ∆T:

a =
∆L/L

∆T
 1linear@expansion coefficient2

applications

Volume V + ∆VVolume V

T, V T + ∆T

∆V

M17_WOLF4752_03_SE_C17.indd   312 17/06/15   4:27 PM



Exercises and Problems 313

For homework assigned on MasteringPhysics, go to www.masteringphysics.com

BIO Biology and/or medicine-related problems DATA Data problems ENV Environmental problems CH Challenge problems Comp Computer problems

measure its pressure to be 14 MPa at room temperature 120°C2. 
Did you get what you paid for?

21. (a) If 2.0 mol of an ideal gas are initially at temperature 250 K 
and pressure 1.5 atm, what’s the gas volume? (b) The pressure 
is now increased to 4.0 atm, and the gas volume drops to half its 
initial value. What’s the new temperature?

22. A pressure of 10-10 Pa is readily achievable with laboratory vac-
uum apparatus. If the residual air in this “vacuum” is at 0°C, how 
many air molecules are in 1 L?

23. What’s the thermal speed of hydrogen molecules at 800 K?
24. In which gas are the molecules moving faster: hydrogen at 75 K 

or sulfur dioxide at 350 K?

Section 17.2 Phase Changes
25. How much energy does it take to melt a 65-g ice cube?
26. It takes 200 J to melt an 8.0-g sample of one of the substances in 

Table 17.1. What’s the substance?
27. If it takes 840 kJ to vaporize a sample of liquid oxygen, how 

large is the sample?
28. Carbon dioxide sublimes (changes from solid to gas) at 195 K. 

The heat of sublimation is 573 kJ/kg. How much heat must be 
extracted from 250 g of CO2 gas at 195 K in order to solidify it?

29. Find the energy needed to convert 28 kg of liquid oxygen at its 
boiling point into gas.

Section 17.3 Thermal Expansion
30. A copper wire is 20 m long on a winter day when the temperature 

is -12°C. By how much does its length increase on a 26°C sum-
mer day?

31. You have exactly 1 L of ethyl alcohol at room temperature 
120°C2. You put it in a refrigerator at 2°C. What’s its new vol-
ume?

32. A Pyrex glass marble is 1.00000 cm in diameter at 20°C. What 
will be its diameter at 85°C?

33. At 0°C, the hole in a steel washer is 9.52 mm in diameter. To what 
temperature must it be heated in order to fit over a 9.55-mm-di-
ameter bolt?

34. Suppose a single piece of welded steel railroad track stretched 
5000 km across the continental United States. If the track were 
free to expand, by how much would its length change if the en-
tire track went from a cold winter temperature of -25°C to a hot 
summer day at 40°C?

problems
35. The solar corona is a hot (2 MK) extended atmosphere surround-

ing the Sun’s cooler visible surface. The coronal gas pressure is 
about 0.03 Pa. What’s the coronal density in particles per cubic 
meter? Compare with Earth’s atmosphere.

36. A helium balloon occupies 8.0 L at 20°C and 1.0-atm pressure. 
The balloon rises to an altitude where the air pressure is 0.65 atm 
and the temperature is -10°C. What’s its volume when it reaches 
equilibrium at the new altitude?

37. A compressed air cylinder stands 100 cm tall and has internal 
diameter 20.0 cm. At room temperature, the pressure is 180 atm. 
(a) How many moles of air are in the cylinder? (b) What volume 
would this air occupy at 1.0 atm and room temperature?

38. You’re a lawyer with an unusual case. A whipped-cream can 
burst at a wedding, damaging the groom’s expensive tuxedo. 

For thought and Discussion
 1. If the volume of an ideal gas is increased, must the pressure drop 

proportionately? Explain.
 2. According to the ideal-gas law, what should be the volume of a 

gas at absolute zero? Why is this result absurd?
 3. Why are you supposed to check tire pressure when your tires are 

cold?
 4. The average speed of the molecules in a gas increases with in-

creasing temperature. What about the average velocity?
 5. Suppose you start running while holding a closed jar of air. Do 

you change the average speed of the air molecules? The average 
velocity? The temperature?

 6. Two different gases are at the same temperature, and both have 
low enough densities that they behave like ideal gases. Do their 
molecules have the same thermal speeds? Explain.

 7. Your roommate claims that ice and snow must be at 0°C. Is that 
true?

 8. What’s the temperature of water just under the ice layer of a fro-
zen lake? At the bottom of a deep lake?

 9. Ice and water have been together in a glass for a long time. Is the 
water hotter than the ice?

10. Which takes more heat: melting a gram of ice already at 0°C, or 
bringing the melted water to the boiling point?

11. The atmospheres of relatively low-mass planets like Earth don’t 
contain much hydrogen (H2), while more massive planets like 
Jupiter have considerable atmospheric hydrogen. What factors 
might account for the difference?

12. The triple point of water defines a precise temperature, but the 
freezing point doesn’t. Why the difference?

13. How is it possible to have boiling water at a temperature other 
than 100°C?

14. How does a pressure cooker work?
15. Suppose mercury and glass had the same coefficient of volume 

expansion. Could you build a mercury thermometer?
16. A bimetallic strip consists of thin pieces of brass and steel 

bonded together (Fig. 17.10). What happens when the strip is 
heated? (Hint: Consult Table 17.2.)

Brass
Steel

FigurE 17.10 For Thought and Discussion 16

exercises and problems
Exercises

Section 17.1 Gases
17. Mars’s atmospheric pressure is about 1% that of Earth, and its 

average temperature is around 215 K. Find the volume of 1 mol 
of the Martian atmosphere.

18. How many molecules are in an ideal-gas sample at 350 K that 
occupies 8.5 L when the pressure is 180 kPa?

19. What’s the pressure of an ideal gas if 3.5 mol occupy 2.0 L  
at -150°C?

20. Your professor asks you to order a tank of argon gas for a lab 
experiment. You obtain a “type C” gas cylinder with interior vol-
ume 6.88 L. The supplier claims it contains 45 mol of argon. You 
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52. A bowl contains 16 kg of punch (essentially water) at a warm 
25°C. What’s the minimum amount of ice at 0°C needed to cool 
the punch to 0°C?

53. A 50-g ice cube at -10°C is placed in an equal mass of water. 
What must the initial water temperature be if the final mixture 
still contains equal amounts of ice and water?

54. Evaporation of sweat is the human body’s cooling mechanism. 
At body temperature, it takes 2.4 MJ/kg to evaporate water. Mar-
athon runners typically lose about 3 L of sweat each hour. How 
much energy gets lost to sweating during a 3-hour marathon?

55. What power is needed to melt 20 kg of ice in 6.0 min?
56. You put 300 g of water at 20°C into a 500-W microwave oven 

and accidentally set the time for 20 min instead of 2.0 min. How 
much water is left at the end of 20 min?

57. If 4.5 * 105 kg of emergency cooling water at 10°C are dumped 
into a malfunctioning nuclear reactor whose core is producing 
energy at the rate of 200 MW, and if no circulation or cooling oc-
curs, how long will it take for half the water to boil away?

58. Describe the composition and temperature of the equilibrium mix-
ture after 1.0 kg of ice at -40°C is added to 1.0 kg of water at 5.0°C.

59. A glass marble 1.000 cm in diameter is to be dropped through 
a hole in a steel plate. At room temperature the hole diameter is 
0.997 cm. By how much must the plate’s temperature be raised 
so the marble will fit through the hole?

60. A 2000-mL graduated cylinder is filled with liquid at 350 K. 
When the liquid is cooled to 300 K, the cylinder is full to only the 
1925-mL mark. Use Table 17.2 to identify the liquid.

61. A steel ball bearing is encased in a Pyrex glass cube 1.0 cm on 
a side. At 330 K, the ball bearing fits tightly inside the cube. At 
what temperature will it have a clearance of 1.0 µm all around?

62. Fuel systems of modern cars are designed so thermal expansion 
of gasoline doesn’t result in wasteful and polluting fuel spills. 
As an engineer, you’re asked to specify the size of an expansion 
tank that will handle this overflow. You know that gasoline comes 
from its underground storage at 10°C, and your expansion tank 
must handle the expansion of a full 75-L gas tank when the gas 
reaches a hot summer day’s temperature of 35°C. How large an 
expansion tank do you specify?

63. A rod of length L0 is clamped rigidly at both ends. Its tempera-
ture increases by ∆T  and in the ensuing expansion, it cracks to 
form two straight pieces, as shown in Fig. 17.11. Find an expres-
sion for the distance d shown in the figure, in terms of L0, ∆T, 
and the linear expansion coefficient a.

L0

d

FigurE 17.11 Problem 63

64. You’re home from college on vacation, and there’s a power fail-
ure. The power company says it will be 15 hours before it’s re-
paired. Your parents send you out to buy ice to keep the ‘fridge 
cold. You look up the thermal resistance of the refrigerator’s 
walls; it’s 0.12 K/W. If room temperature is 20°C, how much ice 
should you buy?

65. A solar-heated house stores energy in 5.0 tons of Glauber salt 
1Na2SO4 

#
 

10H2O2, which melts at 90°F. The heat of fusion of 
Glauber salt is 104 Btu/lb and the specific heats of the solid and 
liquid are, respectively, 0.46 Btu/lb#°F and 0.68 Btu/lb#°F. After a 
week of sunny weather, the storage medium is all liquid at 95°F. 
Then comes a cloudy period during which the house loses heat at 
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The can warned against temperatures in excess of 50°C, and the 
manufacturer has evidence that it reached 60°C. You don’t con-
test this, but you point out that the can was only half full of cream 
when it burst, meaning that the gas propellant had available more 
than twice the volume it would in a full can, and that some of the 
propellant had already been used. You argue that the real safety 
criterion is pressure, and that the can’s maximum pressure wasn’t 
exceeded. Who’s right?

39. A 3000-mL flask is initially open in a room containing air at 1.00 atm  
and 20°C. The flask is then closed and immersed in boiling  water. 
When the air in the flask has reached thermodynamic equilib-
rium, the flask is opened and air is allowed to escape. The flask 
is then closed and cooled back to 20°C. Find (a) the maximum 
pressure reached in the flask, (b) the number of moles that escape 
when air is released, and (c) the final pressure in the flask.

40. The recommended treatment for frostbite is rapid heating in a water 
bath. Suppose a frostbitten hand with mass 120 g is immersed in 
water that conducts energy into the hand at the rate of 800 W. Treat-
ing the hand as essentially water, initially frozen solid, how long 
will it take for it to thaw and return to body temperature 137°C2?

41. A stove burner supplies heat to a pan at the rate of 1500 W. How 
long will it take to boil away 1.1 kg of water, once the water 
reaches its boiling point?

42. If a 1-megaton nuclear bomb were exploded deep in the Green-
land ice cap, how much ice would it melt? Assume the ice is ini-
tially at about its freezing point, and consult Appendix C for the 
appropriate energy conversion.

43. You’re winter camping and are melting snow for drinking water. 
The snow temperature is right around 0°C. You set a pot contain-
ing 5.0 kg of snow on your campfire, and you keep stoking up 
the fire. As a result, the snow gains energy at an increasing rate: 
P = a + bt, where a = 1.1 kW, b = 2.3 W/s, and t is the time 
in s. To the nearest minute, how long will it take to melt the snow?

44. At winter’s end, Lake Superior’s surface is frozen to a depth of 
1.3 m; the ice density is 917 kg/m3. (a) How much energy does it 
take to melt the ice? (b) If the ice disappears in 3 weeks, what’s 
the average power supplied to melt it?

45. A refrigerator extracts energy from its contents at the rate of 95 W.  
How long will it take to freeze 750 g of water already at 0°C?

46. Climatologists have recently recognized that black carbon (soot) 
from burning fossil fuels and biomass contributes significantly 
to arctic warming. You’re asked to determine whether this effect 
might cause ice to melt that would normally stay frozen year-
round. Consider an ice layer 2.5 m thick that normally reflects 
90% of the incident solar energy and absorbs the rest. Suppose 
black carbon darkens the ice so it now reflects only 50% of the 
incident solar energy. The arctic summertime solar input aver-
ages 300 W/m2. You can assume 0°C for the initial ice tempera-
ture, and an ice density of 917 kg/m3. What do you conclude?

47. Repeat Example 17.4 with an initial ice mass of 50 g.
48. How much energy does it take to melt 10 kg of ice initially  

at -10°C?
49. Water is brought to its boiling point and then allowed to boil 

away completely. If the energy needed to raise the water to the 
boiling point is one-tenth of that needed to boil it away, what was 
the initial temperature?

50. During a nuclear accident, 420 m3 of emergency cooling water at 
20°C are injected into a reactor vessel where the reactor core is 
producing heat at the rate of 200 MW. If the water is allowed to 
boil at normal atmospheric pressure, how long will it take to boil 
the reactor dry?

51. What’s the minimum amount of ice in Example 17.4 that will 
ensure a final temperature of 0°C?
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 approximately 250 Pg/year. (a) Find the energy needed to melt 
250 Pg of ice. (b) Greenland’s ice melt results most immediately 
from an imbalance between incoming and outgoing energy—an 
imbalance created largely by the absorption of infrared radiation 
by human-produced greenhouse gases. Use your answer to part 
(a) to express Greenland’s energy imbalance in watts per square 
meter of the Greenland ice sheet’s surface area. That your result 
is larger than the global imbalance of somewhat less than 1 W/m2 
shows that the impact of global warming is greater in the Arctic.

75. (a) Show that, for an ideal gas, the speed of sound given by Equa-
tion 14.9 can be written vsound = 2gkT/m. (b) For diatomic 
gases like N2 and O2 that are the dominant constituents of air, 
g = 7/5. Use your result to show that, for diatomic gases, the 
speed of sound is about 68% of the thermal speed given by Equa-
tion 17.4.

76. The Maxwell–Boltzmann distribution, plotted in Fig. 17.4, is 
given by

N1v2 ∆v = 4pN    a m

2pkT
b

3/2

v2e - mv2/2kT∆v

where N(v)∆v is the number of molecules in a small speed range 
∆v around speed v, N is the total number of molecules in the gas, 
m is the molecular mass, k is Boltzmann’s constant, and T is the 
temperature. Use this equation to show that the most probable 
speed for a gas molecule—the speed at the peak of the curves in 
Fig. 17.4—is 22kT/m. Note that the thermal speed (Equation 
17.4), which is the average molecular speed, is a factor of 23/2 
or about 20% greater than the most probable speed—a fact that 
reflects the long, high-energy “tail” of the Maxwell–Boltzmann 
distribution.

77. At high gas densities, the van der Waals equation modifies the 
ideal-gas law to account for nonzero molecular volume and for 
the van der Waals force that we discussed in Section 17.1. The 
van der Waals equation is

ap +
n2a

V2 b1V - nb2 = nRT

where a and b are constants that depend on the particular gas. For ni-
trogen (N2), a = 0.14 Pa # m6/mol2 and b = 3.91 * 10- 5 m3/mol. 
For 1.000 mol of N2 at 10.00 atm pressure, confined to a volume 
of 2.000 L, find the temperatures predicted (a) by the ideal-gas 
law and (b) by the van der Waals equation.

Passage Problems
A pressure cooker is a sealed pot that cooks food much faster than most 
other methods because increased pressure allows water to reach higher 
 temperatures than the normal boiling point (Fig. 17.13). Pressure cookers 
 afford many advantages: faster cooking, lower energy consumption, and 
less vitamin loss. The pressure-cooker principle is also used in autoclaves for 
sterilizing surgical instruments in hospitals and equipment in biology labs.

Pressure regulator

Safety valve

Lid

Pressure vessel

FigurE 17.13 A pressure cooker (Passage Problems 78–81)

CH

an average of 20,000 Btu/h. (a) How long is it before the temper-
ature of the storage medium drops below 60°F? (b) How much of 
this time is spent at 90°F?

66. Show that the coefficient of volume expansion of an ideal gas at 
constant pressure is the reciprocal of its kelvin temperature.

67. Water’s coefficient of volume expansion in the tem-
perature range from 0°C to about 20°C is given approxi-
mate ly  by  b = a + bT + cT2,  where  T  i s  in  Cels ius  
a n d  a = -6.43 * 10-5 °C-1, b = 1.70 * 10-5 °C-2,  a n d  c =
-2.02 * 10-7 °C-3. Show that water has its greatest density at ap-
proximately 4.0°C.

68. When the expansion coefficient varies with temperature, Equa-
tion 17.6 is written b = 11/V21dV/dT2. If a sample of water oc-
cupies 1.00000 L at 0°C, find its volume at 12°C. (Hint: Use the 
information from Problem 67, and integrate the equation above.)

69. Ignoring air resistance, find the height from which to drop an ice 
cube at 0°C so it melts completely on impact. Assume no heat 
exchange with the environment.

70. The timekeeping of a grandfather clock is regulated by a brass 
pendulum 1.35 m long. If the clock is accurate at 20°C but is in a 
room at 17°C, how soon will the clock be off by 1 minute? Will it 
be fast or slow?

71. Prove the equation b = 3a (Section 17.3) by considering a cube 
of side s and therefore volume V = s3 that undergoes a small 
temperature change dT and corresponding length and volume 
changes ds and dV.

72. You’re on a team planning a mission to Venus to collect atmos-
pheric samples for analysis. The design specs call for a 1-L 
sample container, while the scientists want at least 1 mol of gas. 
Venus’s atmospheric pressure is 90 times that of Earth’s, and its 
average temperature is 730 K. Will the design work?

73. Figure 17.12 shows an apparatus used to determine the linear 
expansion coefficient of a metal wire. The wire is attached to 
two points a distance d apart (you don’t know d). A mass hangs 
from the middle of the wire. The wire’s total length is 100.00 cm  
at 0°C. The distance y from the suspension points to the top of 
the mass is measured, and the results are given in the table be-
low. (a) Find an expression for y as a function of temperature, 
and manipulate your expression to get a linear relation between 
some function of y and some function of temperature T. You’ll 
encounter the expression L2, where L is the length of the wire, 
and, because the change in length is small, you can drop terms 
involving a2 when you expand L2. (b) Calculate the quantities in 
your relation from the given data, and plot. Determine a best-fit 
line and use it to determine the coefficient of linear expansion a 
and the separation d. (c) Consult Table 17.2 to identify the metal 
the wire is made of. Ignore any stretching of the wire due to its 
“springiness”; that is, consider only thermal expansion.

Temperature, 
T (°C)

0 20 40 60 80 100 120

y (cm) 30.00 30.05 30.07 30.11 30.16 30.19 30.24

y = 0

y

d

m

FigurE 17.12 Problem 73

74. The Intergovernmental Panel on Climate Change estimates 
that Greenland is losing ice, as a result of global warming, at 
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81. A pressure cooker has a regulating mechanism that releases 
steam so as to maintain constant pressure. If that mechanism be-
came clogged
a. the pressure would nevertheless level off once water in the 

cooker began to boil.
b. the pressure would continue to rise although the temperature 

would remain constant.
c. both temperature and pressure would continue to rise.
d. the density of the steam would decrease.

answers to Chapter Questions

answer to Chapter opening Question
Water’s solid phase is less dense than the liquid, which causes ice to 
float. Our world would be a very different place if ice were denser 
than water.

answers to GoT IT? Questions
 17.1  (a)
 17.2  (c)
 17.3  (a) The hole gets larger because all of the object’s linear dimen-

sions expand equally.

78. In water’s phase diagram (Fig. 17.9), normal boiling occurs at a 
point on the line between the triple point and the critical point. In 
a pressure cooker, boiling occurs
a. at a point in the diagram directly above where it normally occurs.
b. higher up on the line between the triple and critical points.
c. at a point directly to the right of where it normally occurs.
d. beyond the critical point.

79. A typical pressure cooker operates at twice normal atmospheric 
pressure, raising water’s boiling point to about 120°C. Compared 
with steam at 1 atm and the normal 100°C boiling point, the den-
sity of steam in a pressure cooker is
a. double.
b. somewhat more than double.
c. somewhat less than double.
d. quadruple.

80. Because some pathogens can survive 120°C temperatures, medi-
cal autoclaves typically operate at 3 atm pressure, where water 
boils at 134°C. Based on this information and that given in the 
preceding problem, you can conclude that
a. Fig. 17.9’s depiction of the liquid–gas interface for water is 

correct in being concave upward.
b. Fig. 17.9’s liquid–gas interface should actually be concave 

downward.
c. autoclaves operate above the critical point.
d. at its operating temperature, there can’t be any liquid water in 

the autoclave.
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In Chapter 7, we introduced the powerful idea that energy is conserved, and we developed 
the principle of energy conservation as a quantitative statement for mechanical energy in 

the presence of conservative forces. We also introduced nonconservative forces and briefly 
described their role in converting mechanical energy into the random molecular energy that 
we call internal energy. In Chapters 16 and 17 you’ve learned that thermal processes involve 
energy—a realization that sets the stage for us to extend the conservation-of-energy principle 
to encompass thermodynamic systems. In this chapter, we’ll explore this broader principle of 
energy conservation and see how it describes energy interchanges in systems ranging from 
engines to atmospheres.

18.1 The First Law of Thermodynamics
Figure 18.1 shows two ways to raise the temperature in a beaker of water: by heating 
with a flame and by stirring vigorously with a spoon. Using the flame involves heat—
energy in transit because of the temperature difference between flame and water. But 
there’s no temperature difference between spoon and water; here the energy transfer 
 occurs because the spoon does mechanical work on the water. We already know that 
doing work can increase the kinetic or potential energy of a macroscopic object; here 
we see it, instead, changing the internal energy associated with the motions of individ-
ual molecules. The point is that both processes—heating and mechanical work—result 
in exactly the same final state—namely, water with a higher temperature and therefore 
greater  internal energy. It’s this common result that made possible Joule’s quantitative 
identification of heat as a form of energy (Fig. 18.2).

How You’ll Use It
■ In Chapter 19 you’ll apply the first law 

of thermodynamics to simple heat 
engines.

■ Heat engines will give you insights 
into a deeper fact of thermodynamics: 
the second law, which limits our 
ability to extract mechanical energy 
from fuels.

■ You’ll come to understand entropy 
as a measure of disorder, and how 
entropy changes in thermodynamic 
processes.

What You’re Learning
■ You’ll see a new statement of 

energy conservation: the first law of 
thermodynamics.

■ You’ll learn to calculate the work done 
as an ideal gas changes volume.

■ You’ll come to understand the 
work and heat involved in basic 
thermodynamic processes: isothermal, 
isobaric, constant-volume, and 
adiabatic.

■ You’ll see how molecular structure 
determines the specific heats of ideal 
gases.

What You Know
■ You understand the ideal-gas law.

■ You know the relation between 
temperature and molecular energy.

■ You understand the concepts of 
work and heat as ways of transferring 
energy.

Heat, Work, and the First Law of 
Thermodynamics

18

A jet engine converts the energy of burning 
fuel into mechanical energy. How does energy 
conservation apply in this process?
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318 Chapter 18 Heat, Work, and the First Law of Thermodynamics

Keep track of all the energy entering and leaving a system—both heat and work—and 
you’ll find that the change in the system’s internal energy depends only on the net energy 
transferred. In one sense this is hardly surprising; it just extends the idea of energy conser-
vation to include heat. But in another way it’s remarkable; it doesn’t matter at all how the 
energy gets into the system—heat, work, or some combination of the two. This statement 
constitutes the first law of thermodynamics:

First law of thermodynamics The change in the internal energy of a system 
 depends only on the net heat transferred to the system and the net work done on the 
system, independent of the particular processes involved.

Mathematically, the first law is

 ∆Eint = Q + W  1first law of thermodynamics2 (18.1)

where ∆Eint is the change in a system’s internal energy, Q the heat transferred to the 
 system, and W the work done on the system.* The first law says that the change in a 
 system’s internal energy doesn’t depend on how the energy gets transferred, but only on 
the net energy. Internal energy is therefore a thermodynamic state variable,  meaning 
a quantity whose value doesn’t depend on how a system got into its particular state. 
 Temperature and pressure are also thermodynamic state variables; heat and work are not.

We’re frequently concerned with rates of energy flow. Differentiating the first law with 
respect to time gives a statement about rates:

 
dEint

dt
=

dQ

dt
+

dW

dt
 (18.2)

where dEint/dt is the rate of change of a system’s internal energy, dQ/dt the rate of heat 
transfer to the system, and dW/dt the rate at which work is done on the system.

Figure 18.1 Two ways to raise  temperature:  
(a) by heat transfer and (b) by mechanical work.

Heat from the
�ame raises
water’s internal
energy and 
therefore its
temperature.

The spoon’s mechanical
work similarly raises
internal energy and
hence temperature.

(a)

(b)
Figure 18.2 Joule’s apparatus for 
determining what he called “the 
mechanical equivalent of heat.”

Potential energy of
falling weights
becomes kinetic
energy of the paddle.

The paddle’s kinetic energy in turn
becomes internal energy of the water,
indicated by rising temperature.

*Some older books define W as the work done by the system, in which case there’s a minus sign in 
the first law. This is because the law was first introduced in connection with engines, which take in 
heat and put out mechanical work.
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18.2 Thermodynamic Processes
Although the first law applies to any system, it’s easiest to understand when applied to an 
ideal gas. The ideal-gas law relates the temperature, pressure, and volume of a given gas 
sample: pV = nRT. The thermodynamic state is completely determined by any two of the 
quantities p, V, or T. We’ll find it convenient to represent different states as points on a 
pV diagram—a graph whose vertical and horizontal axes represent pressure and volume, 
respectively.

Reversible and Irreversible Processes
Imagine a gas sample immersed in a large reservoir of water and allowed to come to equi-
librium (Fig. 18.3). If we then raise the reservoir temperature very slowly, both water and 
gas temperatures will rise essentially in unison, and the gas will remain in equilibrium. 
Such a slow change is called a quasi-static process. Because a system undergoing a 
quasi-static process is always in thermodynamic equilibrium, its evolution from one state 
to another is described by a continuous sequence of points—a curve—in its pV diagram 
(Fig. 18.4).

We could reverse this heating process by slowly lowering the reservoir temperature; the 
gas would cool, reversing its path in the pV diagram. For that reason, a quasi-static pro-
cess is also a reversible process. A process like suddenly plunging a cool gas sample into 
hot water is, in contrast, irreversible. During an irreversible process the system isn’t in 
equilibrium, and thermodynamic variables like temperature and pressure don’t have well-
defined values. It therefore makes no sense to think of a path in the pV diagram. A process 
may be irreversible even though it returns a system to its original state. The distinction lies 
not in the end states but in the process that takes the system between states.

There are many ways to change a system’s thermodynamic state. Here we consider im-
portant special cases involving an ideal gas. These illustrate the physical principles behind 
a myriad of technological devices and natural phenomena, from the operation of a gaso-
line engine to the propagation of a sound wave to the oscillations of a star.

ExamPLE 18.1 The First Law of Thermodynamics: Thermal Pollution

The reactor in a nuclear power plant supplies energy at the rate of  
3.0 GW, boiling water to produce steam that turns a turbine-generator. 
The spent steam is then condensed through thermal contact with water 
taken from a river. If the power plant produces electrical energy at the 
rate of 1.0 GW, at what rate is heat transferred to the river?

Interpret This problem is about heat and mechanical energy, which 
are related by the first law of thermodynamics. We identify the system 
as the entire power plant, comprising the nuclear reactor, including its 
fuel, and the turbine-generator. We identify Eint as the energy in the 
fuel, W as the mechanical work that ends up as electrical energy, and 
Q as the heat transferred to the river.

Develop Since we’re dealing here with rates, Equation 18.2, 
dEint/dt = dQ/dt + dW/dt, applies. The reactor extracts energy from 
its fuel, so the rate dEint/dt is negative. The power plant delivers elec-
trical energy to the outside world, so it’s doing work; since W in the 
first law is the work done on the system, dW/dt is therefore negative. 
Our plan is then to solve for dQ/dt, the rate of energy transfer to the 
river.

evaluate Solving, we have

dQ

dt
=

dEint

dt
-

dW

dt
= -3.0 GW - 1-1.0 GW2 = -2.0 GW

assess Make sense? Since positive Q represents heat transferred 
to the system, the minus sign shows that heat is transferred from the 
power plant to the river at the rate of 2 GW. The numbers here are 
typical for large nuclear and coal-burning power plants, and show that 
about two-thirds of the energy extracted from the fuel is wasted in 
heating the environment. We’ll see in the next chapter just why this 
waste occurs.

✓TIP Identify the System

The first law of thermodynamics deals with energy flows into and out 
of a system. We first introduced the system concept in the context of 
energy in our discussion surrounding Fig. 6.1. Here, as there, it’s up to 
you to define the system. How you do so affects the meanings of the 
terms in the first law. In this Example we included the nuclear reactor, 
with the internal energy of its fuel, as part of the system. If we had 
considered only the turbine-generator, then we would have had 3 GW 
of heat coming in from the reactor and no change in internal energy. 
But the result would be the same: 1 GW going out as electricity and  
2 GW of heat dumped into the river.

■

Figure 18.3 A quasi-static, or reversible, process 
keeps water and gas always in equilibrium.

These temperatures stay the same
as the water temperature increases slowly.

T T

Temperature
control

GasWater

Figure 18.4 The pV diagram of a system 
 undergoing quasi-static change.

The system is always in
thermodynamic equilibrium,
so a continuous path describes
the change.

p

V

p2, V2, T2

p1, V1, T1
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Our system consists of an ideal gas confined to a cylinder sealed with a movable piston 
(Fig. 18.5). The piston and cylinder walls are perfectly insulating—they block all heat 
transfer—and the bottom is a perfect conductor of heat. We can change the thermody-
namic state of the gas mechanically by moving the piston, or thermally by transferring 
heat through the bottom. We’ll consider only reversible processes, which we can describe 
by paths in the pV diagram for the gas.

Work and Volume Changes
We begin by developing an expression for the work done on a gas that holds for all 
 processes. If our piston–cylinder system has cross-sectional area A and gas pressure p, then 
Fgas = pA is the force the gas exerts on the piston. If the piston moves a small distance ∆x, 
the gas does work ∆Wgas = Fgas ∆x = pA ∆x = p ∆V, where ∆V = A ∆x is the change 
in gas volume (Fig. 18.6a). Our expression for the first law of thermodynamics involves 
the work done on the gas; by Newton’s third law, the piston exerts a force on the gas that’s 
equal but opposite to Fgas, so the work done on the gas is ∆W = -Fgas ∆x = -p ∆V. 
Pressure may vary with volume, so we find the total work done as the gas goes from vol-
ume V1 to volume V2 by replacing ∆V  with the infinitesimal quantity dV and integrating:

 W = LdW = - L
V2

V1

p dV  1work done on gas during volume change2 (18.3)

Figure 18.6b shows that the work done on the gas is the negative of the area under the pV  
curve. That work is positive if the gas is compressed 1V2 6 V12 and negative if it expands 
1V2 7 V12.

We’ll now explore several basic thermodynamic processes, in each case holding one 
thermodynamic variable constant.

Figure 18.5 A gas–cylinder system  
with  insulating walls and a 
 conducting bottom.

Thermal
insulator

Movable
piston

Thermal
conductor

Figure 18.6 Work done on the gas as the piston rises (a) is the negative of the area under the pV curve (b).

The piston
rises a small
distance ∆x.

The gas does work
as the volume
increases by ∆V c cand the work done on the

gas is the opposite, making
the work done on the gas as
its volume increases from V1
         to V2 the negative of the
                      area under the
                      entire curve.

(a)

∆V = A∆x

Area A

∆x

x

p

V1 V2∆V

V

(b)

Got It? 18.1 Two identical gas–cylinder systems are taken from the same initial 
state to the same final state, but by different processes. Which of the following is or are the 
same in both cases? (a) the work done on or by the gas; (b) the heat added or removed; or 
(c) the change in internal energy

Isothermal Processes
An isothermal process occurs at constant temperature. Figure 18.7 shows one way to 
effect an isothermal process: Place a gas cylinder in thermal contact with a heat reservoir 
whose temperature is constant. Then move the piston to change the gas volume, slowly 
enough that the gas remains in equilibrium with the heat reservoir. The system moves from 
its initial state to its final state along a curve of constant temperature—an isotherm—in Figure 18.7 An isothermal process.

The piston moves slowly while the 
system is in thermal contact with a
heat reservoir at �xed temperature T.

T

T

Heat
reservoir
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the pV diagram (Fig. 18.8). The work done on the gas is given by Equation 18.3 and is the 
negative of the area under the isotherm.

To find that work, we relate pressure and volume through the ideal-gas law: 
p = 1nRT2/V. Then Equation 18.3 becomes

W = - L
V2

V1

nRT

V
 dV

For an isothermal process, the temperature T is constant, giving

W = -nRTL
V2

V1

dV

V
= -nRT lnV `

V2

V1

= -nRT ln aV2

V1
b

The internal energy of an ideal gas consists only of the kinetic energy of its molecules, 
which, in turn, depends only on temperature. That dependence of internal energy on tem-
perature alone is a defining feature of the ideal gas. Thus, there’s no change in the internal 
energy of an ideal gas during an isothermal process. The first law of thermodynamics then 
gives ∆Eint = 0 = Q + W, so

 Q = -W = nRT ln aV2

V1
b 1isothermal process2 (18.4)

Does this result Q = -W  make sense? Recall that Q is the heat transferred to the gas 
and W is the work done on it. So -W  is the work done by the gas, and our result shows 
that for a gas to do work without its temperature changing, it must absorb an equal amount 
of heat. Similarly, if work is done on the gas, it must transfer an equal amount of heat to its 
surroundings if it’s to maintain a constant temperature.

Figure 18.8 A pV diagram for an isothermal 
process.

a1

V
b

L
V2

V1

An isotherm is a hyperbola because 
pressure and volume are inversely 
related for an ideal gas at constant T:

p = nRT

p

V1 V2

V

Work is negative of the area under the pV curve:

W = -      pdV

ExamPLE 18.2 an Isothermal Process: Bubbles!

A scuba diver is 25 m down, where the pressure is 3.5 atm or about 
350 kPa. The air she exhales forms bubbles 8.0 mm in radius. How 
much work does each bubble do as it rises to the surface, assuming the 
bubbles remain at the uniform 300 K temperature of the water?

Interpret The constant 300 K temperature tells us we’re dealing 
with an isothermal process.

Develop Equation 18.4 determines the work: -W = nRT ln1V2/V12. 
Here -W is just what we’re after: the work done by the gas in the bub-
ble. To use this equation, we need the quantity nRT and the volume 
ratio V2/V1. We know p and V (actually the radius, from which we can 
get V) at the 25-m depth, so we can use the ideal-gas law pV = nRT  
to get nRT and also the bubble volume just before it reaches the sur-
face. Then we’ll have everything we need to apply Equation 18.4.

evaluate The ideal-gas law gives nRT = pV = 4
3 pr3p. The num-

ber of moles n doesn’t change and R is a constant, so pV is itself con-
stant in the isothermal process. That means p1V1 = p2V2, showing 

that the volume expands by a factor of 3.5 as the pressure drops from 
3.5 atm to 1 atm at the surface—so V2/V1 = 3.5. Then Equation 18.4 
gives

-W = nRT ln aV2

V1
b = 4

3 pr3p ln3.5

Using the 8-mm bubble radius and the 350-kPa pressure gives 0.94 J 
for the work. Note that we needed to use pressure in SI units here; to 
find the volume ratio, any units would do because V2/V1 followed from 
the pressure ratio p1/p2.

assess Make sense? The work -W  done by the gas is positive be-
cause an expanding bubble pushes water outward and ultimately up-
ward. It therefore raises the ocean’s gravitational potential energy. 
When the bubble breaks, this excess potential energy becomes kinetic 
energy, appearing as small waves on the water surface. The bubble, 
in turn, gets its energy from heat that flows in to keep it at constant 
temperature. Energy is conserved! ■

Constant-Volume Processes and Specific Heat
A constant-volume process (also called isometric, isochoric, or isovolumic) occurs in a rigid 
closed container whose volume can’t change. We could tightly clamp the piston in Fig. 18.5 
for a constant-volume process. Because the piston doesn’t move, the gas does no work, and the 
first law becomes simply ∆Eint = Q. To express this result in terms of a temperature change 
∆T, we introduce the molar specific heat at constant volume CV, defined by

 Q = nCV ∆T 1constant@volume process2 (18.5)
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322 Chapter 18 Heat, Work, and the First Law of Thermodynamics

where n is the number of moles. This molar specific heat is like the specific heat defined 
in Chapter 16, except it’s per mole rather than per unit mass. Using Equation 18.5 for Q in 
our first-law statement ∆Eint = Q gives

 ∆Eint = nCV ∆T  1any process2 (18.6)

For an ideal gas, the internal energy is a function of temperature alone, so ∆Eint/∆T  
has the same value no matter what process the gas undergoes. Therefore, Equation 18.6, 
 relating the temperature change ∆T  and internal-energy change ∆Eint, applies not only to a 
 constant-volume process but to any ideal-gas process. Why, then, have we been so careful 
to label CV the specific heat at constant volume? Although Equation 18.6, ∆Eint = nCV ∆T, 
holds for any process, it’s only when there’s no work that the first law lets us write 
Q = ∆Eint, and therefore only for a constant-volume process that Equation 18.5 holds.

Isobaric Processes and Specific Heat
Isobaric means constant pressure. Processes occurring in systems exposed to the atmosphere 
are essentially isobaric. In a reversible isobaric process, a system moves along an isobar, or 
curve of constant pressure, in its pV diagram (Fig. 18.9). The work done on the gas as the 
volume changes from V1 to V2 is the negative of the rectangular area under the isobar, or

 W = -p1V2 - V12 = -p ∆V  (18.7)

a result we could obtain formally by integrating Equation 18.3.
Solving the first law (Equation 18.1) for Q and using our expression for work gives 

Q = ∆Eint - W = ∆Eint + p ∆V. For an ideal gas, we’ve just found that the change 
in internal energy is ∆Eint = nCV ∆T  for any process. Therefore, Q = nCV ∆T + p ∆V  
for an ideal gas undergoing an isobaric process. We define the molar specific heat at 
 constant pressure Cp as the heat required to raise 1 mol of gas by 1 K at constant  pressure, 
or Q = nCp ∆T. Equating our two expressions for Q gives

 nCp ∆T = nCV ∆T + p ∆V  1isobaric process2 (18.8)

This is a useful form for calculating temperature changes in an isobaric process if we 
know both specific heats Cp and CV. However, we really need only one of these specific 
heats because a simple relation holds between the two. The ideal-gas law, pV = nRT, al-
lows us to write p ∆V = nR ∆T  for an isobaric process. Using this expression in Equation 
18.8 gives nCp ∆T = nCV ∆T + nR ∆T, so

 Cp = CV + R   1molar specific heats2 (18.9)

Does this make sense? Specific heat measures the heat needed to cause a given  temperature 
change. In a constant-volume process, no work is done and all the heat goes into  raising 
the internal energy and thus the temperature of an ideal gas. In a constant-pressure 
 process, work is done and some of the added heat ends up as mechanical energy, leaving 
less  available for raising the temperature. Therefore, a constant-pressure process requires 
more heat for a given temperature change. Thus the specific heat at constant pressure is 
greater than at constant volume, as reflected in Equation 18.9.

Why didn’t we distinguish specific heats at constant volume and constant pressure 
 earlier? Because we were concerned mostly with solids and liquids, whose coefficients of 
expansion are far lower than those of gases. As a result, much less work is done by a solid 
or liquid than by a gas. Since work is what gives rise to the difference between CV and Cp, 
the distinction is less significant for solids and liquids. As a practical matter, measured 
specific heats are usually at constant pressure.

adiabatic Processes
In an adiabatic process, no heat flows between a system and its environment. The way to 
achieve this is to surround the system with perfect thermal insulation. Even without insu-
lation, processes that occur quickly are often approximately adiabatic because they’re over 
before significant heat transfer has had time to occur. In a gasoline engine, for example, 

Figure 18.9 A pV diagram for an isobaric 
 process; also shown are isotherms for the 
initial and final temperatures.

Work done
on the gas
is the negative
of the area under
the pV curve.

p
1 2

T1 T2

V1 V2

V

W = -p∆V

Isotherms

Isobar

aPPLICaTIon Boiling Water

You slip a mug of water into the microwave to 
boil for tea, or you put a pot of water on the stove 
to cook pasta. Boiling water is an example of an 
isobaric process, because the water is exposed to 
atmospheric pressure as it boils. At its normal 
100°C boiling point, water’s volume increases 
some 2000-fold as it goes from liquid to vapor. 
According to Equation 18.7, the work done by 
the gas as it expands is p ∆V . That 2000-fold ex-
pansion means that ∆V  is very nearly the same 
as the final volume V, so the work done by the 
gas is essentially pV. Then the ideal-gas law in 
the form of Equation 17.2, pV = nRT, implies 
that the work done per mole of gas is RT. With 
T = 100°C or 373 K, that amounts to some 
3.1 kJ/mol. Converting moles to kg of H2O gives 
an equivalent of 170 kJ/kg. The energy needed to 
do that work must be included in the heat of va-
porization, which we introduced in Chapter 17.  
There, Table 17.1 gave 2257 kJ/kg as water’s 
heat of vaporization at its boiling point. Our 
170 kJ/kg shows that only about 8% of the en-
ergy supplied to boil water goes into expanding 
the vaporized water against atmospheric pres-
sure. The rest is due largely to the breaking of 
the hydrogen bonds that keep H2O  molecules 
close together in the liquid state.
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18.2 Thermodynamic Processes 323

 compression of the gasoline–air mixture and expansion of the combustion products are nearly 
adiabatic because they occur so rapidly that little heat flows through the cylinder walls.

Since the heat Q is zero in an adiabatic process, the first law becomes simply

 ∆Eint = W 1adiabatic process2 (18.10)

This says that if we do work on a system and there’s no heat transfer, then the system must 
gain an equal amount of internal energy. Conversely, if the system does work on its envi-
ronment, then it loses internal energy (Fig. 18.10).

As a gas expands adiabatically, its volume increases while its internal energy and tem-
perature decrease. The ideal-gas law, pV = nRT, then requires that the pressure decrease 
as well—and by more than it would in an isothermal process where T remains constant. In 
a pV diagram, the path of an adiabatic process—called an adiabat—is therefore steeper 
than the isotherms (Fig. 18.11).

Tactics 18.1 details the math involved in finding the adiabatic path; the result is

 pVg = constant 1adiabatic process2 (18.11a)

where g = Cp/CV  is the ratio of the specific heats. Because Cp = CV + R, the ratio 
g = Cp/CV is always greater than 1. As expected, an adiabatic process therefore results in 
a greater pressure change than would a comparable isothermal process, as reflected in the 
steeper adiabatic path in Fig. 18.11. Physically, the adiabatic path is steeper because the 
gas loses internal energy as it does work, so its temperature drops. Problem 71 shows how 
to rewrite Equation 18.11a in terms of temperature:

 TVg- 1 = constant 1adiabatic process2 (18.11b) Figure 18.10 In an adiabatic expansion, 
a gas does work on the piston and its 
 internal  energy decreases. Part (b) shows 
 microscopically how this occurs.

v2
u

v2
u

v1
u

v1
u

v
u

Molecules rebound with the same
speed, and the gas's internal energy
doesn't change.

Rebounding molecules have lower
speed as energy is transferred to
the outward-moving piston.  With
the decrease in internal energy 
comes a drop in temperature.

(a) Stationary piston

(b) Moving piston

Figure 18.11 A pV curve for an adiabatic 
 expansion (dark curve).

T1

T2

Isotherms
p

V

1

An adiabat shows that
the pressure drops more
than in an isothermal
process.

2

tactIcs 18.1 Deriving the adiabatic Equation

Equation 18.6 gives the infinitesimal change in internal energy for any process: dEint = nCV dT. 
The corresponding work is dW = p dV  so, with Q = 0 in an adiabatic process, the first law becomes 
nCV dT = -p dV. We can eliminate dT by differentiating the ideal-gas law, now letting both p and V 
change: nR dT = d1pV2 = p dV + V dp. Solving for dT, substituting in our first-law statement, and mul-
tiplying through by R leads to CVV dp + 1CV + R2p dV = 0. But CV + R = Cp; substituting this and di-
viding through by CV pV  gives

dp

p
+

Cp

CV
 
dV

V
= 0

Defining g K Cp/CV and integrating gives

ln p + g ln V = ln1constant2
where we’ve chosen to call the constant of integration ln(constant). Since g ln V = ln Vg, it follows by 
exponentiation that

pVg = constant

ConCEPTUaL ExamPLE 18.1  Ideal-Gas Law versus the adiabatic Equation

The ideal-gas law says pV = nRT, but, seemingly in contrast, Equa-
tion 18.11a says pVg = constant for an ideal gas undergoing an adi-
abatic process. Which is right?

evaluate The ideal-gas law is fundamental, so we know it’s right. 
And we derived Equation 18.11a based on the behavior of an ideal 
gas. So both must be right. But how can that be, when one equation 
talks about pV and the other about pVg? The answer lies in the right-
hand side of the ideal-gas law: nRT. For an adiabatic process, T isn’t 
constant and therefore pV isn’t constant—but pVg is.

assess Compare the adiabatic process with an isothermal process. In 
the isothermal case, T is constant and we would write pV = constant. 

Both processes obey the ideal-gas law, but the relation of p and V 
 differs, so there’s no contradiction.

MakIng the connectIon Suppose you halve the volume of an 
ideal gas with g = 1.4. What happens to the pressure if the process is 
(a) isothermal and (b) adiabatic?

evaluate For the isothermal process pV = constant, so halving the 
volume doubles the pressure. For the adiabatic process it’s pVg that’s 
constant. Setting p1V

g
1 = p2V

g
2  with V2 = V1/2 gives p2 = 2gp1. 

With g = 1.4, that means the pressure increases by a factor of 2.64. 
The pressure increase is greater than in the isothermal case because 
the temperature goes up.
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324 Chapter 18 Heat, Work, and the First Law of Thermodynamics

It’s another exercise in calculus to integrate Equation 18.3 for the work done on the gas 
in an adiabatic process. You can do this in Problem 69; the result is

 W =
p2V2 - p1V1

g - 1
 (18.12)

ExamPLE 18.3 an adiabatic Process: Diesel Power

Fuel ignites in a diesel engine because of the temperature rise that 
results from compression as the piston moves toward the top of the 
cylinder; there’s no spark plug as in a gasoline engine. Compression 
is fast enough that the process is essentially adiabatic. If the ignition 
temperature is 500°C, what compression ratio Vmax/Vmin is needed 
(Fig. 18.12)? Air’s specific-heat ratio is g = 1.4, and before compres-
sion the air is at 20°C.

Interpret We identify the thermodynamic process here as adiabatic 
compression.

Develop The problem involves temperature and volume, so Equa-
tion 18.11b applies, giving TminVmin

g- 1 = TmaxVmax
g- 1.

evaluate Solving for the compression ratio Vmax/Vmin gives

Vmax

Vmin
= aTmin

Tmax
b

1/1g- 12
= a773 K

293 K
b

1/0.4

= 11
assess Practical diesel engines have higher ratios to ensure reliable 
ignition. Their high compression makes diesels heavier than their gas-
oline counterparts, but also more fuel efficient. You can explore the 
diesel engine further in Chapter 19 ■.

Figure 18.12 One cylinder of a diesel 
engine, shown with the piston  
(a) at the bottom of its stroke and 
(b) at the top. The compression ratio 
is Vmax/Vmin.

Vmax

Vmin

Cylinder

Piston

Connecting rod

Crankshaft

(a) (b)

The smog that blankets urban areas is an unfortunate manifestation of our pro-
lific fossil-fueled energy consumption. Adiabatic processes in the atmosphere de-
termine whether or not smog lingers over a city. Consider a volume of air that’s 
heated, perhaps because it’s over hot pavement that absorbs solar energy. The air 
becomes less dense, and its buoyancy makes it rise. As it ascends into regions of 
lower pressure, it expands, doing work against the surrounding atmosphere. Air is 
a poor heat conductor, so the process is essentially adiabatic. Therefore, the gas 
cools as it does work.

Now, temperature in the atmosphere normally decreases with altitude. So 
here’s the crucial question: Does the rising air cool faster or slower than the sur-
rounding atmosphere? If it cools more slowly, then it continues to be warmer, and 
it continues to rise. Any pollution is carried high into the atmosphere where it’s 
dispersed. But if the decrease in air temperature with altitude isn’t so great, or in an 
inversion where it’s actually warmer aloft, the rising air will soon reach equilib-
rium with its surroundings and won’t rise any higher. The effect is to trap air and 
its entrained pollutants near the surface, as shown in this photo of Los Angeles. 
Smog alert!

aPPLICaTIon Smog alert!

GoT IT? 18.2 Name the basic thermodynamic process involved when each of the 
following is done to a piston–cylinder system containing ideal gas, and tell also whether 
temperature, pressure, volume, and internal energy increase or decrease: (1) The piston 
is locked in place and a flame is applied to the bottom of the cylinder; (2) the cylinder 
is completely insulated and the piston is pushed downward; (3) the piston is exposed to 
atmospheric pressure and is free to move, while the cylinder is cooled by placing it on a 
block of ice.
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Cyclic Processes
Many natural and technological systems undergo cyclic processes, in which the system 
returns periodically to the same thermodynamic state. Engineering examples include en-
gines and refrigerators whose mechanical construction ensures cyclic behavior. Many 
natural oscillations, like those of a sound wave or a pulsating star, are essentially cyclic.

Cyclic processes often involve the four basic processes we’ve just explored, as sum-
marized in Table 18.1. We’ve seen that the work done in any reversible process is just the 
area under the pV curve. A cyclic process returns to the same point in the pV diagram, so it 
involves both expansion and compression (Fig. 18.13). During compression, work is done 
on the gas; during expansion, the gas does work on its surroundings. The net work done on 
the gas is the difference between the two, shown in Fig. 18.13 as the area enclosed by the 
cyclic path in the pV diagram.

Table 18.1 Ideal-Gas Processes

Figure 18.13 (a) A pV diagram for a cyclic process. (b), (c) Work done on the gas over one cycle is the area 
inside the closed path.
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Work done on the gas as it goes from
state A to state B is the entire shaded area.

Work is done by the gas as it goes
from state B to state A.

Net work done on the gas 
during a whole cycle

p2V2 - p1V1

g - 1
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First law
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Q = -W Q = ∆Eint Q = ∆Eint - W ∆Eint = W
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W = 0

Q = nCV∆T
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W = -p 1V2 - V12
Q = nCp∆T

Cp  = CV  + R

Q = 0

W = 
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ExamPLE 18.4 a Cyclic Process: Finding the Work

An ideal gas with g = 1.4 occupies 4.0 L at 300 K and 100 kPa 
pressure. It’s compressed adiabatically to one-fourth of its original 
volume, then cooled at constant volume back to 300 K, and finally al-
lowed to expand isothermally to its original volume. How much work 
is done on the gas?

Interpret This problem involves a cyclic process, and we identify 
three separate thermodynamic processes that make up the cycle: adi-
abatic, constant-volume, and isothermal.

Develop Here it  helps to draw a pV  diagram, shown in  
Fig. 18.14. Our plan is to use equations in Table 18.1 to determine 
the work for each of the basic processes and then combine them 
to get the net work. For the adiabatic process AB, Table 18.1 gives 
WAB = 1pBVB - pAVA2/1g - 12;  for the constant-volume pro-
cess BC, WBC = 0; and for the isothermal process CA, the work is 
WCA = -nRT ln1VA/VC2.

evaluate For the adiabatic process AB we’re given all quantities ex-
cept pB. This we get from the adiabatic equation pVg = constant, or 
pBVB

g = pAVA
g. Solving gives pB = pA1VA/VB2g = 696.4 kPa, where 

we used the given information pA = 100 kPa, g = 1.4, and a com-
pression to one-fourth the original volume 1VA/VB = 42. We now have 
enough information to find the work done over the adiabatic path:

WAB =
pBVB - pAVA

g - 1
= 741 J

where, with pressures in kPa 1=103 Pa2 and volumes in L 1=10-3 m32, 
the factors 10{3 cancel and there’s no need to convert. The work WAB 
is positive because work is done on the gas when it’s compressed.

In the expression WCA = -nRT ln1VA/VC2 for the isothermal work, 
we can evaluate the quantity nRT at any point on the isothermal curve 
because T is constant. The ideal-gas law says that nRT = pV, and we 
know both p and V at point A. So nRT = pAVA = 400 J, where again 
we could multiply pA = 100 kPa by VA = 4.0 L to get an answer in
SI units. The isothermal work is then

WCA = -nRT ln aVA

VC
b = -1400 J21ln 42 = -555 J

This is negative because the gas does work in expanding from C to A.
Combining our results for all three segments gives the net work:

WABCA = WAB + WBC + WCA = 741 J + 0 J - 555 J = 186 J

assess Make sense? The final answer is positive because we’ve 
done net work on the gas; that’s always the case in going counter-
clockwise around a cyclic path in a pV diagram. Since the system re-
turns to its original state, its internal energy undergoes no net change. 
That means all the work that’s done on it must be transferred to its 
surroundings as heat. Since no heat flows during the adiabatic process 
AB, and since the gas absorbs heat during the isothermal expansion 
CA, the only time it transfers heat to its surroundings is during the 
constant-volume cooling process BC. ■

Figure 18.14 The cyclic process ABCA of Example 18.4 includes adiabatic 
(AB), constant-volume (BC), and isothermal (CA) sections.

1
4We’re given VB =   VA,

and we calculated pB.

We’re given
pA and VA.

18.3 Specific Heats of an Ideal Gas
We’ve found that the thermodynamic behavior of an ideal gas depends on the specific 
heats CV and Cp. What are the values of those quantities?

Our ideal-gas model of Chapter 17 assumed the gas molecules were structureless point 
particles with only translational kinetic energy. The internal energy Eint of the gas is the 
sum of all those molecular kinetic energies. But the average kinetic energy is directly 
 proportional to the temperature: 12 mv2 = 3

2 kT. If we have n moles of gas, the internal energy 

is then Eint = nNA11
2 mv22 = 3

2 nNAkT, where NA is Avogadro’s number. But NAk = R, the 
gas constant, so Eint = 3

2 nRT. Solving Equation 18.6 for the molar specific heat then gives

 CV =
1
n

 
∆Eint

∆T
= 3

2 R (18.13)

For this gas of structureless particles, the adiabatic exponent g is therefore

g =
Cp

CV
=

CV + R

CV
=

5
2 R
3
2 R

=
5

3
= 1.67

M18_WOLF4752_03_SE_C18.indd   326 17/06/15   7:06 PM



18.3 Specific Heats of an Ideal Gas 327

Some gases, notably the inert gases helium (He), neon (Ne), argon (Ar), and others 
in the last column of the periodic table, have adiabatic exponents and specific heats 
given by these equations. But others do not. At room temperature, for example, hydro-
gen 1H22, oxygen 1O22, and nitrogen 1N22 obey adiabatic laws with g very nearly 75 1=1.42 
and,  correspondingly, specific heat CV = 5

2 R. On the other hand, sulfur dioxide 1SO22 
and  nitrogen dioxide 1NO22 have specific-heat ratios close to 1.3 and therefore CV  of 
about 3.4R.

What’s going on here? A clue lies in the structure of individual gas molecules, reflected 
in their chemical formulas. The inert-gas molecules are monatomic, consisting of single 
atoms. To the extent that these atoms behave like structureless mass points, the only en-
ergy they can have is kinetic energy of translational motion. We can think of that kinetic 
energy as being a sum of three terms, each associated with motion in one of the three 
mutually perpendicular directions. We call each separate term in the energy of a system a 
degree of freedom, meaning a way that system can take on energy. So a monatomic mol-
ecule has three degrees of freedom.

In contrast, hydrogen, oxygen, and nitrogen molecules are diatomic, as shown in  
Fig. 18.15. Although a gas of such molecules should still obey the ideal-gas law 
PV = nRT, these molecules can have rotational as well as translational kinetic energy. 
Then the  kinetic energy of a diatomic molecule consists of five terms, three for the 
three directions of  translational motion and two for rotational motions about the two 
 mutually  perpendicular axes shown in Fig. 18.15. So a diatomic molecule has five de-
grees of  freedom. You’ll now see how this difference between three degrees of freedom 
for  monatomic molecules and five for diatomic molecules accounts for the difference be-
tween their specific heats.

The Equipartition Theorem
We showed in Chapter 17 that the average kinetic energy associated with a gas mole-
cule’s motion in one direction is 1

2 kT. We then argued that all three directions are equally 
probable, making the molecular kinetic energy, on average, 32 kT. The argument from one 
direction to three is based on the assumption that random collisions will share energy 
equally among the possible motions. When a molecule can rotate as well as translate, en-
ergy should be shared also among possible rotational motions. The 19th-century Scottish 
physicist James Clerk Maxwell first proved this fact, which is known as the equipartition 
theorem:

Equipartition theorem When a system is in thermodynamic equilibrium, the 
 average energy per molecule is 12 kT  for each degree of freedom.

We’ve just seen that a diatomic molecule has five degrees of freedom: three transla-
tional and two rotational. The average energy of such a molecule is then 511

2 kT2 = 5
2 kT, 

so the total internal energy in n moles of a diatomic gas is Eint = nNA15
2 kT2 = 5

2 nRT. 
Equation 18.6 then gives the molar specific heat at constant volume:

CV =
1
n

 
∆Eint

∆T
= 5

2 R 1diatomic molecule2

Our result Cp = CV + R still holds, since it was derived from the first law of thermody-
namics without regard to molecular structure, so Cp = 7

2 R and g = Cp 

/CV = 7
5 = 1.4. 

These results describe the observed behavior of diatomic gases like hydrogen, oxygen, and 
nitrogen at room temperature.

A polyatomic molecule like NO2 can rotate about any of three perpendicular axes  
(Fig. 18.16). It then has a total of six degrees of freedom, giving Eint = 3nRT  and 
 corresponding specific heats CV = 3R and Cp = CV + R = 4R. The adiabatic exponent 
is then g = 4

3 ≃1.33, reasonably close to the experimental value g = 1.29 for NO2.

Figure 18.15 A diatomic molecule can have 
significant rotation about two perpendicular 
axes.

z′

x′

y′

Figure 18.16 A triatomic molecule like NO2 has 
three rotational degrees of freedom.

z′

y′

x′

M18_WOLF4752_03_SE_C18.indd   327 17/06/15   7:06 PM



328 Chapter 18 Heat, Work, and the First Law of Thermodynamics

GoT IT? 18.3 The same amount of heat flows into equal volumes of nitrogen (N2) 
and nitrogen dioxide (NO2), while both are held at constant pressure. Is the resulting 
 temperature rise (a) greater for N2, (b) the same for both, or (c) greater for NO2?

Quantum Effects
Relating molecular structure and gas behavior is a remarkable triumph for Newtonian 
physics. But hidden in our analysis is an assumption that Newtonian physics can’t justify. 
Real atoms have size, so even monatomic molecules should rotate. Why not more degrees 
of freedom? The answer lies in quantum physics, which requires a certain minimum en-
ergy for a periodic motion such as rotation. At normal temperatures, the average thermal 
energy is too low to excite rotation of monatomic molecules, or of diatomic molecules 
about their long axis. So these molecules exhibit three and five degrees of freedom, re-
spectively. That results in the volume specific heats 32 R and 5

2 R that we’ve seen. For dia-
tomic molecules at higher temperatures, still another motion comes into play—the simple 
harmonic oscillation of the two atoms due to the springlike bond between them. That adds 
two more degrees of freedom, corresponding to the kinetic and potential energies of this 
oscillation, and the specific heat increases correspondingly. At very low temperatures, in 
contrast, there isn’t enough thermal energy to excite any rotation in a diatomic gas, and it 
then exhibits the specific heat CV = 3

2 R that we normally associate with a monatomic gas. 
Figure 18.17 shows these effects for diatomic hydrogen 1H22.

Are you bothered by the strange restrictions quantum mechanics imposes on molecular 
rotation and vibration? You should be! Nothing in your experience suggests that a rotating 
object can’t have any amount of energy you care to give it. But quantum mechanics deals 
with a realm much smaller than that of our daily experience. The quantization of energy 
is only one of many unusual things that occur in the quantum realm. We’ll explore more 
quantum phenomena in Part 6.

A gas mixture consists of 2.0 mol of oxygen 1O22 and 1.0 mol of 
 argon (Ar). Find the volume specific heat of the mixture.

Interpret This problem is about specific heat and molecular 
 structure. We identify the molecules involved as diatomic O2 and 
monatomic Ar.

Develop Equation 18.6, ∆Eint = nCV ∆T, determines the volume 
specific heat, so we need to find how the internal energy Eint depends 
on temperature. Our plan is to use the equipartition theorem to get 
the energy per molecule for each gas, then find the total energy as a 
 function of temperature, and from that the specific heat.

evaluate Being diatomic, O2 has five degrees of freedom, 
so the equipartition theorem gives the average energy per mol-
ecule as 5

2 kT. Then the total energy in n = 2 moles of oxygen is 
EintO2

= nNA15
2 kT2 = 5

2 nRT = 5.0RT,  where we used NAk = R. 
Monatomic Ar has three degrees of freedom, so the internal energy in 
our 1 mole of argon is, similarly, Eint Ar = 3

2 nRT = 1.5RT. The total 
internal energy is then Eint = 6.5RT, so Equation 18.6 gives

CV =
1
n

 
∆Eint

∆T
=

6.5R

3.0 mol
= 2.2R

assess Make sense? Our answer lies between the values 1.5R and 
2.5R that we found for monatomic and diatomic gases, respectively. 
It’s closer to 2.5R because there’s more oxygen in the mixture. ■

ExamPLE 18.5 Specific Heat: a Gas mixture

Figure 18.17 Volume specific heat of H2 gas as 
a function of temperature. Below 20 K hydro-
gen is liquid, and above 3200 K it dissociates 
into individual atoms.
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Chapter 18 Summary

The big idea here is conservation of energy, now expanded to include heat. The expanded statement of energy conservation is the first law of 
thermodynamics, which relates the change in a system’s internal energy to the heat flowing into the system and the work done on the system. The 
first law can be used with the ideal-gas law to give a quantitative description of basic thermodynamic processes applied to ideal gases; these are 
described graphically using pV diagrams. The equipartition theorem states that in thermodynamic equilibrium, internal energy is shared equally 
among the possible energy modes of a system.

Big Idea

Quantitatively, the first law of thermodynamics states

∆Eint = Q + W

Meaning of terms in the first law:

•   ∆Eint is the change in a system’s internal energy.
•   Q is the heat transferred to the system.

•   Positive Q means a net heat input to the system.
•   Negative Q means heat leaves the system.

•  W is the work done on the system.
•  Positive W means work is done on the system.
•   Negative W means the system does work on its surroundings.

Key Concepts and Equations

V1, p1

V2, p2

Q is the heat
that �ows in.

-W is the work
done by the gas in
moving the piston.

∆Eint is the
change in
the gas’s 
internal
energy.

In general, the work done by a system is related to the changes in pressure and volume:

W = - L
V2

V1

 p dV

applications

Ideal-gas processes:

T = constant
Q = -W Q = ∆Eint Q = ∆Eint - W ∆Eint = W

W = -nRT ln

pV = constant

ISOTHERMAL CONSTANT-VOLUME ISOBARIC ADIABATIC

V = constant

W = 0

Q = nCV∆T

p = constant

W = -p 1V2 - V12
Q = nCp∆T

Cp  = CV  + R

Q = 0

W = 

pVg = constant
TVg-1  = constant

p

W

VV1 V2

Isotherm

p

V

p

W

VV1 V2

Isobar

T2

T1 W

VV1 V2

Adiabat

T1

T2

p

p2V2 - p1V1

g - 1
aV2

V1
b

The specific heats of an ideal gas follow from the degrees of freedom of each molecule:

3
2

5
2

Monatomic
3 degrees of freedom

CV =  R

Diatomic
5 degrees of freedom

CV =  R 7
5

Triatomic
7 degrees of freedom

CV =  R
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330 Chapter 18 Heat, Work, and the First Law of Thermodynamics

 mechanical work done in the process is 9.0 kJ. (a) How much 
heat is  transferred to the surroundings during the shaking?  
(b) How much mechanical energy would have been required if 
the  container had been perfectly insulated?

17. A 40-W heat source is applied to a gas sample for 25 s, during 
which time the gas expands and does 750 J of work on its sur-
roundings. By how much does the internal energy of the gas 
change?

18. Find the rate of heat flow into a system whose internal energy 
is increasing at the rate of 45 W, given that the system is doing 
work at the rate of 165 W.

19. In a certain automobile engine, 17% of the total energy released 
in burning gasoline ends up as mechanical work. What’s the en-
gine’s mechanical power output if its heat output is 68 kW?

Section 18.2 Thermodynamic Processes
20. An ideal gas expands from the state 1p1, V12 to the state 1p2, V22, 

where p2 = 2p1 and V2 = 2V1. The expansion proceeds along 
the diagonal path AB in Fig. 18.19. Find an expression for the 
work done by the gas during this process.

C B

A

2p1

p1

V1 2V1

V

p

Figure 18.19 Exercises 20, 21 and Problem 75

21. Repeat Exercise 20 for a process that follows the path ACB in 
Fig. 18.19.

22. A balloon contains 0.30 mol of helium. It rises, while maintain-
ing a constant 300-K temperature, to an altitude where its volume 
has expanded five times. Neglecting tension forces in the bal-
loon, how much work is done by the helium during this isother-
mal expansion?

23. The balloon of Exercise 22 starts at 100 kPa pressure and rises 
to an altitude where p = 75 kPa, maintaining a constant 300 K  
temperature. (a) By what factor does its volume increase?  
(b) How much work does the gas in the balloon do?

24. How much work does it take to compress 2.5 mol of an ideal gas 
to half its original volume while maintaining a constant 300 K 
temperature?

25. By what factor must the volume of a gas with g = 1.4 be 
changed in an adiabatic process if the kelvin temperature is to 
double?

26. Nitrogen gas (g = 1.4) at 18°C is compressed adiabatically until 
its volume is reduced to one-fourth of its initial value. By how 
much does its temperature increase?

27. A carbon-sequestration scheme calls for isothermally compress-
ing 6.8 m3 of carbon dioxide, initially at atmospheric pressure, 
until it occupies only 5.0% of its original volume. Find the work 
required.

ENV

For thought and Discussion
 1. The temperature of the water in a jar is raised by violently shak-

ing the jar. Which of the terms Q and W in the first law of ther-
modynamics is involved in this case?

 2. What’s the difference between heat and internal energy?
 3. Some water is tightly sealed in a perfectly insulated container.  

Is it possible to change the water temperature? Explain.
 4. Why can’t an irreversible process be described by a path in a pV 

diagram?
 5. Are the initial and final equilibrium states of an irreversible 

 process describable by points in a pV diagram? Explain.
 6. Does the first law of thermodynamics apply to irreversible 

 processes?
 7. A quasi-static process begins and ends at the same temperature. 

Is the process necessarily isothermal?
 8. Figure 18.18 shows two processes, A and B, that connect the 

same initial and final states, 1 and 2. For which process is more 
heat added to the system?

1

2

A

B

p

V

Figure 18.18 For Thought and Discussion 8

 9. When you let air out of a tire, the air seems cool. Why? What 
kind of process is occurring?

10. Blow on the back of your hand with your mouth wide open. Your 
breath will feel hot. Now tighten your lips into a small opening 
and blow again. Now your breath feels cool. Why?

11. You boil water in an open pan. Of which of the four basic 
 processes we considered is this an example?

12. Three identical gas-cylinder systems are compressed from the 
same initial state to final states that have the same volume, one 
isothermally, one adiabatically, and one isobarically. Which 
 system has the most work done on it? The least?

13. Why is specific heat at constant pressure greater than at constant 
volume?

14. In what sense can a gas of diatomic molecules be considered an 
ideal gas, given that its molecules aren’t point particles?

exercises and problems
Exercises

Section 18.1 The First Law of Thermodynamics
15. In a perfectly insulated container, 1.0 kg of water is stirred 

 vigorously until its temperature rises by 7.0°C. How much work 
is done on the water?

16. In a closed but uninsulated container, 500 g of water are 
shaken violently until the temperature rises by 3.0°C. The 
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Exercises and Problems 331

41. A gasoline engine has compression ratio 8.5 (see Example 18.3 
for the meaning of this term), and the fuel–air mixture com-
presses adiabatically with g = 1.4. If the mixture enters the 
engine at 30°C, what will its temperature be at maximum com-
pression?

42. By what factor must the volume of a gas with g = 1.4 be 
changed in an adiabatic process if the pressure is to double?

43. Volvo’s B5340 engine, used in the V70 series cars, has compres-
sion ratio 10.2, and the fuel–air mixture undergoes adiabatic 
compression with g = 1.4. If air at 320 K and atmospheric pres-
sure fills an engine cylinder at its maximum volume, what will be 
(a) the temperature and (b) the pressure at the point of maximum 
compression?

44. A research balloon is prepared for launch by pumping into it 
1.75 * 103 m3 of helium gas at 12°C and 1.00 atm pressure. It rises 
high into the atmosphere to where the pressure is only 0.340 atm.  
Assuming the balloon doesn’t exchange significant heat with its 
surroundings, find (a) its volume and (b) its temperature at the 
higher altitude.

45. Monatomic argon gas is initially at a chilly 28 K. By what factor 
would you have to increase its pressure, adiabatically, to bring it 
to room temperature (293 K)?

46. By what factor does the internal energy of an ideal diatomic 
gas change when it’s compressed to half its original volume  
(a)  isothermally, (b) isobarically, or (c) adiabatically?

47. An ideal monatomic gas is compressed to half its original  volume. 
(a) By what factor is the work greater when the  compression is 
adiabatic as compared with isothermal? (b) Where does the extra 
work go?

48. A gas expands isothermally from state A to state B, in the process 
absorbing 35 J of heat. It’s then compressed isobarically to state 
C, where its volume equals that of state A. During the compres-
sion, 22 J of work are done on the gas. The gas is then heated at 
constant volume until it returns to state A. (a) Draw a pV diagram 
for this process. (b) How much work is done on or by the gas 
during the complete cycle? (c) How much heat is transferred to 
or from the gas as it goes from B to C to A?

49. A 3.50-mol sample of ideal gas with molar specific heat CV = 5
2 R 

is initially at 255 K and 101 kPa pressure. Determine the final 
temperature and the work done by the gas when 1.75 kJ of heat 
are added to the gas (a) isothermally, (b) at constant volume, and 
(c) isobarically.

50. Prove that the slope of an adiabat at a given point in a pV diagram 
is g times the slope of the isotherm passing through the same 
point.

51. An ideal gas with g = 1.67 starts at point A in Fig. 18.21, where 
its volume and pressure are 1.00 m3 and 250 kPa, respectively. It 
undergoes an adiabatic expansion that triples its volume, ending 
at B. It’s then heated at constant volume to C, and compressed 
isothermally back to A. Find (a) the pressure at B, (b) the pres-
sure at C, and (c) the net work done on the gas.

Pr
es

su
re

, p
 (

kP
a)

0 1 2 3

Volume, V (m3)

A

C

B
0

250

Figure 18.21 Problem 51

Section 18.3 Specific Heats of an Ideal Gas
28. A gas mixture contains 2.5 mol of O2 and 3.0 mol of Ar. What 

are this mixture’s molar specific heats CV and Cp at constant vol-
ume and constant pressure?

29. A mixture of monatomic and diatomic gases has specific-heat ra-
tio g = 1.52. What fraction of its molecules are monatomic?

30. What should be the approximate specific-heat ratio of a gas con-
sisting of 50% NO2  molecules 1g = 1.292, 30% O2 1g = 1.402, 
and 20% Ar 1g = 1.672?

31. By how much does the temperature of (a) an ideal monatomic 
gas and (b) an ideal diatomic gas (with molecular rotation but no 
vibration) change in an adiabatic process in which 2.5 kJ of work 
are done on each mole of gas?

Problems
32. An ideal gas expands to 10 times its original volume, main-

taining a constant 440 K temperature. If the gas does 3.3 kJ of 
work on its surroundings, (a) how much heat does it absorb, and  
(b) how many moles of gas are there?

33. During cycling, the human body typically releases stored energy 
from food at the rate of 500 W, and produces about 120 W of me-
chanical power. At what rate does the body produce heat during 
cycling?

34. A 0.25-mol sample of ideal gas initially occupies 3.5 L. If it takes 
61 J of work to compress the gas isothermally to 3.0 L, what’s 
the temperature?

35. As the heart beats, blood pressure in an artery varies from a 
high of 125 mm of mercury to a low of 80 mm. These values 
are gauge pressures—that is, excesses over atmospheric pressure. 
An air bubble trapped in an artery has diameter 1.52 mm when 
blood pressure is at its minimum. (a) What will its diameter be 
at maximum pressure? (b) How much work does the blood (and 
ultimately the heart) do in compressing this bubble, assuming the 
air remains at the same 37.0°C temperature as the blood?

36. It takes 1.5 kJ to compress a gas isothermally to half its original 
volume. How much work would it take to compress it by a factor 
of 22 starting from its original volume?

37. A gas undergoes an adiabatic compression during which its vol-
ume drops to half its original value. If the gas pressure increases 
by a factor of 2.55, what’s its specific-heat ratio g?

38. A gas with g = 1.40 occupies 6.25 L when it’s at 98.5 kPa pres-
sure. (a) What’s the pressure after the gas is compressed adiabati-
cally to 4.18 L? (b) How much work does that compression require?

39. A gas sample undergoes the cyclic process ABCA shown in  
Fig. 18.20, where AB is an isotherm. The pressure at A is 60 kPa.  
Find (a) the pressure at B and (b) the net work done on the gas.

Pr
es
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re

, p

0 1 2 3 4 5 6

B

A
C

Volume, V (L)

Figure 18.20 Problems 39 and 40

40. Repeat Problem 39 taking AB as an adiabat and using specific-
heat ratio g = 1.4.

BIO

BIO
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332 Chapter 18 Heat, Work, and the First Law of Thermodynamics

62. The curved path in Fig. 18.23 lies on the 350-K isotherm for an 
ideal gas with g = 1.4. (a) Calculate the net work done on the 
gas as it goes around the cyclic path ABCA. (b) How much heat 
flows into or out of the gas on the segment AB?
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Figure 18.23 Problems 62 and 63

63. Repeat part (a) of Problem 62 for the path ACDA in Fig. 18.23.  
(b) How much heat flows into or out of the gas on the segment CD?

64. A gas mixture contains monatomic argon and diatomic oxygen. 
An adiabatic expansion that doubles its volume results in the 
pressure dropping to one-third of its original value. What fraction 
of the molecules are argon?

65. How much of a triatomic gas with CV = 3R would you have to 
add to 10 mol of monatomic gas to get a mixture whose thermo-
dynamic behavior was like that of a diatomic gas?

66. An 8.5-kg rock at 0°C is dropped into a well-insulated vat con-
taining a mixture of ice and water at 0°C. When equilibrium is 
reached, there are 6.3 g less ice. From what height was the rock 
dropped?

67. A piston–cylinder arrangement containing 0.30 mol of nitro-
gen at high pressure is in thermal equilibrium with an ice–water 
bath containing 200 g of ice. The pressure of the ambient air is  
1.0 atm. The gas is allowed to expand isothermally until it’s in 
pressure balance with its surroundings. After the process is com-
plete, the bath contains 210 g of ice. What was the original gas 
pressure?

68. Experimental studies show that the pV curve for a frog’s lung can 
be approximated by p = 10v3 - 67v2 + 220v, with v in mL 
and p in Pa. Find the work done when such a lung inflates from 
zero to 4.5 mL volume.

69. Show that the application of Equation 18.3 to an adiabatic pro-
cess results in Equation 18.12.

70. A horizontal piston–cylinder system containing n mol of ideal 
gas is surrounded by air at temperature T0 and pressure p0. If 
the piston is displaced slightly from equilibrium, show that 
it executes simple harmonic motion with angular frequency 
v = Ap0 /2MnRT0, where A and M are the piston area and 
mass, respectively. Assume the gas temperature remains 
 constant.

71. Use the ideal-gas law to eliminate pressure in Equation 18.11a, 
and show that the result can be written as Equation 18.11b.

72. The table below shows measured values of pressure versus vol-
ume for an ideal gas undergoing a thermodynamic process. Make 
a log–log plot (logarithm of p versus logarithm of V) of these 
data and use it to determine (a) whether the process is isothermal 
or adiabatic and (b) the temperature if it’s isothermal and the adi-
abatic exponent g if it’s adiabatic.

Volume,  
V (L)

1.1 1.27 1.34 1.56 1.82 2.14 2.37

Pressure, 
p (atm)

0.998 0.823 0.746 0.602 0.493 0.372 0.344

CH

CH

BIO

CH

DATA

52. The gas of Example 18.4 starts at state A in Fig. 18.14 and is 
compressed adiabatically until its volume is 2.0 L. It’s then 
cooled at constant pressure until it reaches 300 K, then allowed 
to expand isothermally back to state A. Find (a) the net work 
done on the gas and (b) the minimum volume of the gas.

53. The gas of Example 18.4 starts at state A in Fig. 18.14 and is 
heated at constant volume until its pressure has doubled. It’s then 
compressed adiabatically until its volume is one-fourth its origi-
nal value, then cooled at constant volume to 300 K, and finally 
allowed to expand isothermally to its original state. Find the net 
work done on the gas.

54. A 25-L sample of ideal gas with g = 1.67 is at 250 K and  
50 kPa. The gas is compressed isothermally to one-third of its 
original volume, then heated at constant volume until its state lies 
on the adiabatic curve that passes through its original state, and 
then allowed to expand adiabatically to that original state. Find 
the net work involved. Is net work done on or by the gas?

55. Show that the relation between pressure and temperature in an 
adiabatic process is p1 -g Tg = constant.

56. A 25-L sample of ideal gas with g = 1.67 is at 250 K and  
50 kPa. The gas is compressed adiabatically until its pressure tri-
ples, then cooled at constant volume back to 250 K, and  finally 
allowed to expand isothermally to its original state. (a) How 
much work is done on the gas? (b) What is the gas’s minimum 
volume? (c) Sketch this cyclic process in a pV diagram.

57. You’re the product safety officer for a company that makes cy-
cling accessories. You’re given a new design for a bicycle pump 
that includes a cylinder 32 cm long when the pump handle is all 
the way out. To keep the pump from getting too hot, you specify 
that the temperature rise should not exceed 75°C when the han-
dle is pushed rapidly, with the outlet blocked, until the internal 
length of the cylinder is 16 cm. Assuming air initially at 18°C, 
does the pump meet your temperature-rise criterion?

58. Figure 18.22 shows data and a fit curve from an experimental 
measurement of the pressure–volume curve for a human lung. 
Estimate the work involved in fully inflating the lung.
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Figure 18.22 Problem 58

59. External forces compress 21 mol of ideal monatomic gas. During 
the process, the gas transfers 15 kJ of heat to its surroundings, yet 
its temperature rises by 160 K. How much work was done on the 
gas?

60. A gas with g = 7/5 is at 273 K when it’s compressed isother-
mally to one-third of its original volume and then further com-
pressed adiabatically to one-fifth of its original volume. Find its 
final temperature.

61. An ideal gas with g = 1.3 is initially at 273 K and 100 kPa. The 
gas is compressed adiabatically to 240-kPa pressure. Find its 
 final temperature.

CH

BIO
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Answers to Chapter Questions 333

Passage Problems
Warm winds called Chinooks (a Native-American term meaning 
“snow eaters”) sometimes sweep across the plains just east of the 
Rocky Mountains. These winds carry air from high in the mountains 
down to the plains rapidly enough that the air has no time to exchange 
heat with its surroundings (Fig. 18.24). On a particular Chinook day, 
temperature and pressure high in the Colorado Rockies are 60 kPa and 
260 K 1-13°C2, respectively; the plain below is at 90 kPa.

Mountains Plain

Figure 18.24 Chinooks (Passage Problems 80–83)

80. The process the air undergoes as it descends the mountains is
a. isothermal.
b. isovolumic.
c. isobaric.
d. adiabatic.

81. As the air descends, its internal energy
a. increases.
b. decreases.
c. is unchanged.

82. As the air descends, its volume
a. increases by 50%.
b. increases by less than 50%.
c. decreases by 50%.
d. decreases by less than 50%.
e. is unchanged.

83. When the air reaches the plain, its temperature is approximately
a. 240 K.
b. 260 K.
c. 290 K.
d. 390 K.

answers to Chapter Questions

answer to Chapter opening Question
Energy is conserved, provided thermal energy is included. The engine 
produces both mechanical energy and thermal energy of its exhaust 
gases; together, they sum to the energy released in combustion.

answers to GoT IT? Questions
 18.1  (c) Only the internal energy is the same, since it’s a thermody-

namic state variable unique to a point in the pV diagram.
 18.2  (1) Constant-volume, T and p increase, V doesn’t change, Eint 

increases as heat flows into the gas; (2) Adiabatic, T and p in-
crease, V decreases, Eint increases as work is done on the gas; 
(3) Isobaric, T decreases, p doesn’t change, V decreases, Eint 
decreases as heat flows out of the gas

 18.3  (a) because the energy is spread over fewer degrees of  freedom

ENV

73. In a reversible process, a volume of air V0 = 17 m3 at pressure 
p0 = 1.0 atm is compressed such that the pressure and volume 
are related by 1p/p02-2 = V/V0. How much work is done by the 
gas in reaching a final pressure of 1.4 atm?

74. A real gas is more accurately described using the van der Waals 
equation: 3p + a1n/V2241V - nb2 = nRT, where a and b are 
constants. Find an expression, corresponding to Equation 18.4, 
for the work done by a van der Waals gas undergoing an isother-
mal expansion from V1 to V2.

75. Repeat Exercise 20 for an expansion along the path 
p = p131 + 1V - V122/V 2

1 4 .
76. The adiabatic lapse rate is the rate at which air cools as it rises 

and expands adiabatically in the atmosphere (see Application: 
Smog Alert, on page 324). Express dT in terms of dp for an adi-
abatic process, and use the hydrostatic equation (Equation 15.2) 
to express dp in terms of dy. Then, calculate the lapse rate dT/dy. 
Take air’s average molecular weight to be 29 u and g = 1.4, 
and remember that the altitude y is the negative of the depth h in 
Equation 15.2.

77. The nuclear power plant at which you’re the public affairs manager 
has a backup gas-turbine system. The backup system produces 
electrical energy at the rate of 360 MW, while extracting energy 
from natural gas at the rate of 670 MW. The local town council 
has raised concern over waste thermal energy dumped into the 
environment. Their standards state the thermal waste power must 
not exceed 400 MW and that all power generation must be at least 
50% efficient. Does the backup turbine meet this standard?

78. Your class on alternative habitats is designing an underwater habi-
tat. A small diving bell will be lowered to the habitat. A hatch at 
the bottom of the bell is open, so water can enter to compress the 
air and thus keep the air pressure inside equal to the pressure of the 
surrounding water. The bell is lowered slowly enough that the in-
side air remains at the same temperature as the water. But the water 
temperature increases with depth in such a way that the air pressure 
and volume are related by p = p02V0 /V, where V0 = 17 m3 and 
p0 = 1.0 atm are the surface values. Suppose the diving bell’s air 
volume cannot be less than 8.7 m3 and the pressure must not ex-
ceed 1.5 atm when submerged. Are these criteria met?

79. One scheme for reducing greenhouse-gas emissions from coal-
fired power plants calls for capturing carbon dioxide and pump-
ing it into the deep ocean, where the pressure is at least 350 
atm. You’re called to assess the energy cost of such a scheme 
for a power plant that produces electrical energy at the rate of 
1.0 GW while at the same time emitting CO2 at the rate of 1100 
tonnes/hour. If CO2 is extracted from the plant’s smokestack at 
320 K and 1 atm pressure and then compressed adiabatically to  
350 atm, what fraction of the plant’s power output would be 
needed for the compression? Take g = 1.3 for CO2. (Your answer 
is a rough estimate because CO2 doesn’t behave like an ideal gas 
at very high pressures; also, it doesn’t include the energy cost of 
separating the CO2 from other stack gases or of transporting it to 
the compression site.)

CH

CH

ENV

ENV

CH

ENV
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The Second Law  
of Thermodynamics
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What You Know
■ You’re familiar with the first law of 

thermodynamics, and how it relates 
heat, work, and internal energy.

■ You can describe basic 
thermodynamic processes, especially 
isothermal and adiabatic processes.

The first law of thermodynamics relates heat and other forms of energy. Much of our world 
depends on this relationship. Cars extract energy from the heat of burning gasoline. Most 

of our electricity originates in heat released by burning fuels or fissioning uranium. Our own 
bodies run on energy that begins as heat in the Sun’s core. But the first law doesn’t tell the 
whole story. Heat and mechanical energy aren’t the same, and the difference makes the con-
version of heat to work a more subtle task than the first law would imply.

19.1 Reversibility and Irreversibility
Figure 19.1 shows a movie of a bouncing ball. Play it backward and it still makes 
sense. Figure 19.2 shows a block sliding along a table, slowing because of friction—
and warming in the process. Play this film backward and it makes no sense. You’ll 

What You’re Learning
■ The big idea here is the second law 

of thermodynamics, which limits our 
ability to extract useful work from 
thermal energy.

■ You’ll learn about heat engines, both 
as practical devices and as conceptual 
tools for exploring the second law of 
thermodynamics.

■ You’ll see how refrigerators and heat 
pumps operate as engines in reverse, 
subject to similar thermodynamic 
limitations.

■ You’ll learn the concept of entropy and 
how it provides a measure of disorder 
in systems.

■ You’ll come to understand entropy 
in statistical terms, and you’ll see 
how to express the second law of 
thermodynamics as a statement about 
entropy.

How You’ll Use It
■ If you go into engineering or science, 

the second law of thermodynamics 
will always limit the use of thermal 
energy in any systems you design or 
study.

■ Even if you don’t do engineering or 
science professionally, the second law 
will continue to limit the efficiency 
of your car, of the power plants that 
produce your electricity, and even of 
natural processes like the hydrologic 
cycle that turns sunlight energy into 
the mechanical energy of water.

Most of the energy extracted from fuel in power plants is discarded as waste heat. The large cooling tower 
shown here dumps this waste heat into the  environment. Why is so much energy wasted?
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19.2 The Second Law of Thermodynamics 335

never see a block at rest suddenly start to move, cooling as it goes. Yet energy would be 
conserved if it did, so the first law of thermodynamics would be satisfied. Beat an egg, 
blending yolk and white. Reverse the beater, and you’ll never see them separate again. Put 
cups of cold and hot water in contact; the hot water cools and the cold water warms. The 
opposite never occurs—although energy would still be conserved.

Why are these events irreversible? In each case we start with matter in an organized 
state. The molecules of the sliding block share a common motion. The yolk molecules are 
all in one place. The hot water has more energetic molecules. Of all possible states, these 
organized ones are rare. There are many more disorganized states—for example, all the 
possible arrangements of molecules in a scrambled egg. As a system evolves, chances are 
it will end up less organized, simply because there are far more such states available to it. 
It’s very unlikely to assume spontaneously a more organized state.

A key word here is “spontaneous.” We could restore organization—for example, by 
 putting one cup of water in the refrigerator and the other in the microwave—but that 
 requires a rather deliberate and energy-consuming process.

Irreversibility is a probabilistic notion. Events that could occur without violating the 
principles of Newtonian physics nevertheless don’t occur because they’re too  improbable. 
As a practical consequence, harnessing the internal energy associated with random 
 molecular motions is difficult because those motions won’t spontaneously become 
 organized. That makes much of the world’s energy unavailable for doing useful work.

GoT IT? 19.1 Which of these processes is irreversible? (a) stirring sugar into cof-
fee; (b) building a house; (c) demolishing a house with a wrecking ball; (d) demolishing a 
house by taking it apart piece by piece; (e) harnessing the energy of falling water to drive 
machinery; (f) harnessing the energy of falling water to heat a house

19.2 The Second Law of Thermodynamics
Heat Engines
It’s impossible to convert all the internal energy of a system to useful work. But heat 
 engines extract some of that internal energy. Examples include gasoline and diesel 
 engines, fossil-fueled and nuclear power plants, and jet aircraft engines.

Figure 19.3a is an energy-flow diagram for a “perfect” heat engine—one that extracts 
heat from a heat reservoir and converts it all to work. Such an engine would do exactly 
what we’ve just argued against: It would convert the random energy of thermal motion 
entirely to the ordered motion associated with mechanical work. In fact a perfect heat en-
gine is impossible, for the same reason that we can’t unscramble an egg or make a block 
accelerate spontaneously using its internal energy. This fact leads to one statement of the 
second law of thermodynamics:

Second law of thermodynamics (Kelvin–Planck statement) It is impossible to 
construct a heat engine operating in a cycle that extracts heat from a reservoir and 
delivers an equal amount of work.

The phrase “in a cycle” means that a practical engine goes through a repeated sequence of 
steps, as in the back-and-forth motions of the pistons in a gasoline engine.

A simple heat engine consists of a gas–cylinder system and a heat reservoir, the  latter 
kept hot, perhaps, by burning a fuel. With the gas initially at high pressure, we place the 
cylinder in contact with the heat reservoir. The gas expands and does work W on the  piston. 
In this isothermal process, the gas extracts heat Q = W  from the reservoir. Eventually the 
gas reaches pressure equilibrium and stops expanding. The piston must then be returned to 
its original position if it’s to do more work.

If we just push the piston back, we’ll have to do as much work as we got during the 
expansion, and our engine won’t produce any net work. Instead we can cool the gas to 
reduce its volume, through contact with a cool reservoir. But then some energy leaves the 

Figure 19.1 A movie of a bouncing ball makes 
sense whether it’s shown (a) forward or  
(b) backward.

(a)

(b)

Time

Figure 19.2 (a) A block warming (note ther-
mometer) as friction dissipates its kinetic 
energy and it slows to a stop. (b) The reverse 
sequence would never happen, even though it 
doesn’t violate energy conservation.

(a)

(b)

Time

Figure 19.3 (a) Energy-flow diagram for a 
perfect heat engine. (b) A real engine delivers 
as work only a fraction of the energy extracted 
from the high-temperature reservoir.

Heat reservoir

Q

W

Th

Qh

W

Qc

Tc

All the heat Q extracted from the reservoir 
of a perfect heat engine becomes work.

Extract heat Qh from the high-temperature
reservoir of a real heat engine.

Some becomes
work c

cbut some is
rejected to the
low-temperature
reservoir.

(a)

(b)
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336 Chapter 19 The Second Law of Thermodynamics

system as heat rather than work, as shown conceptually in Fig. 19.3b. Our engine extracts 
heat from a source and delivers mechanical work, but over a full cycle the work delivered 
is less than the heat extracted. The remaining energy is rejected to the lower-temperature 
reservoir, usually the environment. That’s why much of the energy released from fuels in 
car engines and power plants ends up as waste heat.

The second law of thermodynamics says we can’t build a perfect heat engine. But how close 
can we come? We define the efficiency e of an engine as the ratio of the work W we get from 
it to what we have to supply—namely, the heat Qh: e = W/Qh. Since the process is  cyclic, 
there’s no net change in internal energy over one cycle. The first law of  thermodynamics then 
shows that the work W done by the engine is the difference between the heat Qh extracted 
from the high-temperature reservoir and the heat Qc rejected to the cool reservoir:

 e =
W

Qh
=

Qh - Qc

Qh
= 1 -

Qc

Qh
 (19.1)

In this chapter we’ll often use W for the work done by an engine; in the first law it’s the 
work done on a system. That’s why W here is equal to the net heat Qh - Qc.

Figure 19.4 shows a heat engine whose efficiency we can calculate. The engine  consists 
of a cylinder containing an ideal gas, sealed by a movable piston. The piston is connected 
to a rod that turns a wheel. The engine gets its energy from a heat reservoir at a high 
 temperature Th, and it rejects heat to a cooler reservoir at temperature Tc. Figure 19.5 
shows how the engine works in a cycle of four steps, starting with the piston in its leftmost 
position (state A in Fig. 19.5), where the gas volume is a minimum:

1.  Isothermal expansion: The high-temperature reservoir is placed in thermal  contact 
with the cylinder. The gas absorbs heat Qh from the hot reservoir and expands 
 isothermally along path AB. Since temperature remains constant, so does internal 
energy. The first law then shows that the engine does work W = Q on the piston and 
wheel.

2.  Adiabatic expansion: At B we remove the hot reservoir, so the gas can no longer 
 exchange heat. Thus the expansion becomes adiabatic and follows path BC. We 
 design the engine so the gas has cooled to Tc when the piston reaches its rightmost 
position (state C), the point of maximum gas volume.

3.  Isothermal compression: At C we bring the cool reservoir into thermal contact with 
the cylinder. The wheel’s inertia keeps it turning, so the piston does work on the gas, 
compressing it isothermally from state C to D. This work ends up as heat rejected to 
the cool reservoir.

4.  Adiabatic compression: At D we remove the cool reservoir and the compression 
continues adiabatically until the gas temperature is once again at Th and the engine 
is back at state A.

This cyclic process of two isothermal and two adiabatic steps is the Carnot cycle and 
the engine a Carnot engine, after the French engineer Sadi Carnot (1796–1832). The 

Figure 19.4 A simple heat engine.

The gas absorbs energy
from Th c

cdoes work on
piston and wheel c

cand rejects heat to Tc.

Th

Tc

Figure 19.5 A pV diagram for the Carnot engine.
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19.2 The Second Law of Thermodynamics 337

 particular configuration of the engine isn’t important, nor is the choice of an ideal gas 
as the engine’s working fluid. What distinguishes the Carnot cycle from others is the 
 sequence of thermodynamic processes and the fact that these processes are reversible. 
The Carnot engine is an example of a reversible engine—one in which thermodynamic 
 equilibrium is maintained so that all steps could, in principle, be reversed.

What’s the efficiency of a Carnot engine? To find out, we need the heats Qh and Qc 
 absorbed and rejected during the isothermal parts of the cycle shown in Fig. 19.5. Equa-
tion 18.4 gives the heat Qh absorbed during the isothermal expansion AB:

Qh = nRTh ln aVB

VA
b

and the heat Qc rejected during the isothermal compression CD:

Qc = -nRTc ln aVD

VC
b = nRTc ln aVC

VD
b

We put the minus sign here because the first law takes Q to be the heat absorbed, while 
Equation 19.1 for the engine efficiency requires that Qc be the heat rejected. To calculate 
engine efficiency according to Equation 19.1, we need the ratio Qc 

/Qh:

 
Qc

Qh
=

Tc ln1VC 

/VD2
Th ln1VB 

/VA2  (19.2)

This expression can be simplified by applying Equation 18.11b to the adiabatic processes 
BC and DA in the Carnot cycle: ThVB

g- 1 = TcVC
g- 1 and ThVA

g- 1 = TcVD
g- 1. Dividing the 

first of these two equations by the second gives

aVB

VA
b
g- 1

= aVC

VD
b
g- 1

 or  
VB

VA
=

VC

VD

so Equation 19.2 becomes simply Qc 

/Qh = Tc 

/Th. Using this result in Equation 19.1 then 
gives the efficiency of the Carnot engine:

 eCarnot = 1 -
Tc

Th
  1Carnot engine efficiency2 (19.3)

where the temperatures are measured on an absolute scale (Kelvin or Rankine). Equa-
tion 19.3 shows that the Carnot engine’s efficiency depends only on the highest and 
lowest  temperatures of its working fluid. In practice, the low temperature is usually that 
of the environment; then maximizing efficiency requires making the high temperature as 
high as possible. Real engines trade off efficiency with the ability of materials to with-
stand high temperature and pressure.

ExamPLE 19.1  Calculating Efficiency: a Carnot Engine

A Carnot engine extracts 240 J from its high-temperature reservoir 
during each cycle, and rejects 100 J to the environment at 15°C. How 
much work does the engine do in one cycle? What’s its efficiency? 
What’s the temperature of the hot reservoir?

Interpret This problem is about a Carnot engine, which operates 
via the Carnot cycle.

Develop Equation 19.3, eCarnot = 1 - (Tc/Th), relates the two tem-
peratures and the efficiency. Here Qh = 240 J, Qc = 100 J, and 
Tc = 15°C or 288 K. The first law of thermodynamics relates work 
and heat flows. So our plan is to use the first law to find the work, then 
find the efficiency, and then use Equation 19.3 to find Th.

evaluate Since there’s no change in internal energy over one cycle, 
the first law requires that the work W done by the engine be equal 
to the net heat absorbed—namely, 240 J - 100 J. So W = 140 J. 
The efficiency is the ratio of work delivered to heat extracted, so 
e = W/Qh =  140 J/240 J = 58.3,. Knowing the efficiency, we 
solve Equation 19.3 for Th:

Th =
Tc

1 - e
=

288 K

1 - 0.583
= 691 K = 418°C

assess Make sense? The engine rejects somewhat less than half the 
240 J as waste heat, so we should expect efficiency somewhat over 
50%. And Th must be greater than Tc, as our calculation confirms. ■

aPPLICaTIon  Internal 
Combustion 
Engines

Internal combustion engines (ICEs) power most of 
the world’s cars and trucks and will continue to do 
so for decades despite inroads by electric propulsion 
systems. Their name refers to the fact that combus-
tion in an ICE takes place within the engine itself, 
as opposed to external combustion in systems like 
power plants (look ahead to Fig. 19.10), industrial 
boilers, and old-fashioned steam locomotives. To-
day’s ICEs build on more than a century of engi-
neering development, and coupled with modern 
electronic sensors and control systems, they repre-
sent a pinnacle of engineering design.

ICEs include the common gasoline and die-
sel engines. Both these engines undergo cycles 
involving back-and-forth motion of pistons that’s 
converted to rotary motion that usually drives a 
vehicle’s wheels. ICEs are heat engines, but stand-
ard gasoline and diesel engines aren’t Carnot en-
gines. Gasoline engines, for example, operate on a 
cycle that consists approximately of two adiabatic 
and two constant-volume segments. Because heat 
transfer doesn’t occur at fixed high and low tem-
peratures, the efficiency is less than the Carnot 
limit of Equation 19.1. The diesel cycle, consisting 
approximately of adiabatic, isobaric, and constant-
volume segments, is, for the same reason, also less 
efficient than the Carnot limit. You learned about 
the adiabatic compression phase of a diesel engine 
in Example 18.3, and you can explore and com-
pare gasoline and diesel engines further in Prob-
lems 54–58. The image shows a cutaway view of a 
modern gasoline engine.

Intake 
valve

Spark 
plug

Connecting 
rod

Crankshaft

Exhaust 
valve

Piston
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338 Chapter 19 The Second Law of Thermodynamics

Engines, Refrigerators, and the Second Law
Why this emphasis on the Carnot engine? Because understanding this device will help 
answer the broader question of how much work we can hope to extract from thermal en-
ergy. That, in turn, will help you understand practical limitations on humankind’s attempts 
to harness ever more energy and will lead to a deeper understanding of the second law of 
thermodynamics.

Why is Carnot’s engine special? Couldn’t you build a better engine with greater ef-
ficiency? The answer is no. The special role of the Carnot cycle is embodied in Carnot’s 
theorem:

Carnot’s theorem All Carnot engines operating between temperatures Th and Tc 
have the same efficiency, eCarnot = 1 - 1Tc /Th2, and no other engine operating 
 between the same two temperatures can have a greater efficiency.

To prove Carnot’s theorem, we introduce the refrigerator. A refrigerator is the opposite 
of an engine: It extracts heat from a cool reservoir and rejects it to a hotter one, using work 
in the process (Fig. 19.6). A refrigerator forces heat to flow from cold to hot, but to do so 
it requires work. A household refrigerator cools its contents and warms the house (you can 
feel the heat coming out the back), but it uses electricity. That heat doesn’t flow spontane-
ously from cold to hot leads to another statement of the second law of thermodynamics:

Second law of thermodynamics (Clausius statement) It is impossible to 
 construct a refrigerator operating in a cycle whose sole effect is to transfer heat from 
a cooler object to a hotter one.

The Clausius statement rules out a perfect refrigerator (Fig. 19.7).
Suppose the Clausius statement were false. Then we could build the device of Fig. 19.8a, 

consisting of a reversible Carnot engine and a perfect refrigerator. In each cycle the engine 
would extract, say, 100 J from the hot reservoir, put out 60 J of useful work, and reject  
40 J to the cool reservoir. The perfect refrigerator could transfer the 40 J back to the hot res-
ervoir. The net effect would be to extract 60 J from the hot reservoir and convert it entirely 
to work (Fig. 19.8b)—and we would have a perfect heat engine, in violation of the Kelvin–
Planck statement of the second law. A similar argument (Problem 38) shows that if a perfect 
heat engine is possible, then so is a perfect refrigerator. So the Clausius and Kelvin–Planck 
statements of the second law are equivalent, in that if one is false, then so is the other.

Because the Carnot engine is reversible, we could run it backward and reverse its path 
in Fig. 19.5. The engine would extract heat from the cool reservoir, take in work, and re-
ject heat to the hot reservoir. It would be a refrigerator. Although real refrigerators aren’t 
designed exactly like engines, the two are, in principle, interchangeable.

We’re now ready to prove Carnot’s assertion that Equation 19.3 gives the maximum 
engine efficiency. Consider again the Carnot engine in Fig. 19.8a. It extracts 100 J of heat 

Figure 19.6 Energy-flow diagram for a real 
refrigerator.

Heat �ows from cold to hot c

cbut this 
requires work.

Th

Qh W

Qc

Tc

Figure 19.7 A perfect refrigerator is impossible.

Th

Qh

Qc

Tc

Heat would �ow from cold to
hot with no work needed.

Figure 19.8 (a) A real heat engine combined with a perfect refrigerator is equivalent to 
(b) a perfect heat engine.
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and delivers 60 J of work, so it’s 60% efficient. Suppose we had another engine operat-
ing between the same two reservoirs, but with 70% efficiency. Since the Carnot engine 
is reversible, we can run it as a refrigerator. If we put the two together, we get the device 
of Fig. 19.9a. Its net effect is to extract 10 J from the cool reservoir and deliver 10 J of 
work—so it’s a perfect heat engine, in violation of the second law (Fig. 19.9b). It’s there-
fore impossible to make an engine that’s more efficient than a Carnot engine, and thus 
Equation 19.3 gives the maximum possible efficiency for any heat engine operating be-
tween the same two fixed temperatures. For that reason the Carnot efficiency of Equation 
19.3 is also called the thermodynamic efficiency.

Irreversible engines, because they involve processes that dissipate organized motion, 
are necessarily less efficient. So are reversible engines, if their heat exchange doesn’t take 
place solely at the highest and lowest temperatures. The ordinary gasoline engine is a case 
in point; even if it could be made perfectly reversible, its efficiency would be less than that 
of a comparable Carnot engine (see Problem 54 and the Application on page 337).

GoT IT? 19.2 The low temperature for a practical heat engine is generally set by 
the ambient environment, at about 300 K. With that value for Tc, what will happen to the 
efficiency of a Carnot engine if you re-engineer it so its high temperature Th doubles?  
(a) efficiency will double; (b) efficiency will quadruple; (c) efficiency will increase by an 
amount that depends on the original value of Th; (d) efficiency will decrease

19.3 applications of the Second Law
The world abounds with thermal energy, but the second law of thermodynamics limits our 
ability to use that energy. Any device we construct that involves the interchange of heat 
and work is a heat engine or refrigerator, subject to the second law.

Limitations on Heat Engines
Most of our electricity is produced in large power plants that are heat engines powered by 
the fossil fuels coal, oil, or natural gas, or by nuclear fission. Figure 19.10 diagrams such a 
power plant. The working fluid is water, heated in a boiler and converted to steam at high 
pressure. The steam expands adiabatically to spin a fanlike turbine. The turbine turns a 
generator that converts mechanical work to electrical energy.

Figure 19.9 (a) A 60% efficient reversible 
engine run as a refrigerator, along with a 
hypothetical engine with 70% efficiency.  
(b) The combination is equivalent to a perfect 
heat engine.

Th

Tc

(a)

100 J

100 J
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engine
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(b)

Th

Tc

10 J

10 J

Figure 19.10 Schematic diagram of an electric 
power plant.
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340 Chapter 19 The Second Law of Thermodynamics

Steam leaving the turbine is still gaseous and is hotter than the water supplied to the 
boiler. Here’s where the second law applies! Had the water returned from the turbine in 
its original state, we would have extracted as work all the energy acquired in the boiler, in 
violation of the second law. Therefore, we must run the steam through a condenser, where 
it contacts pipes carrying cool water, typically from a river, lake, or ocean. The condensed 
steam, now cool water, is fed back into the boiler to repeat the cycle.

The maximum steam temperature in a power plant is limited by the materials used 
in its construction. For a conventional fossil-fuel plant, current technology permits high 
temperatures of around 650 K. Potential damage to nuclear fuel rods limits the tempera-
ture in a nuclear plant to around 570 K. The average temperature of the cooling water is 
about 40°C (310 K), so the maximum possible efficiencies for these power plants, given 
by Equation 19.3, are

efossil = 1 -
310 K

650 K
= 52, and enuclear = 1 -

310 K

570 K
= 46,

Temperature differences between steam and cooling water, mechanical friction, and 
 energy needed for pumps and pollution-control devices all reduce efficiency further, to 
about 33% for both nuclear and coal-fired plants—the latter being the world’s dominant 
source of electricity. So roughly two-thirds of the fuel energy we use to make electricity 
ends up as waste heat.

A typical large power plant produces 1 GW of electricity, so another 2 GW of waste 
heat goes into the cooling water. The resulting temperature rise can cause serious eco-
logical problems. The huge cooling towers you see at power plants reduce such “thermal 
pollution” by transferring much of the waste heat to the atmosphere (see this chapter’s 
opening photo). Even so, a substantial fraction of all rainwater falling on the United States 
eventually finds its way through the condensers of power plants (see Problem 31).

ExamPLE 19.2 Improving Efficiency: a Combined-Cycle Power Plant

The gas turbine in a combined-cycle power plant (see the Applica-
tion on the next page) operates at 1450°C. Its waste heat at 500°C is 
the input for a conventional steam cycle, with its average  condenser 
 temperature at 40°C. Find the thermodynamic efficiency of the 
 combined cycle, and compare with the efficiencies of the individual 
components if they were operated independently.

Interpret This problem is about the thermodynamic efficiency of 
a combined-cycle power plant. As described in the Application, that 
means a plant using a high-temperature gas turbine whose waste heat 
becomes the energy input to a conventional steam turbine.

Develop Figure 19.11 is a conceptual diagram of the combined- 
cycle plant, based on the Application. Equation 19.3, e = 1 - (Tc/Th), 
gives the thermodynamic efficiencies of each cycle and of the com-
bination. We identify the 1450°C = 1723 K temperature as Th in 
Equation 19.3 for the gas turbine. The intermediate temperature 
500°C = 773 K serves as Tc for the gas turbine but as Th for the steam 
cycle. Finally, the 40°C or 313-K condenser temperature is Tc for the 
steam cycle.

evaluate To treat the entire plant as a single heat engine in Equa-
tion 19.3, we use the highest and lowest temperatures:

ecombined = 1 -
Tc

Th
= 1 -

313 K

1723 K
= 0.82 = 82,

Friction and other losses would reduce this figure substantially, but 
a combined-cycle plant operating at these temperatures could have 

a practical efficiency near 60%. The efficiencies of the individual 
 components also follow from Equation 19.3:

egas turbine = 1 -
773 K

1723 K
= 55, and esteam = 1 -

313 K

773 K
= 60,

assess Make sense? Because of its extreme temperatures, the com-
bined cycle gives an efficiency that’s better than either of its parts! 
You can learn more about combined-cycle power plants in the Appli-
cation on the next page, and by working Problem 32. ■

Figure 19.11 Conceptual diagram of a combined-cycle power plant.
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19.3 Applications of the Second Law 341

Gasoline and diesel engines provide another pervasive example of heat engines, dis-
cussed in the Application on page 337. A typical automobile engine has a theoretical 
maximum efficiency of around 50%, but irreversible thermodynamic processes make the 
actual efficiency much lower. Mechanical friction dissipates additional energy, with the 
end result that less than 20% of the fuel energy reaches the driving wheels. Problems 54 
and 55 explore the gasoline engine.

We wouldn’t be so concerned with efficiency if we didn’t have to pay for fuel or worry 
about the environment. Engines with “free” fuel include solar–thermal power plants that 
concentrate sunlight to boil a fluid that drives a turbine, and ocean thermal-energy conver-
sion (OTEC) schemes that extract useful work from the modest temperature difference 
between tropical surface waters and the deep ocean. Neither provides significant energy 
today, but that could change as the world moves away from fossil fuels.

Refrigerators and Heat Pumps
A refrigerator works like an engine in reverse; it takes in mechanical work and  transfers 
heat from its cooler interior to its warmer surroundings. An air conditioner is a  refrigerator 
whose “interior” is the building being cooled. A close cousin is the heat pump, which 
transfers heat either way, cooling a building in the summer and warming it in the winter 
(Fig. 19.12). In warmer climates, heat pumps exchange energy between a building and the 
outside air; in cooler climates they use groundwater, typically at about 10°C year-round. 
Heat pumps require electricity, but they transfer more heat energy than they consume in 
electricity. That makes heat pumps potentially energy-saving devices for winter heating. 
However, some of that gain is offset by the inefficiency of the power plant producing the 
electricity.

An efficient refrigerator (or any other device, for that matter) should maximize what 
we want from the device compared with what we have to put in. The coefficient of 
 performance (COP) quantifies this ratio:

COP =
What we want

What we put in

For a refrigerator or summertime heat pump, “what we want” is cooling, so the numerator 
is Qc. For a wintertime heat pump, “what we want” is heating, so the numerator is Qh. For 
 either, “what we put in” is mechanical work, W, or its equivalent in electricity. Thus we 
have

COPrefrigerator =
Qc

W
=

Qc

Qh - Qc
    COPheat pump =

Qh

W
=

Qh

Qh - Qc

aPPLICaTIon Combined-Cycle Power Plants

Improving power-plant efficiency helps reduce air pollution and greenhouse-
gas emissions, not to mention the cost of electricity. Modern combined-cycle 
power plants achieve efficiencies approaching 60% by combining a conven-
tional steam system like that of Fig. 19.10 with a gas turbine similar to a jet 
aircraft engine. Gas turbines operate at high temperatures—between 1000 K 
and 2000 K—but they aren’t very efficient because their exhaust temperature 
(Tc in Equation 19.3) is also high. In a combined-cycle plant, exhaust from a 
gas turbine drives a  conventional steam cycle. The overall effect is the same 
as that of a single heat engine operating between the gas turbine’s high com-
bustion temperature and the low temperature of the environment (see Problem 
32). The second law still limits the efficiency, but the high Th and low Tc make 
for greater efficiency than in a conventional plant. The photo shows a gas-fired 
 combined-cycle plant.

Figure 19.12 A heat pump.
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342 Chapter 19 The Second Law of Thermodynamics

In both cases the second equality follows from the first law of thermodynamics. In deriv-
ing the maximum efficiency of a heat engine, we found that Qc/Qh = Tc/Th. Therefore the 
maximum possible COPs are

 COPrefrigerator =
Tc

Th - Tc
  (19.4a) COPheat pump =

Th

Th - Tc
  (19.4b)

When the temperatures Th and Tc are close, Equations 19.4 give high COPs—meaning the 
refrigerator or heat pump takes relatively little work to do its job. But as the  difference 
increases, the COP drops and we have to supply more work. Incidentally, our COP 
 expression works for engines as well, if we take “what we want” to be mechanical work W 
and “what we put in” to be the heat Qh.

ExamPLE 19.3 The CoP: a Home Freezer

A typical home freezer operates between a low of 0°F (-18°C or 255 K)  
and a high of 86°F (30°C or 303 K). What’s its maximum possible 
COP? With this COP, how much electrical energy would it take to 
freeze 500 g of water initially at 0°C?

Interpret This problem is about a refrigerator—in this case 
a freezer. We identify Th and Tc with the values 303 K and 255 K, 
 respectively.

Develop Equation 19.4a, COP = Tc/1Th - Tc2, will determine the 
COP. Then we’ll use Equation 17.5, Q = Lm, to find the heat Qc that 
the freezer must extract to freeze the water. From there we’ll be able 
to use COP = Qc/W  to find the work—equivalently, the electrical 
 energy—required.

evaluate Equation 19.4a gives

COP =
Tc

Th - Tc
=

255 K

303 K - 255 K
= 5.31

From Equation 17.5 and Table 17.1, we find the heat that needs to be re-
moved in freezing 500 g of ice: Qc = Lm = 1334 kJ/kg210.50 kg2 =
167 kJ. The COP is the ratio of the heat removed to the work or electrical 
energy required, so we have W = Qc/COP = 167 kJ/5.31 = 31 kJ.

assess Make sense? A COP of 5.3 means that each unit of work 
transfers 5.3 units of heat from inside the freezer to its surroundings—
so the electrical-energy requirement is modest. A practical freezer 
operating between these temperatures would have a lower COP and 
require more electrical energy. ■

GoT IT? 19.3 A clever engineer decides to increase the efficiency of a Carnot en-
gine by cooling the low-temperature reservoir using a refrigerator with the maximum 
possible COP. Will the overall efficiency of this system (a) exceed, (b) be less than, or  
(c) equal that of the original engine alone?

19.4 Entropy and Energy Quality
If offered a joule of energy, would you rather have it in the form of mechanical work, heat 
at 1000 K, or heat at 300 K? Your answer might depend on what you want to do. To lift 
or accelerate a mass, you’d be smart to take your energy as work. But if you want to keep 
warm, heat at 300 K would be perfectly acceptable.

But which should you choose if you want to keep all your options open, making the 
energy available for the most possible uses? The second law of thermodynamics answers 
clearly: You should take the work. Why? Because you could use it directly as mechanical 
energy, or you could, through friction or other irreversible processes, use it to raise the 
temperature of something.

If you chose 300 K heat for your joule of energy, then you could supply a full joule 
only to objects cooler than 300 K. You couldn’t do mechanical work unless you ran a 
heat engine. With its Th only a little above the ambient temperature, your engine would be 
inefficient, and you could extract only a small fraction of a joule of mechanical energy. 
You’d be better off with 1000-K heat since you could transfer it to anything cooler than 
1000 K, or you could run a heat engine to produce up to 0.7 joule of mechanical energy 
(because 1 -  Tc /Th = 1 -   300/1000 = 0.7).

M19_WOLF4752_03_SE_C19.indd   342 17/06/15   7:05 PM



19.4 Entropy and Energy Quality 343

Taking your energy in the form of work gives you the most options. Anything you can 
do with a joule of energy, you can do with the work. Heat is less versatile, with 300 K 
heat the least useful of the three. We’re not talking here about the quantity of energy—
we have exactly 1 joule in each case—but about energy quality (Fig. 19.13). We can 
 readily  convert an entire amount of energy from higher to lower quality, but the second 
law  precludes going in the opposite direction with 100% efficiency.

Entropy
Mix hot and cold water, and you get lukewarm water. There’s no energy loss, but you have lost 
something—namely, the ability to do useful work. In the initial state, you could have run a heat 
engine using the temperature difference ∆T between the hot and cold water. In the final state, 
there’s no temperature difference, so you couldn’t run a heat engine. The quantity of energy 
hasn’t changed, but its quality has decreased. Entropy, symbol S, quantifies the loss of quality 
associated with energy transformations. In his Ninth Memoir, Clausius coined the term entropy 
for its similarity to the word “energy” and its Greek root “troph,” meaning transformation.

To motivate the definition of entropy, consider an ideal gas undergoing a Carnot 
 cycle. Recall that a Carnot cycle consists of two isothermal and two adiabatic processes  
(Fig. 19.5). In deriving Equation 19.3 for the Carnot efficiency, we found that 
Qc 

/Qh = Tc/Th, where Qc was the heat rejected from the system to the low-temperature 
reservoir at Tc, and Qh the heat added from the reservoir at Th.

Let’s focus on the ideal gas itself and define all heats as the heat added to the gas, so Qc 
changes sign. The relationship Qc 

/Qh = Tc 

/Th between heats and temperatures can now be 
expressed as

Qc

Tc
+

Qh

Th
= 0  (Carnot cycle)

We can generalize this result to any reversible cycle by approximating the cycle as a se-
quence of Carnot cycles, as shown in Fig. 19.14. For each segment, we have aQ/T = 0. 
As we increase the number of cycles, the volume change associated with each isothermal 
segment shrinks and the edges get less jagged. We can approximate the closed cycle ever 
closer by using more and more Carnot cycles. In the limit, the approximation becomes 
exact and the sum becomes an integral:

 C  
dQ

T
= 0  (any reversible cycle) (19.5)

where the circle indicates integration over a closed path.

ConCEPTUaL ExamPLE 19.1 Energy Quality and Cogeneration

You need a new water heater, and you’re trying to decide between gas 
and electric. The gas heater is 85% efficient, meaning 85% of the fuel 
energy goes into heating water. The electric heater is essentially 100% 
efficient. Thermodynamically, which heater makes the most sense?

evaluate Your electricity is energy of the highest quality. It 
 probably comes from a thermal power plant, which typically  discards 
as waste heat twice as much energy as it produces in electricity. 
The electric heater may be 100% efficient in your home, but when 
you consider the big picture, only about one-third of the fuel energy 
 consumed at the power plant ends up heating your water. With 85% 
efficiency, the gas heater is the wiser choice.

assess It makes sense to match energy sources to their end uses. 
Electricity is high-quality energy, so it’s best for running motors, 
light sources, electronics, and other devices requiring high-quality 

energy. Turning it into low-grade heat is a thermodynamic folly! A 
really smart strategy is cogeneration, in which the waste heat from 
electric power generation is used to heat buildings. In Europe, whole 
communities are heated that way, and institutions in the United States 
are increasingly turning to cogeneration to reduce energy costs and 
carbon emissions.

MakIng the ConneCtIon If the electricity comes from a more ef-
ficient gas-fired power plant with e = 48,, compare the gas con-
sumption of your two heater choices.

evaluate The gas heater turns 1 unit of fuel energy into 0.85 unit 
of thermal energy in the water. The power plant turns 1 unit of fuel 
energy into 0.48 unit of electrical energy, which the electric heater 
converts to 0.48 unit of thermal energy. The electric heater is there-
fore responsible for 0.85/0.48 = 1.8 times as much gas consumption.

Figure 19.13 Energy quality measures the 
versatility of different energy forms.
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Figure 19.14 An arbitrary cycle approximated 
by isothermal (dashed curves) and adiabatic 
(solid curves) steps. Heat transfer occurs only 
during the isothermal steps.

          = 0 for the highlighted cycle or
any other cycle, so ΣQ>T must be zero
around the path.

Qc

Tc

Qh

Th

Adiabat

Isotherm

 + 

Pr
es

su
re

Volume

M19_WOLF4752_03_SE_C19.indd   343 17/06/15   7:05 PM



344 Chapter 19 The Second Law of Thermodynamics

Equation 19.5 holds for any closed path in the pV diagram—that is, for any reversible 
cycle. That means we can define the entropy change, ∆S, between an initial state 1 and a 
final state 2 as

 ∆S12 = L
2

1

dQ

T
 1entropy change2 (19.6)

Note that entropy has the units J/K, the same units as Boltzmann’s constant kB.
Take a system along a path from state 1 to state 2 in its pV diagram; Equation 19.6 

gives the corresponding entropy change ∆S12. Go back to state 1 by any other reversible 
path, and the resulting entropy change ∆S21 must be - ∆S12 so that there’s no entropy 
change around the closed path (Fig. 19.15). Thus the entropy change of Equation 19.6 is 
 independent of path; it depends only on the initial and final states. The only  restriction is 
that we integrate over a reversible path. Like pressure and temperature, entropy is  therefore 
a thermodynamic state variable—a quantity that characterizes a given state independently 
of how the system got into that state.

We restricted ourselves to reversible paths in Equation 19.6 since irreversible processes 
take a system out of thermodynamic equilibrium and therefore aren’t described by paths 
in the pV diagram. But because entropy depends only on the initial and final states, we 
can calculate the entropy change in an irreversible process by using Equation 19.6 for a 
reversible process that goes between the same two states.

Note also that Equation 19.6 gives the entropy change of just the working fluid. The 
fluid—perhaps in an engine—is thermally connected to its surroundings, and if we’re in-
terested in the total entropy change resulting from the engine’s operation, we’ll need to 
add the entropy changes for its environment—in this case the hot and cold reservoirs.

adiabatic Free Expansion
In Fig. 19.16a, a partition confines an ideal gas to one side of a box; the other side is 
vacuum. Remove the partition, and the gas undergoes a free expansion, filling the box. 
Consider the box to be insulated, so there’s no heat flow and the expansion is therefore 
adiabatic. But this expansion is irreversible, so it’s significantly different from the adi-
abatic expansions we considered in Chapter 18. In our free expansion, the vacuum doesn’t 
exert pressure to oppose the gas, so the gas does no work and therefore its internal energy 
doesn’t change. Figure 19.16c shows how we could have used the expanding gas to turn 
a paddle wheel, extracting useful work. We can’t do that with the uniform-pressure gas of 
Fig. 19.16b, so the free expansion results in the system’s losing its ability to do work.

Let’s determine the entropy change for this irreversible process. We do that by finding a 
reversible process that takes the gas between the same two states. Since the gas’s internal en-
ergy doesn’t change, neither does its temperature. So the corresponding reversible process is 
an isothermal expansion, for which Equation 18.4 gives the heat added: Q = nRT ln1V2/V12. 
With the temperature constant, the entropy change of Equation 19.6 becomes

∆S = L
dQ

T
=

1

T LdQ =
Q

T
= nR ln aV2

V1
b

The final volume V2 is larger than V1, so entropy has increased. Although we computed 
this result for the reversible process, it holds for any process that takes the system between 
the same initial and final states—including our irreversible free expansion.

Entropy and the availability of Work
Entropy increases during irreversible expansion—and energy quality decreases, in that the sys-
tem loses its ability to do work. Had we let the gas in Fig. 19.16 undergo a reversible isother-
mal expansion instead of free expansion, it would have done work equal to the heat gained:

W = Q = nRT ln aV2

V1
b

Figure 19.15 Entropy change is  
path- independent.
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Figure 19.16 Two ways for a gas to expand  
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19.4 Entropy and Energy Quality 345

After the irreversible free expansion, the gas can no longer do this work, even though its 
energy is unchanged. Comparing W with the entropy change ∆S we calculated above, 
we see that the energy that becomes unavailable to do work is Eunavailable = T ∆S. This 
 illustrates a more general relation between entropy and energy quality:

During an irreversible process in which the entropy of a system increases by ∆S, 
energy E = Tmin∆S becomes unavailable to do work, where Tmin is the lowest 
 temperature available to the system.

This statement shows that entropy provides our measure of energy quality. Given two 
systems with identical energy content, the one with the lower entropy contains the higher-
quality energy. An entropy increase corresponds to a degradation in energy quality, as 
 energy becomes unavailable to do work.

ExamPLE 19.4  Increasing Entropy: The Loss of Energy Quality

A 2.0-L cylinder contains 5.0 mol of compressed gas at 290 K. If the 
cylinder is discharged into a 150-L vacuum chamber and its tempera-
ture remains 290 K, how much energy has become unavailable to do 
work?

Interpret This problem asks about the loss of energy quality during 
an irreversible and therefore entropy-increasing process—namely, an 
adiabatic free expansion.

Develop Figure 19.17 is a sketch of the situation, similar to Fig. 
19.16 except that here the gas is initially confined to a small cylinder, 
so its volume changes more dramatically as it expands into the large, 
empty chamber. In analyzing the free expansion of Fig. 19.16, we 
found ∆S = nR ln1V2/V12. Our statement relating entropy and energy 
quality says that the energy made unavailable to do work is Tmin∆S. 
So our plan is to calculate ∆S and multiply by Tmin to find that una-
vailable energy.

evaluate Because the temperature doesn’t change, Tmin is the 290-K  
temperature we’re given, and we have

 Eunavailable = T ∆S = nRT ln aV2

V1
b

 = 15.0 mol218.314 J/K # mol21290 K2 ln a152 L

2.0 L
b = 52 kJ

assess Make sense? Yes: This is the work we could have extracted 
from a reversible isothermal expansion. By letting the gas undergo an 
 irreversible process, we gave up the possibility of extracting this work. ■

Figure 19.17 Our sketch for Example 19.4. Note that the final volume is 152 L.

a Statistical Interpretation of Entropy
We began this chapter arguing that systems naturally evolve from ordered to disordered 
states. Entropy increase measures that loss of order, which is what makes energy unavaila-
ble to do work. Here we’ll explore the meaning of entropy further, based on the partitioned 
box we used for adiabatic free expansion.

Suppose we have a gas with just two identical molecules. The left side of Fig. 19.18 
shows that, with the partition removed, there are four possible microstates—specific ar-
rangements of the individual molecules in the box. But say we only care about the number 
of molecules in each side of the box. Then two of these arrangements are indistinguish-
able, because they both have one molecule in each half of the box. Those two correspond 
to a single macrostate, specified by giving the number of molecules in each half of the 
box, without regard to which molecules they are. This is shown on the right in Fig. 19.18.

With four available microstates, the probability of being in any one microstate is 1
4. 

There’s only one microstate with both molecules on the left, so the chances of being in the 
macrostate with two molecules on the left is also 14; the same is true for the macrostate with 

Figure 19.18 A gas of two molecules has four 
possible microstates and three macrostates.
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(ways of distributing the two
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346 Chapter 19 The Second Law of Thermodynamics

Figure 19.19 Microstates, macrostates, and probabilities for a gas of four molecules.

1

16

4

16

6

16

4

16

1

16
 = 0.06

 = 0.06

 = 0.25

 = 0.25

 = 0.38

Probability of macrostate

4 0

3 1

2 2

1 3

0 4

Microstates (16 total) Macrostates

two molecules on the right. But two of the possible microstates have one molecule on each 
side, so the probability for this macrostate is 12.

Now consider a gas of four molecules. Figure 19.19 shows 16 possible microstates, 
corresponding to five macrostates. Again, the probability of finding the system in a given 
macrostate depends on the associated number of microstates; Fig. 19.19 enumerates these 
probabilities. The figure shows that we’re most likely to find the system in the macrostate 
with the molecules evenly divided; the states with all the molecules on one side are now 
quite improbable.

Raise the number of molecules to 100, and the number of microstates becomes huge—
2100, or more than 1030. That makes the macrostates with all or nearly all the molecules 
on one side extremely improbable. The macrostate with half the molecules on each side 
remains the most likely, although states with nearly equal divisions of molecules are also 
quite probable. Rather than enumerate these probabilities, we graph them (Fig. 19.20a).

Typical gas samples have roughly 1023 molecules, and that makes macrostates with 
anything other than a nearly equal distribution of molecules extremely unlikely—as 
 suggested by the spike-like probability distribution in Fig. 19.20b. You could sit in your 
room for many times the age of the universe, and you’d never see all the air molecules 
spontaneously end up on one side of the room!

Entropy and the Second Law of Thermodynamics
The statistical improbability of more ordered states—in our example, those with 
 significantly more molecules on one side of the box—is at the root of the second law 
of thermodynamics. Although we defined entropy in terms of heat flow and temperature 
(Equation 19.6), a more fundamental definition involves the probabilities of individual 
microstates. In that sense, entropy is indeed a measure of disorder.

Systems naturally evolve toward disordered or higher-entropy states simply because 
there are far more of these states available. So a general statement of the second law is:

Second law of thermodynamics The entropy of a closed system can never  decrease.

At best, the entropy of a closed system remains constant—and that’s only in an ideal, 
reversible process. If anything irreversible occurs—friction, or any deviation from ther-
modynamic equilibrium—then entropy increases. As it does, energy becomes unavailable 
to do work, and nothing within the closed system can restore that energy to its original 
quality. This new statement of the second law subsumes our previous statements about the 
impossibility of perfect heat engines and refrigerators, for their operation would require an 
entropy decrease.

We can decrease the entropy of a system that isn’t closed—but only by supplying high-
quality energy from outside. Running a refrigerator decreases the entropy of its contents, 
but this requires electrical energy to make heat flow from cold to hot. That high- quality 
electrical energy deteriorates into additional heat that’s rejected to the refrigerator’s 

Figure 19.20 Probability distributions for a gas 
of (a) 100 molecules and (b) 1023 molecules.
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19.4 Entropy and Energy Quality 347

 environment. If we consider the entire system, not just the refrigerator’s contents, the over-
all entropy has increased.

Any system whose entropy seems to decrease—that gets more rather than less 
 organized—can’t be closed. If we enlarge a system’s boundaries to encompass the entire 
 universe, then we have the ultimate statement of the second law:

Second law of thermodynamics The entropy of the universe can never decrease.

Examples include the growth of a living thing from the random mix of molecules in 
its environment, the construction of a skyscraper from materials that were originally dis-
persed about Earth, and the appearance of ordered symbols on a printed page from a bottle 
of ink. All these are entropy-decreasing processes in which matter goes from near chaos 
to a highly organized state—akin to separating yolk and white from a scrambled egg. But 
Earth isn’t a closed system. It gets high-quality energy from the Sun, energy that’s ulti-
mately responsible for life. If we consider the Earth–Sun system, the entropy decrease as-
sociated with life and civilization is more than balanced by the entropy increase associated 
with the degradation of high-quality solar energy. We living things represent a remarkable 
phenomenon—the organization of matter in a universe governed by a tendency toward 
disorder. But we can’t escape the second law of thermodynamics. Our highly organized 
selves and society, and the entropy decreases they represent, come into being only at the 
expense of greater entropy increases elsewhere.

GoT IT? 19.4 In each of the following processes, does the entropy of the named 
system alone increase, decrease, or stay the same? (1) a balloon deflates; (2) cells dif-
ferentiate in a growing embryo, forming different physiological structures; (3) an animal 
dies, and its remains gradually decay; (4) an earthquake demolishes a building; (5) a plant 
utilizes sunlight, carbon dioxide, and water to manufacture sugar; (6) a power plant burns 
coal and produces electrical energy; (7) a car’s friction-based brakes stop the car
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Chapter 19 Summary
Big Idea

The big idea behind this chapter is the second law of thermodynamics—ultimately, the statement that systems tend naturally toward  disorder, 
or states of higher entropy. The second law is manifest in the real world by forbidding the construction of perfect heat engines and perfect 
 refrigerators—therefore preventing us from extracting as useful work all the energy that’s contained in random thermal motions. Ultimately, the 
second law says that the entropy of any closed system, including the entire universe, cannot decrease.

v
u

v
u

Block moving;
molecular motion
ordered.

Block stopped;
molecular motion
disordered.

Can’t spontaneously
restore order!

v = 0
u

Key Concepts and Equations

Entropy is a quantitative measure of energy quality and of disorder; 
the higher the entropy, the lower the energy quality and the greater the 
disorder. The highest-quality energy is mechanical or electrical energy, 
 followed by the internal energy of systems at high temperature, and 
 finally low-temperature internal energy. Whenever entropy increases, 
 energy becomes unavailable to do work.

•  ∆S = L
2

1

dQ

T
  gives the entropy change as a system goes from 
state 1 to state 2.

• Eunavailable = Tmin∆S  is the energy that becomes unavailable as a 
result of entropy increase ∆S.

Hot
water

Cold
water

Could
extract
some energy
as work

Instead,
mix.

Lukewarm
water –
can’t extract
any work

Th

Tf

Tc

applications

The second law sets the maximum possible efficiency 
of any heat engine as that of the Carnot engine, an en-
gine that combines adiabatic and isothermal processes.

e =
W

Qh
… emax = 1 -

Tc

Th

1

2

3

4

pV diagram for Carnot engineEnergy-�ow diagram
for an engine

Th

Qh

W
Qc

Tc
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C
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Pr
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, p

VA VD VB VC
Volume, V

Isothermal
compression

Adiabatic expansion

Isothermal expansion

Adiabatic
compression

This defines 
an engine’s 
efficiency.

This is the 
 maximum possible  

efficiency.

µ µ 

Similarly, the second law limits the coefficient of performance (COP) of refrigerators and heat pumps:

COPrefrigerator =
Tc

Th - Tc
   COPheat pump =

Th

Th - Tc

Th

Tc

WQh

Qc
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Exercises and Problems 349

For homework assigned on MasteringPhysics, go to www.masteringphysics.com

BIO Biology and/or medicine-related problems DATA Data problems ENV Environmental problems CH Challenge problems Comp Computer problems

Section 19.4 Entropy and Energy Quality
20. Calculate the entropy change associated with melting 1.0 kg of 

ice at 0°C.
21. You metabolize a 650-kcal burger at your 37°C body tempera-

ture. What’s the associated entropy increase?
22. You heat 250 g of water from 10°C to 95°C. By how much does 

the entropy of the water increase?
23. Melting a block of lead already at its melting point results in an 

entropy increase of 900 J/K. What’s the mass of the lead? (Hint: 
Consult Table 17.1.)

24. How much energy becomes unavailable for work in an isother-
mal process at 440 K, if the entropy increase is 25 J/K?

25. For a gas of six molecules confined to a box, find the probability 
that (a) all the molecules will be found on one side of the box and 
(b) half the molecules will be found on each side.

Problems
26. A Carnot engine extracts 745 J from a 592-K reservoir during 

each cycle and rejects 458 J to a cooler reservoir. It operates at 
18.6 cycles per second. Find (a) the work done during each cycle, 
(b) its efficiency, (c) the temperature of the cool reservoir, and  
(d) its mechanical power output.

27. The maximum steam temperature in a nuclear power plant is 570 K.  
The plant rejects heat to a river whose temperature is 0°C in the 
winter and 25°C in the summer. What are the maximum possible 
efficiencies for the plant during these seasons?

28. You’re engineering an energy-efficient house that will require an 
average of 6.85 kW to heat on cold winter days. You’ve designed 
a photovoltaic system for electric power, which will supply on 
average 2.32 kW. You propose to heat the house with an electri-
cally operated groundwater-based heat pump. What should you 
specify as the minimum acceptable COP for the pump if the pho-
tovoltaic system supplies its energy?

29. A power plant’s electrical output is 750 MW. Cooling water at 
15°C flows through the plant at 2.8 * 104 kg/s, and its tempera-
ture rises by 8.5°C. Assuming that the plant’s only energy loss 
is to the cooling water, which serves as its low-temperature res-
ervoir, find (a) the rate of energy extraction from the fuel, (b) the 
plant’s efficiency, and (c) its highest temperature.

30. A power plant extracts energy from steam at 280°C and delivers 
880 MW of electric power. It discharges waste heat to a river at 
30°C. The plant’s overall efficiency is 29%. (a) How does this 
efficiency compare with the maximum possible at these tempera-
tures? (b) Find the rate of waste-heat discharge to the river. (c) 
How many houses, each requiring 23 kW of heating power, could 
be heated with the waste heat from this plant?

31. The electric power output of all the thermal electric power plants 
in the United States is about 2*1011 W, and these plants operate 
at an average efficiency of around 33%. Find the rate at which all 
these plants use cooling water, assuming an average 5°C rise in 
cooling-water temperature. Compare with the 1.8 * 107 kg/s aver-
age flow at the mouth of the Mississippi River.

32. Consider a Carnot engine operating between temperatures Th 
and Ti, where Ti is intermediate between Th and the ambient 

For thought and Discussion
 1. Could you cool the kitchen by leaving the refrigerator open? 

 Explain.
 2. Could you heat the kitchen by leaving the oven open? Explain.
 3. Should a car get better mileage in the summer or the winter? 

 Explain.
 4. Is there a limit to the maximum temperature that can be achieved 

by focusing sunlight with a lens? If so, what is it?
 5. Name some irreversible processes that occur in a real engine.
 6. Your power company claims that electric heat is 100% efficient. 

Discuss.
 7. A hydroelectric power plant, using the energy of falling water, 

can operate with efficiency arbitrarily close to 100%. Why?
 8. A heat-pump manufacturer claims the device will heat your home 

using only energy already available in the ground. Is this true?
 9. Why do refrigerators and heat pumps have different definitions 

of COP?
10. The heat Q added during adiabatic free expansion is zero. Why 

can’t we then argue from Equation 19.6 that the entropy change 
is zero?

11. Energy is conserved, so why can’t we recycle it as we do 
 materials?

12. Why doesn’t the evolution of human civilization violate the 
 second law of thermodynamics?

exercises and problems
Exercises

Sections 19.2 and 19.3 The Second Law of 
Thermodynamics and Its Applications
13. What are the efficiencies of reversible heat engines operating 

 between (a) the normal freezing and boiling points of water,  
(b) the 25°C temperature at the surface of a tropical ocean and 
deep water at 4°C, and (c) a 1000°C flame and room temperature?

14. A cosmic heat engine might operate between the Sun’s 5800 K 
surface and the 2.7 K temperature of intergalactic space. What 
would be its maximum efficiency?

15. A reversible Carnot engine operating between helium’s melting 
point and its 4.25 K boiling point has an efficiency of 77.7%. 
What’s the melting point?

16. A Carnot engine absorbs 900 J of heat each cycle and provides 
350 J of work. (a) What’s its efficiency? (b) How much heat is 
rejected each cycle? (c) If the engine rejects heat at 10°C, what’s 
its maximum temperature?

17. Find the COP of a reversible refrigerator operating between 0°C 
and 30°C.

18. How much work does a refrigerator with COP = 4.2 require to 
freeze 670 g of water already at its freezing point?

19. The human body can be 25% efficient at converting chemical 
energy of fuel to mechanical work. Can the body be considered 
a heat engine, operating on the temperature difference between 
body temperature and the environment?

BIO

BIO

ENV

ENV

ENV

ENV
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350 Chapter 19 The Second Law of Thermodynamics

with the efficiency of a Carnot engine operating between the 
same temperature extremes. Why are the two efficiencies 
 different?

6.0 atm
2.0 L

6.0 atm
6.0 L

3.0 atm
2.0 L

3.0 atm
6.0 L

p

V

Figure 19.22 Problem 41

42. A 0.20-mol sample of an ideal gas goes through the Carnot cycle 
of Fig. 19.23. Calculate (a) the heat Qh absorbed, (b) the heat 
Qc rejected, and (c) the work done. (d) Use these quantities to 
determine the efficiency. (e) Find the maximum and minimum 
temperatures, and show explicitly that the efficiency as defined in 
Equation 19.1 is equal to the Carnot efficiency of Equation 19.3.

8.000 atm
1.000 L

4.100 atm
1.612 L

4.000 atm
2.000 L

2.050 atm
3.224 L

p

V

Figure 19.23 Problem 42

43. A shallow pond contains 94 Mg of water. In winter, it’s entirely 
frozen. By how much does the entropy of the pond increase when 
the ice, already at 0°C, melts and then heats to its summer tem-
perature of 15°C?

44. Estimate the rate of entropy increase associated with your body’s 
normal metabolism.

45. The temperature of n moles of ideal gas is changed from T1 to T2 
at constant volume. Show that the corresponding entropy change 
is ∆S = nCV ln1T2/T12.

46. The temperature of n moles of ideal gas is changed from T1 to T2 
with pressure held constant. Show that the corresponding entropy 
change is ∆S = nCp ln1T2/T12.

47. A 6.36-mol sample of ideal diatomic gas is at 1.00 atm pressure 
and 288 K. Find the entropy change as the gas is heated  reversibly 
to 552 K (a) at constant volume, (b) at constant pressure, and  
(c)  adiabatically.

48. A 250-g sample of water at 80°C is mixed with 250 g of water at 
10°C. Find the entropy changes for (a) the hot water, (b) the cool 
water, and (c) the system.

49. An ideal gas undergoes a process that takes it from pressure p1 
and volume V1 to p2 and V2, such that p1V

g
1 = p2V

g
2, where g 

is the specific heat ratio. Find the entropy change if the process 
consists of constant-pressure and constant-volume segments. 
Why does your result make sense?

50. In an adiabatic free expansion, 6.36 mol of ideal gas at 305 K 
 expands 15-fold in volume. How much energy becomes unavail-
able to do work?

51. Find the entropy change when a 2.4-kg aluminum pan at 155°C 
is plunged into 3.5 kg of water at 15°C.

 temperature Tc (Fig. 19.21). It should be possible to operate a 
second engine between Ti and Tc. Show that the maximum overall 
efficiency of such a two-stage engine is the same as that of a sin-
gle engine operating between Th and Tc (which is why combined-
cycle power plants achieve high efficiencies).

W1

Th

Ti

Tc

W2

Figure 19.21 Problem 32

33. An industrial freezer operates between 0°C and 32°C, consuming 
electrical energy at the rate of 12 kW. Assuming the freezer is 
perfectly reversible, (a) what’s its COP? (b) How much water at 
0°C can it freeze in 1 hour?

34. Use appropriate energy-flow diagrams to analyze the situation in 
GOT IT? 19.3; that is, show that using a refrigerator to cool the 
low-temperature reservoir can’t increase the overall efficiency of 
a Carnot engine when the work input to the refrigerator is in-
cluded.

35. It costs $230 to heat a house with electricity in a winter month. 
(Electric heat converts all the incoming electrical energy to heat.) 
What would the monthly heating bill be after converting to an 
electrically powered heat pump with COP = 3.4?

36. A refrigerator maintains an interior temperature of 4°C while 
its exhaust temperature is 30°C. The refrigerator’s insulation is 
imperfect, and heat leaks in at the rate of 340 W. Assuming the 
refrigerator is reversible, at what rate must it consume electrical 
energy to maintain a constant 4°C interior?

37. You operate a store that’s heated by an oil furnace supplying  
30 kWh of heat from each gallon of oil. You’re considering 
switching to a heat-pump system. Oil costs $1.75/gallon, and 
electricity costs 16.5./kWh. What’s the minimum heat-pump 
COP that will reduce your heating costs?

38. Use energy-flow diagrams to show that the existence of a perfect 
heat engine would permit the construction of a perfect refrigera-
tor, thus violating the Clausius statement of the second law.

39. A heat pump extracts energy from groundwater at 10°C and 
transfers it to water at 70°C to heat a building. Find (a) its COP 
and (b) its electric power consumption if it supplies heat at the 
rate of 20 kW. (c) Compare the pump’s hourly operating cost 
with that of an oil furnace if electricity costs 15.5./kWh and oil 
costs $3.60/gallon and releases about 30 kWh/gal when burned.

40. A reversible engine contains 0.350 mol of ideal monatomic gas, 
initially at 586 K and confined to a volume of 2.42 L. The gas 
undergoes the following cycle:

•  Isothermal expansion to 4.84 L
•  Constant-volume cooling to 292 K
•  Isothermal compression to 2.42 L
•  Constant-volume heating back to 586 K

Determine the engine’s efficiency, defined as the ratio of the work 
done to the heat absorbed during the cycle.

41. (a) Determine the efficiency for the cycle shown in Fig. 19.22, 
using the definition given in the preceding problem. (b)  Compare 
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ENV

ENV
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Exercises and Problems 351

60. A 500-g copper block at 80°C is dropped into 1.0 kg of water at 
10°C. Find (a) the final temperature and (b) the entropy change 
of the system.

61. An object’s heat capacity is inversely proportional to its absolute 
temperature: C = C01T0/T2, where C0 and T0 are constants. Find 
the entropy change when the object is heated from T0 to T1.

62. A Carnot engine extracts heat from a block of mass m and 
 specific heat c initially at temperature Th0 but without a heat 
source to maintain that temperature. The engine rejects heat to 
a reservoir at constant temperature Tc. The engine is operated so 
its mechanical power output is proportional to the temperature 
 difference Th - Tc:

P = P0 
Th - Tc

Th0 - Tc

where Th is the instantaneous temperature of the hot block and P0 
is the initial power. (a) Find an expression for Th as a function of 
time, and (b) determine how long it takes for the engine’s power 
output to reach zero.

63. In an alternative universe, you’ve got the impossible: an infinite 
heat reservoir, containing infinite energy at temperature Th. But 
you’ve only got a finite cool reservoir, with initial temperature 
Tc0 and heat capacity C. Find an expression for the maximum 
work you can extract if you operate an engine between these two 
reservoirs.

64. You’re the environmental protection officer for a 35% efficient 
nuclear power plant that produces 750 MW of electric power, 
situated on a river whose minimum flow rate is 110 m3/s. State 
environmental regulations limit the rise in river temperature from 
your plant’s cooling system to 5°C. Can you achieve this stand-
ard if you use river water for all your cooling, or will you need to 
install cooling towers that transfer some of your waste heat to the 
atmosphere?

65. Find an expression for the entropy gain when hot and cold water 
are irreversibly mixed. A corresponding reversible process you 
can use to calculate this change is to bring each water sample 
slowly to their common final temperature Tf and then mix them. 
Express your answer in terms of the initial temperatures Th and 
Tc. Assume equal masses of hot and cold water, with constant 
specific heat c. What’s the sign of your answer?

66. Problem 74 of Chapter 16 provided an approximate expression 
for the specific heat of copper at low absolute temperatures: 
c = 311T/343 K23 J/kg #  K. Use this to find the entropy change 
when 40 g of copper are cooled from 25 K to 10 K. Why is the 
change negative?

67. The molar specific heat at constant pressure for a certain gas 
is given by Cp = a + bT + cT2, where a = 33.6 J/mol #  K,
b = 2.93 * 10-3 J/mol #  K2, and c = 2.13 * 10-5 J/mol #  K3. Find 
the entropy change when 2.00 moles of this gas are heated from 
20.0°C to 200°C.

68. Consider a gas containing an even number N of molecules, dis-
tributed among the two halves of a closed box. Find expressions 
for (a) the total number of microstates and (b) the number of 
microstates with half the molecules on each side of the box. (You 
can either work out a formula, or explore the term “combina-
tions” in a math reference source.) (c) Use these results to find 
the ratio of the probability that all the molecules will be found 
on one side of the box to the probability that there will be equal 
numbers on both sides. (d) Evaluate for N = 4 and N = 100.

69. Energy-efficiency specialists measure the heat Qh delivered by 
a heat pump and the corresponding electrical energy W needed 
to run the pump, and they compute the pump’s COP as the  ratio 

52. An engine with mechanical power output 8.5 kW extracts heat 
from a source at 420 K and rejects it to a 1000-kg block of ice at 
its melting point. (a) What’s its efficiency? (b) How long can it 
maintain this efficiency if the ice isn’t replenished?

53. Find the change in entropy as 2.00 kg of H2O at 100°C turns to 
vapor at the same temperature.

54. Gasoline engines operate approximately on the Otto cycle, con-
sisting of two adiabatic and two constant-volume segments. Fig-
ure 19.24 shows the Otto cycle for a particular engine. (a) If the 
gas in the engine has specific heat ratio g, find the engine’s ef-
ficiency, assuming all processes are reversible. (b) Find the maxi-
mum temperature in terms of the minimum temperature Tmin.  
(c) How does the efficiency compare with that of a Carnot engine 
operating between the same temperature extremes?

1
5 V

p

V1

3p2

p2 Exhaust/intake

Adiabatic
expansion

Combustion

Adiabatic
compression

3

2

4

V1

1

Figure 19.24 Problem 54

55. The compression ratio r of an engine is the ratio of maximum to 
minimum gas volume. (For the gasoline engine of the preceding 
problem, Fig. 19.24 shows that the compression ratio is 5.) Find 
a general expression for the engine efficiency of an Otto-cycle 
engine as a function of compression ratio.

56. In a diesel cycle, gas at volume V1 and pressure p1 undergoes 
adiabatic compression to a smaller volume V2. It is then heated 
at constant pressure while it expands to volume V3. The gas then 
expands adiabatically until it’s again at volume V1, whereupon it 
cools, at constant volume, until it’s back to its initial state of p1 
and V1. Show that the work done by the engine over one cycle 

  can be written as W =
p1V13rg- 11a - 12g - ag + 14

g - 1
. Here

  r = V1/V2 is the compression ratio and a = V3/V2 is the  so-called 
cutoff ratio.

57. (a) Show that the heat flowing into the diesel engine of 
 Problem 56 during the cycle (not the net heat flow) is given by 

  Qin =
p1V1r

g- 11a - 12g
g - 1

. (b) Use this quantity, along with the 

  result of Problem 56, to show that the diesel engine’s efficiency 

  can be written as ediesel = 1 -
r1 -g1ag - 12
1a - 12g .

58. You’re considering buying a car that comes in either gasoline or 
diesel versions. The gas engine has compression ratio r = 8.3, 
while the diesel has compression ratio r = 19 and cutoff ratio 
a = 2.4. Use the results of Problems 55 and 57 to determine 
which engine is more efficient. Both engines “breathe” air, which 
is diatomic.

59. The 54-MW wood-fired McNeil Generating Station in Burlington,  
Vermont, produces steam at 950°F to drive its turbines, and 
condensed steam returns to the boiler as 90°F water. (Note the 
temperatures in °F, used in U.S. engineering situations.) Find 
McNeil’s maximum thermodynamic efficiency, and compare 
with its actual efficiency of 25%.

CH

CH

ENV

CH

CH

ENV

CH

CH

CH

DATA

M19_WOLF4752_03_SE_C19.indd   351 17/06/15   7:06 PM



352 Chapter 19 The Second Law of Thermodynamics

72. The fuel energy consumed at the power plant to run this refrig-
erator for the day is
a. 12 MJ.
b. 25 MJ.
c. 40 MJ.
d. 75 MJ.

73. The total energy rejected to the surrounding kitchen during the 
course of the day is
a. 10 MJ.
b. 30 MJ.
c. 40 MJ.
d. 75 MJ.

answers to Chapter Questions

answer to Chapter opening Question
The second law of thermodynamics prevents us from converting ther-
mal energy to mechanical energy with 100% efficiency, and practical 
limits on temperature make it hard to achieve more than about 50% 
efficiency in conventional power plants.

answers to GoT IT? Questions
 19.1  (a), (c), and (f)
 19.2  (c)
 19.3  (c) see Problem 34 for a proof
 19.4  (1) increase; (2) decrease; (3) increase; (4) increase;  

(5) decrease; (6) increase; (7) increase

Qh /W. They also measure the outdoor temperature, and they 
know that the pump produces hot water at Th = 52°C. The table 
below shows their results for Q and T. (a) Determine a quantity 
that, when you plot the COP against it, should give a straight 
line. (b) Make your plot, fit a straight line, and from it determine 
how the heat pump’s COP compares with the theoretical maxi-
mum COP.

Tc (°C) -18 -10 -5 0 10

COP Qh/W 2.7 3.2 3.6 3.7 4.7

Passage Problems
Refrigerators remain among the greatest consumers of electrical 
 energy in most homes, although mandated efficiency standards have 
decreased their energy consumption by some 80% in the past four dec-
ades. In the course of a day, one kitchen refrigerator removes 30 MJ  
of energy from its contents, in the process consuming 10 MJ of elec-
trical energy. The electricity comes from a 40% efficient coal-fired 
power plant.

70. The electrical energy
a. is used to run the light bulb inside the refrigerator.
b. wouldn’t be necessary if the refrigerator had enough 

 insulation.
c. retains its high-quality status after the refrigerator has used it.
d. ends up as waste heat rejected to the kitchen environment.

71. The refrigerator’s COP is
a. 1

3.
b. 2.
c. 3.
d. 4.
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This contrasts with statistical mechanics, which provides a mi-
croscopic description in terms of the properties and behavior of 
 molecules.

Thermodynamics is the study of heat, temperature, and related 
 phenomena—and their relation to the all-important concept of energy. 
Thermodynamics provides a macroscopic description in terms of pa-
rameters like temperature and pressure.

Part Three Challenge Problem
The ideal Carnot engine shown in the figure at right operates between a heat reservoir and a block of ice with 
mass M. An external energy source maintains the reservoir at a constant temperature Th. At time t = 0, the ice 
is at its melting point T0, but it’s insulated from everything except the engine, so it’s free to change state and 
temperature. The engine is operated in such a way that it extracts heat from the reservoir at a constant rate Ph. 
(a) Find an expression for the time t1 at which the ice is all melted, in terms of the quantities given and any 
other appropriate thermodynamic parameters. (b) Find an expression for the mechanical power output of the 
engine as a function of time for times t 7 t1. (c) Your expression in part (b) holds up only to some maximum 
time t2. Why? Find an expression for t2.

Thermodynamic equilibrium occurs when two systems are brought 
into thermal contact and no further changes occur in any macroscopic 
properties. The zeroth law of thermodynamics says that two systems 
each in thermodynamic equilibrium with a third are also in thermo-
dynamic equilibrium with each other. This law allows us to establish 
temperature scales and construct thermometers.

Systems A and C
are each in 
thermodynamic
equilibrium with B.

If A and C are placed in
thermal contact, their
macroscopic properties
don’t change—showing
that they’re already in
equilibrium.

(a) (b)

A B C A C

Heat is energy that’s flowing because of a temperature difference. 
Important heat-transfer mechanisms include conduction, convection, 
and radiation. A system is in thermal-energy balance at a fixed tem-
perature when its energy input balances heat transfer to its surroundings.

Incident sunlight

Earth’s energy balance

Outgoing infrared

Ideal gases exhibit a simple relation among temperature, 
pressure, and volume:

pV = NkT = nRT

This is the ideal gas law, with k = 1.381 * 10-23 J/K and 
R = 8.314 J/K 

#
 mol.

Real substances undergo phase changes 
among liquid, solid, and gaseous phases. 
Substantial heats of transformation 
 describe the energies involved in phase 
changes.

The first law of thermodynamics relates the change ∆Eint in a sys-
tem’s internal energy to the heat Q added to the system and the work 
W done by the system:

∆Eint = Q - W

For an ideal gas, reversible thermodynamic processes are described 
by curves in the pressure–volume diagram. Common processes in-
clude isothermal (constant temperature), constant volume, constant 
pressure, and adiabatic (no heat flow).

Entropy is a measure of disorder. The second law of thermodynam-
ics states that the entropy of a closed system can never decrease. Ap-
plied to the heat engines that provide most of humankind’s electrical 
and transportation energy, the second law shows that it’s impossible 
to extract as useful work all the random internal energy of hot objects.

Maximum efficiency (Carnot):

e =
W

Qh
= 1 -

Qc

Qh
= 1 -

Tc

Th

part three Summary thermodynamics
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354

Electricity constitutes a significant portion 
of humankind’s energy, as evidenced by this 
composite satellite image of Earth at night. 
Nearly all that electrical energy is produced 
by generators, devices that exploit an 
intimate relation between electricity and 
magnetism.

E lectromagnetism is one of the fundamental forces, and it governs the behavior of 
matter from the atomic scale to the macroscopic world. Electromagnetic tech-

nology, from computer microchips to cell phones and on to large electric motors and 
generators, is essential to modern society. Even our bodies rely heavily on electromag-
netism: Electric signals pace our heartbeat, electrochemical processes transmit nerve 
impulses, and the electric structure of cell membranes mediates the flow of materials 
into and out of the cell.

Four fundamental laws describe electricity and magnetism. Two deal separately 
with the two phenomena, while the others reveal profound connections that make 
electricity and magnetism aspects of a single phenomenon—electromagnetism. In 
this part you’ll come to understand those fundamental laws, learn how electromag-
netism determines the structure and behavior of nearly all matter, and explore the 
electromagnetic technologies that play so important a role in your life. Finally, you’ll 
see how the laws of electromagnetism lead to electromagnetic waves and thus help us 
understand the nature of light.

Electromagnetism

OvErviEwPart FOur
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What holds your body together? What keeps a skyscraper standing? What holds your car 
on the road as you round a turn? What governs the electronic circuitry in your com-

puter or smartphone, or provides the tension in your climbing rope? What enables a plant 
to make sugar from sunlight and simple chemicals? What underlies the awesome beauty of 
lightning? The answer, in all cases, is the electric force. With the exception of gravity, all the 
forces we’ve encountered in mechanics—including tension forces, normal forces, compres-
sion forces, and friction—are based on electric interactions; so are the forces responsible for 
all of chemistry and biology. The electric force, in turn, involves a fundamental property of 
matter—namely, electric charge.

20.1 Electric Charge
Electric charge is an intrinsic property of the electrons and protons that, along with 
uncharged neutrons, make up ordinary matter. What is electric charge? At the most 
 fundamental level we don’t know. We don’t know what mass “really” is either, but we’re 
familiar with it because we’ve spent our lives pushing objects around.  Similarly, our 
knowledge of electric charge results from observing the behavior of charged  objects.

Charge comes in two varieties, which Benjamin Franklin designated positive and 
negative. Those names are useful because the total charge on an object—the object’s 

How You’ll Use It
■ Electric charge and electric field 

are fundamental entities. You’ll use 
these throughout your study of 
electromagnetism.

■ A deeper understanding of electrical 
phenomena will also help you better 
appreciate everyday technology and 
use it more wisely and safely.

What You’re Learning
■ Electric charge is a fundamental 

property of matter, and here you’ll 
learn how electric charge behaves and 
how two or more charges interact.

■ You’ll learn Coulomb’s law for the 
electric force between two charges, 
written in vector form.

■ You’ll see how the superposition 
principle gives a simple prescription 
for combining electric forces from 
several charges.

■ You’ll review the field concept from 
Chapter 8 and learn how it applies to 
the electric field.

■ You’ll learn how to calculate the 
electric fields of distributions of 
multiple charges.

■ You’ll learn how matter behaves in 
electric fields and will learn the terms 
conductor, insulator, and dielectric as 
they apply to bulk matter.

What You Know
■ You understand Newton’s laws, so you 

know how to work with all kinds of 
forces.

■ You know how to handle vector 
quantities.

■ You’re generally familiar with 
electricity and electronics on an 
everyday basis, and you probably 
know about electric charge and 
how like charges repel and opposite 
charges attract.

Electric Charge, Force, and Field

20

What’s the fundamental criterion for initiating 
a lightning strike?
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356 Chapter 20 Electric Charge, Force, and Field

net charge—is the algebraic sum of its constituent charges. Like charges repel, and 
 opposites attract, a fact that constitutes a qualitative description of the electric force.

Quantities of Charge
All electrons carry the same charge, and all protons carry the same charge. The proton’s 
charge has exactly the same magnitude as the electron’s, but with opposite sign. Given that 
electrons and protons differ substantially in other properties—like mass—this electric rela-
tion is remarkable. Exercise 13 shows how dramatically different our world would be if there 
were even a slight difference between the magnitudes of the electron and proton charges.

The magnitude of the electron or proton charge is the elementary charge e. Electric 
charge is quantized; that is, it comes only in discrete amounts. In a famous experiment in 
1909, the American physicist R. A. Millikan measured the charge on small oil drops and 
found it was always a multiple of a basic value we now know as the elementary charge.

Elementary particle theories show that the fundamental charge is actually 1
3 e. Such 

“fractional charges” reside on quarks, the building blocks of protons, neutrons, and many 
other particles. Quarks always join to produce particles with integer multiples of the full 
elementary charge, and it seems impossible to isolate individual quarks.

The SI unit of charge is the coulomb (C), named for the French physicist Charles 
 Augustin de Coulomb (1736–1806). Since the late 19th century, the coulomb has been 
defined in terms of electric current. That will soon change, with the redefinition of SI 
units, to a definition based on assigning an exact value to the elementary charge e. Either 
way, it’s convenient for our purposes to take e ≃ 1.60 * 10- 19 C or to consider that 1 C is 
equivalent to about 6.24 * 1018 elementary charges.

Charge Conservation
Electric charge is a conserved quantity, meaning that the net charge in a closed region 
remains constant. Charged particles may be created or annihilated, but always in pairs of 
equal and opposite charge. The net charge always remains the same.

Got It? 20.1 The proton is a composite particle composed of three quarks, all of which 
are either up quarks (u; charge +2

3 e) or down quarks (d; charge -1
3 e). (More on quarks in 

Chapter 39.) Which of these quark combinations is the proton? (a) udd; (b) uuu; (c) uud; (d) ddd

20.2 Coulomb’s Law
Rub a balloon; it gets charged and sticks to your clothing. Charge another balloon, and the two 
repel (Fig. 20.1). Socks cling to your clothes as they come from the dryer, and bits of Styrofoam 
cling annoyingly to your hands. Walk across a carpet, and you’ll feel a shock when you touch 
a doorknob. All these are common examples where you’re directly aware of electric charge.

Electricity would be unimportant if the only significant electric interactions were these 
 obvious ones. In fact, the electric force dominates all interactions of everyday matter, from 
the motion of a car to the movement of a muscle. It’s just that matter on a large scale is almost 
perfectly neutral, meaning it carries zero net charge. Therefore, electric effects aren’t obvious. 
But at the molecular level, the electric nature of matter is immediately evident (Fig. 20.2).

Figure 20.1 Two balloons carrying similar 
electric charges repel each other.

F
S

F
S

A salt grain is
electrically neutral c cbut the electric

force is responsible
for its cubical shape.

(a)

(b)

Na Cl

-

+ +
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+

+

+

+
+

+

+

-

-
-

-

-

-

-
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Figure 20.2 (a) A single salt grain is electrically 
neutral, so the electric force isn’t obvious.  
(b) Actually, the electric force determines the 
structure of salt.

PheT: Balloons and Static Electricity

M20_WOLF4752_03_SE_C20.indd   356 17/06/15   8:50 PM



20.2 Coulomb’s Law 357

Attraction and repulsion of electric charges imply a force. Joseph Priestley and Charles 
Augustin de Coulomb investigated this force in the late 1700s. They found that the force 
between two charges acts along the line joining them, with the magnitude proportional to 
the product of the charges and inversely proportional to the square of the distance between 
them. Coulomb’s law summarizes these results:

 F
S

12 =
kq1q2

r2  rn 1Coulomb>s law2 (20.1)

where F
S

12 is the force charge q1 exerts on q2 and r is the distance between the charges. In 
SI the proportionality constant k has the approximate value 9.0 * 109 N #  m2/C2. Force is a 
vector, and rn  is a unit vector that helps determine its direction. Figure 20.3 shows that rn  
lies on a line passing through the two charges and points in the direction from q1 toward q2.  
Reverse the roles of q1 and q2, and you’ll see that F

S
21 has the same magnitude as F

S
12 but the 

opposite direction; thus Coulomb’s law obeys Newton’s third law. Figure 20.3 also shows 
that the force is in the same direction as the unit vector when the charges have the same 
sign, but opposite the unit vector when the charges have different signs. Thus  Coulomb’s 
law accounts for the fact that like charges repel and opposites attract.

Figure 20.3 Quantities in Coulomb’s law for 
calculating the force F

S
12 that q1 exerts on q2.

rn

rn

rn
kq1q2

r2F12 = 

F12

The unit vector r
always points away from q1.

(a)

(b)

r

q1 q2

F12

r

q1 q2

n

n

n

Here the product
q1q2 is positive,
so F12 is in the
same direction
as r.

S

Here the charges have 
opposite signs, so 
q1q2 6 0 and F12 points 
opposite r.

S

S

S

S

Problem-Solving Strategy 20.1 Coulomb’s Law

The key to using Coulomb’s law is to remember that force is a vector, and to realize that  Coulomb’s 
law in the form of Equation 20.1 gives both the magnitude and direction of the electric force. Deal-
ing carefully with vector directions is especially important in situations with more than two charges.

IntErprEt First, make sure you’re dealing with the electric force alone. Identify the charge 
or charges on which you want to calculate the force. Next, identify the charge or charges 
 producing the force. These comprise the source charge.

DEvELop Begin with a drawing that shows the charges, as in Fig. 20.4. If you’re given charge 
coordinates, place the charges on the coordinate system; if not, choose a suitable coordinate 
system. For each source charge, determine the unit vector(s) in Equation 20.1. If the charges 
lie along or parallel to a coordinate axis, then the unit vector will be one of the unit vectors in, 
jn, or kn, perhaps with a minus sign. In Fig. 20.4, the force on q3 due to q1 is such a case. When 
the two charges don’t lie on a coordinate axis, like q1 and q2 in Fig. 20.4, you can find the unit 
vector by noting that the displacement vector r

!
12 points in the desired direction, from the source 

charge to the charge experiencing the force. Dividing r
!
12 by its own magnitude then gives the 

unit vector in the direction of r
!
12; that is, rn = r

!
12/r12.

EvaLUatE For each source charge, determine the electric force using Equation 20.1,

F
S

12 =1kq1q2/r
22rn

with rn  the unit vector you’ve just found.

assEss As always, assess your answer to see that it makes sense. Is the direction of the force 
you found consistent with the signs and placements of the charges giving rise to the force?

Figure 20.4 Finding unit vectors.
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358 Chapter 20 Electric Charge, Force, and Field

Got It? 20.2 Charge q1 is located at x = 1 m, y = 0. What should you use for 
the unit vector rn  in Coulomb’s law if you’re calculating the force q1 exerts on a charge q2 
located (1) at the origin and (2) at the point x = 0, y = 1 m? Explain why you can answer 
without knowing the sign of either charge.

ExampLE 20.1  Finding the Force: two Charges

A 1.0@µC charge is at x = 1.0 cm, and a -1.5@µC charge is at 
x = 3.0 cm. What force does the positive charge exert on the negative 
one? How would the force change if the distance between the charges 
tripled?

interPret Following our strategy, we identify the -1.5@µC charge 
as the one on which we want to find the force and the 1@µC charge as 
the source charge.

DeveloP We’re given the coordinates x1 = 1.0 cm and x2 = 3.0 cm.  
Our drawing, Fig. 20.5, shows both charges at their  positions on the 
x-axis. With the source charge q1 to the left, the unit vector in the 
 direction from q1 toward q2 is in.

evaluate Now we use Coulomb’s law to evaluate the force:

 F
S

12 =
kq1q2

r2  rn

 =
19.0 * 109 N #  m2/C2211.0 * 10-6 C21-1.5 * 10-6 C2

10.020 m22  in

 = -34in N

This force is for a separation of 2 cm; if that distance tripled, the force 
would drop by a factor of 1/32, to -3.8in N.

aSSeSS Make sense? Although the unit vector in  points in the  
+x-direction, the charges have opposite signs and that makes the force 
direction opposite the unit vector, as shown in Fig. 20.5. In simpler 
terms, we’ve got two opposite charges, so they attract. That means 
the force exerted on a charge at x = 3 cm by an opposite charge at 
x = 1 cm had better be in the -x-direction. ■

Figure 20.5 Sketch for Example 20.1.

The charges
have opposite
signs, so q1q2
is negative, and 
F is opposite
the direction of r.

The unit vector
is in the direction
from q1 to q2,
so here it’s i.

n

S
n

point Charges and the superposition principle
Coulomb’s law is strictly true only for point charges—charged objects of negligible size. 
Electrons and protons can usually be treated as point charges; so, approximately, can any 
two charged objects if their separation is large compared with their size. But often we’re 
interested in the electric effects of charge distributions—arrangements of charge spread 
over space. Charge distributions are present in molecules, memory cells in your computer, 

ConCEptUaL ExampLE 20.1 Gravity and the Electric Force

The electric force between elementary particles is far stronger than 
the gravitational force, yet gravity is much more obvious in everyday 
life. Why?

evaluate Gravity and the electric force obey similar inverse-square 
laws, and the magnitude of the force is proportional to the product of 
the masses or charges. There’s a big difference, though: There’s only 
one kind of mass, and gravity is always attractive, so large concen-
trations of mass—like a planet—result in strong gravitational forces. 
But charge comes in two varieties, and opposites attract, so large 
 accumulations of matter tend to be electrically neutral, in which case 
 large-scale electrical interactions aren’t obvious.

aSSeSS Ironically, it’s the very strength of the electric force that makes 
it less obvious in everyday life. Opposite charges bind strongly, making 
bulk matter electrically neutral and its electrical interactions subtle.

making the ConneCtion Compare the magnitudes of the electric 
and gravitational forces between an electron and a proton.

evaluate Equation 8.1 gives the gravitational force: Fg = Gme 

mp /r
2.  

Equation 20.1 gives the electric force: � FE � = ke2/r2, where we wrote 
e2 because the electron and proton charges have the same magnitude. 
We aren’t given the distance, but that doesn’t matter because both 
forces have the same inverse-square dependence. The ratio of the 
force magnitudes is huge: FE /Fg = ke2/Gme 

mp = 2.3 * 1039!
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20.3 The Electric Field 359

your heart, and thunderclouds. We need to combine the effects of two or more charges to 
find the electric effects of such charge distributions.

Figure 20.6 shows two charges q1 and q2 that constitute a simple charge distribution. 
We want to know the net force these exert on a third charge q3. To find that net force, you 
might calculate the forces F

S
13 and F

S
23 from Equation 20.1, and then vectorially add them. 

And you’d be right: The force that q1 exerts on q3 is unaffected by the presence of q2, and 
vice versa, so you can apply Coulomb’s law separately to the pairs q1q3 and q2q3 and then 
combine the results. That may seem obvious, but nature needn’t have been so simple.

The fact that electric forces add vectorially is called the superposition principle. Our 
confidence in this principle is ultimately based on experiments showing that electric and 
indeed electromagnetic phenomena behave according to the principle. With superposition 
we can solve relatively complicated problems by breaking them into simpler parts. If the 
superposition principle didn’t hold, the mathematical description of electromagnetism 
would be far more complicated.

Although the force that one point charge exerts on another decreases with the inverse 
square of the distance between them, the same is not necessarily true of the force resulting 
from a charge distribution. The next example provides a case in point.

Figure 20.6 The superposition principle lets us 
add vectorially the forces from two or more 
charges.

F23

F13

Fnet = F13 + F23

q2

q1

q3

SSS

S

S

ExampLE 20.2  Finding the Force: raindrops

Charged raindrops are ultimately responsible for lightning, producing 
substantial electric charge within specific regions of a thundercloud. 
Suppose two drops with equal charge q are on the x-axis at x = {a. 
Find the electric force on a third drop with charge Q at an arbitrary 
point on the y-axis.

interPret Coulomb’s law and the superposition principle apply, and 
we identify Q as the charge for which we want the force. The two 
charges q are the source charges.

DeveloP Figure 20.7 is our drawing, showing the charges, the in-
dividual force vectors, and their sum. The drawing shows that the 
distance r in Coulomb’s law is the hypotenuse 2a2 + y2. It’s clear 
from symmetry that the net force is in the y-direction, so we need to 
find only the y-components of the unit vectors. The y-components are 
clearly the same for each, and the drawing shows that they’re given by 
rny = y/2a2 + y2.

evaluate From Coulomb’s law, the y-component of the force from 
each q is Fy = 1kqQ/r22rny, and the net force on Q becomes

F
S

= 2 a kqQ

a2 + y2 ba
y2a2 + y2

b  jn =
2kqQy

1a2 + y223/2 jn

The factor of 2 comes from the two charges q, which contribute 
equally to the net force.

aSSeSS Make sense? Evaluating F
S

at y = 0 gives zero force. Here, 
midway between the two charges, Q experiences equal but opposite 
forces and the net force is zero. At large distances y W a, on the 
other hand, we can neglect a2 compared with y2, and the force be-
comes F

S
= k12q2Qjn/y2. This is just what we would expect from a 

single charge 2q a distance y from Q—showing that the system of 
two charges acts like a single charge 2q at distances that are large 
compared with the charge separation. In between our two extremes 
the behavior of force with distance is more complicated; in fact, its 
magnitude initially increases as Q moves away from the origin and 
then begins to decrease.

In drawing Fig. 20.7, we tacitly assumed that q and Q have the 
same signs. But our analysis holds even if they don’t; then the product 
qQ is negative, and the forces actually point opposite the directions 
shown in Fig. 20.7. ■

Figure 20.7 The force on Q is the vector sum of the forces from the 
individual charges.

y2a2 + y2

This is the y-
component of
the displacement
vectors from
q to Q c

cand this is
the magnitude c

cso the y-components
of both unit vectors are

ry = .n

20.3 the Electric Field
In Chapter 8 we defined the gravitational field at a point as the gravitational force per unit 
mass that an object at that point would experience. In that context, we can think of g

!
 as 

the force per unit mass that any object would experience due to Earth’s gravity. So we can 
picture the gravitational field as a set of vectors giving the magnitude and direction of the 
gravitational force per unit mass at each point, as shown in Fig. 20.8a on the next page.

PheT: Charges and Fields
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360 Chapter 20 Electric Charge, Force, and Field

We can do the same thing with the electric force, defining the electric field as the force 
per unit charge:

 The electric field at any point is the force per unit charge that a charge would experi-
ence at that point. Mathematically,

 E
S

=
F
S

q
  1electric field2 (20.2a)

The electric field exists at every point in space. When we represent the field by vectors, 
we can’t draw one everywhere, but that doesn’t mean there isn’t a field at all points. Fur-
thermore, we draw vectors as extended arrows, but each vector represents the field at only 
one point—namely, the tail end of the vector. Figure 20.8b illustrates this for the electric 
field of a point charge.

The field concept leads to a shift in our thinking about forces. Instead of the action-
at-a-distance idea that Earth reaches across empty space to pull on the Moon, the field 
concept says that Earth creates a gravitational field and the Moon responds to the field at 
its location. Similarly, a charge creates an electric field throughout the space surrounding 
it. A second charge then responds to the field at its immediate location. Although the field 
reveals itself only through its effect on a charge, the field nevertheless exists at all points, 
whether or not charges are present. Right now you probably find the field concept a bit 
abstract, but as you advance in your study of electromagnetism you’ll come to appreciate 
that fields are an essential feature of our universe, every bit as real as matter itself.

We can use Equation 20.2a as a prescription for measuring electric fields. Place a point 
charge at some location, measure the electric force it experiences, and divide by the charge 
to get the field. In practice, we need to be careful because the field generally arises from 
some distribution of source charges. If the charge we’re using to probe the field—the 
test charge—is large, the field it creates may disturb the source charges, altering their 
 configuration and thus the field they create. For that reason, it’s important to use a very 
small test charge.

Figure 20.8 (a) Gravitational and (b) electric fields, here represented as sets of vectors.

E2
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E1
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(a) (b)

Right at this point the electric �eld is 
described by the vector E1. That means 
a point charge q placed here would 
experience an electric force qE1.

The gravitational �eld is 
a continuous entity, so 
there are �eld vectors 
everywhere. We just 
can't draw them all.

Right at this point the gravitational �eld 
is described by the vector g. That means 
a mass m placed here would experience 
a gravitational force mg.

Over here, farther from 
the charge producing 
the �eld, a point charge 
q would experience a 
weaker force qE2 in a 
different direction.

The electric �eld is a continuous entity, so 
there are �eld vectors everywhere. We just 
can't draw them all.
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u
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appLICatIon Electrophoresis

Electrophoresis is a widely used application of 
electric fields for separating molecules by size 
and molecular weight. It’s especially useful in 
biochemistry and molecular biology for dis-
tinguishing larger molecules like proteins and 
DNA fragments. In the commonly used gel elec-
trophoresis, molecules carrying electric charge 
move through a semisolid but permeable gel un-
der the influence of a uniform electric field; the 
greater the charge, the greater the electric force. 
The gel exerts a retarding force that increases 
with increasing molecular size, with the result 
that each molecular species moves at a velocity 
that depends on its size and charge. After a given 
time, the electric field is switched off. The lo-
cations of the molecules then serve as indicators 
of their size, with the molecules that traveled 
farthest being the smallest. The photo shows a 
typical gel electrophoresis result. Here DNA 
fragments were introduced into the seven chan-
nels at the top of the gel and then moved down-
ward; their final locations indicate molecular 
size. The smaller molecules—those with fewer 
nucleotide base pairs—end up farther down on 
the gel. The electric field is shown by the arrow; 
it needs to point upward because DNA frag-
ments carry a negative charge.

E
S
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20.3 The Electric Field 361

If we know the electric field E
S

 at a point, we can rearrange Equation 20.2a to find the 
force on any point charge q placed at that point:

 F
S

= qE
S
  1electric force and field2 (20.2b)

If the charge q is positive, then this force is in the same direction as the field, but if q is 
negative, then the force is opposite to the field direction.

Equations 20.2 show that the units of electric field are newtons per coulomb. Fields 
of hundreds to thousands of N/C are commonplace, while fields of 3 MN/C will tear 
 electrons from air molecules.

ExampLE 20.3 Force and Field: Inside a Lightning storm

A charged raindrop carrying 10 µC experiences an electric force of 
0.30 N in the +x-direction. What’s the electric field at its location? 
What would the force be on a -5.0@µC drop at the same point?

interPret In this problem we need to distinguish between elec-
tric force and electric field. The electric field exists with or without 
the charged raindrop present, and the electric force arises when the 
charged raindrop is in the electric field.

DeveloP Knowing the electric force and the charge on the raindrop, 
we can use Equation 20.2a, E

S
= F

S
/q, to get the electric field. Once 

we know the field, we can use Equation 20.2b, F
S

= qE
S

, to calculate 
the force that would act if a different charge were at the same point.

evaluate Equation 20.2a gives the electric field:

E
S

=
F
S

q
=

0.30in N

10 µC
= 30in kN/C

Acting on a -5.0@µC charge, this field would result in a force

F
S

= qE
S

= 1-5.0 µC2130in kN/C2 = -0.15in N

aSSeSS Make sense? The force on the second charge is opposite the 
direction of the field because now we’ve got a negative charge in the 
same field.

✓tIp The Field Is Independent of the Test Charge

Does the electric field in this example point in the -x-direction 
when the charge is negative? No. The field is independent of the 
particular charge experiencing that field. Here the electric field 
points in the +x-direction no matter what charge you put in the 
field. For a positive charge, the force qE

S
 points in the same direc-

tion as the field; for a negative charge, q 6 0, the force is opposite 
the field.

■

the Field of a point Charge
Once we know the field of a charge distribution, we can calculate its effect on other 
charges. The simplest charge distribution is a single point charge. Coulomb’s law gives the 
force on a test charge qtest located a distance r from a point charge q: F

S
= 1kqqtest/r

22rn, 
where rn  is a unit vector pointing away from q. The electric field arising from q is the force 
per unit charge, or

 E
S

=
F
S

qtest
=

kq

r2  rn  1field of a point charge2 (20.3)

Since it’s so closely related to Coulomb’s law for the electric force, we also refer to Equa-
tion 20.3 as Coulomb’s law. The equation contains no reference to the test charge qtest be-
cause the field of q exists independently of any other charge. Since rn  always points away 
from q, the direction of E

S
is radially outward if q is positive and radially inward if q is 

negative. Figure 20.9 shows some field vectors for a negative point charge, analogous to 
those of the positive point charge in Fig. 20.8b.

Got It? 20.3 A positive point charge is located at the origin of an x-y coordinate 
system, and an electron is placed at a location where the electric field due to the point 
charge is given by E

S
= E01 in + jn2, where E0 is positive. Is the direction of the force on 

the electron (a) toward the origin, (b) away from the origin, (c) parallel to the x-axis, or  
(d) impossible to determine without knowing the coordinates of the electron’s position?

Figure 20.9 Field vectors for a negative point 
charge.
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362 Chapter 20 Electric Charge, Force, and Field

20.4 Fields of Charge Distributions
Since the electric force obeys the superposition principle, so does the electric field. That 
means the field of a charge distribution is the vector sum of the fields of the individual 
point charges making up the distribution:

 E
S

= E
S

1 +  E
S

2 +  E
S

3 + g =  a
i

E
S

i = a
 

i

kqi

ri
2  rni (20.4)

Here the E
S

i>s are the fields of the point charges qi located at distances ri from the point 
where we’re evaluating the field—called, appropriately, the field point. The rni>s are unit 
vectors pointing from each point charge toward the field point. In principle, Equation 20.4 
gives the electric field of any charge distribution. In practice, the process of summing the 
individual field vectors is often complicated unless the charge distribution contains rela-
tively few charges arranged in a symmetric way.

Finding electric fields using Equation 20.4 involves the same strategy we introduced 
for finding the electric force; the only difference is that there’s no charge to experience the 
force. The first step then involves identifying the field point. We still need to find the ap-
propriate unit vectors and form the vector sum in Equation 20.4.

ExampLE 20.4 Finding the Field: two protons

Two protons are 3.6 nm apart. Find the electric field at a point be-
tween them, 1.2 nm from one of the protons. Then find the force on an 
electron at this point.

interPret We follow our electric-force strategy, except that instead 
of identifying the charge experiencing the force, we identify the field 
point as being 1.2 nm from one proton. The source charges are the two 
protons; they produce the field we’re interested in.

DeveloP Let’s have the protons define the x-axis, as drawn in  
Fig. 20.10. Then the unit vector rn1 from the left-hand proton toward 

the field point (which we’ve marked P) is + in, while rn2 from the right-
hand proton toward P is - in.

evaluate We now evaluate the field at P using Equation 20.4:

E
S

= E
S

1 + E
S

2 =
ke

r1
2 in +

ke

r2
2 1- in2 = ke a 1

r1
2 -

1

r2
2 b  in

We wrote e for q here because the protons’ charge is the elementary 
charge.

Using e = 1.6 * 10-19 C, r1 = 1.2 nm, and r2 = 2.4 nm gives 
E
S

= 750in MN/C. An electron at P will therefore experience a force 
F
S

= qE = -eE = -0.12in nN.

aSSeSS Make sense? The field points in the positive x-direction, re-
flecting the fact that P is closer to the left-hand proton with its stronger 
field at P. The force on the electron, on the other hand, is in the  
-x-direction; that’s because the electron is negative (we used q = -e 
for its charge), so the force it experiences is opposite the field. That field 
of almost 1 GN/C sounds huge—but that’s not unusual at the micro-
scopic scale, where we’re close to individual elementary particles. ■Figure 20.10 Finding the electric field at P.

Unit vectors point from the source
charges toward the �eld point P.

Sometimes we’re interested in finding not the electric field but a point or points where 
the field has a particular value—often zero. Conceptual Example 20.2 explores such a 
case.

ConCEptUaL ExampLE 20.2  Zero Field, Zero Force

A positive charge +2Q is located at the origin, and a negative charge 
-Q is at x = a. In which region of the x-axis is there a point where 
the force on a test charge—and therefore the electric field—is zero?

interPret We’re asked to locate qualitatively a point where the 
field is zero. Our sketch of the situation, Fig. 20.11, shows that the 
two charges divide the x-axis into three regions: (1) to the left of 

2Q (x 6 0), (2) between the charges (0 6 x 6 a), and (3) to the right 
of -Q (x 7 a). We need to determine which region could include a 
point where the electric force on a test charge is zero.

evaluate Consider what would happen to a positive test charge 
placed in each of these three regions. Anywhere in region (1), the 
test charge is closer to the charge with greater magnitude (2Q). That 

PheT: Charges and Fields
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20.4 Fields of Charge Distributions 363

the Electric Dipole
One of the most important charge distributions is the electric dipole, consisting of two 
point charges of equal magnitude but opposite sign. Many molecules are essentially 
 dipoles, so understanding the dipole helps explain molecular behavior (Fig. 20.12). Dur-
ing contraction the heart muscle becomes essentially a dipole, and physicians performing 
electrocardiography are measuring, among other things, the strength and orientation of 
that dipole. Technological devices, including radio and TV antennas, often use the dipole 
configuration.

Figure 20.12 A water molecule behaves like 
an electric dipole. Its net charge is zero, but 
regions of positive and negative charge are 
separated.

O
-

H
+

H
+

-

+

≃

ExampLE 20.5 the Electric Dipole: modeling a molecule

A molecule may be modeled approximately as a positive charge q 
at x = a and a negative charge -q at x = -a. Evaluate the electric 
field on the y-axis, and find an approximate expression valid at large 
distances 1 � y � W a2.

interPret Here’s another example where we’ll use our strategy in 
applying Equation 20.4 to calculate the field of a charge distribution. 
We identify the field point as being anywhere on the y-axis and the 
source charges as being {q.

DeveloP Figure 20.13 is our drawing. The individual unit vectors 
point from the two charges toward the field point, but the negative 
charge contributes a field opposite its unit vector; we’ve indicated 
the individual fields in Fig. 20.13. Here symmetry makes the y- 
components cancel, giving a net field in the -x-direction. So we need 
only the x-components of the unit vectors, which Fig. 20.13 shows 
are rnx- = a/r for the negative charge at -a and rnx+ = -a/r for the 
 positive charge at a.

Figure 20.13 Finding the field of an electric dipole.

Here’s the 
�eld point.

+a is the x-
component of
the displacement
r- from -q to the
�eld point c

cso the x-component of
the unit vector from -q
is rx-  = a>r c

cand the x-component
of the displacement from
+q is -a, so rx+ = -a>r.nn

u

(continued)

Figure 20.11 Where is the electric 
field zero? We’ve marked the 
answer, at x = 3.4a.

charge dominates throughout region (1), where our test charge would 
experience a repulsive force (to the left). The electric field, then, can’t 
be zero in region (1). Between the two charges, the repulsive force 
from 2Q on a positive test charge points to the right; so does the attrac-
tive force from -Q. The field, therefore, can’t be zero in region (2).  
That leaves region (3). Could the field be zero here? Put a positive test 
charge very close to -Q, and it experiences an attractive force toward 
the left. But far away, the distance between 2Q and -Q becomes neg-
ligible. The fields of both charges drop off as the inverse square of 
the distance, so at large distances the field of the stronger charge will 
dominate. Therefore there is a point somewhere to the right of -Q 
where the force on a test charge, and therefore the electric field, will 
be zero.

aSSeSS This answer is consistent with our insight from Example 
20.2 that when we get far from a charge distribution it begins to re-
semble a point charge with the net charge of the distribution. Here that 
net charge is 2Q -  Q = +Q, so at large distances we should indeed 
have a field pointing away from the charge distribution—and that’s to 
the right in region (3). Although we considered a positive test charge, 
you’ll reach the same conclusion with a negative test charge.

making the ConneCtion Find an expression for the position 
where the electric field in this example is zero.

evaluate In Fig. 20.11 we’ve taken the origin at 2Q, so at any po-
sition x in region (3) we’re a distance x from 2Q and a distance x-a 
from -Q. Since we’re to the right of both charges, the unit vector in 
Equation 20.3 for the point-charge field—a vector that always points 
away from the point charge—becomes + in  for both charges. Applying 
Equation 20.3, E

S
= 1kq/r22rn, for the fields of the two charges and 

summing gives

E
S

=
k12Q2

x2 in +
k1-Q2
1x - a22 in

If we set this expression to zero, we can cancel k, Q, and in ; invert-
ing both sides of the remaining equation gives x2/2 = 1x - a22.  
Finally, taking the square root and solving for x gives the answer: 
x = a22/122 - 12 ≃  3.4a. As a check, note that this point does 
indeed lie to the right of x = a. We’ve marked this point in Fig. 20.11.
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364 Chapter 20 Electric Charge, Force, and Field

Example 20.5 shows that the dipole field at large distances decreases as the inverse 
cube of distance. Physically, that’s because the dipole has zero net charge. Its field arises 
entirely from the slight separation of two opposite charges. Because of this separation 
the dipole field isn’t exactly zero, but it’s weaker and more localized than the field of a 
point charge. Many complicated charge distributions exhibit the essential characteristic 
of a dipole—that is, they’re neutral but consist of separated regions of positive and nega-
tive charge—and at large distances such distributions all have essentially the same field 
configuration.

At large distances the dipole’s physical characteristics q and a enter the equation for the 
electric field only through the product qa. We could double q and halve a, and the dipole’s 
electric field would remain unchanged. At large distances, therefore, a dipole’s electric prop-
erties are characterized completely by its electric dipole moment p, defined as the product 
of the charge q and the separation d between the two charges making up the dipole:

 p = qd 1dipole moment2 (20.5)

In Example 20.5 the charge separation was d = 2a, so there the dipole moment was 
p = 2aq. In terms of the dipole moment, the field in Example 20.5 can then be written

 E
S

= -
kp

� y � 3 in  adipole field for � y � W a,
on perpendicular bisector

b  (20.6a)

You can show in Problem 52 that the field on the dipole axis is given by

 E
S

=
2kp

� x � 3 in  a dipole field
for � x � W a, on axis

b  (20.6b)

Because the dipole isn’t spherically symmetric, its field depends not only on distance 
but also on orientation; for instance, Equations 20.6 show that the field along the dipole 
axis at a given distance is twice as strong as along the bisector. So it’s important to know 
the orientation of a dipole in space, and therefore we generalize our definition of the di-
pole moment to make it a vector of magnitude p = qd in the direction from the negative 
toward the positive charge (Fig. 20.14).

Got It? 20.4 Far from a charge distribution, you measure an electric field strength 
of 800 N/C. What will the field strength be if you double your distance from the charge 
distribution, if the distribution consists of (1) a point charge or (2) a dipole?

evaluate We then evaluate the field using Equation 20.4:

E
S

=
k1-q2

r2  aa

r
b  in +

kq

r2  a-
a

r
b  in = -

2kqa

1a2 + y223/2 in

where in the last step we used r = 2a2 + y2. For � y � W a we can 
neglect a2 compared with y2, giving

E
S

≃ -
2kqa

� y � 3  in  1 � y � W a2

aSSeSS Make sense? The dipole has no net charge, so at large 
 distances its field can’t have the inverse-square drop-off of a point-
charge field. Instead the dipole field falls faster, here as 1/ � y � 3. Note 

that we were careful to put absolute value signs on y3; that way, our 
result applies for both positive and negative values of y.

✓tIp Approximations

Making approximations requires care. Here we’re basically asking 
for the field when y is so large that a is negligible compared with y. 
So we neglect a2 compared with y2 when the two are summed, but 
we don’t neglect a when it appears in the numerator, where it isn’t 
being directly compared with y.

 ■

Figure 20.14 The dipole moment vector has 
magnitude p = qd and points from the 
negative toward the positive charge.

p
u

+q

-q

d

-

+
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20.4 Fields of Charge Distributions 365

Continuous Charge Distributions
Although any charge distribution ultimately consists of pointlike electrons and protons, it 
would be impossible to sum all the field vectors from the 1023 or so particles in a typical 
piece of matter. Instead, it’s convenient to make the approximation that charge is spread 
continuously over the distribution. If the charge distribution extends throughout a volume, 
we describe it in terms of the volume charge density r, with units of C/m3. For charge 
distributions spread over surfaces or lines, the corresponding quantities are the surface 
charge density s 1C/m22 and the line charge density l 1C/m2.

To calculate the field of a continuous charge distribution, we divide the charged 
 region into very many small charge elements dq, each small enough that it’s essentially 
a point charge. Each dq then produces an electric field dE

S
 given by Equation 20.3: 

dE
S

= 1k dq/r22rn. We then form the vector sum of all the dE
S
>s (Fig. 20.15). In the limit of 

infinitely many infinitesimally small dq’s and their corresponding dE
S
>s, that sum  becomes 

an integral and we have

 E
S

= LdE
S

= L
k dq

r2  rn  afield of a continuous
charge distribution

b  (20.7)

The limits of this integral include the entire charge distribution.
Calculating the field of a continuous charge distribution involves the same strategy 

we’ve already used: We identify the field point and the source charges—although now the 
source is a continuous charge distribution. Summing the individual field contributions now 
presents us with an integral, and that means writing the unit vectors rn  and distances r in 
terms of coordinates over which we can integrate. Setting up the integral involves the same 
strategy we outlined in Chapter 9 to find the center of mass of a continuous distribution of 
matter, and used again in Chapter 10 to find rotational inertias.

Figure 20.15 The electric field at P is the vector 
sum of the fields dE

S
 arising from the individual 

charge elements dq, each calculated using the 
appropriate distance r and unit vector rn.

rn
rn

rn
E
SP

dq

dq
dq

r
r

r

Charge distribution

dE
S

dE
S

dE
S

ExampLE 20.6  Evaluating the Field: a Charged ring

A ring of radius a carries a charge Q distributed evenly over the ring. Find 
an expression for the electric field at any point on the axis of the ring.

interPret We identify the field point as lying anywhere on the 
ring’s axis, and the source charge as the entire ring.

DeveloP Let’s take the x-axis to coincide with the ring axis, with 
the center of the ring at x = 0 (Fig. 20.16). The figure shows that the  
y-components of the field contributions from pairs of charge elements 
on opposite sides of the ring cancel; therefore, the net field points in 
the +x-direction (for x 7 0) and we need only the x-components of the 
unit vectors. Those are the same for all unit vectors—namely, rnx = x/r.

evaluate We’re now ready to set up the integral in  Equation 
20.7. Here each charge element contributes the same amount 
dEx = 1k dq/r22rnx = 1k dq/r221x/r2 to the field. Figure 20.16 shows 

that r = 2x2 + a2 = 1x2 + a221/2, so the integral becomes

E = Lring
 dEx = Lring

 
kx dq

1x2 + a223/2 =
kx

1x2 + a223/2 Lring
 dq

The last step follows because we have a fixed field point P, so its co-
ordinate x is a constant for the integration. But the remaining integral 
is just the sum of all the charge elements on the ring—namely, the 
total charge Q. So our result becomes

E =
kQx

1x2 + a223/2  (on@axis field, charged ring)

This is the magnitude; the direction is along the x-axis, away from the 
ring if Q is positive and toward it if Q is negative.

aSSeSS Make sense? At x = 0 the field is zero. A charge placed at 
the ring center is pulled (or pushed) equally in all directions—no net 
force, so no electric field. But for x W a, we get E = kQ/x2—just 
what we expect for a point charge Q. As always, a finite-size charge 
distribution looks like a point charge at large distances. ■

Figure 20.16 The electric field of a charged ring points along the ring axis, 
since field components perpendicular to the axis cancel in pairs.
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366 Chapter 20 Electric Charge, Force, and Field

ExampLE 20.7 Line Charge: a power Line’s Field

A long, straight electric power line coincides with the x-axis and car-
ries a uniform line charge density l (unit: C/m). Find the electric field 
on the y-axis using the approximation that the wire is infinitely long.

interPret We identify the field point as being a distance y from the 
wire, and the source charge as the whole wire.

DeveloP Figure 20.17 is our drawing, showing a coordinate sys-
tem with the field point P along the y-axis. We divide the wire into 
small charge elements dq and note that field contributions from two 
such elements dq on opposite sides of the y-axis contribute fields dE

S
 

whose x-components cancel. Then we need only the y-component 
of each unit vector, and Figure 20.17 shows that’s rny = y/r, where 
r = 2x2 + y2.

evaluate We’re now ready to set up the integral in Equation 20.7. 
As described in Chapter 9’s integral strategy, we need to relate dq to a 
geometric variable so we can do the integral. Here our wire has charge 
density l C/m, so if a charge element has length dx, then its charge is 
dq = l dx. Putting all this together gives the y-component of the field 
from an arbitrary dq anywhere on the wire:

dEy =
k dq

r2  rny =
kl dx

r2  
y

r
=

kly

1x2 + y223/2  dx

where we used r = 2x2 + y2. Since the x-components cancel, we 
can sum—that is, integrate—the y-components to get the net field:

 E = Ey = L
+ ∞

- ∞

kly dx

1x2 + y223/2 = klyL
+ ∞

- ∞

dx

1x2 + y223/2

 = kly c x

y22x2 + y2
d

-∞

+∞
= kly c 1

y2 - a-
1

y2 b d =
2kl

y

Here we used the integral table in Appendix A and applied the limits 
x = { ∞ . Our result is the field’s magnitude; the direction is away 
from the line for positive l and toward the line for negative l.

aSSeSS Make sense? For an infinite line there’s nothing to favor one 
direction along the line over another, so the only way the field can 
point is radially, away from or toward the line (Fig. 20.18). And be-
cause the line is infinite, it never resembles a point no matter how far 
away we are. As a result the field falls more slowly than the field of a 
point charge—in this case, as 1/y. If we let r designate the radial dis-
tance from the line rather than the diagonal in Fig. 20.17, then the field 
 decreases as 1/r. An infinite line is impossible, but our result holds ap-
proximately for finite lines of charge as long as we’re much closer to 
the line than its length, and not near an end. Far from a finite line, on 
the other hand, its field will resemble that of a point charge. You can 
explore the finite charged line in Problem 72. ■

Figure 20.17 The field of a charged line is the vector sum of the fields dE
S

 
from all the individual charge elements dq along the line.

This is the y-
component of the
displacement r
from dq to P c

cso the y-
component of
the unit vector r
is y>r.

n

u

Figure 20.18 Field vectors for an infinite line of positive charge point radially 
outward, with magnitude decreasing inversely with distance.

20.5 matter in Electric Fields
Electric fields give rise to forces on charged particles. Because matter consists of such 
particles, much of the behavior of matter is fundamentally determined by electric fields.

point Charges in Electric Fields
The motion of a single charge in an electric field is governed by the definition of the elec-
tric field, F

S
= qE

S
, and Newton’s law, F

S
= ma

!
. Combining these equations gives the 

acceleration of a particle with charge q and mass m in an electric field E
S

:

 a
!

=
q

m
E
S

 (20.8)

This equation shows that it’s the charge-to-mass ratio, q/m, that determines a particle’s 
 response to an electric field. Electrons, nearly 2000 times less massive than protons but 
carrying the same charge, are readily accelerated by electric fields. Many practical devices, 
from X-ray machines to fluorescent lights, use electrons accelerated in electric fields.

PheT: Electric Field Hockey
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20.5 Matter in Electric Fields 367

When the electric field is uniform, problems involving the motion of charged particles 
reduce to the constant-acceleration problems of Chapter 2. An ink-jet printer is one appli-
cation; a pair of oppositely charged plates creates a uniform field that “steers” charged ink 
droplets to the right place on the page (Fig. 20.19).

When the field isn’t uniform, it’s generally more difficult to calculate particle trajecto-
ries. An important exception is a particle moving perpendicular to a field that points radi-
ally. Under appropriate conditions, the result is uniform circular motion (see Section 5.3), 
as shown in the next example.

Figure 20.19 A pair of parallel charged plates 
creates a uniform electric field that deflects a 
charged particle. Can you tell the sign of the 
charge q?

+ + + + + + + +

- - - - - - - -q

ExampLE 20.8  particle motion: an Electrostatic analyzer

Two oppositely charged curved metal plates establish an electric field given by E = E01b/r2, where 
E0 and b are constants with the units of electric field and length, respectively. The field points to-
ward the center of curvature, and r is the distance from the center. Find an expression for the speed 
v with which a proton entering vertically from below in Fig. 20.20 will leave the device moving 
horizontally.

interPret This problem is about charged-particle motion in an electric field that points radially. 
We’re asked for the condition that will have a proton exiting the field region moving horizontally. 
Figure 20.20 shows that this requires its trajectory to be a circular arc.

DeveloP Equation 20.8, a
!

= 1q/m2 E
S

, determines the acceleration of a charged particle in an 
electric field. Here we want uniform circular motion, so our plan is to write this equation with the 
given field and the acceleration v2/r that we know applies in circular motion. Then we’ll solve for v.

evaluate Under these conditions, Equation 20.8 becomes

a =
v2

r
=

eE

m
=

e

m
 E0 

b

r

We then solve to get v = 1eE0b/m.

aSSeSS Make sense? Strengthen the field by increasing E0 or b, and the electric force becomes 
greater. For a given speed, that would result in more bending of the trajectory; to maintain the de-
sired trajectory, we must therefore increase the speed. Note that the radius r canceled from our 
equations, showing that it doesn’t matter where the protons enter the device. That’s because the 1/r 
decrease in field strength matches the 1/r dependence of the acceleration. This device is called an 
electrostatic analyzer because it can sort charged particles by speed and charge-to-mass ratio. Space-
craft use such analyzers to characterize charged particles in interplanetary space. ■

Figure 20.20 An electrostatic analyzer.

E
S

Too fast, and 
protons hit the
outer wall.

Just right, and 
protons emerge
horizontally.

Too slow, and
protons hit the
inner wall.

Analyzer

Proton beam

Got It? 20.5 An electron, a proton, a deuteron (a neutron combined with a proton), 
a helium-3 nucleus (2 protons, 1 neutron), a helium-4 nucleus (2 protons, 2 neutrons), a 
carbon-13 nucleus (6 protons, 7 neutrons), and an oxygen-16 nucleus (8 protons, 8 neu-
trons) all find themselves in the same electric field. Rank in order their accelerations from 
lowest to highest under the assumption (only approximately correct) that the neutron and 
proton have the same mass and that the mass of a composite particle is the sum of the 
masses of its constituent neutrons and protons. Note any that have the same acceleration.
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368 Chapter 20 Electric Charge, Force, and Field

Dipoles in Electric Fields
Earlier in this chapter we calculated the field of an electric dipole, which consists of two op-
posite charges of equal magnitude. Here we study a dipole’s response to electric fields. Since 
the dipole provides a model for many molecules, our results help explain molecular behavior.

Figure 20.21 shows a dipole with charges{q separated a distance d, located in a uniform 
electric field. The dipole moment vector p

!
 has magnitude qd and points from the negative to 

the positive charge (recall Fig. 20.14). Since the field is uniform, it’s the same at both ends 
of the dipole. Since the dipole charges are equal in magnitude but opposite in sign, they ex-
perience equal but opposite forces{qE

S
—and therefore there’s no net force on the dipole.

However, Fig. 20.21 shows that the dipole does experience a torque that tends to align 
it with the field. In Chapter 11 we described torque as the cross product of the position 
vector with the force: t

!
= r

!
* F

S
, where the magnitude of the torque vector is rF sin u 

and its direction is given by the right-hand rule. Figure 20.21 thus shows that the torque 
about the center of the dipole due to the force on the positive charge has magnitude 
t+ = rF sin u = 11

2 d21qE2 sin u. The torque associated with the negative charge has the 
same magnitude, and both torques are in the same direction since both tend to rotate the 
dipole clockwise. Thus the net torque has magnitude t = qdE sin u; applying the right-
hand rule shows that this torque is into the page. But qd is the magnitude of the dipole 
moment p

!
, and Fig. 20.21 shows that u is the angle between the dipole moment vector and 

the electric field E
S

; therefore, we can write the torque vectorially as

 t
!

= p
!

* E
S
  1torque on a dipole2 (20.9)

Because of this torque, the electric field does work on a dipole as it rotates. The electric 
force is conservative, so that work results in a change in potential energy. In Chapter 7  
we defined potential-energy change as the negative of the work done by a conservative 
force: ∆U = -W. Here we’re dealing with rotational motion, and Equation 10.19 shows 

that the work done in a rotation from angular position u1 to u2 is given by W = L
u2

u1

t du. 

Figure 20.21 shows that we’re taking u = 0 when the dipole is aligned with the 
field. The figure also shows that the direction of increasing u is counterclockwise 
or, in terms of rotational vectors, out of the page. The torque, in contrast, is clock-
wise or, vectorially, into the page. Thus the sign of the torque is opposite the angu-
lar change, so we need to write t = -pE sin u in the integral for the work. Let’s now 
consider a dipole that’s initially perpendicular to the field, so u1 = p/2. Then the 
work done by the electric force as the dipole rotates to an arbitrary angle u becomes

W = L
u

p/2
t du = L

u

p/2
1-pE sin u2 du = -pE3-  cos u4 up/2 = pE cos u

The potential-energy change is the negative of this work, and we note that pE cos u can 
be expressed as the dot product p

!
  # E

S
, so we can write the potential energy as  

 U = -p
!
  # E

S
 (20.10)

where U = 0 corresponds to the dipole at right angles to the field.
When the electric field isn’t uniform, the charges at opposite ends of the dipole experi-

ence forces that differ in magnitude and/or aren’t exactly opposite in direction. Then the 
dipole experiences a net force as well as a torque (Fig. 20.22). An important instance of 
this effect is the force on a dipole in the field of another dipole (Fig. 20.23). Because the 
dipole field falls off rapidly with distance and because the dipole responding to the field 
has closely spaced charges of equal magnitude but opposite sign, the dipole–dipole force 
is quite weak and falls extremely rapidly with distance. This weak force, which Fig. 20.23 
shows to be attractive, is partly responsible for the van der Waals interaction between gas 
molecules that we mentioned in Chapter 17.

Conductors, Insulators, and Dielectrics
Bulk matter contains vast numbers of point charges—namely, electrons and protons. In 
some matter—notably metals, ionic solutions, and ionized gases—individual charges are 
free to move throughout the material. In these conductors, the application of an electric 

Figure 20.21 A dipole in a uniform electric field 
experiences a torque, but no net force.

p
u

E
S

F-
S

F+
S

-

+
u

Torque rotates
dipole clockwise.

d

Figure 20.22 When the electric field differs in 
magnitude or direction at the two ends of the 
dipole, the dipole experiences a nonzero net 
force as well as a torque.
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SF1
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Figure 20.23 Dipole B aligns with the field of 
dipole A and then experiences a net force 
toward A.
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Force on negative end 
of B is stronger;  hence
net force is toward A.
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20.5 Matter in Electric Fields 369

field results in the ordered motion of electric charge that we call electric current. We’ll 
consider conductors and current in later chapters.

Materials in which charge is not free to move are insulators, since they don’t support 
electric current. Insulators, however, still contain charges—it’s just that their charges are 
bound into neutral molecules. Some molecules, like water, have intrinsic dipole moments 
and therefore rotate in response to an applied electric field. Even if they don’t have dipole 
moments, molecules may respond to an electric field by stretching and acquiring induced 
dipole moments (Fig. 20.24). In either case, the application of an electric field results in 
the alignment of molecular dipoles with the field (Fig. 20.25). The fields of the dipoles, 
pointing from their positive to their negative charges, then reduce the applied electric field 
within the material. We’ll explore the consequences of this effect further in Chapter 23. 
Materials in which molecules either have intrinsic dipole moments or acquire induced mo-
ments are called dielectrics.

If the electric field applied to a dielectric becomes too great, individual charges are 
ripped free, and the material then acts like a conductor. Such dielectric breakdown can 
cause severe damage in materials and in electric equipment (Fig. 20.26). On a larger scale, 
lightning results from dielectric breakdown in air.

Figure 20.24 A molecule stretches in response to an electric 
field, acquiring a dipole moment.

p
u

E
S

Figure 20.25 Alignment of molecular dipoles in 
a dielectric reduces the electric field within the 
dielectric.
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from dipoles

Net �eld in dielectric
Figure 20.26 Dielectric breakdown in 
a solid piece of Plexiglas produced 
this striking fractal pattern that marks 
permanent changes in the material.
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Liquid crystals consist of
dipole-like molecules that
all align in the same 
direction.

Applying an
electric �eld
changes that
orientation.

Normal
liquid

Liquid
crystal

Aligned by
external �eld

appLICatIon microwave Cooking and Liquid Crystals

The torque on dipoles in electric fields forms the basis of two widespread con-
temporary technologies: the microwave oven and the liquid-crystal display 
(LCD).

A microwave oven works by generating an electric field whose direction 
changes several billion times per second. Water molecules, whose dipole moment 
is much greater than most others, attempt to align with the field. But the field is 
changing, so the molecules swing rapidly back and forth. As they jostle against each 
other, the energy they gain from the field is dissipated as heat that cooks the food.

Computer displays, TVs, digital cameras, cell phones, watches, and many 
other devices display visual images using liquid crystals. These unique materi-
als combine the fluidity of a liquid with the order of a solid. The liquid crystal 
consists of long molecules whose chemical structure results in a dipole-like 
charge separation. In response to each others’ electric fields, the molecules 
tend to align. As the figure shows, an external electric field can rotate the 
liquid-crystal dipoles, altering the material’s optical properties. With optical 
components we’ll study in Chapter 29, different sections of a liquid-crystal 
display can then be made to appear visible or invisible. Liquid-crystal dis-
plays consume very little power, but they generate no light of their own and 

 therefore most have a built-in light source. This photo of an iPhone shows its 
high-resolution display; also shown is a microphoto of the liquid crystals.

Video Tutor Demo | Charged Rod and Aluminum Can
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ChaPtEr 20 Summary
Big Idea

This chapter introduces several big ideas. First is electric charge, a fundamental property of matter that comes in positive and negative forms. Like 
charges repel and opposites attract; this is the electric force. It’s convenient to define the electric field as the force per unit charge that a charge 
would experience if placed in the vicinity of other charges. Both force and field obey the superposition principle, meaning that the effects of 
 several charges add vectorially.

Key Concepts and Equations

Coulomb’s law describes the electric force between 
point charges:

rn

rn

kq1q2

r2

F12
S

F12 = 

r

q1 q2

S

The electric field is the force per unit charge, 
E
S

= F
S

/q, and therefore the force a given 
charge q experiences in a field is F

S
= qE

S
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Electric �eld
at P P

q
Put a charge q at P, and 
the force on q is F = qE.
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The field of a point charge follows from Coulomb’s  
law:
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Field is stronger closer
to the charge.

Field weakens with
increasing distance from
the charge.

Fields of charge distributions are found by summing fields of individual point 
charges, or by integrating in the case of continuously distributed charge:
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applications

A dipole consists of equal but opposite charges {q a distance d apart. 
For distances large compared with d, the dipole field drops as 1/r3, and 
the dipole is completely characterized by its dipole moment p = qd.

p
u

- +
d

+q-q

The field of an in-
finite line drops 
as 1/r: E = 2kl/r, 
with l the charge 
per unit  length. 
This is a good ap-
proximation to the 
field near an elon-
gated structure like 
a wire.

Point charges respond to 
electric fields with accel-
eration proportional to the 
charge-to-mass ratio q/m.

A dipole in an electric field experiences a torque that tends to align it 
with the field: t

!
= p

!
* E

S
.
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Torque rotates
dipole clockwise.
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If the field is nonuniform, there’s also a net force on the dipole.

Dielectrics are insulating ma-
terials whose molecules act like 
electric dipoles.
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Exercises and Problems 371

For homework assigned on MasteringPhysics, go to www.masteringphysics.com

BIO Biology and/or medicine-related problems DATA Data problems ENV Environmental problems CH Challenge problems Comp Computer problems

15. Protons and neutrons are made from combinations of the two 
most common quarks, the u quark (charge +2

3 e) and the d quark 
(charge -1

3 e). How could three of these quarks combine to make 
(a) a proton and (b) a neutron?

16. Earth carries a net charge of about -5 * 105 C. How many more 
electrons are there than protons on Earth?

17. As they fly, honeybees may acquire electric charges of about 
180 pC. Electric forces between charged honeybees and spider 
webs can make the bees more vulnerable to capture by spiders. 
How many electrons would a honeybee have to lose to acquire a 
charge of +180 pC?

Section 20.2 Coulomb’s Law
18. The electron and proton in a hydrogen atom are 52.9 pm apart. 

Find the magnitude of the electric force between them.
19. An electron at Earth’s surface experiences a gravitational force 

meg. How far away can a proton be and still produce the same 
force on the electron? (Your answer should show why gravity is 
unimportant on the molecular scale!)

20. You break a piece of Styrofoam packing material, and it releases 
lots of little spheres whose electric charge makes them stick an-
noyingly to you. If two of the spheres carry equal charges and 
repel with a force of 21 mN when they’re 15 mm apart, what’s 
the magnitude of the charge on each?

21. A charge q is at the point x = 1 m, y = 0 m. Write expressions 
for the unit vectors you would use in Coulomb’s law if you were 
finding the force that q exerts on other charges located at (a) 
x = 1 m, y = 1 m; (b) the origin; and (c) x = 2 m, y = 3 m. 
You’re not given the sign of q. Why doesn’t this matter?

22. A proton is at the origin and an electron is at the point 
x = 0.41 nm, y = 0.36 nm. Find the electric force on the proton.

Section 20.3 The Electric Field
23. An electron experiences an electric force of 0.61 nN. What’s the 

field strength at its location?
24. Find the magnitude of the electric force on a 2.0@µC charge in a 

100-N/C electric field.
25. A 68-nC charge experiences a 150-mN force in a certain electric 

field. Find (a) the field strength and (b) the force that a 35@µC 
charge would experience in the same field.

26. The electric field inside a cell membrane is 8.0 MN/C. What’s 
the force on a singly charged ion in this field?

27. A -1.0@µC charge experiences a 10in@N electric force in a certain 
electric field. What force would a proton experience in the same field?

28. The electron in a hydrogen atom is 52.9 pm from the proton. At this 
distance, what’s the strength of the electric field due to the proton?

Section 20.4 Fields of Charge Distributions
29. In Fig. 20.28, point P is midway between the two charges. Find 

the electric field in the plane of the page (a) 5.0 cm to the left of 
P, (b) 5.0 cm directly above P, and (c) at P.

5.0 cm

P+ 2.0 oC - 2.0 oC

Figure 20.28 Exercise 29

For thought and Discussion
 1. Conceptual Example 20.1 shows that the gravitational force 

 between an electron and a proton is about 10-40 times weaker 
than the electric force between them. Since matter consists 
largely of electrons and protons, why is the gravitational force 
important at all?

 2. A free neutron is unstable and soon decays to other particles, 
one of them a proton. Must there be others? If so, what electric 
 properties must it or they have?

 3. Where in Fig. 20.5 could you put a third charge so it would 
 experience no net force? Would it be in stable or unstable equi-
librium?

 4. Why should the test charge used to measure an electric field be 
small?

 5. Equation 20.3 gives the electric field of a point charge. Does 
the direction of (a) rn  or (b) E

S
depend on whether the charge is 

 positive or negative?
 6. Is the electric force on a charged particle always in the direction 

of the field? Explain.
 7. Why does a dipole, which has no net charge, produce an electric 

field?
 8. The ring in Example 20.6 carries total charge Q, and the point P 

is the same distance r = 2x2 + a2 from all parts of the ring. So 
why isn’t the electric field of the ring just kQ/r2?

 9. A spherical balloon is initially uncharged. If you spread positive 
charge uniformly over the balloon’s surface, would it expand or 
contract? What would happen if you spread negative charge in-
stead?

10. Under what circumstances is the path of a charged particle a pa-
rabola? A circle?

11. Why should there be a force between two dipoles, which each 
have zero net charge?

12. Dipoles A and B are both located in the field of a point charge Q, 
as shown in Fig. 20.27. Does either experience a net torque? A 
net force? If each dipole is released from rest, describe qualita-
tively its subsequent motion.

- +

- +

A

-q +q

+Q B

-q +q

Figure 20.27 For Thought and Discussion 12

Exercises and Problems

Exercises

Section 20.1 Electric Charge
13. Suppose the electron and proton charges differed by one part in 

one billion. Estimate the net charge on your body, assuming it 
contains equal numbers of electrons and protons.

14. A typical lightning flash delivers about 25 C of negative charge 
from cloud to ground. How many electrons are involved?

BIO

BIO
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372 Chapter 20 Electric Charge, Force, and Field

46. DNA fragments introduced into an electrophoresis apparatus 
(see Application, page 360) generally carry negative charges 
equivalent to two extra electrons per base pair of nucleotides in 
the fragment. The table below shows the forces on several DNA 
fragments in an electrophoresis apparatus, as a function of the 
number of base pairs. Plot these data, establish a best-fit line, and 
use the resulting slope to determine the strength of the electric 
field in the electrophoresis apparatus.

Base pairs 400 800 1200 2000 3000 5000

Force (pN) 0.235 0.472 0.724 1.15 1.65 2.87

47. A 65@µC point charge is at the origin. Find the electric field at 
the points (a) x = 50 cm, y = 0 cm; (b) x = 50 cm, y = 50 cm; 
and (c) x = 25 cm, y = -75 cm.

48. A 1.0@µC charge and a 2.0@µC charge are 10 cm apart. Find a 
point where the electric field is zero.

49. A proton is at the origin and an ion is at x = 5.0 nm. If the elec-
tric field is zero at x = -5.0 nm, what’s the ion’s charge?

50. (a) Find an expression for the electric field on the y-axis due to 
the two charges q in Fig. 20.7. (b) At what point is the field on 
the y-axis a maximum?

51. A dipole lies on the y-axis and consists of an electron at 
y = 0.60 nm and a proton at y = -0.60 nm. Find the elec-
tric field (a) midway between the two charges; (b) at the point 
x = 2.0 nm, y = 0 nm; and (c) at the point x = -20 nm, 
y = 0 nm.

52. Show that the field on the x-axis for the dipole of Example 20.5 
is given by Equation 20.6b, for � x � W a.

53. You’re 1.44 m from a charge distribution that is well under 1 cm 
in size. You measure an electric field strength of 296 N/C due 
to this distribution. You then move to a distance of 2.16 m from 
the distribution, where you measure a field strength of 87.7 N/C. 
What’s the net charge of the distribution? Hint: Don’t try to cal-
culate the charge. Determine instead how the field decreases with 
distance, and from that infer the charge.

54. Three identical charges q form an equilateral triangle of side a, 
with two charges on the x-axis and one on the positive y-axis.  
(a) Find an expression for the electric field at points on the y-axis 
above the uppermost charge. (b) Show that your result reduces to 
the field of a point charge 3q for y W a.

55. Two identical small metal spheres initially carry charges q1 and 
q2. When they’re 1.0 m apart, they experience a 2.5-N attractive 
force. Then they’re brought together so charge moves from one 
to the other until they have the same net charge. They’re again 
placed 1.0 m apart, and now they repel with a 2.5-N force. What 
were the original charges q1 and q2?

56. Two 38.0@µC charges are attached to opposite ends of a spring 
with spring constant k = 145 N/m and equilibrium length  
52.6 cm. By how much does the spring stretch? Hint: You’ll need 
to use a computer or advanced calculator to solve the cubic equa-
tion that arises in this problem.

57. A thin rod lies on the x-axis between x = 0 and x = L and 
carries total charge Q distributed uniformly over its length. 
Show that the electric field strength for x 7 L is given by 
E = kQ/3x1x - L24 .

58. An electron is moving in a circular path around a long, uniformly 
charged wire carrying 2.5 nC/m. What’s the electron’s speed?

59. Find the line charge density on a long wire if a 6.8@µg particle 
carrying 2.1 nC describes a circular orbit about the wire with 
speed 280 m/s.

60. A dipole with dipole moment 1.5 nC #m is oriented at 30° to a 
4.0-MN/C electric field. Find (a) the magnitude of the torque on 
the dipole and (b) the work required to rotate the dipole until it’s 
antiparallel to the field.

30. The water molecule’s dipole moment is 6.2 * 10-30 C #m. What 
would be the separation distance if the molecule consisted of 
charges {e? (The effective charge is actually less because H and 
O atoms share the electrons.)

31. The electric field 22 cm from a long wire carrying a uniform line 
charge density is 1.9 kN/C. What’s the field strength 38 cm from 
the wire?

32. Find the line charge density on a long wire if the electric field  
45 cm from the wire has magnitude 260 kN/C and points toward 
the wire.

33. Find the magnitude of the electric field due to a charged ring of 
radius a and total charge Q on the ring axis at distance a from the 
ring’s center.

Section 20.5 Matter in Electric Fields
34. In his famous 1909 experiment that demonstrated quantization 

of electric charge, R. A. Millikan suspended small oil drops in an 
electric field. With field strength 20 MN/C, what mass drop can 
be suspended when the drop carries 10 elementary charges?

35. How strong an electric field is needed to accelerate electrons in 
an X-ray tube from rest to one-tenth the speed of light in a dis-
tance of 5.0 cm?

36. A proton moving to the right at 3.8 *105 m/s enters a region 
where a 56-kN/C electric field points to the left. (a) How far will 
the proton get before it momentarily stops? (b) Describe its sub-
sequent motion.

37. An electrostatic analyzer like that of Example 20.8 has 
b = 7.5 cm. What value of E0 will enable the device to select 
protons moving at 84 m/s?

problems
38. A 2-g ping-pong ball rubbed against a wool jacket acquires a net 

positive charge of 1 µC. Estimate the fraction of the ball’s elec-
trons that have been removed.

39. Two charges, one whose magnitude is twice as large as the oth-
er’s, are located 12.5 cm apart and experience an attractive force 
of 143 N. (a) What’s the magnitude of the larger charge? (b) Can 
you determine the sign of the larger charge?

40. A proton is on the x-axis at x = 1.6 nm. An electron is on the  
y-axis at y = 0.85 nm. Find the net force the two exert on a 
 helium nucleus (charge +2e) at the origin.

41. A 9.5@µC charge is at x = 15 cm, y = 5.0 cm and a -3.2@µC 
charge is at x = 4.4 cm, y = 11 cm. Find the force on the nega-
tive charge.

42. A charge 3q is at the origin, and a charge -2q is on the posi-
tive x-axis at x = a. Where would you place a third charge so it 
would experience no net electric force?

43. A negative charge -q lies midway between two positive charges 
+Q. What must Q be such that the electric force on all three 
charges is zero?

44. In Fig. 20.29, take q1 = 68 µC, q2 = -34 µC, and q3 = 15 µC. 
Find the electric force on q3.

x (m)

y (m)

2

1

1 2 3

q1

q3

q2

Figure 20.29 Problems 44 and 45

45. In Fig. 20.29, take q1 = 25 µC and q2 = 20 µC. If the force on 
q1 points in the -x-direction, find (a) q3 and (b) the magnitude of 
the force on q1.
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69. An electric quadrupole consists of two oppositely directed di-
poles in close proximity. (a) Calculate the field of the quadrupole 
shown in Fig. 20.33 for points to the right of x = a and (b) show 
that for x W a the quadrupole field falls off as 1/x4.

+q

x = -a

+q

x = a

-2q

x = 0

x

Figure 20.33 Problem 69

70. You measure the electric field on a dipole’s axis, at a distance 
from the dipole that’s large compared with the separation of the 
two charges in the dipole. If you maintain that distance but move 
to a point located at 45° from the dipole axis, by what factor will 
the magnitude of the electric field change? Will the field increase 
or decrease?

71. A straight wire 10 m long carries 25 µC distributed uniformly 
over its length. (a) What’s the line charge density on the wire? 
Find the electric field strength (b) 15 cm from the wire axis, not 
near either end, and (c) 350 m from the wire. Make suitable ap-
proximations in both cases.

72. Figure 20.34 shows a thin rod of length L carrying charge Q 
distributed uniformly over its length. (a) What’s the line charge 
density on the rod? (b) Modify the calculation of Example 20.7 
to find an expression for the electric field at a point P a distance 
y along the perpendicular bisector. (c) Show that your result re-
duces the the field of a point charge when � y � W L.

x

y

P

L

Figure 20.34 Problem 72

73. Figure 20.35 shows a thin, uniformly charged disk of radius R. 
Imagine the disk divided into rings of varying radii r, as sug-
gested in the figure. (a) Show that the area of such a ring is very 
nearly 2pr dr. (b) If the disk carries surface charge density s, 
use the result of part (a) to write an expression for the charge dq 
on an infinitesimal ring. (c) Use the result of (b) along with the 
result of Example 20.6 to write the infinitesimal electric field dE 
of this ring at a point on the disk axis, taken to be the positive  
x-axis. (d) Integrate over all such rings to show that the net elec-
tric field on the axis has magnitude

  E = 2pks a1 -
x2x2 + R2

b

dr

r

R

x

Figure 20.35 Problem 73

74. Use the result of Problem 73 to show that the field of an infi-
nite, uniformly charged flat sheet is 2pks, where s is the surface 
charge density. (This result is independent of distance from the 
sheet.)

61. You have a job examining patent applications. You’re presented 
with the device in Fig. 20.30, which its inventor claims will sepa-
rate isotopes of a particular element. Atoms are first stripped 
completely of their electrons, then accelerated from rest through 
an electric field chosen to give the desired isotope exactly the 
right speed to pass through the electrostatic analyzer (see Exam-
ple 20.8). Will the device work?

E2
S

E1
S

+ + + + + + + +

- - - - - - - -

Analyzer

Accelerating
field

Figure 20.30 Problem 59

62. A 5.0@µm strand of DNA carries charge +e per nm of length. 
Treating it as a charged line, what’s the electric field strength  
25 nm from the DNA, not near either end?

63. A molecule has its dipole moment aligned with a 1.2-kN/C elec-
tric field. If it takes 3.1 * 10-27 J to reverse the molecule’s orien-
tation, what’s its dipole moment?

64. Two identical dipoles, each of charge q and separation a, are 
a distance x apart, as shown in Fig. 20.31. (a) By considering 
forces between pairs of charges in the different dipoles, calculate 
the force between the dipoles and show that, in the limit a V x, 
it has magnitude 6kp2/x4, where p = qa is the dipole moment. 
(b) Is the force attractive or repulsive?

- + - +
a a

x

Figure 20.31 Problem 64

65. A dipole with charges {q and separation 2a is located a distance 
x from a point charge +Q, oriented as shown in Fig. 20.32. Find 
expressions for the magnitude of (a) the net torque and (b) the 
net force on the dipole, both in the limit x W a. (c) What’s the 
direction of the net force?

-

+
+Q

2a

x

-q

+q

Figure 20.32 Problem 65

66. An electron is at the origin, and an ion with charge +5e is at 
x = 10 nm. Find a point where the electric field is zero.

67. You’re taking physical chemistry, and your professor is discuss-
ing molecular dipole moments. Water, he says, has a dipole mo-
ment of “1.85 debyes,” while carbon monoxide’s dipole moment 
is only “0.12 debye.” Your physics professor wants these mo-
ments expressed in SI. She tells you that the atomic separation in 
these two covalent compounds is about the same, and asks what 
that indicates about the way shared charge is distributed. What do 
you tell her?

68. The electric field on the axis of a uniformly charged ring has 
magnitude 380 kN/C at a point 5.0 cm from the ring center. The 
magnitude 15 cm from the center is 160 kN/C; in both cases the 
field points away from the ring. Find (a) the ring’s radius and  
(b) its charge.
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374 Chapter 20 Electric Charge, Force, and Field

 indirectly  detected by electrocardiography. Although the direction of 
the heart’s dipole moment varies, Fig. 20.38c is typical. In answering 
the  questions that follow, consider the heart in isolation—don’t con-
cern yourself with the effect of surrounding tissues on its electric field.
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(a)

(b)

(c)

Figure 20.38 Heart cells (a) in the resting state and (b) partially depolarized, 
resulting in a dipole moment pu. (c) Typical orientation of the heart’s dipole 
moment vector. Cells along the line are depolarizing.

82. At a distance r, far from the heart, the heart’s electric field
a. falls off as 1/r.
b. falls off as 1/r2.
c. falls off as 1/r3.
d. falls off as 1/r4.

83. At a given distance, far from the heart compared with its size, the 
electric field
a. is weaker along an extension of the line shown in Fig. 20.38c 

than on a perpendicular line.
b. is stronger along a an extension of the line shown in Fig. 20.38c  

than on a perpendicular line.
c. has the same value at positions perpendicular and parallel to 

the line in Fig. 20.38c.
84. The difference between Figs. 20.38a and 20.38b that results in an 

external electric field in one case but not the other is that
a. there’s no net charge in Fig. 20.38a but there is a net charge 

in Fig. 20.38b.
b. the total charge is greater in Fig. 20.38a.
c. the charge is distributed in Fig. 20.38b so there’s more nega-

tive charge to the left and more positive charge to the right.
85. At the instant shown in Fig. 20.38c, there’s an electric field 

within the heart that points approximately
a. in the direction of the dipole moment vector p

!
.

b. opposite the dipole moment vector p
!
.

c. perpendicular to the dipole moment vector p
!
.

answers to Chapter Questions

answer to Chapter opening Question
The electric field in the atmosphere must be strong enough to rip elec-
trons from air molecules, making the air an electrical conductor. This 
typically happens when E exceeds about 3 MV/m.

answers to Got It? Questions
 20.1  (c) uud because its net charge is +e (udd is the neutron)
 20.2  (1) - in; (2) - 12

2  in + 12
2  jn; The unit vector always points away 

from the source charge regardless of the sign.
 20.3  (a)
 20.4  (1) drops by 1/22, to 200 N/C; (2) drops by 1/23, to 100 N/C
 20.5  carbon-13, (oxygen-16, helium-4, deuteron—all the same), 

 helium-3, proton, electron

75. Use the binomial theorem to show that, for x W R, the result 
of Problem 73 reduces to the field of a point charge whose total 
charge is the charge density times the disk area.

76. A semicircular loop of radius a carries positive charge Q distrib-
uted uniformly. Find the electric field at the loop’s center (point P 
in Fig. 20.36). (Hint: Divide the loop into charge elements dq as 
shown, write dq in terms of the angle du, then integrate over u.)

u
P

a

du
dq

Figure 20.36 Problem 76

77. In Example 20.2, find the position on the y-axis where Q will 
experience the greatest force.

78. A thin rod carries charge Q distributed uniformly over its length 
L and is situated on the x-axis between x = {L/2. (a) Find the 
electric field at an arbitrary point 1x, y2. (You’ll have to do sepa-
rate integrals for the x- and y-components.) (b) Show that your 
result reduces to that of Problem 72 when x = 0 and to that of 
Problem 57 when y = 0 and x 7 L/2.

79. A thin rod extends along the x-axis from x = 0 to x = L and 
carries line charge density l = l01x/L22, where l0 is a constant. 
Find the electric field at x = -L.

80. A rod of length 2L lies on the x-axis, centered at the origin, and 
carries line charge density l = l01x/L2, where l0 is a constant. 
(a) Find an expression for the electric field strength at points on 
the x-axis for x 7 L. (b) Show that for x W L your result has 
the 1/x3 dependence of a dipole field, and determine the dipole 
moment of the rod.

81. You’re working on the design of an ink-jet printer. Ink drops of 
mass m, speed v, and charge q will enter a region of uniform elec-
tric field E between two charged plates (Fig. 20.37). The drops 
enter midway between the plates, and the electric field deflects 
them toward the correct place on the page. Find an expression for 
the maximum electric field for which drops can still get through 
without hitting either plate.

v
u

E
S

+ + + + + + +

- - - - - - -

d

L

Figure 20.37 Problem 81

Passage Problems
BIO The human heart consists largely of elongated muscle cells, 
some 100 µm long and 15 µm in diameter. In its resting state, a cell 
contains two concentric layers of charge, which confine the electric 
field to the cell membrane (Fig. 20.38a). When the heart contracts, 
a wave of depolarization sweeps through, depleting charge and giv-
ing each cell a dipole moment (Fig. 20.38b). As a result, the entire 
organ acts like an electric dipole, producing an external field, which is 

CH

CH

CH

CH
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In this chapter we introduce an elegant way of describing electric fields that makes it much 
easier to calculate the fields of certain charge distributions. In the process we’ll  formulate 

one of the four fundamental laws of electromagnetism—a statement that embodies  
Coulomb’s law but that gives deeper insights into the electric field.

21.1 Electric Field Lines
We can visualize electric fields by drawing electric field lines, continuous lines whose 
direction is everywhere the same as that of the electric field. To draw a field line, de-
termine the field direction at some point. Move a small distance in the direction of the 
field, and evaluate the field direction at the new point. Extending the process in both 
directions from your starting point traces out an electric field line. You’ll find that field 
lines begin on positive charges and either end on negative charges or extend to infinity. 
Drawing many field lines gives a picture of the overall field.

To explore the field of a positive point charge, as shown in Fig. 21.1a, start near the 
charge. The field points radially outward, so move a little way outward. The field is 
still radial. Repeat the process, and you’ll trace a straight line that extends indefinitely. 

How You’ll Use It
■ Gauss’s law will continue to provide a 

practical approach to finding electric 
fields in upcoming chapters.

■ You’ll use the flux concept again with 
magnetic fields.

■ You’ll eventually join Gauss’s 
law with the other three laws of 
electromagnetism to give a complete 
description of electromagnetic 
phenomena.

What You’re Learning
■ You’ll learn how to describe electric 

fields visually using electric field lines.

■ You’ll see how counting the field lines 
emerging from closed surfaces leads 
to a profound but simple statement 
about the behavior of the electric 
field.

■ You’ll learn the concept of electric 
flux and use it to develop Gauss’s law, 
one of the four fundamental laws of 
electromagnetism that expresses, in 
a very different way, the content of 
Coulomb’s law.

■ You’ll see how Gauss’s law makes 
it straightforward to calculate 
electric fields of symmetric charge 
distributions.

■ You’ll learn the implications of Gauss’s 
law for electrostatic equilibrium in 
electrical conductors.

What You Know
■ You understand how Coulomb’s law 

describes the electric force between 
two point charges.

■ You know that the superposition 
principle allows you to sum vectorially 
the forces from multiple point 
charges.

■ You’re familiar with the concept of 
electric field as a way of representing 
the force per unit charge produced 
by an individual charge or charge 
distribution.

■ You’ve calculated forces and fields 
associated with several simple charge 
distributions.

Gauss’s Law

Huge sparks jump to the operator’s cage in 
the Hall of Electricity at the Boston Museum of 
 Science, but the operator is unharmed. Why?
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376 Chapter 21 Gauss’s Law

So the field lines of a positive point charge are straight lines that begin on the charge and 
extend radially to infinity (Fig. 21.1b).

In Fig. 21.1b the field lines spread apart as they extend farther from the point charge. 
Coulomb’s law shows that the field weakens farther from the charge, so in Fig. 21.1b the 
field is stronger where the lines are closer and weaker where they’re farther apart. This 
is generally true, and lets us infer the field’s relative magnitude as well as direction from 
field-line pictures.

To trace the field lines of a charge distribution, follow the net field—the vector sum 
of the field contributions from all charges in the distribution. Usually the field direction 
varies, so the line is curved. Figure 21.2a shows the details for one field line of a dipole. 
Figure 21.2b shows a number of dipole field lines; here you can see that the field is strong-
est near the individual charges and in the region between them. The electric field exists 
everywhere, so there are really infinitely many field lines. We can’t draw them all, but in 
order to make field-line pictures somewhat precise, we associate a fixed number of field 
lines with a charge of a given magnitude. In Fig. 21.3, for example, eight field lines cor-
respond to a charge of magnitude q. Study the figure, and you’ll see how all the fields are 
consistent with this convention.

Figure 21.1 Vectors (a) and field lines (b) provide two ways to visualize the electric field.

Vectors give the 
electric �eld’s 
magnitude and
direction at speci�c 
points.

Continuous �eld lines
have the same direction
as the electric �eld.

Where the lines
are closer together,
the �eld is stronger.

(a) (b)

Figure 21.2 Field of an electric dipole. (a) At 
each point, the field-line direction is that of the 
net electric field, E

S
= E

S
+ + E

S
-. (b) Tracing 

many field lines shows the overall dipole field.

E
S

E-
S

E+
S

Field
line

Direction of
net �eld is
tangent to
�eld line.

Field is 
strongest

where lines
are closest.

(a)

(b)

Figure 21.3 Field lines for six charge distributions, using the convention that eight 
lines correspond to a charge of magnitude q.

Eight lines begin on +q c so 16 lines begin on +2q c and eight end on -q.

Eight lines begin on each +q. Eight lines begin on +q
 and eight end on -q.

Eight lines begin on +q.
Four go to in�nity

and four end on -q>2.

(a) (b) (c)

2q
-q

(d)

q q -q +q

(e) (f)

-q>2
q

q
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21.2 Electric Field and Electric Flux 377

Got It? 21.1 Which figure represents the electric field of a charge distribution 
 consisting of +2q and -q/2, using the convention that eight lines correspond to a charge 
of magnitude q?

(a)

-q>2
2q

(b)

-q>2
2q

(c)

-q>2
2q

21.2 Electric Field and Electric Flux
In Fig. 21.4 we’ve surrounded each charge distribution from Fig. 21.3 with several 
 surfaces. Each surface is closed, so it’s impossible to get from inside to outside without 
crossing the surface. (Figure 21.4 shows only the two-dimensional cross section of each 
surface.) How many field lines emerge from within each surface?

In Fig. 21.4a the answer for surfaces 1 and 2 is eight. For surface 3 one field line 
crosses twice going out and once going in; if we count the inward-going line as negative, 
then there’s still a net of eight lines going out. Any closed surface surrounding +q will 
have eight lines emerging from it, for the simple reason that eight lines begin on the charge 
and extend to infinity; to get there they all have to cross the closed surface.

Figure 21.4 The number of field lines emerging from a closed surface depends only on the net charge enclosed.

Eight �eld lines
emerge from
surfaces 1
and 2.

Sixteen lines emerge from
surfaces 1, 2, and 3.

(c) is like (a) but now
lines go inward, so -8
lines emerge from 
surfaces 1, 2, and 3.

These three count as 
one outward crossing,
so eight lines emerge
from surface 3.

And still no
net lines cross
surface 4.

No net lines
cross surface 4.

Inward and outward
crossings sum to
zero net crossings for
surface 4.

(a) (b) (c)

But zero net lines emerge
from surface 4.

But zero net lines
emerge from surface 3.

Eight lines emerge
from surface 2.

Going inward, -8 lines
emerge from surface 1.

Count these �eld lines!

Eight lines emerge from
surfaces 1 and 2 c

cand 16 from
surface 3.

(d) (e) (f)

2

3

41

q

3

4

2q 2

1

2

3

41

-q

1

2

3

4

q q
2

1

3

-q +q
2

3
1

4

-q>2 q
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378 Chapter 21 Gauss’s Law

What about surface 4? Two lines cross going outward and two inward, for a net of 
zero lines emerging. What’s different is that surface 4 doesn’t enclose the charge. You can 
 convince yourself that any surface not enclosing the charge will have as many lines going 
in as out, for zero net field lines emerging.

Figure 21.4b is identical except that now 16 field lines emerge from any surface sur-
rounding the charge: +2q enclosed, so 16 field lines emerge. And Fig. 21.4c is similar, 
too, but with the negative charge, the field lines go inward and we count them as  negative: 
-q enclosed, so -8 field lines emerge. And, in all three cases, zero net lines emerge from 
surface 4, the one that doesn’t enclose the charge: zero charge enclosed, so zero field lines 
emerging. The same is true even for surface 3 surrounding the dipole in Fig. 21.4e; here 
there are two charges within the surface, but the net charge enclosed is zero, and sure 
enough, there are zero net field lines emerging. Study the rest of Fig. 21.4 and you can 
convince yourself that in all cases the number of field lines emerging from any closed 
surface is proportional to the net charge enclosed.

This statement is very general. It doesn’t matter what shape the surface is or whether 
the enclosed charge is a single point charge or a lot of charges carrying the same net 
charge. Nor does it matter how the charges are arranged, as long as they’re enclosed by 
the surface in question. The presence of charges outside the surface doesn’t alter our 
 conclusion about the number of field lines emerging—although it may alter the shapes of 
the field lines. We’ll now rephrase our statement mathematically to obtain one of the four 
fundamental laws of electromagnetism. As we proceed, remember that the mathematics 
just reflects what’s clear from Fig. 21.4: The number of field lines emerging from a closed 
surface depends only on the net charge enclosed.

the Flux Concept
There are many situations in physics and engineering where we characterize flows, such as 
the flow of a fluid like blood through a vein or water in a pipe or river (Chapter 15—also of 
interest to physiologists, hydrologists, and civil engineers and measured, in SI, in  kilograms 
per second); the flow of heat through insulation and other materials ( Chapter 16—also of 
interest to building engineers, biologists, and many others, and measured in watts); the 
flow of momentum (responsible for viscosity, Chapter 15; also of interest in atmospheric 
science, oceanography, mechanical and chemical engineering and measured—this makes 
sense in terms of Newton’s law—in kg #  m/s2 or newtons); and, coming in  Chapter 24, 
 electric current as a flow of electric charge. Each of these flows is a flux—a term that 
comes from the Latin fluxus, for “flow.” In each case we can represent the flow as we did 
in Chapter 15 for fluids—by drawing lines that give the local direction of the flow. As  
Fig. 15.11 showed, those lines are closer where the flow speed is higher and vice versa. 
Those last two sentences should remind you of Section 21.1’s recipe for drawing electric 
field lines, and how the proximity of field lines describes the strength of the field.

We can describe flows in more detail by giving the flow rate per unit area—which 
we could equally well call the flux per unit area. For a fluid, that would be measured in 
kilograms per second per square meter (kg/s #  m2). If that quantity were uniform across the 
flow, then we could find the total flux by multiplying the flux per unit area by the area. For 
example, a river with cross-sectional area 25 m2 and a flux per unit area of 100 kg/s #  m2 
would carry a total flux of 2500 kg/s. If the flow per unit area weren’t uniform, then we’d 
have to consider small patches of area, calculate the flux over each, and sum the results. 
We’ll quantify that process shortly.

Electric Flux
In the case of electric fields, there’s nothing “flowing.” But electric field lines are analo-
gous to the streamlines we’ve used to describe fluid flow. Their direction gives the local 
direction of the electric field, and their proximity reflects the field strength. Furthermore, 
field lines begin or end only on electric charges; otherwise, they extend continuously to 
infinity. This property of electric fields—which you’ll soon see is intimately related to 
Coulomb’s law—is analogous to the conservation of matter in fluid flows. So we use the 
term electric flux to describe the electrical analog of the flux of a fluid. In the simplest 
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21.2 Electric Field and Electric Flux 379

case of a uniform electric field of magnitude E perpendicular to an area A, the flux of the 
electric field is Φ = EA, in analogy with our finding the flux in a river by multiplying the 
flux per unit area by the river’s cross-sectional area. Here we use Φ, the capital Greek phi, 
as our symbol for electric flux.

What good is electric flux? Figure 21.5 gives the answer, showing that electric flux 
carries the same information as the “number of field lines crossing a surface” that was 
so important in our discussion of Fig. 21.4. Consider first the flux through a flat surface. 
Comparison of Figs. 21.5a and b shows that the number of field lines crossing a given 
surface is larger when the field is stronger—a fact that’s precisely captured in our formula 
Φ = EA. Comparison of Figs. 21.5b and c shows further that, for a given field strength, 
the number of field lines crossing a given surface is larger when the surface is larger. 
Again, Φ = EA captures this situation. Finally, Fig. 21.5d shows that the number of field 
lines is reduced when the surface is tilted relative to the field. You can also see this effect in 
Fig. 21.6, which shows a water-flow analogy. Specifically, the flux is reduced by a  factor 
cos u, where u is the angle between the electric field E

S
 and a vector A

S
that’s  normal to the 

surface. So our flux expression generalizes to Φ = EA cos u. If we define the normal vec-
tor A

S
as having magnitude equal to the surface area A, then we can write the electric flux 

through a flat surface in a uniform electric field using the dot product:

 Φ = E
S

  #   A
S

 (21.1)

where the dot product, defined in Chapter 6, is the product of the two vector magnitudes 
with the cosine of the angle between them. Since the units of E

S
 are N/C, flux is measured 

in N #  m2/C.
The surfaces in Fig. 21.5 are open surfaces, meaning it’s possible to get from one side 

to the other without passing through the surface. For open surfaces there’s an ambiguity in 
the sign of Φ, since we could have taken A

S
in either of the two directions along the per-

pendicular to the surface. But for closed surfaces, we unambiguously define the direction 
of A

S
as the direction of the outward-pointing normal to the surface.

✓tIp The Flux Is Not the Field

The flux Φ and field E
S

 are related but distinct quantities. The field is a vector defined 
at each point in space. The flux is a scalar and a global property, depending on how the 
field behaves over an extended surface rather than at a single point; it’s a quantification 
of the number of field lines crossing a surface.

What if a surface is curved and/or the field varies with position? Then we divide the 
surface into patches, each small enough that it’s essentially flat and that the field is essen-
tially uniform over each (Fig. 21.7). If a patch has area dA, then Equation 21.1 gives the 
flux through it: dΦ = E

S
 #   dA

S
, where the vector dA

S
is normal to the patch. The total flux 

through the surface is then the sum over all the patches. If we make the patches arbitrarily 
small, that sum becomes an integral, and the flux is

 Φ = Lsurface
E
S

  #   dA
S

 (21.2)

Figure 21.5 Electric flux through flat surfaces.

A
S

E
S

With a stronger
�eld than in (a),
the �ux is greater.

A smaller surface
area than in (b)
reduces the �ux.

The vector A is
perpendicular to
the surface and
has magnitude
equal to the
surface area.

The electric �ux
Φ depends on the
angle u between
A and E.

(a)

(b)

(c)

(d)

u

S

S S

Figure 21.6 A water-flow analogy for electric flux, showing a circular hoop immersed 
in a flow of water.

Here the hoop is perpendicular
to the �ow, giving the
maximum �ow—that is, �ux—
through the hoop.

With the hoop tilted,
less water passes
through it, so the 
�ux is lower.

Here the hoop is parallel
to the �ow.  No water 
passes through it, so the
�ux is zero.

Figure 21.7 Finding the flux through a small 
area dA, so small it’s essentially flat.

E
S

E
S

Although the surface curves
and the �eld varies c

cthe �ux 
through a 
small enough
patch is 
dΦ = E # dA.

dA

S

S

S
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380 Chapter 21 Gauss’s Law

The limits of the integral range over the entire surface, picking up contributions from all 
the patches dA

S
. The result is a surface integral—in general, the integral of a vector field 

over a surface, with the orientation of field and surface taken into account. Tactics Box 21.1 
shows the meaning of such a surface integral. Although a surface integral can be difficult to 
evaluate, we’ll find it most useful in situations where its evaluation is almost trivial.

Figure 21.8 Meaning of the surface integral 
for electric flux, here for the case of a surface 
that isn’t flat. (a) The surface is a half-cylinder 
in a uniform electric field E

S
. (b) The total flux 

through the surface is the sum of the fluxes 
dΦ = E

S
 #  d A

S
 over all the little patches consti-

tuting the surface, four of which are shown. In 
the limit that the patches become infinitesi-
mally small, that sum becomes the integral in 
Equation 21.2.

E
S

E
S

E
S

E
S E

S

To �nd dΦ, form the product 
of the vector magnitudes E and dA
and the cosine of u:
dΦ = EdA cosu,
also written dΦ = E # dASS

(a)

(b)

dA1
S

dA2
S dA3

S

dA4
S

u1

TacTics 21.1 Surface Integrals

The math in Equation 21.2 looks complicated, with two vectors and a dot product inside the integral and 
limits that specify an entire surface. Figure 21.8 helps decipher this math. The figure shows a surface, 
which could be arbitrary but in this case is half a cylinder including its semicircular end caps. This surface 
is immersed in an electric field E

S
 (Fig. 21.8a), which in this case is uniform but need not be. Figure 21.8b 

shows several small patches of the surface area. Each patch is described by a vector dA
S

with magnitude 
equal to the area of the corresponding small patch and direction given by the normal to that patch, similar 
to the patch we showed in Fig. 21.7. At each patch we consider the direction of the normal vector dA

S
rela-

tive to the electric field E
S

 at that patch, and we form the quantity E dA cos u or, written more compactly, 
E
S

 #  dA
S

. What is this quantity? It’s the flux, dΦ, through the small patch. Although it’s formed from two 
vectors, dΦ itself is a scalar. So to find the total flux through our surface, all we have to do is add up all 
those little dΦs. And that—in the limit that the dΦs become infinitesimally small and infinitely many—is 
the meaning of the surface integral in Equation 21.2. As you work through this chapter, you’ll see many 
instances where we evaluate such surface integrals. We’ll be able to choose surfaces that make the actual 
evaluation straightforward—but to appreciate that evaluation you’ll need to understand the meaning of the 
surface integral as we’ve outlined it here.

21.3 Gauss’s Law
We’ve seen that the number of field lines emerging from a closed surface is proportional 
to the charge enclosed. Now that we’ve developed electric flux to express more rigorously 
the notion “number of field lines,” we can state that the electric flux through any closed 
surface is proportional to the net charge enclosed by that surface. Writing the same 
thing mathematically gives Φ = AE

S
 #  dA

S
∝ qenclosed, where the circle indicates that the in-

tegral is over a closed surface.
To evaluate the proportionality between flux and charge, consider a positive point 

charge q and a spherical surface of radius r centered on the charge (Fig. 21.9). The flux 
through this surface is given by Equation 21.2:

Φ = CE
S

 #  dA
S

= CE dA cos u

But Fig. 21.9 shows that the surface normal dA
S

 and the electric field E
S

 are parallel at any 
point on the sphere, so cos u = 1. Since the electric field varies as 1/r2, its magnitude is 
the same everywhere at the fixed radius r of our sphere. Thus, we can take E outside the 
integral, giving

Φ = Csphere
E dA = ECsphere

dA = E14pr22

where the last step follows because AdA is just the surface area of the sphere, namely 4pr2. 
(Here’s the first of many cases where the evaluation of a surface integral is  straightforward 
because of the symmetry of the electric field and of the surface we’re integrating over.) 
Now, the electric field of a point charge is given by Equation 20.3: E = kq/r2. So we have 

Got It? 21.2 The figure shows a 
cube of side s in a uniform electric field E

S
.  

(1) What’s the flux through each of the 
three cube faces A, B, and C with the cube 
oriented as in (a)? (2) Repeat for the ori-
entation in (b), with the cube rotated 45°.

E
S

45°

B

Cs

(a) (b)

A A

B

C

s
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21.3 Gauss’s Law 381

Φ = E14pr22 = 1kq/r2214pr22 = 4pkq. Since the point charge q is the only charge in-
side our spherical surface, the proportionality constant between flux and  enclosed charge 
is 4pk.

Before proceeding, we introduce the so-called permittivity constant P0, defined 
as P0 = 1/4pk, where k is the Coulomb constant. The value of P0 is approximately 
8.85 * 10-12 C2/N #  m2. There’s no physics here, just a new constant that conveys the same 
information as k. That there are two redundant constants is a historical artifact, and we 
switch now from k to P0 because doing so makes subsequent formulas simpler. In terms of 
P0, the proportionality 4pk between flux and enclosed charge becomes 1/P0. So our state-
ment that the flux through any closed surface is proportional to the net charge enclosed 
becomes

 CE
S

 #  dA
S

=
qenclosed

P0
  1Gauss>s law2 (21.3)

Here the integral is taken over any closed surface, and qenclosed is the charge enclosed by 
that surface.

Equation 21.3 is Gauss’s law, one of four fundamental relations that govern the 
 behavior of electromagnetic fields throughout the universe. Whether you journey into 
a star in some remote galaxy, down among the strands of a DNA molecule, or into the 
 microprocessor chip at the heart of your computer, you’ll find that the flux of the electric 
field through any closed surface depends only on the enclosed charge. In nearly 200 years 
of experiments, no electric field has ever been found to violate Gauss’s law.

Gauss’s law, though clothed in the mathematical finery of a surface integral, is just a 
more rigorous way of saying what’s clear in Fig. 21.4: The number of field lines emerging 
from a closed surface is proportional to the net charge enclosed.

Gauss and Coulomb
Gauss’s law and Coulomb’s law look completely different, but they’re closely related. 
 Figure 21.10 shows that their relationship involves the inverse-square law. Gauss’s law 
tells us that the flux through the two surfaces in the figure is the same and is equal to 
q/P0. But why? Because, as our arguments leading to Gauss’s law show, the flux through 
a spherical surface of radius r centered on a point charge is the product of the surface area 
4pr2 and the electric field E at the surface. But Coulomb’s law says that the electric field 
drops off as 1/r2. As r increases, the surface area grows as r2, but the 1/r2 decrease in field 
strength just compensates, giving a constant value for the flux. If the inverse-square law 
(e.g., Coulomb’s law) didn’t hold, then the flux wouldn’t be constant and Gauss’s law 
wouldn’t hold either.

It’s also the inverse-square law that makes electric field-line pictures useful for visualiz-
ing fields. Field lines begin or end only on charges; otherwise, they go off to infinity. As the 
field lines of a point charge spread in three dimensions, the number crossing any spherical 
surface (or any closed surface) remains the same. But larger spheres have larger surface ar-
eas, in proportion to r2—and that means the density of field lines drops as 1/r2, accurately 
reflecting the field strength. Once again, the inverse-square law (Coulomb) and the relation 
between flux and enclosed charge (Gauss) are intimately connected. Incidentally, field-line 
pictures printed in a book or drawn on a blackboard generally can’t be quantitatively cor-
rect because they don’t show the spreading of field lines in all three  dimensions.

We’ve been talking here only about isolated point charges, but Gauss’s law applies to 
all electric fields, no matter how complicated the charge distributions that produce them. 
That’s because the superposition principle allows us to add vectorially the electric fields 
described individually by Coulomb’s law for the point-charge field. So our  argument 
leading to Gauss’s law still applies when the field E

S
 is a superposition of point-charge 

fields.
For static charge distributions, Gauss’s and Coulomb’s laws are completely equivalent. 

But with moving charges only Gauss’s law remains exact. So Gauss’s law is more funda-
mental, and we count it among the four basic laws of electromagnetism.

E
S

E
S

r

q

The �eld’s
magnitude
is the same
over the
sphere c

cand at
each point
E and dA
are parallel.

S

dA
S

S

Figure 21.9 The electric field of a point charge, 
shown with a spherical surface centered on 
the charge.

E
S

The outer sphere has
4 times the surface area c

cso the �ux
is the same.

r 2r

cbut the �eld
is      as strong c1

4

Figure 21.10 Gauss’s law follows from the 
inverse-square aspect of Coulomb’s law.
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382 Chapter 21 Gauss’s Law

A spherical
surface surrounds
a point charge.

A second charge
is placed outside
the surface. What
happens to the 
total �ux through
the surface c

cand to the electric 
�eld at this point?

Got It? 21.3 A spherical surface 
 surrounds an isolated positive charge, as 
shown. (1) If a second charge is placed 
 outside the surface, which of the following 
will be true of the total flux through the sur-
face? (a) It doesn’t change; (b) it increases; 
(c) it  decreases; (d) it increases or decreases 
depending on the sign of the second charge. 
(2) Repeat for the electric field on the surface 
at the point between the charges.

21.4 Using Gauss’s Law
Gauss’s law is a universal statement about electric fields; it’s true for any surface enclos-
ing any charge distribution. For charge distributions with sufficient symmetry— symmetric 
about a point, a line, or a plane—Gauss’s law also provides a powerful alternative to 
 Coulomb’s law that makes electric-field calculations much easier. For such distributions it’s 
possible to evaluate the flux integral on the left-hand side of Gauss’s law (Equation 21.3)  
without actually knowing the field. We can then solve for E in terms of the enclosed 
charge. We begin with a general strategy for applying Gauss’s law to symmetric charge 
distributions, followed by examples of the three symmetries.

Problem-solving sTraTegy 21.1 Gauss’s Law

IntErprEt Check that your charge distribution has sufficient symmetry to use Gauss’s law to 
find the electric field, and identify the symmetry. Is it spherical, line, or plane? If the charge 
distribution doesn’t exhibit one of these symmetries, then Gauss’s law—though always true—
won’t help you find the field.

DEvELop Draw a diagram showing the charge distribution, and use the symmetry to infer the 
direction of the electric field. Then draw an appropriate Gaussian surface—an imaginary, 
closed surface that will let you evaluate the flux integral in Gauss’s law. The field should have 
constant magnitude over the surface and should be perpendicular to the surface. Sketch some 
field lines; the symmetry should indicate their direction. With line and plane symmetry, there 
may be parts of the surface where the field is perpendicular and parts where it’s parallel; we’ll 
show in examples how to handle these situations. If you can’t find a suitable Gaussian surface, 
there probably isn’t sufficient symmetry to use Gauss’s law to calculate the field.

EvaLUatE 

•   Evaluate the flux Φ = AE
S

 #  dA
S

 over your Gaussian surface. Since you’ve found a  surface 
to which the field is perpendicular, E

S
 and the surface normal vector dA

S
 are  parallel, so 

cos u = 1 and the dot product becomes E dA. With the field strength E  constant over the 
surface, it can come out of the integral, leaving AdA. And that’s the surface area A. So the 
flux will be EA. By carefully choosing your Gaussian surface, you’ve turned that messy 
integral in Equation 21.2 into a mere multiplication!
If E

S
 is parallel to some parts of the area—as happens in line and plane symmetry— 

then E
S  
# dA

S
, so E

S
 #  dA

S
= 0 and there’s no contribution to the flux from those areas.

•   Evaluate the enclosed charge. This may or may not be the same as the total charge, 
 depending on whether the position at which you’re evaluating the field lies outside or 
inside the charge distribution.

•   Evaluate the field E by invoking Gauss’s law, equating the flux to qenclosed/P0, and  solving 
for E. This is the field magnitude; the direction should be evident from symmetry.

aSSESS Does your answer make sense? Does the field behave as you would expect given 
what you know of simpler charge distributions—point charges, line charges, or charged sheets, 
 depending on the symmetry?

You’ll quickly get the hang of this strategy because Gauss’s law is useful for finding the 
field only in the three common symmetries. That means you need to evaluate the integral 
for the flux just once for a given symmetry.
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Spherical Symmetry
A charge distribution has spherical symmetry when the charge density depends only on 
the radial distance r from the center of the distribution—also called the point of  symmetry. 
A point charge is one example, as are the three charge distributions we’ll now treat in 
 Examples 21.1 through 21.3. In fact, any spherical charge distribution has spherical 
 symmetry, provided the charge density varies solely with distance from the center. The 
only electric field consistent with spherical symmetry is a field that points in the radial 
direction, either away from or toward the point of symmetry. We’ll start with the simplest 
case, a charged spherical shell.

ExampLE 21.1  Gauss’s Law: a Hollow Spherical Shell

A thin, hollow spherical shell of radius R has total charge Q distrib-
uted uniformly over its surface. Find the electric field (a) outside and 
(b) inside the shell.

inTerPreT This is a spherically symmetric charge distribution, so we 
can use Gauss’s law to find the field.

DeveloP With spherical symmetry, the field lines have to point ra-
dially outward for a positive charge and inward for a negative one. 
We’ve sketched the charged shell and some field lines outside it in 
Fig. 21.11. With spherical symmetry, the appropriate Gaussian sur-
faces are also spheres centered on the center of the shell. Since we’re 
asked for the field both outside and inside the shell, we’ve sketched 
one such surface outside the shell and one inside.

evaluaTe 
•   We first evaluate the flux integral Φ = AE

S
 #  dA

S
 that appears on 

the left-hand side of Gauss’s law. With our choice of a spherical 

Gaussian surface, the field is everywhere perpendicular to the 
surface, or parallel to the normal vector dA

S
 (recall Fig. 21.9). 

So cos u = 1, and the dot product becomes just E dA. With our 
Gaussian surface being a sphere centered on the point of sym-
metry, the field magnitude E is the same all over the Gaussian 
surface. So E comes outside the integral, leaving Φ = EAdA.  
The remaining integral is  the sum of all the little areas dA over 
the spherical Gaussian surface—and that’s the surface area 
of a sphere, A = 4pr2. The flux then  becomes Φ = 4pr2E.  
Note that this result doesn’t depend on whether the sur-
face is outside or inside the shell or on the particular value of 
its  radius r; it follows from the symmetry and our choice of a 
spherical Gaussian surface alone. So it holds for both  Gaussian 
surfaces shown in Fig. 21.11, outside and inside the shell.

•   Now we evaluate the enclosed charge. That is different for the 
two surfaces, so we’ll deal first with (a), the field outside the 
shell. For this we consider the Gaussian surface marked (a); it’s 
outside the shell, so it encloses the entire charge Q. Substitut-
ing our expression for the flux, Φ = 4pr2E, into Gauss’s law, 
Φ = AE

S
 #  dA

S
= qenclosed/P0 , gives 4pr2E = Q/P0.  We can 

then solve for E to get

 E =
Q

4pP0r
2   (field outside any spherical

charge distribution)  (21.4)

•   Now let’s consider the interior of the shell. With all the charge on 
the shell’s surface, there’s no charge inside. So Gaussian  surface 
(b) doesn’t enclose any charge. But, as we argued above, the 
flux is still 4pr2E, so Gauss’s law becomes 4pr2E = 0.  Solving 
for E gives E = 0. We could have drawn Gaussian surface  
(b) anywhere inside the shell, including right up to its surface, so 
there’s no electric field anywhere inside the shell.

assess 
•   Consider first the field outside the shell (Equation 21.4). Since 

1/4pP0 is the Coulomb constant k, this field can be written 
E = kQ/r2—precisely the field of a point charge! In fact, our 
argument leading to this result didn’t depend on the charge being 
on a spherical shell; as long as a charge distribution is spherically 
symmetric and we’re evaluating the field outside the distribution, 
we would find the same result. That’s why we’ve made the result 
a numbered equation and labeled it “field outside any spherical 
charge distribution.” Outside any spherical charge distribution, 
then, its field is exactly the same as that of a point charge with Figure 21.11 Finding the field of a charged shell.

(continued)
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384 Chapter 21 Gauss’s Law

Got It? 21.4 A spherical shell carries charge Q distributed uniformly over its 
 surface. If the charge on the shell doubles, what happens to the electric field (1) inside and 
(2) outside the shell?

Now let’s consider a slightly more complicated charge distribution: a spherical shell 
with a point charge at the center.

the same total charge, located at the center of symmetry. Inci-
dentally, this result also holds for gravity because it, too, obeys 
an inverse-square law. That’s why we can treat planets as though 
they were point masses located at their centers.

•   Now the interior field: How can it be exactly zero  everywhere 
inside the shell? Figure 21.12 shows that this  remarkable result is 
a consequence of the inverse-square law. ■

Figure 21.12 At any point P inside a charged shell, the field from the relatively few 
nearby charges at A is exactly canceled by the field from the more numerous but 
more distant charges at B. The result is zero field everywhere inside the shell.

EA
S

EB
S

Charges at B contribute EB
to the �eld at P c

cand charges at A contribute EA. 
The two �elds cancel.

P

B

A

S

S

ExampLE 21.2  Gauss’s Law: a point Charge within a Shell

A positive point charge +q is at the center of a spherical shell of 
 radius R carrying charge -2q, distributed uniformly over its surface. 
Find expressions for the field strength inside and outside the shell.

inTerPreT This problem is about a charge distribution with spherical 
symmetry.

DeveloP We want to find the fields both inside and outside the 
 distribution, so we show two spherical Gaussian surfaces in our 
sketch, Fig. 21.14. We’ve also drawn some field lines, which will help 
in assessing our answer.

evaluaTe 
•   We already know that the flux through a spherical Gaussian 

 surface is Φ = 4pr2E when we have spherical symmetry, so 
that’s the flux for both surfaces.

Figure 21.14 A shell carrying charge -2q  surrounds a point 
charge +q. Note that the number of field lines beginning 
on the point charge and the number ending on the shell 
 correctly reflect their respective charges.

Eight lines 
start on +q.

Any Gaussian surface
outside the shell has
eight lines going 
inward.

Any Gaussian surface
inside the shell has
eight lines going 
outward.

Sixteen lines 
end on -2q.

Net charge inside:
q + 1-q2 = 0

E ≠ 0
inside
and on
surface

Gaussian
surface

✓tIp Symmetry Matters!

We used the fact that there’s no charge inside an 
empty spherical shell to conclude that the field 
inside the shell is zero. But be careful: That con-
clusion follows only when there’s enough sym-
metry, as Fig. 21.13 shows. Here, the Gaussian 
surface encloses zero net charge, so the flux 
through the surface is zero. But the electric field 
both on and inside the surface isn’t zero.

Figure 21.13 A spherical Gaussian surface surrounds 
a  dipole. We have qenclosed = 0, but E ≠ 0 inside the 
 surface because the dipole isn’t spherically symmetric.
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What if we have charge distributed throughout a volume? As long as the distribution 
is spherically symmetric, we can find the electric field using Gauss’s law just as we did 
in Examples 21.1 and 21.2. The only difference comes when we evaluate the enclosed 
charge. Example 21.3 considers this situation.

•   The outer surface encloses the charge +q at the center and -2q 
on the shell, so the net charge enclosed is qenclosed = -q for 
r 7 R. The inner surface encloses only the point charge +q, so 
qenclosed = + q for r 6 R.

•   Now we  find  the  field by equating  the  flux Φ = 4pr2E to 
qenclosed/P0. The result for r 7 R is E = -q/4pP0r

2, where 
the minus sign appears because the enclosed charge is -q. For 
r 6 R with enclosed charge +q, the result is E = q/4pP0r

2.

assess Make sense? We’ve seen that the field outside a spherically 
symmetric charge distribution is that of an equivalent point charge 

at the center. Here the net charge is -q, and our result for r 7 R is 
indeed the field of a point charge -q. Another way to see this is to 
apply superposition: The field outside due to the shell alone is that of 
a point charge -2q; that adds to the field of the central point charge 
+q to give, again, the field of a point charge -q in the region out-
side the shell. In Example 21.1 we found that the shell produces no 
field in its interior, so here superposition leaves us with the field of the 
 central point charge alone, just as our result shows. Sketching the field  
lines, as we’ve done in Fig. 21.14, also shows how our results make 
sense. ■

A charge Q is distributed uniformly throughout a sphere of radius R. 
Find the electric field at all points, (a) outside and (b) inside the sphere.

inTerPreT The charge distribution has spherical symmetry, so we 
can use Gauss’s law to find the field.

DeveloP Figure 21.15 is a sketch of the spherical charge distribu-
tion. As you’ve already seen, the field in any case of spherical sym-
metry must be radial, so we’ve sketched some field lines on the figure. 
As in Examples 21.1 and 21.2, Gaussian surfaces appropriate to 
spherical symmetry are themselves spheres. Since we’re asked for the 
field both outside and inside the charge distribution, we’ve drawn two 
such Gaussian surfaces, one outside and one inside the distribution.

evaluaTe 
•   We already know the answer to (a), the field outside the charge 

distribution. That’s because, as we found in Example 21.1, the 
field outside any spherically symmetric charge distribution is 
exactly that of a point charge located at the center. So the field 
outside the charged sphere has magnitude Eout = Q/4pP0r

2 and 
points radially outward for positive Q. You could also recover this 
result by considering the flux through surface (a) in Fig. 21.15 and 
equating it to qenclosed/P0—which would essentially repeat the cal-
culation for the field outside the spherical shell in Example 21.1.

•   For (b), the field inside the charged sphere, we need to apply 
Gauss’s law to surface (b) in Fig. 21.15. In Example 21.1 we 
found that the left-hand side of Gauss’s law—the flux—is given 
by 4pr2E whenever we have spherical symmetry and are using 

a spherical Gaussian surface. However, we still need to find the 
charge enclosed by surface (b). Since surface (b) lies within the 
sphere of charge, it doesn’t enclose the entire charge Q. We can 
find just how much charge it encloses by comparing its volume 
with that of the entire sphere. Surface (b) has radius r, so its vol-
ume is 4

3pr3. The charged sphere has radius R, so its volume is 
4
3pR3. So our Gaussian surface, (b), encloses a fraction r3/R3 of the 
total volume of the charged sphere. Because charge is distributed 
uniformly throughout the sphere, this is also the fraction of the total 
charge enclosed by our Gaussian surface. So qenclosed in Gauss’s 
law becomes Qr3/R3 for a Gaussian surface of radius r that’s inside 
the charged sphere. We can now write Gauss’s law for this situa-
tion, equating the flux, 4pr2E, to qenclosed/P0: 4pr2E = Qr3/P0R

3. 
Solving for the field magnitude E gives

 E =
Qr

4pP0R
3  (field inside uniformly charged sphere) (21.5)

assess: Make sense? The field inside the sphere increases linearly 
with distance r from the center. This reflects two opposite effects: 
First, as we move outward from the center, the enclosed charge grows 
in proportion to the volume enclosed—that is, as r3. But the distance 
from the center grows as well, and that causes a 1/r2 decrease in the 
field. The combined effect is a field that grows linearly from the 
center to the surface of the sphere, as shown in Equation 21.5. But 
once we’re outside the sphere, the enclosed charge no longer grows, 
so we see only the 1/r2 decrease of the point-charge field. Figure 21.16  
plots the resulting field magnitude E both inside and outside the 
sphere. As the figure shows, and as you can convince yourself by 
comparing Equations 21.4 and 21.5, our results for the exterior and 
interior fields agree at the sphere’s surface, where r = R. ■

ExampLE 21.3  Gauss’s Law: a Uniformly Charged Sphere

Figure 21.15 Finding the field of a uniformly charged sphere. The field 
also exists within the inner Gaussian surface, but we haven’t shown it.

Surface (a) encloses
all of the charge Q c

cwhile surface (b)
encloses only some
of it.

1

r2

R
r

E

kQ>R2

Inside:
E ∝ r

Outside:

E ∝ 

Figure 21.16 Field Strength versus radial 
distance for a uniformly charged sphere of 
radius R. 
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386 Chapter 21 Gauss’s Law

Before moving on, consider the three examples of Gauss’s law in spherical symmetry 
that you’ve just seen. In each example we equated the left-hand side of Gauss’s law to 
the right-hand side, and solved for the electric field magnitude E. We only had to find 
the left-hand side once: In every case of spherical symmetry with a spherical Gaussian 
surface, the left-hand side of Gauss’s law is Φ = A E

S
 #  dA

S
= 4pr2E. We discovered 

this in Example 21.1, and you never need to do that calculation again as long as you’ve 
got spherical symmetry. So we used 4pr2E for the left-hand side of Gauss’s law in both 
 Examples 21.2 and 21.3. Example 21.1 showed us that the field outside any spherically 
symmetric charge distribution is exactly that of a point charge located at the center. Again, 
that’s an exact result—not just an approximation that holds at large distances. It’s true 
right up to the surface of the charge distribution, as Figure 21.16 shows graphically.

Example 21.1 also showed us that the field everywhere inside a spherical shell of charge 
is zero. You could think of any spherically symmetric charge distribution as made up of 
concentric shells—and that means there’s never a contribution to the electric field from 
charge that’s further from the center than the position where you’re evaluating the field. In 
that light, here’s another take on the most difficult of our three examples, Example 21.3 for 
the field within a spherical volume of charge: At any position inside that volume, there’s 
no contribution from the charge that’s further out. And, as Example 21.1 also showed, the 
charge interior to that position acts like a point charge. Work out that charge—essentially 
the calculation leading to qenclosed  in Example 21.3—and you’ll get Equation 21.5 for the 
field inside a uniformly charged sphere. So all spherically symmetric charge distributions 
are similar, in that we apply Gauss’s law in exactly the same way. The only difference is 
in finding the enclosed charge. Problems 69 and 71 provide additional examples involving 
charge distributions that are spherically symmetric but not uniform.

We’ll now consider the two other symmetries where Gauss’s law provides a quick route 
to finding the electric field. As you work through the examples for these symmetries, con-
sider how they’re similar to the spherical examples you’ve just seen. The application of 
Gauss’s law works just the same, but now there’s a different expression for the flux on the 
left-hand side, and calculations of enclosed charge are different.

Line Symmetry
A charge distribution has line symmetry when its charge density depends only on the per-
pendicular distance r from a line, called the symmetry axis. Symmetry then requires that 
the field point radially and that the field magnitude depend only on distance from the axis. 
It also requires the charge distribution to be infinitely long, so there’s no variation parallel 
to the line. That’s impossible, but nevertheless the infinite line is a reasonable approxima-
tion to elongated structures like wires. The next two examples explore the application of 
Gauss’s law to line symmetry.

ExampLE 21.4  Gauss’s Law: an Infinite Line of Charge

Use Gauss’s law to find the electric field of an infinite line charge car-
rying charge density l in coulombs per meter.

inTerPreT An infinite line has line symmetry, so we can apply 
Gauss’s law to find the electric field.

DeveloP Symmetry requires that the field point radially from the 
line of charge, and that its magnitude be the same at a given distance 
r from the line. Our job is to find a Gaussian surface that exploits this 
symmetry—a surface on which the surface integral will turn into a 
simple product of the field magnitude E and the surface area A. We’ve 
sketched an appropriate surface in Fig. 21.17: It’s a cylinder of radius 
r and length L, concentric with the line charge. All points on the cyl-
inder’s curved surface are the same distance r from the line charge, so 

the field magnitude E is the same over the curved part of the surface. 
And because the field must be radial, the angle between E

S
 and the 

normal vectors dA
S

is zero, making cos u equal to 1 in the dot product 
E
S

 #  dA
S

.

evaluaTe 
•   We begin with the left-hand side of Gauss’s law, the flux through 

our Gaussian surface. Unlike the spherical case, this Gaussian 
surface has two different types of regions—the curved part of 
the cylinder and its circular ends. For the curved part, we’ve 
just seen that cos u = 1 in the dot product, so the flux through 
the curved part becomes 1E

S
 #  dA

S
= 1E dA = E1dA, where 

the last equality follows because the magnitude E doesn’t 
change over the curved part of the cylinder. Note that we took 
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21.4 Using Gauss’s Law 387

Although Example 21.4 involved an infinitesimally thin line of charge, you can see 
from Fig. 21.18 that our result must hold outside any charge with line symmetry. And, as 
we argued in Example 20.7, it’s a good approximation for the field of any long, cylindrical 
structure as long as we’re not too near its ends.

the  circle off the integral sign because we’re just considering 
the curved part, which alone doesn’t constitute a closed sur-
face. The remaining integral is just the area of the curved part 
of the cylinder. Imagine unrolling this curved surface and flat-
tening it out; you’d get a rectangle of length L and width equal 

to the circumference 2pr, so the flux through the curved part 
becomes Φ = 2prLE. What about the ends? No field lines 
emerge from them, so here the flux is zero; mathematically, 
E
S

 #  dA
S

= 0 on the ends because the field E
S

 and the vectors 
dA

S
 normal to the ends are perpendicular. The left-hand side 

of Gauss’s law, then, is 2prLE. This result depends only on the 
symmetry, so it applies in all situations involving line symmetry.

•   Next we need  the enclosed charge. The  line carries l C/m 
and our Gaussian cylinder encloses L meters of the line, so 
qenclosed = lL.

•   Finally, we  invoke Gauss’s  law by equating  the flux Φ to 
qenclosed/P0. The result, 2prLE = lL/P0, solves to give

 E =
l

2pP0r
 1field of a line charge2 (21.6)

assess Make sense? We worked this same problem in Example 20.7 
in a much more difficult calculation involving a complicated inte-
gral. Since 1/2pP0 = 2k, our result here is the same. But Gauss’s law 
makes the problem much easier! ■

Figure 21.17 A cylindrical Gaussian surface surrounds a line 
charge. The sketch shows a slice in the plane of the page; the field 
extends radially outward from the line into and out of the page 
as well.

Field is radial.

Gaussian 
surface

No �ux through
the ends

In�nite line,
l C>m

Figure 21.18 The arguments of Example 21.4 
 apply outside any cylindrical charge distribution.

l C>m

Gaussian
surface

rn
l

2pP0r
E = 
S

ExampLE 21.5  Gauss’s Law: a Hollow pipe

A thin-walled pipe 3.0 m long and 2.0 cm in radius carries a net charge 
q = 5.7 μC distributed uniformly over its surface. Find the electric 
field both 1.0 cm and 3.0 cm from the pipe axis, far from either end.

inTerPreT Although the pipe has finite length, both distances are 
small compared with that length, so we can approximate the pipe as 
an infinitely long structure with line symmetry.

DeveloP With line symmetry the appropriate Gaussian surface is a 
cylinder coaxial with the pipe. We’ve drawn two such cylinders in  
Fig. 21.19, one for each radius where we’re asked to evaluate the field.

evaluaTe 
•   We showed in Example 21.4 that the flux integral in line sym-

metry gives Φ = 2prLE.

•   Next we need the enclosed charge. At 3 cm we’re outside the 
pipe, so the Gaussian surface with this radius encloses all the 
charge: qenclosed = 5.7 μC.  The pipe is hollow, so at 1 cm the 
enclosed charge is zero.

•  Equating the flux to qenclosed/P0 and solving for E give

E =
qenclosed

2pP0rL
=

5.7 μC

12pP0213.0 * 10-2 m213.0 m2 = 1.1 MN/C

for the field at 3 cm and E = 0 for the field inside the pipe.

assess Make sense? Inside the pipe, there’s no field, and for the 
same reason as inside a uniformly charged hollow sphere—namely, 
that fields from near and far parts of the pipe cancel due, ultimately, to 
the inverse-square law. Again, be careful: That result follows because 
of the symmetry, although we’ll soon see that with conducting pipes 
and shells there’s no interior field even without that symmetry. We 
argued earlier that the field outside any line-symmetric distribution 
should be given by Equation 21.6, E = l/2pP0r. In our result, the 
quantity qenclosed/L is the line charge density l, so our result is indeed 
consistent with that equation. ■

Figure 21.19 Gaussian surfaces for Example 21.5.
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388 Chapter 21 Gauss’s Law

Our two examples of line symmetry correspond, respectively, to the case of a point 
charge and a hollow spherical shell in spherical geometry. You can explore other cases of 
line symmetry, including the analog of Example 21.3’s sphere of charge, in Problems 56 
and 73.

plane Symmetry
A charge distribution has plane symmetry when its charge density depends only on the 
perpendicular distance from a plane. The only electric-field direction consistent with this 
symmetry is perpendicular to the plane. As with line symmetry, true plane symmetry im-
plies a charge distribution that’s infinite in extent. That’s impossible—but plane symmetry 
remains a good approximation when charge is spread uniformly over large, flat surfaces or 
slabs. The next example applies Gauss’s law to plane symmetry.

21.5 Fields of arbitrary Charge Distributions
Although Gauss’s law is always true, most charge distributions lack the symmetry needed 
to apply Gauss’s law to find the field. The alternative, Coulomb’s law, is hard to use in 
all but the simplest cases. But we can often learn a lot by considering the distributions 
whose fields we calculated here and in Chapter 20. Figure 21.21 summarizes four of these 

ExampLE 21.6  Gauss’s Law: a Sheet of Charge

An infinite sheet of charge carries uniform surface charge density s in 
coulombs per square meter. Find the resulting electric field.

inTerPreT Since the sheet is infinite, we have plane symmetry with 
the sheet itself as the symmetry plane.

DeveloP We need a Gaussian surface chosen so the flux integral 

AE
S

 #  dA
S

 reduces to a simple multiplication, at least over some parts  
of the area; over any remaining parts it should be zero. Because the 
electric field must be perpendicular to our charged sheet, any surface 
with ends parallel to the sheet will have cos u equal to 1 in the dot 
product. Also, the symmetry dictates that E can’t change as we move 
in a direction parallel to the sheet, since we’d remain the same distance 
from it. Furthermore, any surface whose sides are perpendicular to the 
charged sheet will have zero flux through the sides. So we’re free to 
choose for our Gaussian surface any surface with ends parallel to the 

sheet and sides perpendicular. To ensure that E has the same value over 
both ends of our surface, we’ll have it extend equal distances on either 
side of the charged sheet. A simple surface that meets these criteria 
is a cylinder that straddles the charged sheet, as shown in Fig. 21.20.

evaluaTe 
•   First we evaluate the flux through our Gaussian cylinder. The 

field is parallel to the sides, so there’s no flux contribution here. 
Then the total flux is through the ends, each of which has area A. 
Since the field is uniform over each end and perpendicular to the 
ends, the flux through each end is EA. So the total flux through 
both ends is Φ = 2EA. This result is independent of the details 
of the charge distribution, so it holds in all cases of plane sym-
metry.

•   Next we need the enclosed charge. The Gaussian surface en-
closes an area of the sheet equal to the area A of its ends. With 
surface charge density s on the sheet, the enclosed charge is 
qenclosed = sA.

•   Now we apply Gauss’s law, equating the flux to qenclosed/P0. Thus 
2EA = sA/P0, so

 E =
s

2P0
  1field of a charged sheet2 (21.7)

The direction of this field on either side of the sheet is outward from 
the sheet if it’s positively charged and inward if negative.

assess Make sense? With an infinite plane, symmetry requires that 
the field lines be perpendicular to the plane. So they don’t spread 
out, and that means the field doesn’t vary with distance—as Equa-
tion 21.7 shows because it doesn’t involve the distance from the sheet. 
Although our result is exact only for a truly infinite sheet, it’s a good 
approximation near any large, flat, uniformly charged surface as long 
as we’re not close to an edge. ■Figure 21.20 An infinite sheet of charge, with a Gaussian surface straddling 

the sheet.
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21.5 Fields of Arbitrary Charge Distributions 389

fields. For the last three, note the simple relation between the number of dimensions and 
the behavior of the field. The plane has two dimensions, and its field doesn’t decrease with 
distance. The line has one dimension, and its field decreases as 1/r. The point has no dimen-
sions, and its field falls as 1/r2. In a sense, the dipole continues this progression. It consists 
of opposite point charges whose effects nearly cancel; no wonder its field decreases faster 
still, as 1/r3. In fact, there’s a hierarchy of charge distributions whose fields decrease ever 
faster, as dipoles nearly cancel dipoles, and so on. Scientists and engineers use this hierar-
chy in modeling charged structures ranging from molecules to radio antennas.

Figure 21.21 Fields of a dipole, a point charge, a charged line, and 
a charged plane.
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ConCEptUaL ExampLE 21.1 a Charged Disk

Sketch some electric field lines for a uniformly charged disk, starting 
at the disk and extending out to several disk diameters.

evaluaTe When we’re near the disk and not close to its edge, the 
disk looks like a large, flat, charged plane. Its field is essentially the 
uniform field of an infinite plane charge, so we draw straight field 
lines emanating perpendicular to the disk. Far from any finite distribu-
tion carrying a nonzero net charge, the field approximates that of a 
point charge, so farther away we draw field lines going radially out-
ward. Field lines begin only on charges—in this case on the charged 
disk—so we have to connect close-in and far-out lines. We don’t 
know exactly how the field looks in the intermediate region neither 
close to nor far from the disk, so we connect them as best we can. 
Figure 21.22 is the result. Figure 21.22 The field of a charged disk.

Field in close
is essentially
that of an
in�nite plane
of charge.

Field out here
is essentially
that of a point
charge.

(continued)
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390 Chapter 21 Gauss’s Law

Got It? 21.5 (1) If you’re close to a finite line of charge (and not near its ends), 
does its field vary as (a) 1/r3, (b) 1/r2, or (c) 1/r? (2) Repeat for the case when you’re far 
from the line (i.e., much farther than its length).

21.6 Gauss’s Law and Conductors
Electrostatic Equilibrium
We’ve defined conductors as materials that contain free charges, like the free electrons in 
metals. Figure 21.23 shows what happens when an electric field is applied to a conduc-
tor. Free charges respond to the electric force qE

S
 by moving—in the direction of the field 

if they’re positive, opposite the field if negative. The resulting charge separation gives 
rise to an electric field within the material that’s opposite to the applied field. As more 
charge moves, this internal field becomes stronger until its magnitude eventually equals 
that of the applied field. Once that happens, the free charges within the conductor experi-
ence zero net force, and the conductor is in electrostatic equilibrium. Although indi-
vidual charges continue to move about in random thermal motion, there’s no longer any 
net charge motion. Once equilibrium is reached, the internal and applied fields are equal 
but opposite, and  therefore:

The electric field is zero inside a conductor in electrostatic equilibrium.

It could not be otherwise: Since a conductor contains free charges, the presence of 
any  internal electric field would result in bulk charge motion, and we wouldn’t have 
 equilibrium. This result doesn’t depend on the size or shape of the conductor, the 
 magnitude or direction of the applied field, or even the nature of the material as long 
as it’s a conductor. This is a macroscopic view; it considers only average fields within 
the  material. At the atomic and molecular level, there are still strong electric fields near 
 individual electrons and positive ions. But the average field, taken over larger distances, is 
zero inside a  conductor in electrostatic equilibrium.

Charged Conductors
Although they contain free charges, conductors are normally electrically neutral because 
they include equal numbers of electrons and protons. But suppose we give a conductor 
a nonzero net charge, for example, by injecting excess electrons into its interior. There’s 
a mutual repulsion among the electrons and, because these are excess electrons, there’s 
no compensating attraction from positive charges. We might expect, therefore, that the 
 electrons will move as far apart as possible—namely, to the surface of the conductor.

We now use Gauss’s law to prove that excess charge must be at the surface of a 
 conductor in electrostatic equilibrium. Figure 21.24 shows a conducting material with a 
Gaussian surface drawn just below the material surface. In equilibrium there’s no electric 
field inside the conductor, and thus the field is zero everywhere on the Gaussian surface. 

assess Our sketch is a good approximation to the field of a charged 
disk. And it obeys Gauss’s law because the same number of field 
lines—namely, all 16 lines we chose to draw—cross any closed sur-
face surrounding the entire disk.

making The connecTion Suppose the disk is 1.0 cm in diameter 
and carries charge 20 nC spread uniformly over its surface. Find the 
electric field strength (a) 1.0 mm from the disk surface and (b) 1.0 m 
from the disk.

evaluaTe (a) Close to the disk, assuming we’re not near the edge, 
Equation 21.7 applies: E = s/2P0 = 14 MN/C, where we used the 
total charge and the disk area to get the surface charge density s.  
(b) At 1 meter, the disk is so small it looks essentially like a point 
charge, so Equation 20.3 applies: E = kq/r2 = 180 N/C.

Figure 21.23 A conductor in a uniform electric 
field.

(c)

(d)

(a)

(b)

A neutral 
conductor

A uniform
electric
�eld
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cresulting in
this net �eld.

Figure 21.24 Gauss’s law implies that any net 
charge resides on the surface of a conductor in 
electrostatic equilibrium.

E = 0

Because Gauss’s law says Φ ∝ qenclosed, all
excess charge resides on the conductor surface.

There’s no electric
�eld inside the
conductor c

cso there’s no
�ux Φ through this 
Gaussian surface.
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21.6 Gauss’s Law and Conductors 391

The flux, A E
S

 #  dA
S

, through the Gaussian surface is therefore also zero. But Gauss’s law 
says that the flux through a closed surface is proportional to the net charge enclosed, and 
therefore the net charge inside our Gaussian surface must be zero. This is true no matter 
where the Gaussian surface is as long as it’s inside the conductor. We can move it arbitrar-
ily close to the conductor surface and it still encloses no net charge. If there is a net charge 
on the conductor, it lies outside the Gaussian surface, and therefore we conclude: If a 
conductor in electrostatic equilibrium carries a net charge, that charge must reside 
on the conductor surface.

Got It? 21.6 A conductor carries a net charge +Q. There’s a cavity inside the con-
ductor that contains a point charge -Q. In electrostatic equilibrium, is the charge on the 
outer surface of the conductor (a) -2Q, (b) -Q, (c) 0, (d) Q, or (e) 2Q?

Experimental tests of Gauss’s Law
That net charge moves to a conductor surface provides a sensitive test of Gauss’s law and 
thus—through the arguments of Section 21.3 relating Gauss’s and Coulomb’s laws—a test 
of the inverse-square law for the electric force. Figure 21.26 shows a charged conducting 
ball touched to the inside of a hollow, initially neutral conductor. As required by Gauss’s 
law, charge flows to the outer surface of the hollow conductor, leaving the ball uncharged. 
Measuring zero charge on the ball confirms Gauss’s law, and thus the inverse-square law; 
such experiments show that the exponent in 1/r2 is indeed 2 to some 16 decimal places!
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Figure 21.26 Experimental test of Gauss’s law.

An irregularly shaped conductor has a hollow cavity. The conductor 
itself carries a net charge of 1 μC, and there’s a 2@μC point charge in-
side the cavity. Find the net charge on the cavity wall and on the outer 
surface of the conductor, assuming electrostatic equilibrium.

inTerPreT This problem involves a conductor in electrostatic equi-
librium, which means (1) there’s no electric field inside the con-
ducting material and (2) the net charge resides on the conductor 
surface—which in this case includes both the inner and outer surfaces.

DeveloP We sketch the situation in Fig. 21.25. Our plan is to apply 
Gauss’s law to find the charges. We consider a Gaussian surface in-
side the conductor and enclosing the cavity, as shown.

evaluaTe Since there’s no electric field inside the conductor, the 
flux through the Gaussian surface is zero, and therefore the net charge 
enclosed is also zero. But there’s that +2@μC point charge in the cav-
ity. For the Gaussian surface to enclose zero net charge, there must be 
-2 μC somewhere else—and the only place it can be is on the cavity 
wall. However, the entire conductor carries +1 μC. With -2 μC on 
the inside wall, that leaves +3 μC on the outer surface.

assess Make sense? Yes: This distribution of charge is the only one 
that’s consistent with both Gauss’s law and the requirement E = 0 inside 
a conductor in electrostatic equilibrium. As another check, think about 
what this charge distribution must look like from far away—namely, a 
point charge with net charge of 3 μC. Since the fields of the cavity wall 
and the inner point charge don’t penetrate the conductor, the only field 
lines that reach out beyond the conductor are those from the charge on its 
outer surface. So that charge must be 3 μC, as we’ve found. ■

ExampLE 21.7  Gauss’s Law: a Hollow Conductor

Figure 21.25 The Gaussian surface encloses zero net charge, so there must 
be -2 μC on the cavity wall.

Video Tutor Demo | Electroscope in Conducting Shell
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392 Chapter 21 Gauss’s Law

the Field at a Conductor Surface
There can’t be an electric field within a conductor in electrostatic equilibrium, but there 
may be a field right at the conductor surface (Fig. 21.27a). Such a field must be perpen-
dicular to the surface; otherwise, charge would move along the surface in response to the 
field’s parallel component, and we wouldn’t have equilibrium.

We can compute the strength of this surface field by considering a small Gaussian sur-
face that straddles the conductor surface, as shown in Fig. 21.27b. There’s no flux through 
the sides, and because the field is zero inside the conductor, there’s no flux through the 
inner end either. So the only flux is through the outer end, with area A. Since the end is 
perpendicular to the field, the flux is EA. The Gaussian surface encloses charge sA, where 
s is the surface charge density (C/m2). Gauss’s law equates the flux with qenclosed/P0, so we 
have EA = sA/P0, or

 E =
s

P0
 1field at conductor surface2 (21.8)

This result shows that large fields develop where the charge density on a conductor is 
high. Engineers who design electrical devices must avoid high charge densities whose 
 associated fields lead to sparks, arcing, and breakdown of electric insulation.

Equation 21.8 gives a field that depends only on the local charge density. Does that 
mean the field at a conductor surface arises only from the local charge? No! As always, the 
field is the vector sum of contributions from all charges. Remarkably, Gauss’s law requires 
that charges on a conductor arrange themselves in such a way that the field at any point on 
the conductor surface depends only on the surface charge density right at that point—even 
though that field arises from all the charges on the surface (as well as from charges else-
where if there are any)!

Consider a thin, flat, isolated, conducting sheet that has charge density s on one of 
its two faces (Fig. 21.28a). Equation 21.8 shows that the field at the surface of this plate 
is s/P0. But if the plate is large and flat, we can approximate it as an infinite sheet of 
charge—for which we found earlier (Equation 21.7) that the field should be s/2P0. Is there 
a contradiction here? No! If the plate is isolated, then symmetry requires that the charge 
spread itself evenly over both faces. If one face has charge density s, so must the other—
so we really have two charged sheets, each with density s (Fig 21.28b). Each gives a field 
of magnitude s/2P0, and outside the conductor those fields superpose to give the net field 
s/P0 (Fig. 21.28c). Inside the conductor their directions are opposite, and the result is 
zero field inside the conductor. Applying Equation 21.8 skips these details. But because 
Equation 21.8 was derived on the assumption that the field inside the conductor is zero, it 
“knows” about charges everywhere on the conductor—and in this case that means on the 
second face.

Figure 21.27 (a) The electric field at the surface 
of a charged conductor is perpendicular to 
the conductor surface. (b) A Gaussian surface 
straddles the conductor surface.
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Figure 21.28 (a) An isolated, charged conduct-
ing plate. Its field points outward from both 
faces. (b) Edge-on view of the plate. (c) The 
field anywhere is the sum of the fields of the 
two faces, each treated as a single charged 
sheet.
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21.6 Gauss’s Law and Conductors 393

Equation 21.8 also applies to a pair of oppositely charged conducting plates  
(Fig. 21.29); the result, for the field between the plates, is s/P0, where s is the surface 
charge density on either plate. Why not 2s/P0? Again, Equation 21.8 gives the field at 
a conductor surface—and it takes into account other charges that may be present. Here 
each plate’s charge attracts the other’s opposite charge, all to the inner face. Each plate is 
thus a single charge layer, giving a field s/2P0, and between the plates the fields sum to  
Equation 21.8’s result, s/P0. Beyond the plates the fields sum to zero—a result that also 
follows from Equation 21.8 because now there’s zero surface charge on the outer faces.

appLICatIon Shielding and Lightning Safety

We’ve seen that charge moves to the outside of a conductor surface, leav-
ing the interior free of charge and electric field—even if the interior is 
 hollow. This is the basis of electric shielding, in which a conducting enclo-
sure keeps out external electric fields. A common example is the coaxial 
cable that delivers TV signals from your cable company; coaxial cables 
also connect electronic instruments in scientific and medical research. A 
coaxial cable consists of an inner wire surrounded by a cylindrical conduct-
ing shield in which charge moves to block external electric fields that could 
cause interference. In another application of shielding, researchers doing 
experiments with very weak electric signals often construct entire rooms 
with conducting walls to minimize interference.

Shielding is also the reason a car is a relatively safe place in a thunder-
storm. A lightning strike dumps charge on the car’s metal body, but the 
charge distributes itself on the outside so as to prevent any electric fields 
from developing inside the car (see photo). That, in turn, prevents harmful 
currents from flowing through the occupants. The operator’s cage in this 
chapter’s opening photo has the same effect, harmlessly deflecting charge 
from the artificial lightning and keeping the interior free of electric fields.

Strictly speaking, charge resides on the outside of a conductor only in 
equilibrium. But electrons in metals respond so quickly that equilibrium 
results almost instantaneously—meaning that metallic shielding is effec-
tive even against the rapidly varying electric fields of high-frequency radio, 
TV, and microwave signals.

Figure 21.29 Edge-on view of two parallel 
 conducting plates carrying opposite charges.
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The big idea here is Gauss’s law—a universal statement about electric fields that’s closely related to Coulomb’s inverse-square law but expressed 
in terms of the global behavior of the field over any closed surface. Using the electric field-line picture, Gauss’s law says that the number of field 
lines emerging from a closed surface depends only on the net charge enclosed; more rigorously, it says that the electric flux through the surface is 
proportional to the enclosed charge.

Chapter 21 Summary
Big Idea

Key Concepts and Equations

Electric flux Φ describes the amount of electric field crossing an area.
Φ = EA for a flat area perpendicular to a uniform field Φ = L E

S
 #  dA

S
, in general

Eight lines pass
through any closed
surface surrounding q.

Point charge q

In terms of flux, Gauss’s law reads A E
S

 #  dA
S

= qenclosed/P0.

Here P0 = 1/4pk = 8.85 * 10-12 C2/N #  m2 is another way of expressing the Coulomb constant k = 9.0 * 109 N #  m2/C2.

applications
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Gauss’s law and conductors:
•   The field is zero inside a conductor in electrostatic 

equilibrium.
•   Any net charge resides on a conductor’s surface.
•   The field at the surface is perpendicular to the surface 

and has magnitude s/P0.
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(assume uniformly in this case). Compare the electric fields out-
side these two charge distributions.

15. Why must the electric field be zero inside a conductor in electro-
static equilibrium?

16. The electric field of a flat sheet of charge is s/2P0. Yet the field 
of a flat conducting sheet—even a thin one, like a piece of alu-
minum foil—is s/P0. Explain this apparent discrepancy.

exercises and problems

Exercises

Section 21.1 Electric Field Lines
17. In Fig. 21.32, the magnitude of the middle charge is 3 μC. 

What’s the net charge shown?

Figure 21.32 Exercise 17

18. Charges +2q and -q are near each other. Sketch some field lines 
for this charge distribution, using eight lines for a charge of mag-
nitude q.

19. The net charge shown in Fig. 21.33 is +Q. Identify each of the 
charges A, B, and C shown.

A

B

C

Figure 21.33 Exercise 19

Section 21.2 Electric Field and Electric Flux
20. A flat surface with area 2.0 m2 is in a uniform 850-N/C electric 

field. Find the electric flux through the surface when it’s (a) at 
right angles to the field, (b) at 45° to the field, and (c) parallel to 
the field.

21. What’s the electric field strength in a region where the flux 
through a 1.0 cm * 1.0 cm flat surface is 65 N #  m2/C, if the field 
is uniform and the surface is at right angles to the field?

22. A flat surface with area 0.14 m2 lies in the x@y plane, in a uni-
form electric field E

S
= 5.1in + 2.1jn + 3.5kn kN/C. Find the flux 

through the surface.
23. The electric field on the surface of a 10-cm-diameter sphere is 

perpendicular to the sphere and has magnitude 47 kN/C. What’s 
the electric flux through the sphere?

24. In the figure with GOT IT? 21.2, take E = 1.75 kN/C and 
s = 125 cm. Find the flux through faces B and C of cubes (a) 
and (b).

For thought and Discussion
 1. Can electric field lines ever cross? Why or why not?
 2. The electric flux through a closed surface is zero. Must the elec-

tric field be zero on that surface? If not, give an example.
 3. If the flux of the gravitational field through a closed surface is 

zero, what can you conclude about the region interior to the sur-
face?

 4. Under what conditions can the electric flux through a surface be 
written as EA, where A is the surface area?

 5. Eight field lines emerge from a closed surface surrounding an 
isolated point charge. Would the number of field lines change if 
a second identical charge were brought to a point just outside the 
surface? If not, would anything change? Explain.

 6. If a charged particle were released from rest on a curved field 
line, would its subsequent motion follow the field line? Explain.

 7. In Gauss’s law, A E
S

 #  dA
S

= q/P0, does the field E
S

 necessarily 
arise only from charges within the closed surface?

 8. In a certain region the electric field points to the right and its 
magnitude increases as you move to the right, as shown in  
Fig. 21.30. Does the region contain net positive charge, net nega-
tive charge, or zero net charge?

E
S

Figure 21.30 For Thought and Discussion 8. Left ends mark the 
 beginnings of the field lines, which extend indefinitely to the right.

 9. A point charge is located a fixed distance outside of a uniformly 
charged sphere. If the sphere shrinks in size without losing any 
charge, what happens to the force on the point charge?

 10. The field of an infinite charged line decreases as 1/r. Why isn’t 
this a violation of the inverse-square law?

11. Why can’t you use Gauss’s law to determine the field of a uniformly 
charged cube? Why couldn’t you use a cubical Gaussian surface?

12. You’re sitting inside an uncharged, hollow spherical shell. Sud-
denly someone dumps a billion coulombs of charge on the shell, 
distributed uniformly. What happens to the electric field at your 
location?

13. Does Gauss’s law apply to a spherical Gaussian surface not cen-
tered on a point charge, as shown in Fig. 21.31? Would this be a 
useful surface to use in calculating the electric field?

Figure 21.31 For Thought and Discussion 13

14. An insulating sphere carries charge spread uniformly through-
out its volume. A conducting sphere has the same radius and net 
charge, but of course the charge is spread over its surface only 
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396 Chapter 21 Gauss’s Law

reached, and assuming no other conductors or charges nearby, 
what are (a) the volume charge density inside the sphere and (b) 
the surface charge density on the sphere?

42. A positive point charge q lies at the center of a spherical conduct-
ing shell carrying net charge 32 q. Sketch the field lines both inside 
and outside the shell, using eight field lines to represent a charge 
of magnitude q.

43. A total charge of 18 μC is applied to a thin, square metal plate  
75 cm on a side. Find the electric field strength near the plate’s surface.

problems
44. What’s the flux through the hemispherical open surface of radius 

R in a uniform field of magnitude E shown in Fig. 21.35? (Hint: 
Don’t do a messy integral!)

E
S

Figure 21.35 Problem 44

45. An electric field is given by E
S

= E01y/a2kn, where E0 and a 
are constants. Find the flux through the square in the x@y plane 
bounded by the points 10, 02, 10, a2, 1a, a2, 1a, 02.

46. The electric field in a certain region is given by E
S

= axin, where 
a = 40 N/C #  m and x is in meters. Find the volume charge 
 density in the region. (Hint: Apply Gauss’s law to a cube 1 m on 
a side.)

47. A study shows that mammalian red blood cells (RBCs) carry 
electric charge resulting from 4.4 million (for rabbit cells) to 
15 million (for human cells) excess electrons spread over their 
surfaces. Approximating rabbit and human RBCs as spheres 
with radii 30 μm and 36 μm, respectively, find the electric field 
strengths at the cells’ surfaces.

48. Positive charge is spread uniformly over the surface of a spheri-
cal balloon 70 cm in radius, resulting in an electric field of  
26 kN/C at the balloon’s surface. Find the field strength  
(a) 50 cm from the balloon’s center and (b) 190 cm from the center.  
(c) What’s the net charge on the balloon?

49. A solid sphere 2.0 cm in radius carries a uniform volume charge 
density. The electric field 1.0 cm from the sphere’s center has 
magnitude 39 kN/C. (a) At what other distance does the field 
have this magnitude? (b) What’s the net charge on the sphere?

50. A point charge of -2Q is at the center of a spherical shell of ra-
dius R carrying charge Q spread uniformly over its surface. Find 
the electric field at (a) r = 1

2 R and (b) r = 2R. (c) How would 
your answers change if the charge on the shell were doubled?

51. A friend is working on a biology experiment and needs to create 
an electric field of magnitude 430 N/C at 10 cm from the central 
portion of a large nonconducting square plate 4.5 m on each side. 
She needs to know how much charge to put on the plate. What do 
you tell her?

52. A spherical shell of radius 15 cm carries 4.8 μC distributed 
uniformly over its surface. At the center of the shell is a point 
charge. If the electric field at the sphere’s surface is 750 kN/C 
and points outward, what are (a) the point charge and (b) the field 
just inside the shell?

53. A spherical shell 30 cm in diameter carries 85 μC distributed 
uniformly over its surface. A 1.0@μC point charge is located at 
the shell’s center. Find the electric field strength (a) 5.0 cm from 

25. In Fig. 21.8, take the half-cylinder’s radius and length to be 3.4 cm  
and 15 cm, respectively. If the electric field has magnitude 
6.8 kN/C, find the flux through the half-cylinder. Hint: You don’t 
need to do an integral! Why not?

Section 21.3 Gauss’s Law
26. A sock comes out of the dryer with a trillion 110122 excess elec-

trons. What’s the electric flux through a surface surrounding the 
sock?

27. What’s the electric flux through the closed surfaces marked (a), 
(b), (c), and (d) in Fig. 21.34?

+q
-q

-2q
+3q

-3q

(a)

(b)(c)

(d)

Figure 21.34 Exercise 27

28. A 6.8@μC charge and a -4.7@μC charge are inside an uncharged 
sphere. What’s the electric flux through the sphere?

29. A 2.6@μC charge is at the center of a cube 7.5 cm on each side. 
What’s the electric flux through one face of the cube? (Hint: 
Think about symmetry, and don’t do an integral.)

Section 21.4 Using Gauss’s Law
30. The electric field at the surface of a 5.0-cm-radius uniformly 

charged sphere is 90 kN/C. What’s the field strength 10 cm from 
the surface?

31. A solid sphere 25 cm in radius carries 14 μC, distributed uni-
formly throughout its volume. Find the electric field strength  
(a) 15 cm, (b) 25 cm, and (c) 50 cm from its center.

32. A 15-nC point charge is at the center of a thin spherical shell of 
radius 10 cm, carrying -22 nC of charge distributed uniformly 
over its surface. Find the magnitude and direction of the electric 
field (a) 2.2 cm, (b) 5.6 cm, and (c) 14 cm from the point charge.

33. The electric field strength outside a charge distribution and 18 cm 
from its center has magnitude 55 kN/C. At 23 cm the field strength 
is 43 kN/C. Does the distribution have spherical or line symmetry?

34. An electron close to a large, flat sheet of charge is repelled from 
the sheet with a 1.8-pN force. Find the surface charge density on 
the sheet.

35. Find the field produced by a uniformly charged sheet carrying 
87 pC/m2.

36. What surface charge density on an infinite sheet will produce a 
1.4-kN/C electric field?

Section 21.5 Fields of Arbitrary Charge Distributions
37. A rod 50 cm long and 1.0 cm in radius carries a 2.0@μC charge 

distributed uniformly over its length. Find the approximate mag-
nitude of the electric field (a) 4.0 mm from the rod surface, not 
near either end, and (b) 23 m from the rod.

38. What’s the approximate field strength 1 cm above a sheet of pa-
per carrying uniform surface charge density s = 45 nC/m2?

39. The disk in Fig. 21.22 has area 0.14 m2 and is uniformly charged 
to 5.0 μC. Find the approximate field strength (a) 1 mm from the 
disk, not near the edge, and (b) 2.5 m from the disk.

Section 21.6 Gauss’s Law and Conductors
40. What is the electric field strength just outside the surface of a 

conducting sphere carrying surface charge density 1.4 μC/m2?
41. A net charge of 5.0 μC is applied on one side of a solid metal 

sphere 2.0 cm in diameter. Once electrostatic equilibrium is 

BIO
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close to the plate and also far away. For the latter, plot E versus a 
quantity that should yield a straight line.

x (cm) 0.01 0.02 1.2 6.0 12.0 24.0

E (N/C) 5870 5860 4840 1960 754 221

x (cm) 48.0 72.0 96.0 120 240

E (N/C) 57.6 26.7 16.1 8.45 2.34

65. A point charge -q is at the center of a spherical shell carrying 
charge +2q. That shell, in turn, is concentric with a larger shell 
carrying -3

2 q. Draw a cross section of this structure, and sketch 
the electric field lines using the convention that eight lines cor-
respond to a charge of magnitude q.

66. A point charge q is at the center of a spherical shell of radius R 
carrying charge 2q spread uniformly over its surface. Write ex-
pressions for the electric field strength at (a) 12 R and (b) 2R.

67. The volume charge density inside a solid sphere of radius a is 
r = r0r/a, where r0 is a constant. Find (a) the total charge and 
(b) the electric field strength within the sphere, as a function of 
distance r from the center.

68. Figure 21.37 shows a rectangular box with sides 2a and length L 
surrounding a line carrying uniform line charge density l. The line 
passes directly through the center of the box faces. Integrate the 
field of the line charge over strips of width dx as shown to find the 
electric flux through one face of the box. Multiply by 4 to get the 
total flux, and show that your result is consistent with Gauss’s law.

2a

2a

L

dx

Figure 21.37 Problem 68

69. The charge density within a charged sphere of radius R is given 
by r = r0 - ar2, where r0 and a are constants and r is the 
 distance from the center. Find an expression for a such that the 
electric field outside the sphere is zero.

70. Calculate the electric fields in Example 21.2 directly, using the 
superposition principle and integration. Consider the shell to be 
composed of charge elements that are coaxial rings, whose axes 
pass through the field point, which is a distance r from the center. 
(Hint: Consult Example 20.6. You’ll have to evaluate the cases 
r 6 R and r 7 R separately.)

71. A solid sphere of radius R carries a nonuniform volume charge 
density r = r0e

r/R, where r0 is a constant and r is the distance 
from the center. Find an expression for the electric field strength 
at the sphere’s surface.

72. Problem 76 of Chapter 13 explored what happened to a person 
falling into a hole extending all the way through Earth’s center 
and out the other side, assuming that g1r2 = g01r/RE2 for points 
inside Earth 1r 6 RE2. Prove this assumption, treating Earth as 
a uniform sphere and using the gravitational version of Gauss’s 
law: Ag

!
 #  dA

S
= -4pGMenclosed.

73. An infinitely long solid cylinder of radius R carries a nonuniform 
charge density given by r = r01r/R2, where r0 is a constant 
and r is the distance from the cylinder’s axis. Find an expression 
for the magnitude of the electric field as a function of position r 
within the cylinder.

the center and (b) 45 cm from the center. (c) How would your 
answers change if the charge on the shell were doubled?

54. A thick, spherical shell of inner radius a and outer radius b car-
ries a uniform volume charge density r. Find an expression for 
the electric field strength in the region a 6 r 6 b, and show that 
your result is consistent with Equation 21.5 when a = 0.

55. A long, thin wire carrying 5.6 nC/m runs down the center of a long, 
thin-walled, pipe with radius 1.0 cm carrying -4.2 nC/m spread 
uniformly over its surface. Find the electric field (a) 0.50 cm  
from the wire and (b) 1.5 cm from the wire.

56. An infinitely long rod of radius R carries a uniform volume 
charge density r. Show that the electric field strengths outside 
and inside the rod are given, respectively, by E = rR2/2P0r and 
E = rr/2P0, where r is the distance from the rod axis. (Although 
an infinite rod is an impossibility, your answer is a good approxi-
mation for the field of a finite rod whose length is much greater 
than its diameter.)

57. A long, solid rod 4.5 cm in radius carries a uniform volume charge 
density. If the electric field strength at the surface of the rod (not near 
either end) is 16 kN/C, what’s the volume charge density?

58. If you “painted” positive charge on the floor, what surface charge 
density would be necessary to suspend a 15 μC, 5.0-g particle 
above the floor?

59. A charged slab extends infinitely in two dimensions and has 
thickness d in the third dimension, as shown in Fig. 21.36. The 
slab carries a uniform volume charge density r. Find expressions 
for the electric field (a) inside and (b) outside the slab, as func-
tions of the distance x from the center plane. (Although the in-
finite slab is impossible, your answer is a good approximation 
to the field of a finite slab whose width is much greater than its 
thickness.)

d

Figure 21.36 Problems 59 and 75

60. A solid sphere 10 cm in radius carries a 40@μC charge distributed 
uniformly throughout its volume. It’s surrounded by a concentric 
shell 20 cm in radius, also uniformly charged with 40 μC. Find 
the electric field (a) 5.0 cm, (b) 15 cm, and (c) 30 cm from the 
center.

61. A nonconducting square plate 75 cm on a side carries a uniform 
surface charge density. The electric field strength 1 cm from the 
plate, not near an edge, is 45 kN/C. What’s the approximate field 
strength 15 m from the plate?

62. A 250-nC point charge is placed at the center of an uncharged 
spherical conducting shell 20 cm in radius. Find (a) the surface 
charge density on the outer surface of the shell and (b) the elec-
tric field strength at the shell’s outer surface.

63. An irregular conductor containing an irregular, empty cavity car-
ries a net charge Q. (a) Show that the electric field inside the cav-
ity must be zero. (b) If you put a point charge inside the cavity, 
what value must it have in order to make the charge density on 
the outer surface of the conductor everywhere zero?

64. You measure the electric field strength at points directly above 
the center of a square plate carrying charge spread uniformly 
over its surface. The data are tabulated in the next column, with 
x the perpendicular distance from the center of the plate. Use 
the data to determine (a) the total charge on the plate and (b) the 
plate’s size. Hint: You’ll need to consider separately data taken 

CH

CH

CH
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CH
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398 Chapter 21 Gauss’s Law

77. A coaxial cable carries equal but opposite charges on its two 
 conductors. In electrostatic equilibrium, charge on the shield
a. lies entirely on its outer surface.
b. is divided evenly between inner and outer surfaces.
c. lies entirely on its inner surface.
d. distributes itself differently depending on the magnitude of 

the charge.
78. How does the electric field between the conductors in a coaxial 

cable in electrostatic equilibrium depend on the radial distance r 
from the cable’s axis?
a. it’s constant
b. as 1/r
c. as 1/r2

d. as 1/r3

79. A coaxial cable in electrostatic equilibrium carries charge -Q 
on its inner conductor and +Q on its shield. If the charge on the 
shield only is doubled,
a. the magnitude of the electric field between the conductors 

will double.
b. the magnitude of the electric field outside the shield will 

 double.
c. the magnitude of the electric field at the outer surface of the 

shield will become twice the magnitude of the field at the 
shield’s inner surface.

d. the magnitude of the electric field at the outer surface of the 
shield will equal the magnitude of the field at the shield’s 
 inner surface.

answers to Chapter Questions

answer to Chapter opening Question
Gauss’s law requires that electric charge remain on the outside of the 
metal cage, arranging itself so there’s no electric field within the cage.

answers to Got It? Questions
 21.1  (a)
 21.2  (1) ΦA = 0, ΦB = 0, ΦC = s2E;  

(2) ΦA = 0, ΦB = ΦC = s2E cos 45° = s2E/22
 21.3  (1) (a) flux doesn’t change; (2) (d) field increases if charges are 

opposite, decreases if same
 21.4  (1) field stays zero; (2) field (kQ/r2) doubles
 21.5  (1) (c); (2) (b)
 21.6  (c)

74. A solid sphere of radius R carries a uniform volume charge den-
sity r. A hole of radius R/2 occupies a region from the center 
to the edge of the sphere, as shown in Fig. 21.38. Show that the 
electric field everywhere in the hole points horizontally and has 
magnitude rR/6P0. Hint: Treat the hole as a superposition of two 
charged spheres with opposite charges.

R>2R

Figure 21.38 Problem 74

75. Repeat Problem 59 for the case where the charge density in the 
slab is given by r = r0 � x/d � , where r0 is a constant.

Passage Problems
Coaxial cables are widely used with audio-visual technology, 
 electronic instrumentation, and radio broadcasting, because they 
 minimize interference with or from signals traveling on the  cable. 
 Coaxial cables consist of a wire inner conductor surrounded by 
a thin cylindrical conducting shield, usually of braided copper  
(Fig. 21.39). Flexible insulation separates the conductors. A straight 
length of  coaxial cable can be approximated as an infinitely long wire 
surrounded by a cylindrical shell. Normally the two conductors carry 
charges of equal magnitude but opposite sign. (Charge actually varies 
with time and position as signals travel down the cable, but for these 
problems consider the charge to be fixed and spread uniformly.)

Outer conductor
Inner conductor

Insulation
Insulation

Figure 21.39 A coaxial cable (Passage Problems 76–79)

76. For a coaxial cable in electrostatic equilibrium carrying equal but 
opposite charges on its two conductors, there’s a nonzero electric 
field
a. only in the space between the wire and shield.
b. in the space between wire and shield, and outside the shield.
c. inside the metal conducting wire and shield, as well as 

 between the wires and outside the shield.
d. only outside the shield.

CH

CH
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Like gravity, the electric force is conservative. That means the work done in moving a charge 
against an electric force results in stored potential energy. It’s convenient to consider the 

energy per unit charge, a measure that defines the concept of electric potential. Here we’ll 
see how potential provides a simpler approach to calculating electric fields and also helps 
characterize everyday devices like batteries.

How You’ll Use It
■ The concept of electric potential 

difference is central to the analysis of 
many electrical situations, including 
electric circuits.

■ Potential difference is a scalar, making 
it generally easier to calculate than 
the electric field. Once you know 
potential difference as a function of 
position, you can find the electric field 
by differentiating.

What You’re Learning
■ You’ll learn about electric potential 

difference, which is the work per unit 
charge involved in moving charges 
through electric fields.

■ You’ll learn the precise meaning of 
the term volt, as the unit of potential 
difference.

■ You’ll learn how to calculate potential 
differences by evaluating the line inte-
gral that defines potential difference.

■ You’ll see how to express potential 
differences in the field of a point charge.

■ You’ll learn to use superposition 
to calculate potential differences 
associated with distributions of point 
charges as well as continuous charge 
distributions.

■ You’ll explore the relation between 
potential difference and electric 
field, including the concept of 
equipotentials, and how to calculate 
field from potential.

■ You’ll learn how charge distributes 
itself on conductors.

What You Know
■ You understand electric fields 

and how to calculate them using 
Coulomb’s law or Gauss’s law.

■ From Chapter 6, you know the 
definition of work as a line integral of 
force dotted with displacement.

■ From Chapter 7, you understand what 
it means for a force to be conservative.

■ You’ve probably heard the term volt, 
but you probably don’t know its 
precise meaning.

22
Electric Potential

This parasailer landed on a 138,000-volt power line. Why wasn’t he electrocuted?
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400 Chapter 22 Electric Potential

22.1 Electric Potential Difference
In Chapter 7 we defined the potential-energy difference ∆UAB as the negative of the work WAB 
done by a conservative force F

S
on an object moved from point A to point B (Equation 7.2):

∆UAB = UB - UA = -WAB = - L
B

A
 F

S # d r
!

where d r
!
 is an element of the path from A to B, and ∆UAB is independent of the path taken 

from A to B. When the force doesn’t vary, we can calculate the work more easily using 
Equation 6.5, W = F

S # ∆r
!
.

Consider a positive charge q moved between points A and B a distance ∆r apart in 
a uniform electric field E

S
, as shown in Fig. 22.1. Since the field is uniform, a constant 

 electric force F
S

= qE
S

 acts on the charge, so we use Equation 6.5 to evaluate the work 
done by the field and the resulting potential-energy change:

∆UAB = -WAB = -qE
S # ∆r

!
= -qE ∆r cos 180° = qE ∆r

where the factor cos 180° = -1 appears because E
S

 and ∆r
!
 have opposite directions. 

Make sense? Pushing a positive charge from A to B against the electric field is like pushing 
a car up a hill: Potential energy increases in both cases. Let go of the charge, and the field 
accelerates it back, just as gravity would accelerate the car back down the hill.

Had we moved a charge 2q in Fig. 22.1, the potential-energy change ∆U  would  
have been twice as great; a charge 12 q would have cut ∆U in half. Since ∆U is proportional 
to charge, it’s convenient to consider the potential-energy change per unit charge involved 
in  moving a charge between two points. Mathematically, we write F

S
= qE

S
 in our general 

 expression for ∆UAB and divide by q. The result defines the electric  potential  difference ∆V:

The electric potential difference from point A to point B is the potential-energy 
change per unit charge in moving a charge from A to B:

 ∆VAB =
∆UAB

q
= - L

B

A
 E

S # d r
!
  1electric potential difference2 (22.1a)

Here ∆ and the subscripts AB show explicitly that we’re talking about a change or differ-
ence from one point to another. We’ll sometimes use just the symbol V for potential dif-
ference, in cases where the starting point A is understood. Note that potential difference, 
although computed from vectors, is itself a scalar quantity.

The switch from potential energy to electric potential is analogous to Chapter 20’s 
 introduction of the electric field as the electric force per unit charge; similarly, the electric 
potential difference is the change in potential energy per unit charge. The reason is the same: 
We want to express electric properties in terms that don’t involve specific charges. Table 22.1 
summarizes the relations among force and field, potential energy and electric potential.

In the special case of a uniform field, Equation 22.1a reduces to

 ∆VAB = - E
S # ∆r

!
  1uniform field2 (22.1b)

where ∆r
!
 is a vector from A to B. Figure 22.1 shows the special case when the field E

S
 and 

path ∆r
!
 are in opposite directions; here, Equation 22.1b gives ∆VAB = E ∆r.

Potential difference can be positive or negative, depending on whether the path goes 
against the field or with it. Moving a positive charge through a positive potential differ-
ence is like going uphill: Potential energy increases. Moving a positive charge through a 
negative potential difference is like going downhill: Potential energy decreases. The con-
verse is true for a negative charge; even though the potential difference remains the same, 
the force is opposite and so the potential energy reverses sign.

We emphasize that potential difference is a property of two points; it doesn’t depend on 
the path between those points. In Fig. 22.1, considering a straight path from A to B made 
the calculation of potential difference easy, but we would have found the same result— 
 albeit with much more effort—using any path (Fig. 22.2).

Figure 22.1 Work done in moving a charge q 
against an electric field E

!
.

E
S

Positive charge q is
initially at A in uniform
electric �eld E c

cMoving the charge a
distance ∆r from A to B
requires work qE ∆r.

A B

∆r 

S

Table 22.1 Force and Field, Potential 
Energy and Electric Potential

Quantity Symbol/equation units

Force F
S N

Electric  
field

E
S

=
F
S

q

N/C 
or 
V/m

Potential-
energy 
difference

∆U = - L
B

A
F
S  #  d r

!
   J

Electric 
potential 
difference

∆V =
∆U

q

J/C  
or V

or

∆V = - L
B

A
E
S#  d  r

!

Figure 22.2  Potential difference is path 
 independent.

E
S

∆r 

A B

1

2

3

Potential difference ∆VAB
depends only on points 
A and B.

Calculating potential difference 
along any path (1, 2, or 3) gives ∆VAB = E∆r.
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22.1 Electric Potential Difference 401

Got It? 22.1 What would happen to the potential difference VAB in Fig. 22.1 if  
(1) the electric field strength were doubled, (2) the distance ∆r were doubled, (3) the 
points were moved so the path lay at right angles to the field, or (4) the positions of A and 
B were interchanged?

the Volt and the Electronvolt
Potential difference measures work or energy per unit charge, so its units are joules per cou-
lomb, as shown in Table 22.1. Potential difference is important enough that this unit has a 
special name, the volt (V). To say that a car has a 12-V battery, for example, means the bat-
tery does 12 J of work on every coulomb of charge that moves between its terminals. Multi-
plying the first equality in Equation 22.1a by q shows that the change in potential energy of 
a charge q as it moves through a potential difference ∆V  is ∆U = q ∆V. If a charge q “falls” 
freely through a potential difference ∆V, it therefore gains kinetic energy given by � q ∆V � .

We often use the term voltage to mean potential difference, especially in electric cir-
cuits. The two are subtly different, however, when changing magnetic fields are present; 
more on this in Chapter 27. Table 22.2 lists some typical potential differences in techno-
logical and natural systems.

✓tIP Potential Difference Involves Two Points

Potential difference is the energy per unit charge involved in moving between those 
points. This is ultimately a practical matter; if you forget it, you won’t be able to hook 
up a voltmeter properly or connect jumper cables safely to your car battery! This 
 chapter’s opening photo provides a dramatic illustration of this point.
 Sometimes we say “the potential (or voltage) at point P.” This is always a shorthand 
way of talking, and we must have in mind some other point. What we mean is the 
potential difference going from that other point to P. We’ll consider choices for that 
“other point”—the so-called zero of potential—in the next section.

In molecular, atomic, and nuclear systems it’s often convenient to measure energy in 
electronvolts (eV), defined as the energy gained by a particle carrying one elementary 
charge when it moves through a potential difference of 1 volt. Since one elementary 
charge is 1.6 * 10-19 C, 1 eV is 1.6 * 10-19 J. Energy in eV is particularly easy to calculate 
when charge is given in units of the elementary charge e; then, with ∆V  in volts, q ∆V  
gives the energy in eV. However, the eV is not an SI unit and should be converted to joules 
before calculating other quantities, like velocity.

Got It? 22.2 (1) A proton (charge e), (2) an alpha particle (charge 2e), and (3) a 
singly ionized oxygen atom each move through a 10-V potential difference. What’s the 
work in eV done on each?

Table 22.2 Typical Potential Differences

Between human arm and 
leg due to heart’s electrical 
activity

1 mV

Across biological cell 
membrane

80 mV

Between terminals of 
flashlight battery

1.5 V

Car battery 12 V

Electric outlet (depends  
on country)

100–240 V

Taser© (pulsed) 1200 V

Between long-distance 
electric transmission line and 
ground

365 kV

Between base of 
thunderstorm cloud and 
ground

100 MV

ExamPLE 22.1  Potential Difference, Work, and Energy: x Rays

In an X-ray tube, a uniform electric field of 300 kN/C extends over a 
distance of 10 cm, from an electron source to a target; the field points 
from the target to the source. Find the potential difference between 
source and target and the energy gained by an electron as it acceler-
ates from source to target (where its abrupt deceleration produces X 
rays). Express the energy in both electronvolts and joules.

Interpret This problem requires first calculating the poten-
tial  difference from the field and then the energy from the potential 
 difference.

Develop Figure 22.3 is our drawing with point A the source and 
point B the target. Equation 22.1b, ∆VAB = - E

S  #  ∆r
!
, determines the 

(continued)
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402 Chapter 22 Electric Potential

potential difference in this uniform field. Given the potential differ-
ence, or energy per unit charge, we can find the energy gain from the 
magnitude of the product q ∆V.

evaluate With the field and path in opposite directions, cos u = -1 
in the dot product, so Equation 22.1b gives

∆VAB = E ∆r = 1300 kN/C210.10 m2 = 30 kV

Although this difference is positive, a negative electron moves “down-
hill” from source to target, and thus gains kinetic energy as work 
gets done on it. With the charge measured in elementary charges, 
the product � q ∆V �  gives this energy directly when it’s expressed 
in electronvolts: 11 elementarycharge e2130 kV2 = 30 keV. With 
1.6 * 10-19 J/eV, this is 4.8 fJ.

assess Make sense? An electronvolt is a lot smaller than a joule, so 
the SI answer (in fJ = 10-15 J) is numerically much smaller. ■

Figure 22.3 Sketch for Example 22.1.

ExamPLE 22.2  Potential of a Charged Sheet

An isolated, infinite charged sheet carries uniform surface charge 
 density s. Find an expression for the potential difference from the 
sheet to a point a perpendicular distance x from the sheet.

Interpret This is a question about calculating the potential differ-
ence from the field.

Develop The result of Example 21.6 gives the field of a charged 
sheet: It’s uniform, with magnitude E = s/2P0 and direction 
 perpendicular to the sheet. We’ve drawn the sheet and a few of its 
field lines in Fig. 22.4. Since the field is uniform, Equation 21.1b, 
∆VAB = - E

S  #  ∆r
!
, determines the potential difference.

evaluate Moving away from the sheet means going in the direction 
of the field (assuming positive s), so cos u = 1 in the dot product, 
and we evaluate to get

V0x = -Ex = -
sx

2P0

Here we’ve used x for the displacement ∆r and V0x for the potential 
difference because we’re measuring from the sheet 1x = 02 to the 
point x.

assess Make sense? Our result shows that the potential difference 
in a uniform field varies linearly with distance. Moving a positive 

charge away from the sheet is like going “downhill,” in this case with 
a  constant slope. Give the sheet a negative charge 1s 6 02 and the 
potential difference changes sign; now moving a positive charge away 
from the sheet is going “uphill.” (And moving a negative charge away 
is “downhill”—since like charges repel.) ■

Figure 22.4 Sketch for Example 22.2. The field also extends to the left from 
the sheet, but we haven’t drawn that.

Curved Paths and Nonuniform Fields
If the electric field isn’t uniform or the path isn’t straight, then we need to use the integral 
in Equation 22.1a to find the potential difference. With that equation we’re dividing the 
path into segments dr

!
, each so short that it’s essentially straight with a uniform field over 

its length (Fig. 22.5). Then Equation 22.1b gives the potential difference dV = - E
S  #  dr

!
 

across the segment, and in integrating we’re summing infinitely many infinitesimal dV 
values to get the potential difference between two points A and B. We’ll see some exam-
ples in the next section.
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22.2 Calculating Potential Difference 403

22.2 Calculating Potential Difference
Here we use Equation 22.1a to calculate the potential differences for several charge dis-
tributions. Most important is the point charge, which then provides an easy way to find 
potential differences for more complicated charge distributions.

the Potential of a Point Charge
Equation 20.3 gives the electric field of a point charge: E

S
= 1kq/r22rn. Let’s find the 

 potential difference between two points A and B at distances rA and rB from a positive 
point charge, as shown in Fig. 22.6. We can’t just multiply the distance rB - rA by E 
 because the field varies with position. Instead we integrate, using Equation 22.1a:

 ∆VAB = - L
rB

rA

 E
S  #  d r

!
= - L

rB

rA

 
kq

r2  rn  #  d r
!
 

As we move from A to B, the path elements are increments dr in the radial direction, so we 
write dr

!
= rn  dr. Then the potential difference is

∆VAB = - L
rB

rA

kq

r2  rn # rn dr = -kq L
rB

rA

 r-2 dr

Figure 22.5 (a) A path from A to B traverses an electric field E
!
. (b) To find the  potential 

difference ∆VAB, we first divide the path into infinitesimal segments d  r
!
. (c) The 

 potential difference dV across one such segment is dV = -E
! # d  r

!
. (d)  Adding—that is, 

integrating—all the dVs along the path gives the expression for ∆VAB.

(a) (b)

(c)(d)

E
S

E
S

B

A

E
S

B

A

u
dr 
u

∆VAB = E # drdV = -L
B

A L
B

A

uS

dV = -E # dr = -Edr cosu
uS

Got It? 22.3 The figure shows three straight paths AB of the same length, each in 
a different electric field. The field at A is the same in each. Rank the potential differences 
∆VAB, from highest to lowest.

E
S

E
S

E
S

A B

(a)

A B

(b)

A B

(c)

r cn

kq

r2

E
S

BA

rB

rA

cso �nding the potential difference ∆VAB
between A and B requires integration
because E varies with position.

The electric �eld
of a point charge

is E = 
S

S

Figure 22.6 Potential difference in the field of a 
point charge.
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404 Chapter 22 Electric Potential

since the dot product of the unit vector rn with itself is 1. Evaluating the integral gives

 ∆VAB = -kq c- 1
r
d

rA

rB

= kq a 1
rB

-
1
rA
b  (22.2)

Make sense? For rB 7 rA, the potential difference is negative, showing that a positive test 
charge at rA would “fall” toward rB. Going the other way would require an external force to do 
work on a positive charge, pushing it “uphill” against the repulsive force of the charge q. Our 
result holds as well for q 6 0, in which case the sign of the potential difference changes.

Although we derived Equation 22.2 for two points on the same radial line, Fig. 22.7 
shows that the result holds for any two points in the field of a charge q. It doesn’t matter 
which point is at the greater distance either; if rB 6 rA, Equation 22.2 still gives the cor-
rect potential difference, which then becomes positive, showing that we would have to do 
work to move a positive test charge toward a positive q.

the Zero of Potential
Only potential differences have physical significance. But it’s often convenient to define a 
point of zero potential; we can then speak of the potential V at some other point P, mean-
ing the potential difference between our zero point and P. In this context the expression 
∆VAB can be written V1B2 - V1A2. The choice for the zero of potential is usually based on 
mathematical or physical convenience. In electric power systems, Earth, called “ground,” 
is usually taken as the zero of potential; in automobile electric systems, the car’s metal 
frame is a convenient zero point.

When we deal with isolated charges, it’s convenient to take the zero of potential at in-
finity. Then rA S ∞  in Equation 22.2 and 1/rA becomes zero. We’ll omit the subscript on 
rB because it can be any point; then Equation 22.2 becomes

 V∞r = V1r2 =
kq

r
 1point@charge potential2 (22.3)

When we call this expression V1r2 “the potential of a point charge,” we really mean that 
V1r2 is the potential difference going from a point very far from a charge q to a point 
a  distance r from the charge—an interpretation that’s consistent with our definition of 
 potential difference as depending on two points. Because the field outside any spherically 
symmetric charge distribution is that of a point charge, Equation 22.3 also gives the poten-
tial outside a spherically symmetric charge distribution.

Does it bother you that potential difference can be finite over an infinite distance? The 
reason lies in the inverse-square dependence of the field, which drops so rapidly that the 
work done in moving a charge from infinity to the vicinity of a point charge remains finite. 
We found an analogous result in Chapter 8, where it took only a finite amount of energy to 
escape completely from a planet’s gravitational attraction. As long as a charge distribution 
is finite in size—so its field at large distances falls at least as fast as 1/r2—it makes sense 
to take the zero of potential at infinity.

Got It? 22.4 You measure a potential difference of 50 V between two points a 
 distance 10 cm apart along a line extending radially outward from a point charge. If you 
move closer to the charge and measure the potential difference over another 10-cm  interval 
on the same line, will it be (a) greater, (b) less, or (c) the same?

Figure 22.7 Potential difference is path 
independent, so ∆VAB here still follows from 
Equation 22.2.

E
S

∆V = 0 on arc
perpendicular to E, 
because E # dr = 0.

∆V from
Equation 22.2

B

A

rB

rA

rA, B

u

S

S

ExamPLE 22.3  Potential and Work: at the Science museum
The Hall of Electricity at the Boston Museum of Science contains a 
large Van de Graaff generator, a device that builds up charge on a 
metal sphere (see Chapter 21’s opening photo). The sphere has radius 
R = 2.30 m and develops a charge Q = 640 μC. Treating this as a 

single isolated sphere, find (a) the potential at its surface, (b) the work 
needed to bring a proton from infinity to the sphere’s surface, and  
(c) the potential difference between the sphere’s surface and a point 
2R from its center.
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22.2 Calculating Potential Difference 405

Interpret This problem is about potential differences in the field of 
a spherically symmetric charge distribution. In Chapter 21 we found 
that the field outside such a distribution is identical to that of a point 
charge. The term “potential” is meaningless unless we’re talking 
about two points, so here, with a point-charge field, we interpret the 
question as asking us to take the zero of potential at infinity.

Develop Because the field outside the spherical charge distribution 
is the same as that of a point charge, Equation 22.3, V1r2 = kQ/r, 
determines the potential for r Ú R. We’ve sketched this 1/r potential 
curve in Fig. 22.8. Because the zero of potential is at infinity, we can 
multiply the potential at the surface by the proton’s charge to get the 
work required to bring a proton from infinity. Finally, we can evaluate 
the potential difference ∆VR 2R from the potentials at R and 2R.

evaluate (a) Equation 22.3 gives

V1R2 =
kQ

R
= 2.50 MV

using Q and R given for the museum’s device. (b) This 2.5-MV result 
is the potential difference between infinity and the sphere’s surface. 
Then the work needed to move a proton—1 elementary charge e—
from infinity is 2.5 MeV or 4.0 * 10-13 J. (c) We find the potential 
difference from the surface to 2R by subtracting the potentials at the 
two points:

∆VR 2R = V12R2 - V1R2 =
kQ

2R
-

kQ

R
= -

kQ

2R
= -1.25 MV

assess Make sense? The potential difference ∆VR 2R is negative 
 because we’re moving away from the positively charged sphere. Our 
result also shows that fully half the potential difference between the 
sphere and infinity occurs within one radius of the sphere’s surface—
a consequence of the rapid 1/r2 decrease in the field. ■

Figure 22.8 Sketch for Example 22.3.

(a)

(b)

ExamPLE 22.4  Potential Difference: a High-Voltage Power Line
A long, straight power-line wire has radius 1.0 cm and carries line 
charge density l = 2.6 μC/m. Assuming no other charges are pre-
sent, what’s the potential difference between the wire and the ground, 
22 m below?

Interpret We can interpret the long, straight wire as essentially an 
infinitely long charge distribution with line symmetry.

Develop In Chapter 21 we found that the field outside any line-
symmetric distribution is that of a line charge, E

S
= 1l/2pP0 r2rn, 

so this equation determines the power line’s field. We haven’t been 
given any explicit expression for potential differences in this field, so 
because the field varies with position, our plan is to apply Equation 
22.1a, ∆V = - 1 E

S  #  d r
!
. We’ve drawn the situation in Fig. 22.9.

evaluate We evaluate the integral in Equation 22.1a over a straight 
path perpendicular to the wire, from its surface at rA to the ground at rB:

∆VAB = - L
rB

rA

 E
S # d r

!
= - L

rB

rA

 
l

2pP0 r
 rn # rn dr

 = -
l

2pP0 L
rB

rA

dr

r
= -

l

2pP0
 ln r `

rB

rA

 (22.4)

 =
l

2pP0
 ln arA

rB
b

where the last  s tep fol lows because  ln x -  ln y = ln1x/y2 
and ln(x/y) = - ln(y/x).  The numbers of  this  example give 
∆V = -360 kV, a value typical of long-distance electric power 
transmission lines.

assess Make sense? Our result is negative because the path AB 
goes away from a positive charge. (Mathematically, rA 6 rB so the 
 logarithm is negative.) The symbolic form of our answer shows that 
we can’t let rB go to infinity. Physically, that’s because we’re assum-
ing the charge distribution has infinite extent, so it never resembles 
a point charge no matter how far away we get; mathematically, it’s 
because the field falls off more slowly than a point-charge field—
namely, as 1/r. In practice, our answer here should be modified to 
account for the presence of other wires and of charges drawn to the 
ground surface. ■

Figure 22.9 A long, straight power line approximated as an infinite charged 
rod whose field is that of a line charge.

We want the potential difference from
the wire surface, a distance rA from the
axis, to the ground, a distance rB below.

M22_WOLF4752_03_SE_C22.indd   405 17/06/15   8:52 PM



406 Chapter 22 Electric Potential

Finding Potential Differences Using Superposition
When we don’t know the field of a charge distribution, or when the field is too compli-
cated to integrate easily, we can find the potential using superposition. This often provides 
an easier approach to calculating the field, as we’ll see in Sec. 22.3.

Consider a charge q brought from infinity to a point P in the vicinity of some other 
charges. The superposition principle states that the electric field of a charge distribution is 
the sum of the fields of the individual charges that make up the distribution. Therefore, the 
work per unit charge—that is, the potential difference—between infinity and P is the sum 
of the potential differences associated with the individual point charges. Mathematically, 
we find V1P2 by summing Equation 22.3 over the individual point charges qi:

 V1P2 = a
i

 
kqi

ri
 (22.5)

where the ri>s are the distances from each of the charges to the point P. Equation 22.5 has 
one enormous advantage over its counterpart for the electric field, Equation 20.4. Electric 
potential is a scalar, so the sum in Equation 22.5 is a scalar sum, with no angles, vector 
components, or unit vectors.

An electric dipole consists of point charges {q a distance 2a apart. 
Find the potential at an arbitrary point P, and an approximation to the 
potential for the case where the distance to P is large compared with 
the charge separation.

Interpret We have two point charges, so this problem is based 
on the point-charge potential, and therefore we’ll take the zero of 
 potential at infinity.

Develop Figure 22.10 is our drawing, showing the distances from 
the two charges to a point P. Our plan is to apply  superposition, 
 summing the potentials of the individual point charges at P as 
 determined in Equation 22.5, V1P2 = g1kq/r2.

evaluate Applying Equation 22.5 gives

V1P2 =
kq

r1
+

k1-q2
r2

=
kq 1r2 - r12

r1r2

This is an exact result valid for any P. We’re also asked for an ap-
proximation for large distances. If r is the distance to the dipole center, 
as shown in Fig. 22.10, then for r W a, the quantities r1, r2, and r 

ExamPLE 22.5  Discrete Charges: the Dipole Potential

Figure 22.10 Finding the dipole potential.

This is approximately
the difference
r2 - r1.

This angle is 
approximately u.

Figure 22.11 3-D plot of the dipole potential in the plane of Fig. 22.10.

Positive charge
is a “hill.”

Negative charge
is a “hole.”

Bisector is at V = 0.

are nearly the same and the term r1r2 is very nearly r2. We have to 
be a little more careful with the term r1 - r2 because here we’re 
 comparing nearly equal quantities. Figure 22.10 shows that this term—
the difference between the distances from the two charges to P—is 
 approximately 2a cos u. So the dipole potential for r W a  becomes

V1r, u2 =
k12aq2 cos u

r2 =
kp cos u

r2   (dipole potential) (22.6)

with p = 2aq being the dipole moment.

assess Make sense? The dipole potential drops as 1/r2; earlier, we 
found the dipole field dropping as 1/r3. The difference of one power 
in r occurs because the potential results from integrating the field over 
distance. The same is true for the point charge, whose field drops as 
1/r2 while its potential drops as 1/r. Note also that Equation 22.6 gives 
V = 0 when u = 90°. There, on the dipole’s perpendicular bisector, 
a charge brought from infinity is always moving at right angles to the 
dipole field (recall Fig. 21.2), so no work is involved (Fig. 22.11). ■
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22.2 Calculating Potential Difference 407

Continuous Charge Distributions
We can calculate the potential of a continuous charge distribution by considering it to 
be made up of infinitely many infinitesimal charge elements dq. Each acts like a point 
charge and therefore contributes to the potential at some point P an amount dV given 
by dV = k dq/r, where we take the zero of potential at infinity. The potential at P is the 
sum—that is, the integral—of the contributions dV from all the charge elements:

 V = LdV = L
k dq

r
 apotential of a continuous

charge distribution b  (22.7)

where the integration is over the entire charge distribution. Example 22.6 provides a  simple 
application of Equation 22.7 where the integration is straightforward, while  Example 22.7 
is more challenging.

∞ ∞

∞ 1

2 3

-q q

P

Got It? 22.5 The figure shows three paths from 
infinity to a point P on a dipole’s perpendicular bisec-
tor. Compare the work done in moving a charge to P on 
each of the paths.

ExamPLE 22.7 Potential of a Continuous Distribution: a Charged Disk

A charged disk of radius a carries a charge Q distributed uniformly 
over its surface. Find the potential at a point P on the disk axis, a dis-
tance x from the disk.

Interpret This problem, too, involves a continuous charge distribution.
(continued)

Develop Equation 22.7, V = 1k dq/r, determines the potential. But 
now all parts of the charge distribution aren’t the same distance from 
P, so we have to set up the integral using the procedure outlined in 
Chapter 9’s Tactics 9.1 and used most recently in Chapter 20 when we 

ExamPLE 22.6  Potential of a Continuous Distribution: a Charged Ring

A total charge Q is distributed uniformly around a thin ring of radius a.  
Find the potential on the ring’s axis.

Interpret We interpret the ring as a continuous charge distribution.

Develop Equation 22.7, V = 1k dq/r, gives the potential for con-
tinuous charge distributions. Figure 22.12 is our drawing, showing an 
x-axis coincident with the ring axis, with x = 0 at the ring center. 
Charge elements dq in this case are small segments of the ring, and 

Figure 22.12 A charged ring.

Same r for all
dq’s in the ring

Fig. 22.12 shows that the distance r = 2x2 + a2 is the same for all 
charge elements.

evaluate Equation 22.7 becomes

 V1x2 = L
k dq

r
=

k

r Ldq =
kQ

r
=

kQ2x2 + a2
 (22.8)

The integration here simplified because r is the same for all charge el-
ements within the ring and so comes outside the integral; the remain-
ing integral, 1dq, is the total charge Q.

assess Make sense? At large distances 1x W a2, a2 is negligible 
and our result becomes V1x2 = kQ/x. This is the potential of a point 
charge Q—just as we’d expect when we’re so far from the ring that 
its size isn’t significant. At the ring’s center, on the other hand, we 
have V102 = kQ/a. Here we’re a distance a from all parts of the ring, 
and since potential is a scalar, the different directions don’t matter.  
The result is therefore the same as being a distance a from a point 
charge Q. ■
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408 Chapter 22 Electric Potential

22.3 Potential Difference and the Electric Field
It takes no work to move a charge at right angles to an electric field, so there’s no  potential 
difference between two points on a surface perpendicular to the field. Such surfaces 
are called equipotentials. Equipotentials are like contour lines on a topographic map  
(Fig. 22.15). A contour is a line of constant elevation, so it takes no work to move along it. 
Where contours are close, elevation changes rapidly. Similarly, closely spaced  equipotentials 
indicate a large potential difference between nearby points. That means there must be a 
strong electric field present. Figure 22.15 might just as well represent electric  potential, 
with closely spaced equipotentials—steep slopes on the “potential hill”— representing 
strong electric fields. Similarly, the equipotentials for a dipole (Fig. 22.16; see also  
Fig. 22.11) describe the steep “hill” of the positive charge and the “hole” of the negative 
charge that we showed in Fig. 22.11. There is one difference, though: Equipotentials are 
surfaces in three dimensions, and when we draw them as contour lines, we’re showing 
only the surfaces’ intersections with a plane.

Figure 22.15 A flat-topped hill (a) and its 
 contour map (b) represent equipotentials 
(dashed curves) for a charged spherical shell, 
in a plane through the shell’s center.

E
S

Steep hill,
close contours,
strong �eld Field and

equipotentials 
are perpendicular.

(b)

(a)

(b)(a)

Got It? 22.6 The figure shows cross 
sections through two equipotential surfaces. In 
both diagrams the potential difference between 
adjacent equipotentials is the same. Which 
could represent the field of a point charge? 
 Explain.

calculated the fields of continuous charge distributions. We’ve drawn 
the disk and its axis in Fig. 22.13. The preceding example suggests 
that we divide the disk into ring-shaped charge elements, as we’ve 
drawn in the figure. Each ring contributes a potential dV given by 

Equation 22.8: dV = k dq/2x2 + r2, where r is the ring radius. We 
get the potential of the entire disk by integrating over all the rings that 
make up the disk:

V1x2 = Ldisk
 dV = L

r = a

r = 0

k dq2x2 + r2

Before we can evaluate this integral, we need to relate the charge ele-
ment dq and the geometric variable r. Here the relation involves area: 
The ratio of ring area to disk area is the same as the ratio of dq to 
the total charge Q. “Unwinding” a ring gives a rectangle of length 
2pr and width dr, so the ring area is 2pr dr. The disk area is pa2, so 
dq/Q = 2pr dr/pa2, giving dq = 12Q/a22r dr.

evaluate Using this result in our integral for the potential V1x2 
gives

V1x2 = L
a

0

2kQ

a2  
r dr2x2 + r2

=
kQ

a2 L
a

0
 

2r dr2x2 + r2

Now, 2r dr = d1r22 = d1x2 + r22 since x is a constant with respect 
to the integration. The integral therefore has the form 1u-1/2 du, 
where u = x2 + r2, and the result is 2u1/2 or

V1x2 =
2kQ

a2 2x2 + r2 `
r = a

r = 0
=

2kQ

a2 12x2 + a2 - � x �2

assess Make sense? Figure 22.14 shows that it does. Close to the disk, 
the potential resembles that of an infinite sheet, changing linearly with 
distance (recall Example 22.2); far away, it has the 1/r behavior of a 
point-charge potential. It’s only at intermediate distances—on the order 
of the disk radius a—that we really need our exact expression. ■

Figure 22.13 A charged disk, showing a ring-shaped charge element dq of 
radius r and width dr.

dq

Figure 22.14 Charged-disk potential approaches that of an infinite sheet for 
points close to the disk, and that of a point charge far from the disk.

2kQ

a

Po
te

nt
ia

l, 
V

Point-charge
potential

Potential of
charged disk

In�nite-
sheet
potential 

Distance, x, along disk axis 

0 1a 2a 3a 
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22.3 Potential Difference and the Electric Field 409

Calculating Field from Potential
Given electric field lines, we can construct equipotentials. Conversely, given equipoten-
tials, we can reconstruct the field by sketching field lines at right angles to the equipo-
tentials. Specifying the potential at each point thus conveys all the information needed to 
determine the field.

We can quantify the relation between potential and field by considering the  potential 
 difference dV between two nearby points. Suppose they’re separated by a small 
 displacement dx in the x-direction. Then Equation 22.1b becomes dV = -Ex dx, where we 
handled the dot product by considering only the component of E

S
 along the  displacement. 

Dividing through by dx shows that we can write the electric-field component in the  
x-direction as Ex = -dV/dx. We can write similar expressions for the y- and z- components. 
When a function depends on more than one variable, as the potential generally does, we 
write derivatives with the partial derivative symbol 0 instead of d to indicate the rate of 
change with respect to only one variable. Thus we have Ex = -0V/0x, Ey = -0V/0y, and 
Ez = -0V/0z. Putting together these three components lets us write the entire electric-field 
vector:

 E
S

= -  a0V

0x
 in +

0V

0y
 jn +

0V

0z
 knb  (22.9)

Equation 22.9 confirms that the electric field is strong where the potential changes  rapidly. 
The minus sign here is the same as in Equation 22.1: It says that if we move in the  direction 
of increasing potential, then we’re moving against the electric field. Equation 22.9 also 
shows that the units of electric field, N/C, can be written equivalently as volts per meter—
a unit widely used in both science and engineering.

Because potential is a scalar, it’s often easier to calculate the potential and then use 
Equation 22.9 to get the field. The next example shows how.

Figure 22.16 Equipotentials (dashed curves) 
and field lines for a dipole, in a plane 
 containing the dipole. You should convince 
yourself that the equipotentials provide a 
contour map of Fig. 22.11.

E
S

Field and 
equipotentials
are perpendicular.

V 6 0 on the
negative side.

V 7 0 on the
positive side.

V = 0 on the
bisector.

ExamPLE 22.8  Field from Potential: a Charged Disk

Use the result of  Example 22.7 to find the electric field on the axis of 
a charged disk.

Interpret  Example 22.7 gives the potential of a charged disk, so 
this problem is about calculating electric field from potential.

Develop  Example 22.7 gives the potential on the axis of a charged 

disk: V1x2 = 12kQ/a221 2x2 + a2 - � x �  2. Equation 22.9 shows that 

we can get the electric field by differentiating the potential with re-
spect to all three coordinates. But here the potential depends only on 
x, so E

S
 has only an x-component—a fact that should also be evident 

from symmetry. Our plan is to apply Equation 22.9, differentiating 
V1x2 to get the field component Ex.

evaluate We apply Equation 22.9 to V1x2 to get

 Ex = -  
dV

dx
= -  

d

dx
 c 2kQ

a2  12x2 + a2 - � x �2 d
 =

2kQ

a2   a{1 -
x2x2 + a2

b

where the + /-  signs apply for x 7 0 and x 6 0, respectively. Be-
cause V depends only on x, we wrote the total derivative dV/dx rather 
than the partial derivative.

assess Make sense? In Fig. 22.14 we showed that the field of a disk 
ought to look like that of a charged sheet close up and like a point 
charge far away. For � x � 66 a, our result gives � Ex � = 2kQ/a2. With 
k = 1/4pP0 and Q/pa2 = s, this is indeed the field E = s/2P0 of a 
charged sheet. You can show in Problem 68 that the case � x � W a 
reduces to the field of a point charge Q, as expected. ■

✓tIP Field and Potential

Note that the values of field and potential at a single point aren’t related; rather, as 
Equation 22.9 shows, the field is determined by the rate of change of potential. Field 
and potential are related in the same way as acceleration and velocity; their values are 
independent, but one is the rate of change of the other—although with a negative sign 
in the case of field and potential. In particular, the field can be zero where the potential 
isn’t, and vice versa. Conceptual Example 22.1 explores this situation.

PheT: Calculus Grapher
PheT: Charges and Fields
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410 Chapter 22 Electric Potential

22.4 Charged Conductors
There’s no electric field inside a conducting material in electrostatic equilibrium, and at 
the conductor surface there’s no field component parallel to the surface. Therefore, it takes 
no work to move a test charge on or inside a conductor—and that means a conductor in 

CoNCEPtUaL ExamPLE 22.1 Potential and Field

Figure 22.17 Potential V on the x-axis, showing points where V = 0. The 
 potential goes to { ∞  at the locations of the positive charge (x = 0) and 
negative charge (x = a). Note that Ex = 0 not where the potential is zero 
but where dV/dx = 0. This point occurs at x = 3.4a, as found in  Making the 
Connection for Conceptual Example 20.2.

V = 0 at 2a>3 and at 2a

Here the slope dV>dx = 0,
so this is where the �eld
component Ex = 0

0
a 2a 3a 4a 5a 6a 7a 8a

A charge +2Q lies at the origin, and a charge -Q lies at x = +a. 
(a) In which of the three regions x 6 0, 0 6 x 6 a, and x 7 a could 
there be a point on the x-axis where the potential is zero? Take V = 0 
at infinity. (b) Is the electric field at these points also zero?

Interpret We’re asked about the general locations of points on the 
x-axis where the potential has the same value (V = 0) as it does at 
infinity, and about the electric field at those points.

Develop The potential of a system of point charges is given by 
superposition—by summing the potentials for the individual point 

charges given by Equation 22.3, V =
kq

r
. So we want to locate points 

where the sum of the potentials from the positive charge +2Q and the 
negative charge –Q could sum to zero. In this respect this example is 
similar to Conceptual Example 20.2, except that there we were deal-
ing with the electric field—a vector quantity—and here we’re dealing 
with potential, which is a scalar.

evaluate As in Conceptual Example 20.2, all points with x < 0 
are closer to the charge 2Q, so its potential dominates and is always 
positive. So we can’t have V = 0 in this region. Between the charges, 
where 0 6 x 6 a, we could be close to either charge depending 
on which end of the interval we’re near. Near the positive charge, 
the potential must be positive; near the negative charge, it must be 
 negative—and so there’s a point somewhere in between where 
V = 0. (Because the charges have unequal magnitudes, that point 
won’t be right in the middle. Can you tell whether it will be closer to 
+2Q or to -Q?) Note that this middle situation is different from what 
we found for the  electric field in Conceptual Example 20.2; there, the 
electric fields from the two charges are pointed in the same direction 
in the region between the charges, so we couldn’t have E = 0 in that 
region.  Finally, for x 7 a but still very close to -Q, the potential is 
dominated by the negative charge and so must be negative. But farther 
away, the charge distribution begins to look like a single charge with 

net charge 2Q-Q = Q, so the potential is positive at large distances. 
So there’s a point in between where the potential is zero. Figure 22.17 
is a plot of the potential on the x-axis, showing the two points we’ve 
identified. Now, Equation 22.9 shows that the electric field depends 
on the rate of change of potential, and that’s zero where the curve 
in Fig. 22.17 is at a maximum or minimum. Since the maxima and 
minima don’t occur where V = 0, we conclude that the electric field 
is not zero where the potential is zero.

assess The two points we’ve located are actually the intersections of 
a V = 0 equipotential that surrounds the negative charge. Figure 22.18  
shows a 3-D plot of the potential in the x-y plane, with that V = 0 
equipotential marked. You can see that nearly all points in the  diagram 
lie above the V = 0 equipotential, indicating positive  potential. 
The exception are those points in the “hole” created by the negative 
charge.

MakIng the ConneCtIon Find the exact locations of the two points 
on the x-axis that this example identified as having V = 0.

evaluate Between the charges, the potential is given by 

V =
k12Q2

x
+

k1-Q2
a - x

, where we chose the signs in the second 

 denominator to ensure that it’s positive since the r in V = kq/r is 
always a positive distance. Setting V = 0 in this expression and 
solving for x gives x = 2

3 a. To the right of both charges, we have 

V =
k12Q2

x
+

k1-Q2
x - a

, where again we chose the second  denominator 

to be positive—now x-a since we’re in the region x 7 a. Setting 
V = 0 and solving now gives x = 2a.

assess Our answers are both in the expected regions, and the fact that 
the V = 0 point between the charges is closer to the negative charge 
reflects the greater influence of the larger-magnitude positive charge.

Figure 22.18 Three-dimensional plot of the potential V in the x-y plane, 
showing the V = 0 equipotential in the x-y plane. Where are the V = 0 
points from Fig. 22.17 on this 3-D plot?

+2Q is a “hill”

-Q is a “hole”

Curve shows where V = 0
in the x-y plane
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22.4 Charged Conductors 411

electrostatic equilibrium is an equipotential. We can exploit this fact to gain insight into 
the electric field at the surface of a conductor.

Consider an isolated, spherical conductor of radius R carrying charge Q. Charge is 
 distributed uniformly over its surface, so the field outside the sphere is that of a point 
charge. Then the potential at its surface is V1R2 = kQ/R, as we found in Example 22.3. 
Now consider two widely separated spheres of different sizes. If we connect them by a thin 
conducting wire (Fig. 22.19), charge will move through the wire until both spheres are at 
the same potential. But since the spheres are widely separated, each still has an essentially 
spherical charge distribution, so V1R2 = kQ/R gives each sphere’s potential. Because 
the spheres have the same potential, kQ1/R1 = kQ2/R2. We can write each charge as the 
surface area multiplied by the surface charge density: Q = 4pR2s. Substituting for the 
Q’s in the above equation and solving for the ratio of surface charge densities then gives

s1

s2
=

R2

R1

Thus the smaller sphere has the higher surface charge density. Since the electric field at a 
conductor surface has magnitude E = s/e0, the field must also be stronger at the smaller 
sphere. Conceptual Example 22.2 explores this situation further.

Same potential

Smaller R,
higher s,
larger E

R1
R2

Figure 22.19 Two conducting spheres 
 connected by a long conducting wire.

CoNCEPtUaL ExamPLE 22.2  an Irregular Conductor

Figure 22.20 Equipotentials and field of a charged conductor.

Sharp curve,
strong E,
close equipotentialsFlatter surface, 

weaker E,
widely spaced 
equipotentials

S

S

Figure 22.21 Distribution of charge on a conductor changes in the presence 
of another charge.
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Sketch some equipotentials and electric field lines for an isolated egg-
shaped conductor.

evaluate Where the conductor surface curves sharply, it’s like the 
small sphere of Fig. 22.19. It therefore has higher surface charge den-
sity and a stronger electric field, which means more field lines emerge 
where the surface curves sharply. Since the field is perpendicular at 
the conductor surface, equipotentials just above the surface have es-
sentially the same shape as the surface. Far from the charged conduc-
tor, on the other hand, its field resembles that of a point charge, with 
radial field lines and circular equipotentials. Figure 22.20 gives an ap-
proximate picture of the field and equipotentials based on these con-
siderations.

assess Our analysis here applies only to an isolated conductor.  
Figure 22.21 shows how the presence of nearby charges alters the 
charge distribution on a conductor.

MakIng the ConneCtIon The potential difference between the 
conductor in Fig. 22.20 and the outermost equipotential shown is 70 V.  
Determine approximate values for the strongest and weakest electric 
fields in the region shown in the figure, assuming it’s drawn at actual 
size.

evaluate Electric field is the rate of change of potential. At the tip, 
where the field is strongest, the outermost equipotential is about 7 mm 
from the conductor. So the field here is approximately (70 V)/(7 mm); 
that’s 10 V/mm or 10 kV/m. At its most distant, the outer equipotential 
is about 12 mm from the conductor, giving a field of (70 V)/(12 mm)  
or just under 6 kV/m.

Video Tutor Demo | Charged Conductor with 
Teardrop Shape
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412 Chapter 22 Electric Potential

The large electric fields that develop at sharply curved conductors can cause 
serious problems in electric equipment. Fields stronger than 3 MN/C strip elec-
trons from air molecules, making air a conductor. The result is a blue glow, 
called corona discharge, resulting from electrons recombining with atoms. 
Corona discharge causes energy loss from high-voltage transmission lines, so 
engineers try to avoid sharp edges on conducting structures. The photo shows 
corona discharge leaking current across a power-line insulator.

Corona discharge can also be useful. Pollution-control devices called 
electrostatic precipitators use a thin wire at a high negative potential to 
 produce a strong field that ionizes gas molecules. Ions adhere to pollutant 
particles, which are then attracted to positively charged collecting plates. 
Such devices remove up to 99% of particulate pollutants from power 
plants and factories, and their use under the Clean Air Act has substantially 
 improved air quality in the United States.

You use corona discharge whenever you make a photocopy or print with 
a laser printer. The process here is xerography—literally, “dry writing”—and 
it starts with the uniform charging of a special photoconductive drum by co-
rona discharge from a thin wire maintained at about 5 kV relative to the drum. 
The photoconductive material is a good insulator in the dark, but incident 
light dislodges electrons, which neutralize the charge on illuminated portions 
of the material. A laser beam scans the photoconductive drum, “writing” the 
image to be copied or printed by leaving darker areas charged and rendering 
lighter areas neutral. Next, a dusting of fine particles called toner is spread 
over the drum, adhering, via the electric force, only where the drum is charged. 
The toner is then transferred to a sheet of paper, which is heated to melt the 
 particles into the paper, making a permanent copy. The diagram outlines this 
process.

aPPLICatIoN Corona Discharge, Pollution Control, and xerography

Metal
substrate

Photoconductive
drum

Corona
wireCorona discharge

lays positive
charge on drum

Laser beam
neutralizes
areas to be
white

Toner adheres to paper and is
heated to form permanent copy

Toner particles
spread on drum c

cparticles
adhere only
to charged
regions of
drum

(a) (b)

(c) (d)
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Electric potential difference between points A and B is the negative of 
the line integral of the electric field over any path from A to B:

∆VAB =
∆UAB

q
= - L

B

A
E
S # d r

!

When a charge 
“falls” through 
a potential dif-
ference ∆V, it 
gains energy 
q ∆V.

Chapter 22 Summary
Big Idea

The big idea here is electric potential difference—a measure of the energy per unit charge involved in moving charge between two points in an 
electric field. Because the electric field is conservative, potential difference is path independent and thus depends only on the two points in question.

Key Concepts and Equations

E
S

E
S

B

A

u
dr 
u

dV = -E # dr = -Edr cosu
uS

In a uniform field, the potential difference becomes

∆VAB = - E
S # ∆r

!

The  po ten t i a l  i n  the 
field of a point charge is 
V1r2 = kq/r,  where the 
zero of potential is taken 
at infinity and r is the 
distance from the point 
charge.

E
S

q P

r

V(r) is energy per
unit charge to get
from ∞ to P.

E
S

A

B

∆ru

Potentials of charge distributions follow by summing or integrating the 
fields of pointlike charge elements:

V = a  
kqi

ri
  1discrete charges2

V = L
k dq

r
  1continuous charge distribution2

P
r1

q1

q2
q3

r2 r3

k dq

r

P

r

dq

dV = 

Equipotentials are surfaces of constant potential and are perpen-
dicular to the electric field. Where equipotentials are close, the 
field is strong. The field component in a given direction depends 
on the rate at which potential changes with position; thus,

Ex = -
dV

dx

E
S

Steep hill, close 
contours, strong �eld

Circles are
equipotentials.

applications

The dipole potential is

V =
kp cos u

r2

where p = qd  is the dipole 
moment and the angle u  is 
measured from the dipole axis.

In charged conductors, the 
charge density is gener-
ally highest, and the field 
strongest, where a conduc-
tor curves sharply.

Strongest �eld

+
++

++

E
S

Field and 
equipotentials
are perpendicular.

V 6 0 on the
negative side.

V 7 0 on the
positive side.

V = 0 
on the
bisector.
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414 Chapter 22 Electric Potential

21. A proton, an alpha particle (a bare helium nucleus), and a singly 
ionized helium atom are accelerated through a 100-V potential 
difference. How much energy does each gain?

22. The potential difference across a typical cell membrane is about 
80 mV. How much work is done on a singly ionized potassium 
ion moving through the membrane?

Section 22.2 Calculating Potential Difference
23. An electric field is given by E

S
= E0 jn, where E0 is a constant. 

Find the potential as a function of position, taking V = 0 at 
y = 0.

24. The classical picture of the hydrogen atom has the electron or-
biting 0.0529 nm from the proton. What’s the electric potential 
associated with the proton’s electric field at this distance?

25. The potential at the surface of a 10-cm-radius sphere is 4.8 kV. 
What’s the sphere’s total charge, assuming charge is distributed 
in a spherically symmetric way?

26. You’re developing a switch for high-voltage power lines. The 
smallest part in your design is a 5.0-cm-diameter metal sphere. 
What do you specify for the maximum potential on your switch 
if the electric field at the sphere’s surface isn’t to exceed the 
3-MV/m breakdown field of air?

27. A 3.5-cm-diameter isolated metal sphere carries 0.86 μC. (a) 
Find the potential at the sphere’s surface. (b) If a proton were re-
leased from rest at the surface, what would be its speed far from 
the sphere?

Section 22.3 Potential Difference and the Electric Field
28. In a uniform electric field, equipotential planes that differ by 5.00 V  

are 2.54 cm apart. What’s the field strength?
29. Figure 22.22 shows a plot of potential versus position along the 

x-axis. Make a plot of the x-component of the electric field for 
this situation.

2

1

0

-1

-2

2 4 6 8 10
x (m)

V
 (

V
)

Figure 22.22 Exercise 29

30. Figure 22.23 shows some equipotentials in the x9y plane. (a) In 
what region is the electric field strongest? What are (b) the direc-
tion and (c) the magnitude of the field in this region?

1 2 3 4 5-1-3-5

40 V

30 V

20 V

V = 10 V
1

-3

y (m)

x (m)

3

Figure 22.23 Exercise 30

For thought and Discussion
 1. Why can a bird perch on a high-voltage power line without get-

ting electrocuted?
 2. One proton is accelerated from rest by a uniform electric field, 

another proton by a nonuniform electric field. If they move 
through the same potential difference, how do their final speeds 
compare?

 3. Would a free electron move toward higher or lower potential?
 4. The electric field at the center of a uniformly charged ring is ob-

viously zero, yet Example 22.6 shows that the potential at the 
center isn’t zero. How is this possible?

 5. Must the potential be zero at any point where the electric field is 
zero? Explain.

 6. Must the electric field be zero at any point where the potential is 
zero? Explain.

 7. The potential is constant throughout an entire volume. What 
must be true of the electric field within that volume?

 8. In considering the potential of an infinite flat sheet, why isn’t it 
useful to take the zero of potential at infinity?

 9. “Cherry picker” trucks for working on power lines often carry 
electrocution hazard signs. Explain how this hazard arises and 
why it might be more of a danger to someone on the ground than 
to a worker on the truck.

10. Can equipotential surfaces intersect? Explain.
11. Is the potential at the center of a hollow, uniformly charged spher-

ical shell higher than, lower than, or the same as at the surface?
12. A solid sphere contains positive charge uniformly distributed 

throughout its volume. Is the potential at its center higher than, 
lower than, or the same as at the surface?

13. Two equal but opposite charges form a dipole. Describe the equi-
potential surface on which V = 0.

14. The electric potential in a region increases linearly with distance. 
What can you conclude about the electric field in this region?

exercises and problems
Note: If you’re asked for values of potential in these problems, and the 
zero of potential isn’t specified, take V = 0 at infinity.

Exercises

Section 22.1 Electric Potential Difference
15. How much work does it take to move a 50@μC charge against a 

12-V potential difference?
16. The potential difference between the two sides of an ordinary 

electric outlet is 120 V. How much energy does an electron gain 
when it moves from one side to the other?

17. It takes 45 J to move a 15-mC charge from point A to point B. 
What’s the potential difference ∆VAB?

18. Show that 1 V/m is the same as 1 N/C.
19. Find the magnitude of the potential difference between two 

points located 1.4 m apart in a uniform 650-N/C electric field, if 
a line between the points is parallel to the field.

20. A charge of 3.1 C moves from the positive to the negative termi-
nal of a 9.0-V battery. How much energy does the battery impart 
to the charge?

BIO
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Exercises and Problems 415

46. A solid sphere of radius R carries charge Q distributed uniformly 
throughout its volume. Find the potential difference from the 
sphere’s surface to its center. (Hint: Consult Example 21.1.)

47. Find the potential as a function of position in the electric field 
E
S

= ax in, where a is a constant and where you’re taking V = 0 
at x = 0.

48. Your radio station needs a new coaxial cable to connect the trans-
mitter and antenna. One possible cable consists of a 2.0-mm-
diameter inner conductor and an outer conductor with diameter 
1.6 cm and negligible thickness (Fig. 22.24); the maximum safe 
potential difference between the conductors is 2 kV. In your ap-
plication, the conductors carry charge densities {62 nC/m. Will 
this cable work for you?

2.0 mm

1.6 cm

 Figure 22.24 Problem 48

49. The potential difference between the surface of a 3.0- cm- diameter 
power line and a point 1.0 m distant is 3.9 kV. Find the line 
charge density on the power line.

50. Three equal charges q form an equilateral triangle of side a. Find 
the potential, relative to infinity, at the center of the triangle.

51. A charge +Q lies at the origin and -3Q at x = a. Find two 
points on the x-axis where V = 0.

52. Two identical charges q lie on the x-axis at{a. (a) Find an ex-
pression for the potential at all points in the x–y plane. (b) Show 
that your result reduces to the potential of a point charge for dis-
tances large compared with a.

53. A dipole of moment p = 2.9 nC #  m consists of two charges sep-
arated by far less than 10 cm. Find the potential 10 cm from the 
dipole (a) on its axis, (b) at 45° to its axis, and (c) on its perpen-
dicular bisector.

54. A thin plastic rod 20 cm long carries 3.2 nC distributed uniformly 
over its length. (a) If the rod is bent into a ring, find the potential 
at its center. (b) If it’s bent into a semicircle, find the potential at 
the center of the semicircle.

55. A thin ring of radius R carries charge 3Q distributed uniformly 
over three-fourths of its circumference, and -Q over the rest. 
Find the potential at the ring’s center.

56. The potential at the center of a uniformly charged ring is 45 kV, 
and 15 cm along the ring axis the potential is 33 kV. Find the 
ring’s radius and total charge.

57. The annulus shown in Fig. 22.25 carries a uniform surface charge 
density s. Find an expression for the potential at an arbitrary 
point P on its axis.

P
a

b

x

 Figure 22.25 Problem 57

31. T h e  e l e c t r i c  p o t e n t i a l  i n  a  r e g i o n  i s  g iv e n  b y 
V = 2xy - 3zx + 5y2, with V in volts and the coordinates in 
meters. Find (a) the potential and (b) the components of the elec-
tric field at the point x = 1 m, y = 1 m, z = 1 m.

Section 22.4 Charged Conductors
32. Dielectric breakdown of air occurs at fields of 3 MV/m. Find  

(a) the maximum potential (measured from infinity) for the 
sphere of Example 22.3 before dielectric breakdown occurs at the 
sphere’s surface and (b) the charge on the sphere at this potential.

33. You’re an automotive engineer working on the ignition system 
for a new engine. Its spark plugs have center electrodes made 
from 2.0-mm-diameter wire. The electrode ends gradually wear 
to a hemispherical shape, so they behave approximately like 
charged spheres. Your job is to specify the minimum potential 
that ensures these plugs will spark in air, neglecting the presence 
of the second electrode.

34. A large metal sphere has three times the diameter of a smaller 
sphere and carries three times the charge. Both spheres are iso-
lated, so their surface charge densities are uniform. Compare 
(a) the potentials (relative to infinity) and (b) the electric field 
strengths at their surfaces.

Problems
35. Two points A and B lie 15 cm apart in a uniform electric field, 

with the path AB parallel to the field. If the potential difference 
∆VAB is 840 V, what’s the field strength?

36. The electric field within a cell membrane is approximately  
8.0 MV/m and is essentially uniform. If the membrane is 10 nm 
thick, what’s the potential difference across the membrane?

37. What’s the potential difference between the terminals of a battery 
that can impart 7.2 * 10-19 J to each electron that moves between 
the terminals?

38. What’s the charge on an ion that gains 1.6 * 10-15 J when it 
moves through a potential difference of 2500 V?

39. Two flat metal plates are a distance d apart, where d is small 
compared with the plate size. If the plates carry surface charge 
densities{s, show that the magnitude of the potential difference 
between them is V = sd/e0.

40. An electron passes point A moving at 6.5 Mm/s. At point B it 
comes to a stop. Find the potential difference ∆VAB.

41. A 5.0-g object carries 3.8 μC. It acquires speed v when acceler-
ated from rest through a potential difference V. If a 2.0-g object 
acquires twice the speed under the same circumstances, what’s 
its charge?

42. Points A and B lie 32.0 cm apart on a line extending radially 
from a point charge Q, and the potentials at these points are 
VA = 362 V and VB = 146 V. Find Q and the distance r between 
point A and the charge.

43. A sphere of radius R carries negative charge of magnitude Q, dis-
tributed in a spherically symmetric way. Find an expression for 
the escape speed for a proton at the sphere’s surface—that is, the 
speed that would enable the proton to escape to arbitrarily large 
distances starting at the sphere’s surface.

44. Proton-beam therapy can be preferable to X rays for cancer treat-
ment (although much more expensive) because protons deliver 
most of their energy to the tumor, with less damage to healthy 
tissue. A cyclotron used to accelerate protons for cancer treat-
ment repeatedly passes the protons through a 15-kV potential dif-
ference. (a) How many passes are needed to bring the protons’ 
kinetic energy to 1.2 * 10-11 J? (b) What’s that energy in eV?

45. A thin spherical shell has radius R and total charge Q distributed 
uniformly over its surface. Find the potential at its center.

BIO
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416 Chapter 22 Electric Potential

72. Using the dipole potential at points far from a dipole (given by 
Equation 22.6 in Example 22.5), show that the electric field at an 
arbitrary position can be written

E
S

=
kp

r3 c13 cos 2 u - 12in + 3 sin u cos ujnd

where the x-axis coincides with the dipole axis.
73. Measurements of the potential at points on the axis of a charged 

disk are given in the two tables below, one for measurements 
made close to the disk and the other for measurements made far 
away. In both tables x is the coordinate measured along the disk 
axis with the origin at the disk center, and the zero of potential 
is taken at infinity. (a) For each set of data, determine a quantity 
that, when you plot potential against it, should yield a straight 
line. Make your plots, establish a best-fit line, and determine its 
slope. Use your slopes to find (b) the total charge on the disk and 
(c) the disk radius. (Hint: Consult  Example 22.7.)   

Table 1 

x (mm) 2.0 4.0 6.0 8.0 10.0

V (V) 900 876 843 820 797

Table 2 

x (cm) 20 30 40 60 100

V (V) 165 118 80 58 30

74. Find an equation describing the V = 0 equipotential in the x-y 
plane for the situation of Conceptual Example 22.1. That is, find 
a relation between x and y that holds on this equipotential.

75. A thin rod of length L carries charge Q distributed uniformly 
over its length. (a) Show that the potential in the plane that per-
pendicularly bisects the rod is given by

V(r) =
2kQ

L
 ln c L

2r
+ A1 + L2

4r2 d

where r is the perpendicular distance from the rod center and 
where the zero of potential is taken at infinity. (b) Show that this 
expression reduces to an expected result when r W L. (Hint: See 
Appendix A for a series expansion of the logarithm.)

76. For the rod of the preceding problem, (a) find an expression for 
the magnitude of the electric field in the perpendicular bisecting 
plane as a function of the distance r from the rod center. (b) Show 
that your expression reduces to an expected result when r W L. 
(c) What’s the direction of the field?

77. A disk of radius a carries nonuniform surface charge density 
s = s01r/a2, where s0 is a constant. (a) Find the potential at an 
arbitrary point x on the disk axis, where x = 0 is the disk center. 
(b) Use the result of (a) to find the electric field on the disk 
axis, and (c) show that the field reduces to an expected form for 
x W a.

78. An open-ended cylinder of radius a and length 2a carries charge q  
spread uniformly over its surface. Find the potential at the center 
of the cylinder. (Hint: Treat the cylinder as a stack of charged 
rings, and integrate.)

79. A line charge extends along the x-axis from -L/2 to L/2. Its line 
charge density is l = l01x/L22, where l0 is a constant. Find an 
expression for the potential on the x-axis for x 7 L/2. Check that 
your expression reduces to an expected result for x W L.

80. Repeat Problem 79 for the charge distribution l = l0 x/L. (Hint: 
What does this charge distribution resemble at large distances?)

58. The potential in a region is given by V = axy, where a is a con-
stant. (a) Determine the electric field in the region. (b) Sketch 
some equipotentials and field lines.

59. Use Equation 22.6 to calculate the electric field on the perpendic-
ular bisector of a dipole, and show that your result is equivalent 
to Equation 20.6a.

60. Use the result of Example 22.6 to determine the on-axis field of 
a charged ring, and verify that your answer agrees with the result 
of Example 20.6.

61. The electric potential in a region is given by V = -V01r/R2, 
where V0 and R are constants and r is the radial distance from the 
origin. Find expressions for the magnitude and direction of the 
electric field in this region.

62. Two metal spheres each 1.0 cm in radius are far apart. One 
sphere carries 38 nC, the other -10 nC. (a) What’s the  potential 
on each? (b) If the spheres are connected by a thin wire, what 
will be the potential on each once equilibrium is reached?  
(c) How much charge moves between the spheres in order to 
achieve equilibrium?

63. Two 5.0-cm-diameter conducting spheres are 8.0 m apart, and 
each carries 0.12 μC. Determine (a) the potential on each sphere, 
(b) the field strength at the surface of each sphere, (c) the poten-
tial midway between the spheres, and (d) the potential difference 
between the spheres.

64. A 2.0-cm-radius metal sphere carries 75 nC and is surrounded 
by a concentric spherical conducting shell of radius 10 cm carry-
ing -75 nC. (a) Find the potential difference between shell and 
sphere. (b) How would your answer change if the shell’s charge 
were +150 nC?

65. A sphere of radius R carries a nonuniform but spherically sym-
metric volume charge density that results in an electric field in 
the sphere given by E

S
= E01r/R22

 rn, where E0 is a constant. Find 
the potential difference from the sphere’s surface to its center.

66. The potential as a function of position in a region is given by 
V1x2 = 3x - 2x2 - x3, with x in meters and V in volts. Find  
(a) all points on the x-axis where V = 0, (b) an expression for 
the electric field, and (c) all points on the x-axis where E = 0.

67. A conducting sphere 5.0 cm in radius carries 60 nC. It’s sur-
rounded by a concentric spherical conducting shell of radius 15 cm  
carrying -60 nC. (a) Find the potential at the sphere’s surface, 
taking V = 0 at infinity. (b) Repeat for the case when the shell 
carries +60 nC.

68. Show that the result of Example 22.8 approaches the field of a 
point charge for x W a. (Hint: You’ll need to apply the binomial 
approximation from Appendix A to the expression 1/2x2 + a2.)

69. The potential on the axis of a uniformly charged disk at 5.0 cm 
from the disk center is 150 V; the potential 10 cm from the disk 
center is 110 V. Find the disk radius and its total charge.

70. A uranium nucleus (mass 238 u, charge 92e) decays, emitting an 
alpha particle (mass 4 u, charge 2e) and leaving a thorium nu-
cleus (mass 234 u, charge 90e). At the instant the alpha particle 
leaves the nucleus, the centers of the two are 7.4 fm apart and 
essentially at rest. Treating each particle as a spherical charge 
distribution, find their speeds when they’re a great distance apart.

71. The Taser, an ostensibly nonlethal weapon used by police to sub-
due unruly suspects, shoots two conducting darts into the vic-
tim’s body. Thin wires connect the darts back to the weapon, and 
once the darts are embedded the weapon applies a 1200-V poten-
tial across them and delivers short pulses of electric charge to the 
darts. Each pulse carries 100 μC of charge. How much energy 
does the weapon need to supply to each charge pulse as it moves 
through the body from one dart to the other?
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82. From the equipotentials, you can infer that the heart’s electrical 
structure resembles that of a
a. uniform charged sheet.
b. dipole.
c. point charge.
d. uniformly charged sphere.

83. The electric field in the vicinity of the heart points approximately
a. from upper left to lower right.
b. from lower left to upper right.
c. from upper right to lower left.
d. from lower right to upper left.

84. The electric field is strongest in the region marked
a. A.
b. B.
c. C.
d. D.

85. The electric field in region A is approximately
a. 20 μN/C.
b. 2 mN/C.
c. 20 mN/C.
d. 2 kN/C.

answers to Chapter Questions
answer to Chapter opening Question
 138,000 volts is a measure of electric potential difference—the  energy 
per unit charge involved in moving electric charge between two points. 
Luckily, the parasailer is in contact with only one wire, so he doesn’t 
experience that lethal potential difference.

answers to Got It? Questions
 22.1  (1) doubles; (2) doubles; (3) becomes zero; (4) reverses sign
 22.2  (1) 10 eV; (2) 20 eV; (3) 10 eV
 22.3  1c2 7 1a2 7 1b2
 22.4  (a) because the field is stronger
 22.5  They’re all equal to zero, because the potential anywhere on 

the perpendicular bisector of a dipole is zero, and they’re all the 
same, because potential difference is path independent.

 22.6  (a), because the equipotentials are closer nearer the center, 
 indicating a stronger field. In (b) the field actually gets stronger 
farther from the center.

81. You’re sizing a new electric transmission line, and you can save 
money with thinner wire. The potential difference between the 
line and the ground, 60 m below, is 115 kV. The field at the wire 
surface cannot exceed 25% of the 3-MV/m breakdown field in 
air. Neglecting charges in the ground itself, what minimum wire 
diameter do you specify? (Hint: You’ll have to do a numerical 
calculation.)

Passage Problems
BIO Standard electrocardiography measures time-dependent poten-
tial differences between multiple points on the body, giving cardi-
ologists multiple perspectives on the heart’s electrical activity. In 
contrast, Fig. 22.26 is a “snapshot” showing a more detailed picture 
at an instant of time. The lines are equipotentials on the surface of a 
human torso, associated with the heart’s electrical activity. Relative 
to the line marked V = 0, the potential is negative to the upper left 
(black) and positive to the lower right (color).

V = 0

V = 0

V = -0.5 mV

C

B

A

D

Figure 22.26 Equipotentials on a human torso (Passage Problems 82–85)

comp
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Figure 23.1 shows three positive charges arranged to form a triangle. Stored in this charge 
distribution is electrostatic energy representing the work done against the repulsive 

electric forces as the charges were brought into proximity. Although this example may seem 
trivial, its implications are not. Energy storage in configurations of electric charge is a vital 
aspect of natural and technological systems. The energy of chemical reactions—including 
metabolizing food and burning fuels—is ultimately electric energy released in the rearrange-
ment of molecular charge distributions. Energy storage using charged conductors is essential 
in technologies ranging from computer memories to cameras to high-powered lasers.

23.1 Electrostatic Energy
Let’s find the energy stored in the configuration of Fig. 23.1, assuming we start with 
widely separated charges and bring them in sequentially. It takes no work to bring in 
charge q1, since there’s initially no electric field. But with q1 in place, bringing in q2 
means doing work against q1>s electric field. In Chapter 22 we found that the potential 
of a point charge q is V = kq/r. So the potential V1, which is due to q1 and is evalu-
ated at the eventual location of q2, is kq1/a, where a is the side of the triangle. That 
potential is the energy per unit charge; given q2>s charge, the work needed to bring in 
q2 is W2 = q2V1 = kq1q2/a. Then we bring in q3, which experiences the electric fields 
of both q1 and q2. This requires work done against both fields; following our reason-
ing for q2, that work is W3 = kq1q3/a + kq2q3/a. The denominator is the same in both 

How You’ll Use It
■ In Chapter 25 you’ll learn about 

electric circuits and how they involve 
conversions of electric energy.

■ You’ll see how capacitors store and 
release electric energy in electric 
circuits, influencing the temporal 
behavior of circuits.

■ In Chapter 27 you’ll learn that electric 
energy has a cousin in magnetic 
energy.

■ In Chapters 28 and 29 you’ll see how 
electric and magnetic energies are 
essential aspects of electromagnetic 
radiation, including light.

What You’re Learning
■ You’ll see that it takes energy to 

assemble distributions of electric 
charge, resulting in stored electric 
energy.

■ You’ll learn how molecules, such as 
fuels, represent an important example 
of charge distributions with stored 
electric energy.

■ You’ll explore capacitors, 
technological devices used to 
store and release energy quickly in 
electronic circuits.

■ You’ll discover a profound fact about 
electric fields: Every electric field in 
the universe represents stored energy. 
You’ll learn how to find that energy.

What You Know
■ You understand electric potential as 

work per charge involved in moving 
charge between two points.

■ You can calculate potential differences 
in simple electric field configurations.

■ You can find the electric field given 
potential as a function of position.

Electrostatic Energy and Capacitors

23

The lifesaving jolt of a defibrillator requires a large 
amount of energy delivered in a short time. Where 
does that energy come from?
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terms because the charges form an equilateral triangle. So the total work done to assemble 
this charge  distribution is

W2 + W3 =
kq1q2

a
+

kq1q3

a
+

kq2q3

a
.

Because the electric field is conservative, this work becomes the stored electrostatic 
 energy, U.

Although we considered the three charges in Fig. 23.1 to be positive, our expression 
for work holds no matter what the signs. That means electrostatic energy can be  positive 
or negative, depending on the sign of the work done in assembling a charge  distribution. 
If it’s negative, then it takes work to separate the charges. Although we considered 
 assembling our charges in the order 1, 2, 3, the expression for work would have been 
the same no  matter what the order—showing that electrostatic energy is a property of a 
charge distribution, independent of how it’s assembled. Figure 23.1 is a simple metaphor 
for a molecule. Water, for example, consists of a negatively charged oxygen atom and two 
positively charged hydrogen atoms. The electrostatic energy is negative and represents the 
energy it would take to dissociate the molecule; equivalently, it’s the energy released when 
the water forms from individual atoms.

q1

a a

aq2 q3

Figure 23.1 Electrostatic energy is stored in this 
configuration of three point charges.

Got It? 23.1 Three positive charges and one nega-
tive charge, all with the same charge magnitude Q, are as-
sembled into a square, as shown. Is the stored electrostatic 
energy (a) positive, (b) negative, or (c) zero?

23.2 Capacitors
In technological applications, we often store energy in capacitors—pairs of electri-
cal conductors that carry equal but opposite charges. Although capacitors come in many 
 configurations, it’s easiest to analyze the parallel-plate capacitor consisting of two 
closely spaced conducting plates (Fig. 23.2a). Understanding this device not only is 
 technologically valuable, but will also give us deep insights into the electric field and 
 electrostatic energy.

Initially both capacitor plates are electrically neutral. We charge the capacitor by trans-
ferring charge between the plates, building up positive charge on one plate and equal nega-
tive charge on the other. In practice, we accomplish this by connecting the capacitor to 
a battery, but here it’s easier to imagine grabbing charge from one plate and physically 
moving it to the other. Charge on the plates produces an electric field between them, as 
shown in Fig. 23.2b. With closely spaced plates that field is essentially uniform in the 
region between the plates, except right near the edges. Outside, the field is so small as to 
be negligible. So we can approximate the parallel-plate capacitor as having a uniform field 
confined entirely to the region between its plates.

In Chapter 21 we showed that the electric field at the surface of a conductor is 
E = s/P0, with s the charge per unit area. Here we’ve got charge spread uniformly over 
the capacitor plates, so if there’s charge Q on a plate, then s = Q/A, and the uniform field 
between the plates is E = Q/P0 A. (If you think this should be doubled because there are 
two plates, reread the discussion around Figs. 21.28 and 21.29 to see why not.) In this 
uniform field, the potential difference between the plates is the product of the field and the 
plate separation: V = Ed = Qd/P0 A.

Figure 23.2 (a) A parallel-plate capacitor 
consists of closely spaced conducting plates 
with area A and spacing d. (b) Edge-on view, 
showing the electric field.

Conducting plates with
area A are a small
distance d apart.

Field inside is
essentially uniform.

Field outside
is negligible.

(a)

(b)

d

A

-+

++

M23_WOLF4752_03_SE_C23.indd   419 17/06/15   8:53 PM



420 Chapter 23 Electrostatic Energy and Capacitors

Capacitance
We can rewrite our expression for the potential difference between the plates of the 
 capacitor in the form Q = 1P0 A/d2V. We added the parentheses to emphasize two 
things: First, charge is linearly proportional to potential difference and, second, the 
proportionality factor depends only on the constant P0 and on the geometry—here the 
plate area and spacing—of the two charged conductors. This factor gives the ratio of 
charge to potential difference, which defines the capacitance of a configuration of two 
conductors:

 C =
Q

V
  1capacitance2 (23.1)

Capacitance depends on the physical arrangement of the conductors, and it’s a constant for 
a given capacitor. Our expression Q = 1P0 A/d2V  shows that the capacitance of a parallel-
plate capacitor is

 C =
P0 A

d
  1parallel@plate capacitor2 (23.2)

Problems 60 and 61 explore capacitance for other configurations.
Equation 23.1 shows that the units of capacitance are coulombs/volt. This unit has 

its own name, the farad (F), in honor of the 19th-century scientist Michael Faraday. 
One farad is a large capacitance; practical capacitors are often measured in μF 110-6 F2 
or pF 110-12 F2. Incidentally, Equation 23.2 shows that the units of P0 may be expressed 
as F/m.

Got It? 23.2 If I give you a 5-gallon bucket, you know how much water it can 

hold. If I give you a 5@μF capacitor, do you know how much charge it can hold? Explain.

Energy Storage in Capacitors
Imagine moving a small charge dQ from the negative to the positive plate of a  capacitor 
when there’s a potential difference V between the plates. Since potential difference is work 
per unit charge, this takes work dW = V dQ. The additional charge increases the electric 
field in the capacitor, resulting in an increase dV in the potential difference. Equation 23.1 
shows that the increases dQ and dV are related by dQ = C dV. So the work involved in 
moving the charge dQ between the plates becomes dW = V dQ = CV dV.

If we start with the capacitor uncharged and then begin transferring charge between 
the plates, we’ll need to do increasing amounts of work because the electric field and 
 potential difference increase continuously with the charge we’ve already transferred. The 
total work involved will be the sum of all the dW values. Here the potential difference in-
creases  continuously, so that sum becomes an integral:

W = LdW = L
V

0
 CV dV = 1

2 CV2

where the last step follows because the integral has the familiar form 1x dx = 1
2 x2. The 

work we do in charging the capacitor is stored as potential energy U, so

 U = 1
2 CV2  1energy in a capacitor2 (23.3)

We can measure potential difference V directly, with a voltmeter, so it’s more useful to 
express the energy in terms of voltage rather than charge.

AppLICAtIon  Uninterruptable 
power

Computers, web servers, data centers, medical 
electronics, telecommunications, and a host of 
other vital electronic technologies are subject to 
failure or severe disruption in the event of even 
the briefest power outages. Traditionally, backup 
batteries have been used to provide sensitive 
equipment with uninterrupted power during out-
ages. But batteries are heavy, expensive, rela-
tively short-lived, and difficult to maintain. They 
can’t easily deliver large amounts of power, 
and it takes time to switch to backup batter-
ies. Increasingly, responsibility for maintaining 
uninterrupted power during short outages falls 
to ultracapacitors—large-capacitance capaci-
tors capable of storing substantial energy and 
releasing it quickly to maintain power to sensi-
tive equipment. Capacitor-based uninterruptable 
power supplies (UPSs) are now available with 
outputs ranging from a few watts to kilowatts 
and even megawatts. They ensure almost instan-
taneous continuity of energy supply during short 
outages, and for longer outages they provide a 
“bridge” to longer-running backup sources like 
fuel cells or generators. 
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23.3 Using Capacitors 421

✓tIp Charged but Neutral

A “charged capacitor” means a capacitor with one plate positive and the other negative; 
overall, the capacitor remains neutral (Fig. 23.3). The charge Q refers to the magnitude 
of the charge on either plate—not to the capacitor’s net charge, which is zero.

+Q -Q
Each plate is 
neutral, and so is 
the entire capacitor.

Each plate now 
carries a net 
charge, but the 
entire capacitor 
is still neutral.

Figure 23.3 The net charge on the entire capacitor is zero, whether it’s uncharged 
(left) or charged (right).

ExAmpLE 23.1 Capacitance, Charge, and Energy: A parallel-plate Capacitor

A capacitor consists of two circular metal plates of radius R = 12 cm, 
separated by d = 5.0 mm. (a) Find its capacitance. Find (b) the charge 
on the plates and (c) the stored energy when the capacitor is connected 
to a 12-V battery.

Interpret Because the plates’ area is much larger than their separa-
tion, we can treat the field between them as uniform. So we identify 
the configuration as a parallel-plate capacitor.

Develop We’ve sketched the capacitor in Fig. 23.4. Equation 23.2, 
C = P0 A/d, determines the capacitance for part (a) from the separa-
tion distance and plate area 1A = pR22. For parts (b) and (c) the 12-V 
battery maintains a 12-V potential difference across the capacitor. 
Knowing that voltage and the capacitance, we can find the capacitor’s 
charge from Equation 23.1, C = Q/V, and the stored energy from 
Equation 23.3, U = 1

2 CV2.

evaluate We first solve part (a) for the capacitance:

C =
P0 A

d
=

P0pR2

d
= 80 pF

For part (b) the definition of capacitance then gives

Q = CV = 180 pF2112 V2 = 960 pC

or just under 1 nC. Then (c) the stored energy is

U = 1
2 CV2 = 1

2 180 pF2112 V22 = 5760 pJ

or about 5.8 nJ.

assess Make sense? At 80 pF, this is a pretty small capacitor, so no 
wonder the charge and energy are measured in nano-units (nC and nJ). ■

Figure 23.4 Sketch for Example 23.1.

23.3 Using Capacitors
Capacitors are essential in modern technology. They range from the billions of 25-fF 
110-15 F2 capacitors that store individual bits of information in your computer’s memory, 
to millifarad-range capacitors that smooth 60-Hz AC power to provide steady current to 
your stereo, to so-called ultracapacitors measuring hundreds of farads that store electric 
energy for short bursts of power in systems ranging from power tools to buses to hybrid 
cars and subway trains. Figure 23.5 shows some typical capacitors used in electronic 
equipment.

practical Capacitors
Equation 23.2 shows that the way to achieve a large capacitance is with large plate area 
and small spacing. That’s true in general, whether or not a capacitor has parallel-plate 
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422 Chapter 23 Electrostatic Energy and Capacitors

geometry. Inexpensive capacitors are often made from two long strips of aluminum foil 
separated by thin plastic insulation. This foil “sandwich” is rolled into a compact cylinder, 
wires are attached, and the whole thing is dipped in a protective coating. Very large capaci-
tances are achieved with electrolytic capacitors, in which a thin insulating layer develops 
chemically under the influence of the applied voltage. Capacitors are among the hardest 
components to fabricate on integrated-circuit chips, but small-capacitance units can be 
made by alternating conductive material with an insulating layer.

Our analysis of the parallel-plate capacitor assumed air between the plates. But most 
capacitors have solid insulating materials, or dielectrics, that contain molecular dipoles 
but no free charge. In Section 20.5 we showed how the alignment of molecular dipoles 
in a dielectric reduces the field in the material. In a capacitor, the effect is to reduce also 
the potential difference V between the plates (Fig. 23.6). The factor by which the field 
and  potential difference decrease is the dielectric constant, k (Greek kappa). For a given 
charge Q, decreased potential difference means a larger capacitance C = Q/V. Thus a 
 parallel-plate capacitor with a dielectric between its plates has capacitance

 C = k 
P0 A

d
  1parallel@plate capacitor with dielectric2 (23.4)

Most materials have dielectric constants between about 2 and 10; see Table 23.1. Some 
tantalum compounds have much higher values of k, making this rare element a crucial 
material in today’s electronic age.

Another practical consideration is a capacitor’s working voltage, the maximum safe 
potential difference, beyond which there’s a risk of dielectric breakdown. For a given 
 material, breakdown occurs at a fixed electric field; for air it’s 3 MV/m, while  polyethylene 
breaks down at 50 MV/m. In a parallel-plate capacitor the field is E = V/d, so the smaller 
the spacing, the lower the allowed voltage before breakdown. Thus there’s a trade-off 
 between large capacitance (small d) and high working voltage (large d).  Large-capacitance, 
high-voltage capacitors are expensive!

Figure 23.5 Typical capacitors. The large unit 
is an 18-mF electrolytic capacitor. At top 
right is an air-insulated variable capacitor in 
which one set of plates rotates to change the 
capacitance. The smaller capacitors range from 
43 pF to 10 μF.

Figure 23.6 A capacitor with a dielectric.

E0
S−−−

+++

ccharge Q stays the same, so the reduced
�eld E = E0>k results in a lower
potential V = V0>k and therefore larger
capacitance C = kC0.

The dipoles’ electric
�elds superpose with
the original �eld E0,
reducing the net �eld c

Molecular
dipoles align
with negative
ends toward
the positive
plate.

+ + + + + + + + + + + + + + + +

S

S S

Table 23.1 Properties of Some Common Dielectrics

Dielectric Material Dielectric Constant Breakdown Field (MV/m)

Air 1.0006 3

Aluminum oxide 8.4 670

Glass (Pyrex) 5.6 14

Paper 3.5 14

Plexiglas 3.4 40

Polyethylene 2.3 50

Polystyrene 2.6 25

Quartz 3.8 8

Tantalum oxide 26 500

Teflon 2.1 60

Water 80 depends on time and purity

ExAmpLE 23.2  Finding Charge and Energy: Which Capacitor?

A 100@μF capacitor has a working voltage of 20 V, while a 1.0@μF ca-
pacitor is rated at 300 V. Which can store more charge? More energy?

Interpret This problem involves the charge and energy stored in 
capacitors, now constrained by the working voltage.

Develop Equation 23.1, in the form Q = CV, determines the 
charge, and Equation 23.3, U = 1

2 CV2, determines the stored energy. 

Setting V equal to the working voltage will give the maximum charge 
and energy.

evaluate For the charges on the two capacitors, we get from 
 Equation 23.1,

Q100μF = CV = 1100 μF2120 V2 = 2.0 mC
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and, similarly, Q1μF = 0.30 mC. The energies follow from Equation 
23.3:

U100μF = 1
2 CV2 = 1

2 1100 μF2120 V22 = 20 mJ

and, similarly, U1μF = 1
2 11.0 μF21300 V22 = 45 mJ. So the 100@μF 

capacitor stores more charge, but the 1@μF capacitor stores more 
 energy.

assess Make sense? The larger capacitor holds more charge, 
 despite its lower working voltage. But the energy in depends on V2, 
so the smaller capacitor wins out because of its much higher working 
 voltage. ■

Got It? 23.3 You need to replace a capacitor with one that can store more energy. 
Which will give you greater energy increase: (a) a capacitor with twice the capacitance 
and the same working voltage as the old one or (b) a capacitor with the same capacitance 
but twice the working voltage?

Connecting Capacitors: parallel
Connecting capacitors together lets us achieve capacitance or working voltage that might 
not be available in a single capacitor. There are two simple ways to connect capacitors and 
other electronic components: in parallel and in series (Fig. 23.7).

With capacitors in parallel, a conducting wire connects the top plates of each  capacitor 
and another connects the bottom plates. Therefore, both top plates are at the same 
 potential, and so are both bottom plates. That means two capacitors in parallel have the 
same potential difference between their plates. We’ll find that’s always true for  electric 
components in parallel. We want the equivalent capacitance of the parallel  combination, 
meaning the ratio of the total charge on both capacitors to their common voltage V. 
Given the definition C = Q/V, we can write Q1 = C1V  and Q2 = C2V. So the total 
charge is Q = Q1 + Q2 = C1V + C2V. The equivalent capacitance is then C = Q/V  or 
C = C1 + C2. So capacitors in parallel add, a result that generalizes to any number of 
capacitors:

 C = C1 + C2 + C3 + g  1parallel capacitors2 (23.5)

Connecting Capacitors: Series
Figure 23.8 is a closer look at the series combination of Fig. 23.7b, showing what  happens 
if we put charge +Q on the top plate of C1 and charge -Q on the lower plate of C2. 
Each of these charged plates pulls the opposite charge to the other plate of the individual 
 capacitors—and that means two capacitors in series carry the same charge. But now the 
 voltages can be different; they’re given by Equation 23.1 as V1 = Q/C1 and V2 = Q/C2, 
where Q is the common charge. Since the electric fields in the two capacitors point the same 
way, the voltage across the series combination is V = V1 + V2 = Q/C1 + Q/C2.  Dividing 
through by Q gives V/Q, which is the inverse of the equivalent capacitance Q/V. Thus

1

C
=

1

C1
+

1

C2

More generally, capacitors in series add reciprocally:

 
1

C
=

1

C1
+

1

C2
+

1

C3
+ g  1series capacitors2 (23.6a)

With two capacitors it’s straightforward to invert Equation 23.6a to get

 C =
C1C2

C1 + C2
 (23.6b)

Either way, the combined capacitance is less than any of the individual capacitances.

Figure 23.7 Connecting capacitors: (a) parallel 
and (b) series. ## is the standard circuit symbol 
for a capacitor.

The two top
plates are
at the same
potential c

So two 
capacitors
in parallel 
have the same
potential
difference.

cas are the
two bottom 
plates.

(a)

(b)

C1 C2

C1

C2

Figure 23.8 Capacitors in series carry the same 
charge.

E
S

E
S

+Q on here c  cpulls -Q to here.

 cpulls +Q to here.-Q here c

+Q
C1

C2

-Q

+Q

-Q

Video Tutor Demo | Discharge Speed for Series and 
Parallel Capacitors
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424 Chapter 23 Electrostatic Energy and Capacitors

Got It? 23.4 You have two identical capacitors with capacitance C. How would 
you connect them to get equivalent capacitances (1) 2C and (2) 12 C? (3) Which combina-
tion would have the higher working voltage?

ConCEptUAL ExAmpLE 23.1  parallel and Series Capacitors

Using parallel-plate capacitors, explain why capacitance should 
 increase with capacitors in parallel and decrease with capacitors in 
 series. What happens to the working voltage in each case?

evaluate Equation 23.2 shows that capacitance increases with 
 increasing plate area and decreases with increasing plate  separation. 
Figure 23.7a shows that two capacitors in parallel have greater 
plate area, with no change in spacing, so the combined  capacitance 
 increases. In contrast, the series combination in Figure 23.7b 
 effectively increases the plate separation because it’s the sum of the 
individual separations, so the capacitance goes down.

What about working voltage? In Fig. 23.7a, the parallel  capacitors 
have the same voltage, so the working voltage of the combination is 
that of whichever capacitor has the lower working voltage. But in 
Fig. 23.7b, each series capacitor gets less than the total voltage, so 
the working voltage increases. How much it increases depends on the 
ratio of the capacitances.

assess Series and parallel combinations let us build arbitrary 
 capacitances and working voltages from standard capacitors  available 

commercially. You might wonder about the wire connecting the 
 series capacitors in Fig. 23.7b: Does it also affect the separation? No, 
 because it doesn’t separate charge, which is free to move along the 
conducting wire.

MakIng the ConneCtIon You’ve got two 10@μF capacitors rated 
at 15 V. What are the capacitances and working voltages of their 
 parallel and series combinations?

evaluate Applying Equation 23.5 to equal capacitors shows that 
the capacitance doubles with two capacitors in parallel. So the  parallel 
combination has C = 20 μF, and its working voltage is still 15 V 
 because each capacitor gets the full voltage. Apply Equation 23.6b 
to equal capacitances and you’ll see that the series capacitance is 
half that of either capacitor, in this case 5 μF. Since the individual 
 capacitances are equal, each must get half the applied voltage, giving 
the combination a working voltage of 30 V.

ExAmpLE 23.3  Equivalent Capacitance: Connecting Capacitors
Find the equivalent capacitance of the combination shown in   
Fig. 23.9a. If the maximum voltage to be applied between points A 
and B is 100 V, what should be the working voltage of C1?

Interpret This problem is about an electric circuit—in this case, an 
assemblage of three capacitors.

Develop To handle such circuit problems, we find combinations 
of series and parallel components, and then simplify the circuit by 
treating each combination as a single component. Here all compo-
nents are capacitors, and each time we compute an equivalent ca-
pacitance for two capacitors, we’ll redraw the circuit with the new 
equivalent capacitance. We begin by noting that C2 and C3 are in 
parallel, so the equivalent capacitance is given by Equation 23.5: 
C23 = C2 + C3 = 4.0 μF. In Fig. 23.9b we’ve redrawn the original 
circuit showing this combination of the two individual capacitors. 
Next we see that C1 is in series with C23, so their equivalent capaci-
tance follows from Equation 23.6b:

C123 =
C1C23

C1 + C23
=

112 μF214.0 μF2
12 μF + 4.0 μF

= 3.0 μF

We’ve redrawn the circuit again with this equivalent capacitance  
(Fig. 23.9c).

Now we want the working voltage of C1. Our plan is to go back-
ward from the simple circuit of Fig. 23.9c until we have enough 
information to find the voltage on C1. With the voltage VAB across 
A and B known, we can calculate the charge on C123 using Equation 
23.1: Q123 = C123VAB. But C123 is the series combination of C1 and 
C23, and we know that series capacitors carry the same charge—
and that’s the charge of their equivalent capacitance. So Q1 = Q123, Figure 23.9 Finding the equivalent capacitance.

C1 = 12.0 μF

C2 = 3.0 μF C3 = 1.0 μF

A

B

C2 and C3 form the parallel equivalent C23.

C1 and C23 form the series equivalent C123.

(a)

(b)

(c)
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23.4 Energy in the Electric Field 425

and we can apply Equation 23.1 again, this time to C1 alone, to get 
V1 = Q1/C1.

evaluate With VAB = 100 V across the combination C123, the cor-
responding charge is Q123 = C123VAB = 13.0 μF21100 V2 = 300 μC. 
Because Q1 = Q123, the charge on C1 is also 300 μC. We then sub-
stitute this into V1 = Q1/C1 to get V1 = 1300 μC2/112.0 μF2 = 25 V, 
the minimum working voltage for C1.

assess Make sense? Since C1 is in series with C23, it doesn’t “feel” 
the full 100 V applied across AB, so its working voltage can be 
lower. And because its capacitance is larger, its share of the  voltage 
is smaller, thanks to the relation V = Q/C and the fact that series 
 capacitors carry the same charge.

✓tIp Series and Parallel

Parallel components have their ends connected directly together; 
series components are connected in such a way that if you move 
through one component, the only place you can go is into the next. 
In Fig. 23.9a, C2 and C3 are definitely in parallel. But C1 isn’t in se-
ries with either of the other single capacitors because after C1, the 
circuit splits and you could go into either C2 or C3.  Equations 23.5 
and 23.6 apply only to true parallel and series combinations. C1 is 
in series with the combination C23, so we could apply  Equation 
23.6b in analyzing Fig. 23.9b.

 ■

Capacitors are excellent devices for short-term storage of electric energy 
 because they can deliver their stored energy very quickly—much faster than a 
battery that might contain a lot more total energy.

When you use a flash camera, you have to wait a few seconds before the 
flash is ready to fire again. That’s because the flash requires power—energy 
per time—far greater than the camera’s battery could supply. So the battery 
gradually charges a capacitor, whose energy is then dumped abruptly to power 
the brief flash. It takes a while to recharge the capacitor before it’s ready 
again. Much the same thing happens in a defibrillator, which delivers several 
 hundred joules to restore a heart’s normal beating. Again, the energy is stored 
in  capacitors, which discharge in milliseconds. On a much larger scale, whole 
rooms full of capacitors store the energy that drives nanosecond laser pulses 
pouring millions of joules into tiny targets in experiments aimed at making 
nuclear fusion a viable energy source. And increasingly, ultracapacitors supply 
extra energy for bursts of power in machinery from amusement park rides to 
mass-transit trains to hybrid cars.

AppLICAtIon Bursts of power

As San Francisco’s BART trains decelerate, their kinetic energy is stored as 
electric energy in an ultracapacitor. The stored energy is then used to acceler-
ate the train. This system saves BART some 320 megawatt-hours of energy 
each year.

23.4 Energy in the Electric Field
What’s the difference between a charged and an uncharged capacitor? Not the total 
charge, which is zero, but the arrangement of charge. And with the charge arrangement 
comes stored energy. Where, exactly, is this energy? We can ask the same question for the 
 triangular charge distribution we assembled in Fig. 23.1. The individual charges didn’t 
change, but their arrangement did. With the new arrangement came energy, but where is 
that energy?

What’s changed in both cases is the electric field. There’s no electric field in the 
 uncharged capacitor, but once charged, there’s a field between the plates. The triangular 
distribution started with three isolated point-charge fields and ended with a more complex 
field. So where’s the stored energy? It’s in the electric field. In fact, every electric field 
 represents stored energy. Rearrange the charges to their original state—by discharging 
the capacitor or letting the three point charges fly apart—and you get back that energy. 
 Because electric forces govern much of the behavior of everyday matter, many  seemingly 
different forms of energy are actually electric. Burn gasoline or metabolize food, and 
you’re rearranging the charge distributions we call molecules into new configurations 
whose electric fields contain less energy.

Since electric fields can vary with position, we specify the energy density, or energy 
stored per unit volume. For a capacitor, we can use Equation 23.1 in the form V = Q/C 
to write the stored energy U = 1

2 CV2 as U = Q2/2C. For a parallel-plate capacitor,  
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426 Chapter 23 Electrostatic Energy and Capacitors

Equation 23.2 gives C = P0  A/d, so the stored energy becomes U = Q2d/2P0  A. This 
 energy is associated with the uniform electric field inside the capacitor, where it occupies 
a volume Ad. So the energy density is U/Ad = Q2/2P0  

A2. We can rewrite this in terms 
of the field, which we found to be E = Q/P0  A. Then Q = P0  AE, which we put in our 
 expression Q2/2P0  A

2 for the energy density to get

 uE = 1
2 P0 E

2  1electric energy density2 (23.7)

Although we derived Equation 23.7 for the uniform field of a parallel-plate  capacitor, 
it is in fact universal. Anywhere there’s an electric field, there’s also stored energy with 
 density, in J/m3, given by 1

2 P0 E
2. That’s the deep significance of Equation 23.7: Every 

 electric field represents stored energy. The energy that drives much of the physical 
 universe, from everyday events here on Earth to happenings in distant galaxies, results 
from the release of energy stored in electric fields.

When the electric field is uniform, as in our thundercloud, the total energy is the  product 
of energy density and volume. But when the field changes with position, we need calculus. 
Consider a small volume dV, so small that the electric field is essentially uniform over this 
volume. The stored energy is then dU = uE dV = 1

2 P0 E
2 dV. The total energy in the field 

is the sum—here the integral—of all the dU values:

 U = 1
2 P0LE2 dV  (23.8)

Because Equation 23.8 gives the energy stored in an electric field, it also represents the 
work done in assembling the charge distribution resulting in that field. The next example 
illustrates this point.

ExAmpLE 23.5  Work and Energy: A Shrinking Sphere

A sphere of radius R1 carries charge Q distributed uniformly over 
its surface. How much work does it take to compress the sphere to a 
smaller radius R2?

Interpret This problem asks for the work done in  rearranging 
a charge distribution, which we know is equal to the change in 
stored electric energy. Here we start with a charged sphere already 

 assembled, and rearrange the charge by shrinking the sphere to a 
smaller radius.

Develop We have spherical symmetry, so the field and thus the 
stored energy outside the original radius R1 don’t change. Therefore, 
we need to find the energy stored in the new field created when the 
sphere shrinks. Figure 23.10 is our sketch of the situation before and 

ExAmpLE 23.4  Electric Energy: A thunderstorm

Typical electric fields in thunderstorms average around 105 V/m. 
Consider a cylindrical thundercloud with height 10 km and diameter 
20 km, and assume a uniform electric field of 1 * 105 V/m. Find the 
electric energy contained in this cloud.

Interpret This problem is about stored electric energy.

Develop Since the field and hence the energy density are uniform, 
our plan is to find the energy density and then multiply it by the 
cloud’s cylindrical volume to calculate the total electric energy. We’ll 
use Equation 23.7, uE = 1

2 P0 E
2, for the energy density.

evaluate The energy density is

uE = 1
2 P0 E

2 = 1
2 P011 * 105 V/m22 = 4.4 * 10-2  J/m3

The cylindrical cloud has volume

V = pr2h = p110 km2110 km22 = 3.1 * 1012 m3

Multiplying energy density by volume gives the total stored energy:

U = uEV = 14.4 * 10-2 J/m3213.1 * 1012 m32 = 140 GJ

assess Make sense? A gallon of gasoline contains about 0.1 GJ 
(see Appendix C), so the thundercloud stores the energy equivalent 
of about 1400 gallons of gasoline. That’s not a whole lot for such a 
vast volume, showing that the energy density of macroscopic electric 
fields can’t compare with the electric energy density locked into the 
molecular structure of a fuel. You’ll never see cars running on the 
energy stored in atmospheric electric fields! ■
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after the sphere shrinks. Here the field varies with position, so Equa-
tion 23.8,

U = 1
2 P01E2 dV

gives the stored energy. Our plan is to evaluate the field in the region 
R2 6 r 6 R1 and use the result in Equation 23.8. Given the  spherical 

symmetry, the new field is a point-charge field: E = kQ/r2. To use 
Equation 23.8 we need an appropriate volume element dV. With 
spherical symmetry, Fig. 23.11 shows that we can use a thin spherical 
shell of volume dV = 4pr2 dr. Then Equation 23.8 becomes

U = 1
2 P0LE2 dV = 1

2 P0L
R

1

R2
 a

kQ

r2 b
2

4pr2 dr =
kQ2

2 L
R

1

R2

 r-2 dr

where we substituted 1/4pk for P0.

evaluate The integral is Lr-2 dr =
r-1

-1
= -

1
r

 , so

U =
kQ2

2
 a-

1
r
b `

R1

R2

=
kQ2

2
 a 1

R2
-

1

R1
b

assess Make sense? Here R2 6 R1, so the stored energy is positive 
and indicates that this much work had to be done to shrink the sphere. 
That makes sense, because the entire sphere carries charge of the same 
sign, and shrinking it moves that charge closer together, against the 
 repulsive electric force. Letting R1 go to infinity gives the work needed 
to assemble a spherical surface charge distribution. Putting R2 = 0 
makes the work and therefore the stored energy infinite— suggesting 
that the notion of a point charge is an impossible idealization. ■

Figure 23.10 (a) A charged sphere and its electric field.  
(b) Shrinking the sphere creates field and energy in the region R2 6 r 6 R1.

The work involved in shrinking the sphere
ends up as energy in the electric �eld here.

(a)

(b)

Figure 23.11 A thin spherical 
shell has volume dV = 4pr2 dr.

r

dr

Surface area
is 4pr2 c

cand thickness
is dr.

Got It? 23.5 You’re at a point P a distance a from 
a point charge +q. You then place a point charge -q a 
 distance a on the opposite side of P as shown. What hap-
pens to (1) the electric field strength and (2) the electric 
energy density at P? (3) Does the total electric energy 
U = 1uE dV  of the entire field increase, decrease, or 
 remain the same? +q -qP

a

a a

+q P
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Area A

Chapter 23 Summary
Big Idea

The big idea here is that all electric fields represent stored energy. This energy is associated with the work needed to assemble a distribution of 
electric charge, and may be negative or positive.

+q+q

U 7 0You do positive work to assemble this charge 
distribution . . .

. . . and therefore the stored electric  energy U 
is positive.

You do negative work to assemble this charge 
distribution . . .

. . . and therefore the stored electric energy U 
is negative.

+q -q

U 6 0

Key Concepts and Equations

The energy density in an electric field E is uE = 1
2 P0 E

2.

Integrating over volume gives the total electric energy U stored in the field:

U = L  uE dV. 1
2

E
S

The electric energy U
stored in the shaded 
volume is

At this point
the �eld strength
is E, so there’s 
electric energy
whose density
is uE =   P0E

2.

1
2U = E2dV.uEdV =   P0L L

Applications

A capacitor is a pair of insulated conductors used to store electric energy. Capacitance is the 
ratio of charge to potential difference:

C = Q/V
For a parallel-plate capacitor:

C = P0 A/d

The energy stored in a capacitor with voltage V between its plates is U = 1
2 CV2.

Capacitors in parallel add: C = C1 + C2.

C1 C2 C = C1 + C2

Capacitors in parallel have the same voltage.

Capacitors in series add reciprocally: 
1

C
=

1

C1
+

1

C2
.

1

C

1

C1

1

C2

C1

C2

 =  + 

Capacitors in series have the same charge.

Complicated circuits are analyzed by breaking them into parallel and series combinations:

C1

C2 C3

A

B

(a) (b) (c)

C1

A

B

C23

A

B

C123

A dielectric between capacitor plates increases the capacitance, as determined by the dielectric constant k of the material: C S kC0.
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For homework assigned on MasteringPhysics, go to www.masteringphysics.com

BIO Biology and/or medicine-related problems DATA Data problems ENV Environmental problems CH Challenge problems Comp Computer problems

+e

-2e

+e

105°

1 * 10
-10  m

Figure 23.12 Exercise 17

Section 23.2 Capacitors
18. A capacitor consists of square conducting plates 25 cm on a 

side and 5.0 mm apart, carrying charges {1.1 μC. Find (a) the 
electric field, (b) the potential difference between the plates, and  
(c) the stored energy.

19. An uncharged capacitor has parallel plates 5.0 cm on a side, 
spaced 1.2 mm apart. (a) How much work is required to transfer 
7.2 μC from one plate to the other? (b) How much work is re-
quired to transfer an additional 7.2 μC?

20. (a) How much charge must be transferred between the initially 
uncharged plates of the capacitor in Exercise 19 in order to store 
15 mJ of energy? (b) What will be the resulting potential differ-
ence between the plates?

21. A capacitor’s plates hold 1.3 μC when charged to 60 V. What’s 
its capacitance?

22. Show that the units of P0 may be written as F/m.
23. Find the capacitance of a parallel-plate capacitor with circular 

plates 20 cm in radius separated by 1.5 mm.
24. A parallel-plate capacitor with 1.1-mm plate spacing has 

{2.3 μC on its plates when charged to 150 V. What’s the plate 
area?

25. The power supply in a stereo receiver contains a 2500@μF capaci-
tor charged to 35 V. How much energy does it store?

26. Find the capacitance of a capacitor that stores 350 μJ when the 
potential difference across its plates is 100 V.

Section 23.3 Using Capacitors
27. You have a 1.0@μF and a 2.0@μF capacitor. What capacitances can 

you get by connecting them in series or in parallel?
28. Two capacitors are connected in series and the combination is 

charged to 100 V. If the voltage across each capacitor is 50 V, 
how do their capacitances compare?

29. (a) Find the equivalent capacitance of the combination shown in 
Fig. 23.13. Find (b) the charge and (c) the voltage on each  capacitor 
when a 12.0-V battery is connected across the  combination.

C1 = 2.00 μF

C3 = 2.00 μFC2 = 1.00 μF

Figure 23.13 Exercise 29

30. You’re given three capacitors: 1.0 μF, 2.0 μF, and 3.0 μF. Find 
(a) the maximum, (b) the minimum, and (c) two intermediate 
capacitances you could achieve using combinations of all three 
capacitors.

For thought and Discussion
 1. Two positive point charges are infinitely far apart. Is it possible, 

using a finite amount of work, to move them until they’re a small 
distance d apart?

 2. How does the energy density at a certain distance from a nega-
tive point charge compare with the energy density at the same 
distance from a positive point charge of equal magnitude?

 3. A dipole consists of two equal but opposite charges. Is the total 
energy stored in the dipole’s electric field zero? Why or why not?

 4. Charge is spread over the surface of a balloon, which is then 
allowed to expand. What happens to the energy of the electric 
field?

 5. Does the superposition principle hold for electric-field energy 
densities? That is, if you double the field strength at some point, 
do you double the energy density as well?

 6. A student argues that the total energy associated with the electric 
field of a charged sphere must be infinite because its field ex-
tends throughout an infinite volume. Critique this argument.

 7. A capacitor is said to carry a charge Q. What’s the net charge on 
the entire capacitor?

 8. Does the capacitance describe the maximum amount of charge 
a capacitor can hold, in the same way that a bucket’s capacity 
describes the maximum amount of water it can hold? Explain.

 9. Is a force needed to hold the plates of a charged capacitor in 
place? Explain.

10. A solid conducting slab is inserted between the plates of a ca-
pacitor, not touching either plate. Does the capacitance increase, 
decrease, or remain the same?

11. Two capacitors contain equal amounts of energy, yet one has 
twice the capacitance. How do their voltages compare?

12. A parallel-plate capacitor is connected to a battery that imposes 
a potential difference V between its plates. If a dielectric slab is 
inserted between the plates, what happens to (a) the potential dif-
ference, (b) the capacitance C, and (c) the capacitor charge Q?

exercises and problems
Exercises

Section 23.1 Electrostatic Energy
13. Four 75@μC charges, initially far apart, are brought onto a line 

where they’re spaced at 5.0-cm intervals. How much work does it 
take to assemble this charge distribution?

14. Three point charges +q and a fourth, -1
2  q, are assembled to form 

a square of side a. Find an expression for the electrostatic energy 
of this charge distribution.

15. Repeat Exercise 14 for the case when the fourth charge is -q.
16. If the three particles in Fig. 23.1 have identical charge q and mass m,  

and if they’re released from their positions on the triangle, what 
speed v will they have when they’re far away?

17. A crude model of the water molecule has a negatively charged ox-
ygen atom and two protons, as shown in Fig. 23.12. Calculate the 
electrostatic energy of this configuration, which is therefore the mag-
nitude of the energy released in forming this molecule. (Note: Your 
answer is an overestimate because electrons are actually “shared” 
among the three atoms, spending more time near the oxygen.)
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A

B

1.0 μF2.0 μF

3.0 μF

2.0 μF

Figure 23.14 Problems 45 and 46

46. In Fig. 23.14, find the energy stored in the 1@μF capacitor when a 
50-V battery is connected between A and B.

47. Capacitors C1 and C2 are in series, with voltage V across the 
combination. Show that the voltages across the individual capaci-
tors are V1 = C2V/1C1 + C22 and V2 = C1V/1C1 + C22.

48. You’re evaluating a new hire in your company’s engineering de-
partment. Together you’re working on a circuit where a 0.1@μF, 
50-V capacitor is in series with a 0.2@μF, 200-V capacitor. The 
new engineer claims you can safely put 250 V across the combi-
nation. What do you say?

49. A parallel-plate capacitor has plates with area 50 cm2 separated 
by 25 μm of polyethylene. Find its (a) capacitance and (b) work-
ing voltage.

50. A 470-pF capacitor consists of two 15-cm-radius circular plates, 
insulated with polystyrene. Find (a) the thickness of the polysty-
rene and (b) the capacitor’s working voltage.

51. The first accurate estimate of cell membrane thickness used a 
capacitive technique, which determined the capacitance per unit 
area of cell membrane in a macroscopic suspension of cells; the 
result was about 1 μF/cm2. Assuming a dielectric constant of 
about 3 for the membrane, find the membrane’s thickness. (Note: 
Your answer is the thickness of the bipolar lipid layer alone, and 
is lower by a factor of about 3 than values based on X-ray tech-
niques.)

52. Your company is still stuck with those 2@μF capacitors from 
Problem 44. They turn out to be so cheap that their capacitances 
are all too low, ranging from 1.7 μF to 1.9 μF. A colleague sug-
gests you put variable “trimmer” capacitors in parallel with the 
cheap capacitors and adjust the combination to precisely 2.00 μF. 
The available trimmers have variable capacitance from 25 nF to 
350 nF. Will they work?

53. A cubical region 1.0 m on a side is located between x = 0 and 
x = 1 m. The region contains an electric field whose magnitude 
varies with x but is independent of y and z: E = E01x/x02, where 
E0 = 24 kV/m and x0 = 6.0 m. Find the total energy in the re-
gion.

54. A sphere of radius R contains charge Q spread uniformly 
throughout its volume. Find an expression for the electro-
static energy contained within the sphere itself. (Hint: Consult 
 Example 21.3.)

55. A sphere of radius R carries total charge Q distributed uniformly 
over its surface. Show that the energy stored in its electric field is 
U = kQ2/2R.

56. A uranium-235 nucleus has diameter 6.6 fm and contains 92 pro-
tons and 143 neutrons. Assuming that charge is distributed uni-
formly throughout the nucleus, use the results of Problems 54 and 
55 to calculate the total electrostatic energy of this configuration.

57. Two widely separated 4.0-mm-diameter water drops each carry 
15 nC. Assuming all charge resides on the drops’ surfaces, find 
the change in electrostatic potential energy if they’re brought to-
gether to form a single spherical drop.

58. A 2.1-mm-diameter wire carries a uniform line charge density 
l = 28 μC/m. Find the energy in a region 1.0 m long within one 
wire diameter of the wire surface.

BIO

CH

Section 23.4 Energy in the Electric Field
31. The energy density in a uniform electric field is 3.0 J/m3. What’s 

the field strength?
32. A car battery stores about 4 MJ of energy. If this energy were 

used to create a uniform 30-kV/m electric field, what volume 
would it occupy?

33. Air undergoes dielectric breakdown at a field strength of  
3 MV/m. Could you store energy in an electric field in air with 
the same energy density as gasoline? (Hint: See Appendix C.)

34. Consider a proton to be a uniformly charged sphere 1 fm in ra-
dius. Find the electric energy density at the proton’s surface.

problems
35. A charge Q0 is at the origin. A second charge, Qx = 2Q0, is 

brought from infinity to the point x = a, y = 0. Then a third 
charge Qy is brought from infinity to x = 0, y = a. If it takes 
twice as much work to bring in Qy as it did Qx, what’s Qy in terms 
of Q0?

36. A conducting sphere of radius a is surrounded by a concentric 
spherical shell of radius b. Both are initially uncharged. How 
much work does it take to transfer charge from one to the other 
until they carry charges {Q?

37. Two closely spaced square conducting plates measure 10 cm on a 
side. The electric-field energy density between them is 4.5 kJ/m3. 
What’s the charge on the plates?

38. The potential difference across a cell membrane is 65 mV. On the 
outside are 1.5 * 106 singly ionized potassium atoms.  Assuming 
an equal negative charge on the inside, find the membrane’s 
 capacitance.

39. Which can store more energy: a 1.0@μF capacitor rated at 250 V 
or a 470-pF capacitor rated at 3 kV?

40. A 0.01@μF, 300-V capacitor costs 25.; a 0.1@μF, 100-V capaci-
tor costs 35.; and a 30@μF, 5-V capacitor costs 88¢. (a) Which 
can store the most charge? (b) Which can store the most energy? 
(c) Which is the most cost-effective energy-storage device, meas-
ured in J/.?

41. A medical defibrillator stores 950 J in a 100@μF capacitor.  
(a) What is the voltage across the capacitor? (b) If the capacitor 
discharges 300 J of its stored energy in 2.5 ms, what’s the power 
delivered during this time?

42. A camera requires 5.0 J of energy for a flash lasting 1.0 ms.  
(a) What power does the flashtube use while it’s flashing? (b) If 
the flashtube operates at 200 V, what size capacitor is needed to 
supply the flash energy? (c) If the flashtube is fired once every  
10 s, what’s its average power consumption?

43. Engineers testing an ultracapacitor (see Application on page 420) 
measure the capacitor’s stored energy at different voltages. The 
table below gives the results. Determine a quantity that, when 
you plot stored energy against it, should give a straight line. 
Make your plot, establish a best-fit line, and use its slope to de-
termine the capacitance.

Voltage (V) 12.2 20.1 31.8 37.9 45.7 50.2 56.0

Energy (kJ) 9.25 27.2 62.5 94 139 158 203

44. Your company’s purchasing department bought lots of cheap 
2.0@μF, 50-V capacitors. Your budget is maxed out and they won’t 
let you buy additional capacitors for a circuit you’re designing. 
You need 2.0@μF, 100-V capacitors and 0.5@μF, 50-V capacitors. 
How will you combine the available capacitors to make these?

45. What’s the equivalent capacitance measured between A and B in 
Fig. 23.14?

BIO

BIO
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in about 20 ns; Fig. 23.17 shows the target chamber where the laser 
beams converge. The energy is stored in capacitors that, because of 
conversion inefficiencies, have to store some 400 MJ. (Note: NIF is 
more complicated than described here, and the numbers and technical 
descriptions are only approximate.)

Figure 23.17 The NIF target chamber, shown during installation  
(Passage Problems 70–73)

70. What total capacitance is required if the capacitor system is 
charged to 20 kV?
a. 100 μF
b. 200 μF
c. 1 F
d. 2 F

71. If it were technically and economically feasible to double the 
voltage, how would the required capacitance change?
a. drop to one-quarter its original value
b. drop to one-half its original value
c. would not change
d. would double

72. While they’re firing, the average power delivered by the laser 
beams is
a. 100 KW.
b. 100 MW.
c. 100 GW.
d. 100 TW.

73. Among the capacitors that store energy at NIF are 1200 300@μF 
units charged to about 20 kV. The energy stored in each capacitor 
is about
a. 3 J.
b. 20 kJ.
c. 60 kJ.
d. 400 MJ.

Answers to Chapter Questions

Answer to Chapter Opening Question
The energy is stored in the electric field of a pair of charged conductors— 
a capacitor—and dumped quickly to the defibrillator when it’s needed.

Answers to GOt it? Questions
 23.1  (c)
 23.2  No, because the charge the capacitor holds depends on the 

voltage across it (although there may be practical limits on the 
maximum voltage; see Section 23.3).

 23.3  (b) because U depends on V2

 23.4  (1) parallel; (2) series; (3) The working voltage of the series 
combination is twice that of the parallel combination, which is 
the same as that of the individual capacitors.

 23.5  (1) E1P2 doubles; (2) uE1P2 quadruples; (3) U decreases, since 
the charges are attracted and therefore you do negative work to 
bring in the negative charge.

59. A typical lightning flash transfers 30 C across a potential differ-
ence of 30 MV. Assuming such flashes occur every 5 s in the 
thunderstorm of Example 23.4, roughly how long would the 
storm last if its electric energy were not replenished?

60. A capac i tor  cons is t s  o f  two 
long concentric metal cylinders  
(Fig. 23.15). Find an expression 
for its capacitance in terms of the 
 dimensions shown.

61. A capacitor consists of a  conducting 
sphere of radius a surrounded by 
a concentric conducting shell of 
 radius b. Show that its capacitance 
is C = ab/k1b - a2.

62. Show that the result of Problem 61 
reduces to that of a  parallel-plate capacitor when the separation 
b - a is much less than the radius a.

63. A solid sphere contains a uniform volume charge density. What 
fraction of the total electrostatic energy of this configuration is 
contained within the sphere?

64. An air-insulated parallel-plate capacitor of capacitance C0 is charged 
to voltage V0 and then disconnected from the charging battery. A 
slab with dielectric constant k and thickness equal to the capaci-
tor spacing is then inserted halfway into the capacitor (Fig. 23.16). 
 Determine (a) the new capacitance, (b) the stored energy, and (c) the 
force on the slab in terms of C0, V0 , k, and the plate length L.

L

Figure 23.16 Problems 64 and 65

65. Repeat parts (b) and (c) of Problem 64, now assuming the battery 
remains connected while the slab is inserted.

66. A transmission line consists of two parallel wires, of radius a and 
separation b, carrying uniform line charge densities {l, respec-
tively. With a V b, their electric field is the superposition of 
the fields from two long straight lines of charge. Find the capaci-
tance per unit length for this transmission line.

67. An infinitely long rod of radius R carries uniform volume charge 
density r. Find an expression for the electrostatic energy per unit 
length contained within the rod. (Hint: See Problem 21.56.)

68. (a) Write the electrostatic potential energy of a pair of oppositely 
charged, closely spaced parallel plates as a function of their sepa-
ration x, their area A, and the charge magnitude Q. (b) Differenti-
ate with respect to x to find the magnitude of the attractive force 
between the plates. Why isn’t the force equal to the charge on 
one plate times the electric field between the plates?

69. An unknown capacitor C is connected in series with a 3.0@μF 
capacitor; this pair is placed in parallel with a 1.0@μF capacitor, 
and the entire combination is put in series with a 2.0@μF capacitor.  
(a) Make a circuit diagram of this network. (b) When a potential 
difference of 100 V is applied across the open ends of the network, 
the total energy stored in all the capacitors is 5.8 mJ. Find C.

Passage Problems
Nuclear fusion could provide humankind with limitless energy, 
 making a gallon of seawater the energy equivalent of 300 gallons of 
gasoline. The National Ignition Facility (NIF) at Lawrence Livermore 
National Laboratory was designed for the “ignition” of nuclear  fusion 
by bombarding a tiny deuterium-tritium pellet with energy from 
192 converging laser beams. The NIF lasers deliver 2 MJ of energy 
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CH

CH

CH

CH

CH

CH

b

a

L

Figure 23.15 Problem 60
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23
Electrostatic Energy 

and Capacitors

25
Electric Circuits

26
Magnetism:  

Force and Field

22
Electric Potential

We now move beyond electrostatic equilibrium and consider situations in which charges 
are moving. The flow of charge constitutes electric current, and it occurs in materials 

containing free charges—that is, in conductors.
Electric current is essential in many technological and natural processes. Currents in 

 lightbulbs, toasters, and stoves produce light and heat. Currents in electric motors run 
 refrigerators, hybrid cars, and subway trains. In computers, currents process and move data. In 
your body, they regulate heartbeat and control muscles. Currents in Earth’s liquid outer core 
generate the planet’s magnetism, protecting us from cosmic radiation. And currents in the Sun 
are responsible for giant eruptions that can spew high-energy particles toward Earth.

How You’ll Use It
■ In Chapter 25 you’ll use the concepts 

of electric current and potential 
difference to analyze electric circuits.

■ In Chapter 26 you’ll see how electric 
current is a source of magnetism.

■ In Chapter 28 you’ll learn about the 
alternating current used in electric 
power systems.

■ Understanding electric current 
will help you appreciate everyday 
electrical devices and use them safely.

What You’re Learning
■ You’ll learn that the flow of charge 

constitutes electric current and how 
current relates to microscopic properties 
of a material in which current flows.

■ You’ll learn to distinguish between 
current and current density, with 
current density providing a more 
detailed look at electric current.

■ You’ll see why many materials, especially 
metals, exhibit a linear relation between 
electric field and current density—a 
relation known as Ohm’s law.

■ You’ll explore the mechanisms of 
electrical conduction in different 
materials, including metals, ionic 
solutions, plasmas, semiconductors, 
and superconductors.

■ You’ll learn about electrical resistance 
and how it follows from basic material 
properties and geometry.

■ You’ll learn how to calculate electric 
power.

■ You’ll learn about electrical safety.

What You Know
■ You understand electric charge and 

electric fields, and how charges 
respond to fields.

■ You understand electric potential 
difference as a measure of the work 
per unit charge in moving charges 
through electric fields.

■ You understand the distinction 
between energy and power.

Electric Current

24

How does electric current heat this lightbulb filament? Where does the energy come from?
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24.1 Electric Current
Quantitatively, current is the net rate of charge crossing an area. Its units are coulombs 
per second, which is given the name ampere (A) after the French physicist André  Marie 
 Ampère (1775–1836). In electronics and biomedical applications, currents are small 
enough that milliamperes (mA) and microamperes 1μA2 are widely used. When current I 
is steady or a time average will do, we write

 I =
∆Q

∆t
  1steady current2 (24.1a)

where ∆Q is the charge crossing the given area in time ∆t. For time-varying currents we 
take the limit of small time intervals:

 I =
dQ

dt
  1instantaneous current2 (24.1b)

Current is in the direction in which positive charge flows. If the moving charge is  negative, 
as with electrons in a metal, then the current is opposite the charge motion.

A current may consist of one kind of moving charge, or both. If it’s both, then the net 
current is the sum of the currents carried by positive and negative charges (Fig. 24.1a). 
That’s why the bulk motion of a neutral object—even though it contains lots of positive 
and negative charge—doesn’t constitute a current (Fig. 24.1b).

Got It? 24.1 Which of the following represents a nonzero current? What’s its 
 direction? (a) a beam of electrons moves from left to right; (b) a beam of protons moves 
upward; (c) in a solution, positive ions move left and negative ions move right; (d) blood, 
carrying positive and negative ions at the same speed, moves up through a vein; (e) a metal 
car with no net charge speeds westward

Current: A Microscopic Look
Current depends on the speed of the charge carriers, their density, and their charge. In 
some cases, like a beam of electrons in vacuum, “speed” here means the actual speed 
of the charges. But in typical conductors, charges are moving about at high speed with 
 random thermal velocities that don’t result in a net flow of charge. When a current is 
 present, there’s an additional and usually very small drift velocity superposed on the 
charges’ random motion, and it’s this drift velocity that determines the current. We’ll see 
this in more detail when we consider metallic conductors.

Figure 24.2 shows a conductor that contains n charges per unit volume, each with 
charge q and drift speed vd. We want to express the current in terms of these microscopic 
properties and macroscopic properties like length and area. With A the conductor’s cross-
sectional area, a length L of conductor has volume AL and contains nAL individual charges 
for a total charge ∆Q = nALq. Moving at vd, this charge takes time ∆t = L/vd to pass a 
given point. Then the current is

 I =
∆Q

∆t
=

nALq

L/vd
= nAqvd (24.2)

Figure 24.1 The net current is the sum of the 
currents carried by both positive and negative 
charges.

v
u

Net
current

Zero net
current

Protons moving right:  I is to right.

Negative electrons moving left:  I is to right.

Both charges moving right;  no net current.

(a)

(b)

Figure 24.2 A conductor of cross-sectional area 
A containing n charges per unit volume.

vd
u

This volume contains charge ∆Q = nALq.

n charges>unit volume, each charge q

L

A

ExAMpLE 24.1  Finding Current: A Copper Wire

A 5.0-A current flows in a copper wire with cross-sectional area 
1.0 mm2, carried by electrons with number density n = 1.1 * 1029 m-3. 
Find the electrons’ drift speed.

Interpret We’re given microscopic parameters, so this is a problem 
about the relation between current and the parameters n, q, and vd.

(continued)
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✓tIp Drift Speed and Signal Speed

Example 24.1 points to an important distinction between the drift speeds of electrons 
and speed of electric signals. The former is typically about 1 mm/s, but the latter is 
close to the speed of light. When you connect a wire across a battery, for example, an 
electric field develops, starting at both battery terminals and moving along the wire at 
nearly the speed of light. As soon as electrons experience the field, they start to move. 
So there’s almost no time delay before the start of the current.

Current Density
Currents aren’t always confined to wires. Currents in the Earth, in chemical solutions, in 
your body, and in ionized gases flow in ill-defined paths, and their magnitude and direc-
tion may vary with position. We characterize such diffuse currents in terms of current 
density, J

S
, a vector whose direction at each point is that of the local current and whose 

magnitude is the current per unit area. Dividing Equation 24.2 by area and using the drift 
velocity vector v

!
d instead of speed vd gives the current density:

 J
S

= nqv
!
d 1current density2 (24.3)

When the current density is uniform, as in a wire, the total current is just the product 
of the current density and the wire’s cross-sectional area. A: I = JA. But when the current 
density varies, it’s necessary to integrate. And because current may vary in magnitude 
or direction, and the area itself may not be flat, that integral becomes a surface integral 
 similar to the one we introduced in Chapter 21 for electric flux. In fact, as Fig. 24.4 shows, 
the current is the flux of the current density: I = A J

S  #  dA
S

. You can explore the case of a 
nonuniform current density in Problem 63.

Develop Figure 24.3 is our sketch. Equation 24.2, I = nAqvd, re-
lates current to the macroscopic parameters, so our plan is to solve 
for vd.

evaluate Solving, we get

 vd =
I

nAq

 =
5.0 A

11.1 * 1029 m-32110-6 m2211.6 * 10-19 C2 = 0.28 mm/s

assess Make sense? Our answer seems awfully small. After all, 
when you flip a light switch, the light comes on immediately, not 
 several thousand seconds later as our answer might imply. But the 
answer is right. Electrons in the wire all get their “marching orders” 
from the electric field, and that’s established almost  instantaneously. 
As a result electrons throughout the wire start moving almost 
 simultaneously. That’s why the light comes on immediately. ■Figure 24.3 Sketch for Example 24.1.

Figure 24.4 Current I is the flux of the current 
density J

!
, and finding the total current in the 

case of nonuniform J
!
 requires integration. 

Compare with Fig. 21.6.

J
S

J
S

Although the surface curves
and the current density varies c

dA
S

cthe current
through a 
small enough
patch is 
dI = J # dA.

S S

Ion channels are narrow pores that allow ions to pass through cell 
membranes (Fig. 24.5). A particular channel has a circular cross sec-
tion 0.15 nm in radius; it opens for 1 ms and passes 1.1 * 104 singly 
ionized potassium ions. Find both the current and the current density 
in the channel.

Interpret This problem describes a flow of individual ions and asks 
for two distinct but related quantities: current and current density.

Develop Current is the rate of charge passing through a given area, 
here the opening of an ion channel. Equation 24.1a, I = ∆Q/∆t, 

~0.3 nm

Ion channels

Lipid
molecules

Figure 24.5 Diagram of a cell membrane, showing ions passing through an 
ion channel.

ExAMpLE 24.2  Current and Current Density: through the Cell Membrane
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24.2 Conduction Mechanisms
Electric fields exert forces on charges, so it’s the presence of electric fields in conductors 
that results in electric current. Fields in conductors? Yes. With moving charge we no longer 
have electrostatic equilibrium, so the field inside a conductor need not be zero. Newton’s 
law suggests that an electric field should accelerate free charges in a conductor, resulting 
in an ever-increasing current. But in most conductors charges collide, usually with ions, 
and lose energy they’ve gained from the field. These collisions provide an effective force 
that counters the electric force, and the end result is that it takes an electric field to sustain 
a steady current. In most materials the field and current are in the same direction, and we 
can therefore express the relation between the two as

 J
S

= sE
S
  1Ohm>s law, microscopic version2 (24.4a)

where the quantity s is the material’s conductivity.

ohm’s Law: A Microscopic View
For many common conductors, including metals, conductivity s is independent of electric 
field. Such materials are called ohmic, and for them Equation 24.4a states that current 
density and electric field are linearly proportional. In nonohmic materials, conductivity 
does depend on field, and thus the relationship between J

S
and E

S
 isn’t linear.

You may be familiar with the macroscopic version of Ohm’s law, which relates electric 
current and voltage in a piece of conducting material. Equation 24.4a is the microscopic 
version of Ohm’s law, describing the relation between electric field and current density at 
each point within a conductor. The macroscopic version is helpful in analyzing electric 
circuits, and we’ll derive it in the next section. But the microscopic version is important in 
biophysics, geophysics, astrophysics, semiconductor engineering, and other areas where 
electric fields vary with position and we want to know what’s going on at each point.

Conductivity s tells how large a current density will result from a given electric field; 
it’s a measure of how easily charges in a material can move. A perfect conductor would 
have s = ∞ ; a perfect insulator, s = 0. A related quantity is resistivity, r, defined as the 
inverse of conductivity: r = 1/s. Then Equation 24.4a can be written

 J
S

=
E
S

r
 (24.4b)

Resistivity tells how hard it is for charge to move; the higher a material’s resistivity, the 
stronger the electric field needed to produce a given current density. You may be familiar 
with electrical resistance, and you’ll soon see how resistance and resistivity are related.

Equation 24.4b shows that the units of resistivity are V #  m/A. One V/A is given the 
name ohm, Ω, after the German physicist Georg Ohm (1789–1854), who explored the 
relation between voltage and current. Thus the SI units of resistivity are Ω #m; reciprocally, 
those of conductivity are 1Ω #m2-1. Conductivity and resistivity range widely, spanning 
some 24 orders of magnitude. Table 24.1 lists the resistivities of some typical materials. 
Measurement of electrical resistivity provides information on the composition of materials 
in fields from medicine to geophysics.

 determines the current. Current density, however, is current per unit 
area, which we can compute from J = I/A.

evaluate With each ion carrying charge e, a total charge ∆Q =  
1.1 * 104e = 1.8 * 10-15 C flows through the channel in ∆t = 10-3 s, 
giving a current I = ∆Q/∆t = 1.8 pA. For current density we then find

J =
I

A
=

1.8 * 10-12 A

p10.15 * 10-9 m22 = 2.5 * 107 A/m2

assess Make sense? How can something so tiny as a cell have a 
 current density of 25 million amperes per square meter? No  problem: 
Current density measures current per unit area. The ion channel is so 
small that the total current—1.8 picoamperes—is tiny. But that  channel 
is impressive in its own right; its 25 MA/m2 is about four times the 
maximum safe current density in typical household wiring. ■

Table 24.1 Resistivities

Material resistivity 1� #  m2
Metallic conductors 120°C2

Aluminum 2.65 * 10-8

Copper 1.68 * 10-8

Gold 2.24 * 10-8

Iron 9.71 * 10-8

Mercury 9.84 * 10-7

Silver 1.59 * 10-8

Ionic solutions (in water, 18°C)
1-molar CuSO4 3.9 * 10-4

1-molar HCl 1.7 * 10-2

1-molar NaCl 1.4 * 10-4

H2O 2.6 * 105

Blood, human 0.70
Seawater (typical) 0.22

Semiconductors
Germanium 0.5
Silicon 3 * 103

Insulators
Ceramics 1011-1014

Glass 1010-1014

Polystyrene 1015-1017

Rubber 1013-1016

Wood (dry) 108-1014

PheT: Conductivity
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ExAMpLE 24.3 Finding the Electric Field: Household Wiring

A 1.8-mm-diameter copper wire carries 15 A to a household  appliance. 
Find the magnitude of the electric field in the wire.

Interpret This problem asks us to calculate the electric field within 
a conductor carrying an electric current.

Develop Equation 24.4b, J
S

= E
S

/r, relates electric field and  current 
density. Here we’re given the total current I and the wire diameter, 
so we can write the current density as J = I/A, with A the wire’s 
 cross-sectional area. We also need the resistivity of copper from  
Table 24.1. Then we can solve Equation 24.4b for the electric field.

evaluate Solving for the field magnitude, we have

E = Jr =
Ir

A
=

115 A211.68 * 10-8 Ω  #  m2
p10.90 * 10-3 m22 = 99 mV/m

assess Make sense? This number is a lot smaller than the electric 
fields we discussed in electrostatic situations. Because copper is such 
a good conductor, a weak field can drive a substantial current. In 
 well-engineered circuits, the field inside conducting wires is often so 
small as to be negligible, even when the current is large. ■

Got It? 24.2 Two wires carry the same current I. Wire A has a larger diameter, a 
higher density of current-carrying electrons, and a lower resistivity than wire B. Rank in 
order, from smaller to larger, (1) the current densities, (2) the electric fields, and (3) the 
drift speeds in the two wires.

Conduction in Metals
Metals are good conductors because they contain abundant free electrons, which respond 
readily to electric fields. Each atom in a metal typically contributes one or more electrons 
to this “sea” of free electrons. The remaining ions form a regular crystal lattice (Fig. 24.6). 
Electrons move through the lattice at about 106 m/s, colliding frequently with ions and 
bouncing off in random directions. In the absence of an electric field, there’s no net flow 
of electrons in any particular direction, and so no current.

We’ll now consider what happens when an electric field is applied to a metal, and we’ll 
show why metals obey Ohm’s law. However, our explanation is necessarily incomplete 
because a full description of metallic conduction involves quantum mechanics.

An electric field accelerates negative electrons in the direction opposite the field. But 
like a car in stop-and-go traffic, the electron soon gives up the energy and speed it gained 
from the field. For the car, that happens at the next stoplight; for the electron, it’s at the 
next collision with an ion, where it rebounds in a random direction (Fig. 24.7). Like the 
car, the electron thus acquires an average velocity that’s proportional to the acceleration 
it experiences between collisions—that is, proportional to the electric field. There’s one 
difference, though, between the electron and the car: The electron has also a high random 
thermal velocity, so the average velocity is a tiny effect superposed on the electron’s ran-
dom thermal motion. That average velocity is the drift velocity, v

!
d. All electrons share this 

common drift velocity, so their motion constitutes a current proportional to vd.
The drift velocity depends on two things: the electrons’ acceleration and the rate 

at which they undergo collisions. The electric field provides the acceleration, so vd 
is  proportional to E. The collision rate depends on how fast the electrons are moving, 
and here’s the important point: Because thermal motions are so fast, the additional drift 
 velocity makes essentially no difference in the collision rate, so the latter is constant. 
Therefore, the drift velocity and hence the current are proportional to the electric field—
and that makes  Equation 24.4a a linear relationship between current density and field. 
That’s why metals are ohmic.

Although a metal’s conductivity is independent of the applied field, it does depend on 
temperature T. That’s because the thermal speed and hence the collision rate increase with 
temperature, decreasing conductivity and increasing resistivity. Classical physics gives 
thermal speed proportional to 1 T  , as we saw in Section 17.1, so we might expect resis-
tivity to depend similarly on temperature. Experiment, however, shows that resistivity is 
nearly linear with temperature (Fig. 24.8)—a result that can be explained using quantum 
mechanics.

Figure 24.6 Atoms of a metal form a regular 
crystal lattice.

Figure 24.7 An electron’s path in a metal 
is  almost completely random, but in the 
 presence of an electric field there’s a slight 
drift antiparallel to the field.

E
S

Figure 24.8 Resistivity of copper has a nearly 
linear dependence on temperature, in contrast 
to the classical prediction of a dependence 
on 1  T  .
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24.2 Conduction Mechanisms 437

Although the current associated with random thermal motions averages to zero, at any 
given instant short-term fluctuations can result in more electrons moving in a  particular 
direction. The result is a very small current whose direction and magnitude fluctuate 
randomly. This thermal noise can overwhelm currents of interest in sensitive electronic 
equipment. Circuits like the amplifiers in radio telescopes are often cooled to decrease 
thermal noise.

Ionic Solutions
Liquid solutions contain positive and negative ions that respond to an electric field by mov-
ing in opposite directions, resulting in a net current. Conductivity is limited by  collisions 
between ions and neutral atoms and, as Table 24.1 suggests, ionic solutions are poorer con-
ductors than metals. Ionic conduction is essential to life, as the transport of ions through 
cell membranes in Example 24.2 suggests. Electric eels use ionic  conduction to sense and 
kill their prey. Batteries and fuel cells use ionic conduction, which also plays a role in 
the corrosion of metals. And an ionic solution—sweat—increases your  vulnerability to 
 electric shock.

plasmas
Plasma is ionized gas that conducts because it contains free electrons and ions. It takes 
substantial energy to ionize atoms, so plasmas usually exist only at high temperatures. 
Plasmas are rare on Earth; they’re in fluorescent lamps, plasma TVs, neon signs, the 
 ionosphere, flames, and lightning flashes. Yet much of the universe’s ordinary matter is in 
the plasma state; stars, in particular, are mostly plasma.

The electric properties of plasma make it so different from ordinary gas that plasma 
is often called “the fourth state of matter.” Some plasmas—like the Sun’s corona—are so 
diffuse and therefore collisions so rare as to make them far better conductors than metals. 
These “collisionless” plasmas can sustain large currents with minimal electric fields.

Semiconductors
Even in insulators, random thermal motions dislodge a few electrons, giving these materi-
als very modest conductivity. In a few materials—notably the element silicon—this effect 
is significant at room temperature. Such materials have conductivities between those of 
insulators and conductors, as reflected by their placement in Table 24.1, so they’re called 
semiconductors. Semiconductors make possible the microelectronic technology so per-
vasive in modern civilization. Here we give a qualitative description of semiconductors 
based on classical physics; we’ll revisit semiconductors from a quantum-mechanical 
viewpoint in Chapter 37.

A dislodged electron leaves behind a “hole,” into which an adjacent electron, nudged by 
the electric field, can “fall” (Fig. 24.9). The result is a movement of holes in the  direction 

Figure 24.9 Structure of a silicon crystal, 
 showing each atom bound to each of its 
neighbors by two shared electrons. (a) Thermal 
motion dislodges electrons, creating electron-
hole pairs. (b) An electric field drives electrons 
and holes in opposite directions, creating an 
electric current.

E
S

Thermal motion has
dislodged an electron c

A bound
electron
jumps
leftward,
moving the
hole to the
right.

Electron and hole move
oppositely in an electric �eld.

cleaving a hole.
(a) (b)

Free
electron

Hole

Electrons Holes

PheT: Semiconductors
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Figure 24.10 Phosphorus-doped silicon has extra free electrons, making it an N-type 
semiconductor.

Phosphorus, with
�ve valence electrons

The phosphorus �ts into the Si
structure but leaves an extra free electron.

Figure 24.11 A PN junction conducts in only one direction.

With no battery, electrons and
holes diffuse across the junction.
Holes and electrons recombine, 
depleting the junction region of
charge carriers.

Connecting the battery like this
pulls electrons and holes away
from the junction. The depletion
region widens and little current
�ows.

Now the battery drives charge 
carriers to the junction region,
permitting current to �ow.

P N P N

- +

Depletion
region

Depletion
region

P N

+ -
Battery

Battery

I

AppLICAtIon the transistor

Few inventions have revolutionized society as much as the transistor, the semi-
conductor device at the root of all modern electronics. The figure shows one 
type, the field-effect transistor, or FET. This particular FET is a slab of P-type 
semiconductor with two embedded N-type regions. Normally no current can 
flow through the transistor because one of its two PN junctions is backward, 
as shown in part (a) of the figure. But atop the so-called channel between the 
N-type regions is a thin insulating layer, and over it a metal layer called the 
gate. Make the gate positive, and it pulls electrons into the channel, making it 

temporarily N-type, as in part (b). That eliminates the PN junctions, and now 
current flows through the transistor.

Varying the gate voltage continuously makes the transistor an amplifier, 
in which a weak gate signal controls a large current. Swinging between fully 
on and off makes the transistor a digital switch, providing the binary 1 and 0 
from which all digital information is built. Today, transistors by the billions are 
fabricated on single chips of silicon, making the powerful microprocessors that 
are the “brains” of computers.

of the field. Thus holes act as positive charges, so a pure semiconductor contains equal 
numbers of negative charge carriers (electrons) and positive carriers (holes).

The key to semiconductor technology lies in doping with impurities that greatly alter a 
semiconductor’s intrinsic conductivity. Figure 24.10 shows how a single phosphorus atom, 
with five valence electrons, fits into silicon’s crystal structure but leaves a free electron. 
It doesn’t take much phosphorus for these extra electrons to constitute the vast majority 
of charge carriers. Since the charge carriers are negative, the material is called an N-type 
semiconductor. Doping with trivalent atoms like boron, in contrast, leaves extra holes and 
makes a P-type semiconductor.

The essential element of nearly every semiconductor device is the PN junction. Elec-
trons and holes diffuse across such a junction and recombine, depleting the junction region 
of charge carriers and making it a poor conductor. Applying a voltage from the P to the N 
region—but not the other way—lets charge flow through the junction. So the PN junction 
conducts in one direction but not the other (Fig. 24.11). The wide range of semiconductor 
devices in use today results largely from carefully engineered combinations of PN junctions.

M24_WOLF4752_03_SE_C24.indd   438 17/06/15   8:54 PM
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Superconductors
In 1911 the Dutch physicist H. Kamerlingh Onnes found that the resistivity of mercury 
dropped to zero at a temperature of 4.2 K. Today we know thousands of substances that 
become superconductors at sufficiently low temperatures. Currents in superconductors 
persist for years without measurable decrease, suggesting that the resistivity is truly zero  
(Fig. 24.12). For decades the known superconductors were metals and metal alloys that 
required cooling with liquid helium. Then, in 1986, physicists at IBM’s Zurich laboratory 
stunned the scientific community with the discovery of ceramic materials that become 
superconducting at around 100 K—high enough to cool with inexpensive liquid nitrogen. 
The search for higher-temperature superconductors continues, with the highest tempera-
ture reported now over 130 K, and tantalizing hints of possible superconducting behavior 
at much higher temperatures. Development of a room-temperature superconductor could 
revolutionize much of electrical technology.

Superconductors offer loss-free flow of electric power. Today, superconductors are 
widely used in high-strength electromagnets, including those in MRI scanners; in filters 
that distinguish individual channels in cell-phone communications; in devices that meas-
ure weak magnetic fields in biomedical, geophysical, and other applications; for electric-
power transmission in high-density urban applications; and in motors for ship propulsion. 
Expect more applications in the near future.

24.3 Resistance and ohm’s Law
How much current does it take to run this hair dryer? Do I risk a fatal shock if I touch this 
wire? How long an extension cord can I use with this electric saw? How long will it take to 
recharge my cell phone? Is the wiring in my house safe? All these questions are ultimately 
about the electric current flowing in wires, bodies, and batteries. The answer in each case 
depends on two things: the voltage V applied across the object and the resistance R that 
the object offers to the flow of electric current.

The macroscopic version of Ohm’s law relates voltage, current, and resistance. Ohm’s 
law states that the current through an object is proportional to the voltage across it and 
inversely proportional to the object’s resistance:

 I =
V

R
  1Ohm>s law, macroscopic version2 (24.5)

Ohm’s law shows that a given voltage can push more current through a lower resistance. 
It’s worth noting two extreme cases: An open circuit is a nonconducting gap with  infinite 
resistance. No matter what the voltage is across an open circuit, Equation 24.5 shows that 
no current can flow. A switch in its “off  ” position is an open circuit. A short circuit, 

Figure 24.12 Resistivity versus temperature for 
a thin film of yttrium–barium–copper-oxide 
superconductor.
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in contrast, has zero resistance. In a short circuit, current of any magnitude is possible 
without any voltage or electric field. A switch in its “on” position approximates a short 
circuit. An unintentional short circuit is dangerous; short circuits in household wiring, for 
example, are a leading cause of fires because they allow large currents to flow, resulting in 
excessive heating. All real situations, with the exception of superconductors, lie between 
the extremes of short and open circuits.

We can understand how the macroscopic version of Ohm’s law follows from the 
 microscopic version by considering the conductor shown in Fig. 24.13. Suppose there’s 
a uniform electric field E

S
 within the conductor. Then there must be a uniform current 

 density given by Equation 24.4b: J
S

= E
S

/r, where r is the resistivity of the material. 
Then the total current is I = JA = EA/r, where A is the conductor’s cross-sectional area. 
If the conductor has length L, then the potential difference between its ends is V = EL, 
since the electric field is uniform. Solving to get E = V/L and using the result in our 
 expression for I gives

I =
VA

Lr
=

V

rL/A

Comparison with the macroscopic Ohm’s law, Equation 24.5, lets us identify the resist-
ance with the term rL/A. Thus resistance depends on the resistivity r and the geometry—
length and area—of the particular piece of material:

 R =
rL

A
 (24.6)

We derived this expression for a conductor of uniform cross section; although Ohm’s law 
still holds for a nonuniform conductor, integration is required to calculate the resistance 
in that case (see Problems 67 and 68). Equations 24.5 and 24.6 both show that the units of 
resistance are ohms 1Ω2.

We emphasize that Ohm’s law is not fundamental; rather, it’s an empirical law that 
describes electrical conduction in some materials. Table 24.2 summarizes the relation 
 between microscopic and macroscopic quantities in Ohm’s law.

Table 24.2 Microscopic and Macroscopic Quantities and Ohm’s Law

Microscopic Macroscopic relation

Electric field, E
S

Voltage, V E
S

 is defined at each point in a material; V is the integral 
of E

S
 over a path. In a uniform field, V = EL.

Current density, J
S

Current, I J
S

is defined at each point in a material; I is the flux—
the surface integral—of J

S
over an area. With uniform 

current density, I = JA.

Resistivity, r Resistance, R r is a property of a given material; R is a property of 
a particular piece of material. In a piece with uniform 
cross section, R = rL/A.

Ohm’s law

J
S

=
E
S

r

Ohm’s law

I =
V

R

Microscopic version relates current density to electric 
field at a point in a material. Macroscopic version 
relates current through to voltage across a given piece 
of material.

ExAMpLE 24.4  Resistance and ohm’s Law: Starting Your Car

A copper wire 0.50 cm in diameter and 70 cm long connects your 
car’s battery to the starter motor. What’s the wire’s resistance? If the 
starter motor draws a current of 170 A, what’s the potential difference 
across the wire?

Interpret This problem involves Ohm’s law, and we identify the 
wire as the object in which we want to relate current, voltage, and 
resistance.

Figure 24.13 A cylinder of conducting material 
with resistivity r.

r
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24.4 Electric Power 441

A resistor is a piece of conductor made to have a specific resistance. Heating elements 
in electric stoves, hair dryers, irons, space heaters, and the like are all essentially resistors; 
so are the filaments of incandescent lightbulbs. In all these cases the resistance— ultimately 
resulting from collisions between conduction electrons and lattice ions—provides a means 
of turning electric energy into heat. Resistors also set appropriate values of current and 
voltage in electronic circuits; for this purpose, they’re made in a wide range of resistances. 
Resistors are rated not only by their resistance but also by the maximum power they can 
dissipate without overheating.

Got It? 24.3 The figure shows three pieces of wire. (a) and (b) are made from 
the same material, while (c) is made from a material with twice the resistivity. (a) and 
(c) have twice the diameter of (b), while (b) is twice as long as the others. (1) Which has 
the  highest resistance? (2) If the same voltage is applied across each, which will pass the 
 largest current?

(a) (b) (c)

24.4 Electric power
Impose a potential difference V across a resistor, and a current I flows through it. The 
quantity V is the energy gained per unit charge as charge “falls” through the potential 
difference. In a resistor, that energy is dissipated through collisions, heating the material. 
So V is also the energy per unit charge going into heating. Meanwhile, the current I is the 
rate at which charge flows through the resistor. Then the energy per unit time—that is, the 
power dissipated in heating the resistor—is the product of the energy per unit charge and 
the rate at which charge moves through the conductor:

 P = IV  1electric power2 (24.7)

Although we developed Equation 24.7 for power dissipated as heat in a resistor, it holds 
any time electrical energy is being converted to some other form. If we measure 5 V across 
an electric motor and 2 A through the motor, we can conclude that the motor is convert-
ing electrical to mechanical energy at the rate of 10 W (actually less because some of the 
power goes into heating).

Video Tutor Demo | Resistance in Copper and 
Nichrome

Develop Figure 24.14 shows the wire. Equation 24.6, R = rL/A, 
determines the resistance, so our plan is first to use the resistivity of 
copper from Table 24.1 in Equation 24.6 and then to use the resulting 
resistance in Ohm’s law (Equation 24.5), I = V/R, to find the poten-
tial difference.

evaluate Table 24.1 gives r = 1.68 * 10-8 Ω  #  m for copper, so for 
the resistance we get

R =
rL

A
=

11.68 * 10-8 Ω  #  m210.70 m2
p10.25 * 10-2 m22 = 0.60 mΩ

Then Ohm’s law gives the voltage: V = IR = 1170 A210.60 mΩ2 =
0.10 V.

assess Make sense? These numbers seem awfully small. They 
should be! A wire carrying a large amount of current needs to have 
a very low resistance so the voltage across the wire remains low. 
We want that 12-V potential difference from the battery to appear 
across the starter motor, not the connecting wires. A thinner, higher- 
resistance wire would mean lower voltage across the starter and a 
 significant reduction in current. ■

Figure 24.14 Sketch for Example 24.4.
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24.5 Electrical Safety
Whether you’re in a lab hooking up electronic equipment, or in a hospital connecting in-
strumentation to a patient, or on a job designing electric devices, or simply at home plug-
ging in appliances and tools, you should be concerned with electrical safety.

ConCEptUAL ExAMpLE 24.1  power transmission

Figure 24.15 High voltage and low current minimize losses in power 
 transmission.

Power
plant

Wire Rw

LoadIV VL

Power loss depends on
wire resistance Rw and
on current I.

Power plant imposes
voltage V across
transmission line.

Voltage VL across load
is lower because of
power lost in wires.

Long-distance power transmission lines operate at very high volt-
ages—often hundreds of kilovolts. Why?

evaluate Equation 24.7, P = IV, shows that we can get the same 
electric power from low voltage V and high current I, or vice versa. 
But Equation 24.8a shows that power loss in a transmission line 
 increases as the square of the current. So use of high voltage and low 
current minimizes transmission losses (Fig. 24.15).

assess As a user, you don’t encounter these high voltages. That’s 
because transformers “step down” the voltage before it reaches the 
end user (you’ll learn about transformers in Chapter 28). The lower 
voltages are safer and easier to handle, although even standard 120-V 
household power is far from “safe.”

MakIng the ConneCtIon What’s the current in a 120-V, 100-W 
incandescent lightbulb? What’s the bulb’s resistance?

evaluate Solving Equation 24.7 for the current I  gives 
I = P/V = 100 W/120 W = 0.833 A. Knowing the current, you can 
get the resistance either from Ohm’s law or from Equation 24.8a. Or 
you can get it  directly from Equation 24.8b. All three approaches give 
R = 144 Ω. The filament temperature is 3000 K, so this resistance is 
much higher than what you’d measure with the bulb off.

Got It? 24.4 You put a variable resistance across a battery that maintains a fixed 
voltage across its terminals. If you lower the  resistance, does the power supplied by the 
 battery (a) increase or (b) decrease?

Solving Ohm’s law for V and putting the result in Equation 24.7 give

 P = I2R (24.8a)

Solving instead for I gives

 P =
V2

R
 (24.8b)

These are useful forms when we know the resistance and either the voltage or the 
current.

✓tIp What’s Constant?

Equation 24.8a seems to imply that power increases with increasing resistance,  
while Equation 24.8b seems to suggest the opposite. Both implications are correct—if I  
in Equation 24.8a and V in Equation 24.8b are constants. But there’s no contradiction 
because I and V can’t both be constant while the resistance R—the ratio of V to I—
changes. In most cases we work with sources of constant voltage, and then the power 
dissipated is inversely proportional to the resistance.
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Table 24.3 Effects of Externally Applied Current on Humans

Current range effect

0.5–2 mA Threshold of sensation

10–15 mA Involuntary muscle contractions; can’t let go

15–100 mA Severe shock; muscle control lost; breathing difficult

100–200 mA Fibrillation of heart; death within minutes

7200 mA Cardiac arrest; breathing stops; severe burns

The Taser is a so-called electroshock weapon used by police to subdue unruly 
suspects. The Taser uses compressed nitrogen gas to fire two barbed darts into 
the victim with sufficient force and dart length to penetrate clothing and make 
contact with the victim’s body. Very fine wires connect the darts back to the 
weapon, as far as 9 m away, and thus form a complete circuit once the darts are 
lodged in the body. In the most common police model, a potential difference 
of 1200 V is applied across the darts in pulses that last 100 μs. The weapon 
delivers 19 such pulses each second. The voltage, pulse shape, and pulse dura-
tion are engineered to cause major skeletal muscles to contract involuntarily 
without affecting the heart muscle and without dangerously strong contractions 
that would occur at much higher pulse rates. Thus the Taser effectively immo-
bilizes the victim without danger or permanent damage.

Law-enforcement officials claim the Taser saves lives by substituting for 
lethal bullets or crude weapons like clubs. Others point to a number of cases of 
death following Taser use—although only a handful of those deaths have been 
attributed to the Taser’s electrical effects. Debates over Taser safety are mud-
died by the fact that many Taser victims are already impaired by drug abuse 
and that police restraint of suspects often involves violent means that some-
times result in death.

In Problem 50 you can explore the physiological effects of the Taser in the 
context of Table 24.3.

AppLICAtIon the taser©

Everyone knows enough to be wary of “high voltage.” People with a little more sophis-
tication say, “It isn’t the voltage but the current that kills.” In fact, both points of view are 
partially correct. Current through the body is dangerous, but as with any resistor it takes 
voltage to drive that current.

Table 24.3 shows typical effects of electric currents entering the body through skin 
contact. A primary danger is disturbance of the electric signals that pace heartbeat; this 
is reflected in the lethal zone of 100–200 mA at which the heart goes into fibrillation— 
uncontrolled spasms of the cardiac muscle. With electric signals applied internally, much 
lower currents can be lethal. Doctors performing cardiac catheterization worry about 
 currents at the microampere level.

Above 200 mA, complete cardiac arrest may occur, breathing may stop, and burns 
may occur. Sometimes high currents are useful: Emergency defibrillators briefly apply a 
high enough current to stop the heart, which often restarts normal beating. The figures in  
Table 24.3 are rough averages and vary from person to person as well as with duration of 
the shock and whether alternating or direct current is involved. Very young children and 
people with heart conditions are at higher risk.

Under dry conditions, the typical human has a resistance of about 105 Ω  between 
two points on unbroken skin. What voltages are dangerous to such a person? At 105 Ω 
it takes

V = IR = 10.1 A21105 Ω2 = 10,000 V

to drive the fatal 100 mA. But a person who’s wet or sweaty has a much lower resistance 
and may be electrocuted by 120-V household electricity or even lower.

To be dangerous, an electric circuit must have high voltage and be capable of driving 
sufficient current. For example, a car battery can deliver 300 A, but it can’t electrocute you 
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because its 12 V won’t drive much current through you. On the other hand, the 20,000 V 
that runs your car’s spark plugs won’t electrocute you either, since the high-voltage circuit 
can’t deliver more than a few mA.

Because potential difference is a property of two points, receiving an electric shock 
requires that two parts of the body contact conductors at different potentials; this chap-
ter’s opening photo provides a dramatic example. In typical 120-V wiring used throughout 
North America, one of the two wires is connected physically to the ground. This ground 
connection prevents the wiring from reaching arbitrarily high potentials, as might other-
wise happen in a thunderstorm or if a short circuit occurred in a power line. At the same 
time it means that an individual contacting the “hot” side of the circuit and any grounded 
conductor such as the ground, a water pipe, or a bathtub will receive a shock.

Many devices use three-wire cords to reduce shock hazard. Exposed metal parts con-
nect directly to a third ground wire that normally carries no current. If something goes 
wrong and a “hot” wire accidentally short-circuits to the metal case, this wire provides 
a low-resistance path to ground (Fig. 24.16). A large current flows and blows the fuse or 
circuit breaker, shutting off the current. Even better are ground fault circuit interrupters 
used in kitchens, bathrooms, and other high-risk locations. These devices sense a slight 
imbalance in current on the two wires, and shut off the circuit on the assumption that the 
“missing” current is leaking to ground, perhaps through a person.

Got It? 24.5 Today’s power tools are often cordless, powered by internal batteries. 
Are you completely safe from electric shock when using such a tool? Discuss.

Figure 24.16 (a) A short circuit in an ungrounded tool could result in a lethal shock. (b) With a grounded tool, 
the fuse blows and the operator is safe.
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Chapter 24 Summary
Big Idea

The big idea here is electric current—the flow of electric charge—and its microscopic cousin, current density. With current we don’t have elec-
trostatic equilibrium, and there’s usually an electric field in a current-carrying conductor. Ohm’s law is an empirical statement—not a fundamental 
law of physics—that relates current and voltage, or current density and electric field.

Key Concepts and Equations

Quantitatively, current is defined as the rate of charge flow:

I =
∆Q

∆t

Current density is the current per unit area. Its magnitude is

J =
I

A

Charge ∆Q
crosses this
area in time ∆t.

There are n charge
carriers per unit volume,
with charge q and drift
velocity vd.

A

Microscopically, current depends on the density of charge carriers, 
their charge, and the drift velocity:

 I = nqAvd

and

 J
S

= nq v
!
d

The microscopic version of Ohm’s law relates electric field, current 
density, and conductivity s (or its inverse, resistivity r):

J
S

= sE
S

The macroscopic version relates voltage, current, and resistance:

I = V/R

rL

A

E
S

J
S

Conductor of 
material with
conductivity
s and resistivity
r = 1>s;

Current I
through
conductor

Electric �eld and current
density are vectors de�ned
at each point; they're related
by J = sE.

resistance R = 

Voltage V across
conductor

A
I = JA

SS

Electric power is the product of voltage and current:

P = IV

Using Ohm’s law, this can also be written

 P = I2R

 P =
V2

R

Applications

Different types of conductors have different conduction mechanisms. In metals, free electrons 
carry the current; in ionic solutions, both positive and negative ions are involved; in plasmas, the 
charge carriers are free electrons and ions; and in semiconductors, both electrons and positive holes 
carry current, with semiconductor conduction properties readily adjustable. Superconductors are 
 materials that exhibit zero resistance at sufficiently low temperatures.

E
S

Electrical safety is a matter of avoiding currents high enough to cause biological harm, and that means avoiding voltages high enough to drive 
such currents.

E
S

A bound
electron
jumps
leftward,
moving the
hole to the
right.

Electron and hole move
oppositely in an electric �eld.

Free
electron

Hole

Electrons Holes
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446 Chapter 24 Electric Current

21. Use Table 24.1 to determine the conductivity of (a) copper and 
(b) seawater.

Section 24.3 Resistance and Ohm’s Law
22. Find the resistance of a heating coil that draws 4.8 A when the 

voltage across it is 120 V.
23. What voltage does it take to drive 300 mA through a 1.2@kΩ 

 resistance?
24. What’s the current in a 47@kΩ resistor with 110 V across it?
25. The “third rail” that carries electric power to a subway train is 

an iron bar whose rectangular cross section measures 10 cm by  
15 cm. Find the resistance of a 5.0-km length of this rail.

26. What current flows when a 45-V potential difference is imposed 
across a 1.8@kΩ resistor?

27. A uniform wire of resistance R is stretched until its length 
 doubles. Assuming its density and resistivity remain constant, 
what’s its new resistance?

Section 24.4 Electric Power
28. A car’s starter motor draws 125 A with 11 V across its terminals. 

What’s its power consumption?
29. A 4.5-W flashlight bulb draws 750 mA. (a) At what voltage does 

it operate? (b) What’s its resistance?
30. A watch uses energy at the rate of 240 μW. What current does it 

draw from its 1.5-V battery?
31. A 35@Ω  electric stove burner consumes 1.5 kW of power. At 

what voltage does it operate?
32. An incandescent lightbulb draws 0.50 A, while a compact 

fluorescent with the same light output draws 125 mA. Both 
operate on standard 120-V household power. How do their 
 energy- consumption rates compare?

Section 24.5 Electrical Safety
33. Though rare, electrocution has been reported under wet condi-

tions with voltages as low as 30 V. What resistance would be 
 necessary for this voltage to drive a fatal current of 100 mA?

34. You touch a defective appliance while standing on the ground, 
and you feel the tingle of a 2.5-mA current. What’s your resist-
ance, assuming you’re touching the “hot” side of the 120-V 
household wiring?

35. You have a typical resistance of 100 kΩ. (a) How much current 
could a 12-V car battery pass through you? (b) Would you feel 
this?

problems
36. An ion channel in a cell membrane carries 2.4 pA when it’s open, 

which is only 20% of the time. (a) What’s the average current 
in the channel? (b) If the channel opens for 1.0 ms, how many 
 singly ionized ions pass through in this time?

37. A lightbulb filament has diameter 0.050 mm and carries 0.833 A. 
Find the current density (a) in the filament and (b) in the 12-gauge 
wire (diameter 2.1 mm) supplying current to the  lightbulb.

38. A gold film in an integrated circuit measures 1.85 μm thick by 
0.120 mm wide. It carries a current density of 0.482 MA/m2. 
What’s the total current?

39. A copper wire joins an aluminum wire whose diameter is twice 
that of the copper. The same current flows in both wires. The 
density of conduction electrons in copper is 1.1 * 1029 m-3; in 
aluminum it’s 2.1 * 1029 m-3. Compare (a) the drift speeds and 
(b) the current densities in each wire.

BIO

For thought and Discussion
 1. Explain the difference between current and current density.
 2. A constant electric field generally produces a constant drift 

 velocity. How is this consistent with Newton’s assertion that 
force results in acceleration, not velocity?

 3. When caught in the open in a lightning storm, a person should 
crouch low with feet close together rather than lie flat on the 
ground. Why?

 4. Good conductors of electricity are often good conductors of heat. 
Why might this be?

 5. Why can current persist forever in a superconductor with no 
 applied voltage?

 6. Does an electric stove burner draw more current when it’s first 
turned on or when it’s fully hot?

 7. A person and a cow are standing in a field when lightning strikes 
the ground nearby. Why is the cow more likely to be electro-
cuted?

 8. You put a 1.5-V battery across a piece of material, and a 100-mA 
current flows. With a 9-V battery, the current increases to 400 mA.  
Is the material ohmic or not?

 9. The resistance of a metal increases with increasing tempera-
ture, while the resistance of a semiconductor decreases. Why the 
 difference?

10. A 50-W and a 100-W lightbulb are both designed to operate at 
120 V. Which has the lower resistance?

11. Equation 24.8a suggests that no power can be dissipated in a su-
perconductor because R = 0. But Equation 24.8b suggests the 
power should be infinite. Which is right, and why?

12. What’s wrong with this news report: “A power-line worker was 
injured when 4000 volts passed through his body”?

exercises and problems
Exercises

Section 24.1 Electric Current
13. A wire carries 1.5 A. How many electrons pass through the wire 

in one second?
14. A 12-V car battery is rated at 80 ampere-hours, meaning it can 

supply 80 A of current for 1 hour before it becomes discharged. 
If you accidentally leave the headlights on until the battery dis-
charges, how much charge moves through the lights?

15. Biologists measure the total current due to potassium ions mov-
ing through the membrane of a rock crab neuron cell as 30 nA. 
How many ions pass through the membrane each second?

16. The National Electrical Code specifies a maximum current of 10 A  
in 16-gauge (1.29-mm-diameter) copper wire. What’s the corre-
sponding current density?

Section 24.2 Conduction Mechanisms
17. The electric field in an aluminum wire is 85 mV/m. Find the cur-

rent density in the wire.
18. What electric field is necessary to drive a 7.5-A current through a 

0.95-mm-diameter silver wire?
19. A cylindrical tube of seawater carries 350 mA of current. If the 

electric field in the water is 21 V/m, what’s the tube’s diameter?
20. A 1.0-cm-diameter rod carries a 50-A current when the elec-

tric field in the rod is 1.4 V/m. What’s the resistivity of the rod 
 material?

BIO
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per kWh, the equivalent of 114 miles per gallon in a gasoline-
powered car. Find (a) the range of the Leaf, assuming the battery 
can be fully depleted, (b) the charging time for each mode, and 
(c) the current delivered by the fully charged battery when the 
motor is operating at full power.

52. An electric heater is tested by immersing it in 0.500 kg of water 
and measuring the time ∆t it takes to raise the water tempera-
ture by 10.0°C. The experiment is repeated for different currents 
I through the heater, and the results are tabulated below. Deter-
mine two quantities, based on heating time and current, which, 
when plotted, will give a straight line. Make your plot, determine 
a best-fit line, and use it to find the heater’s resistance. Hint: You 
may need to consult Chapter 16.

I (A) 2.00 4.00 6.00 8.00 10.0

∆t (s) 422 112 44.3 28.2 16.9

53. Magnetic effects involving Jupiter’s moon Io result in an effec-
tive voltage of about 400 kV, which drives current of some 5 MA 
between Io and Jupiter’s polar regions. At Jupiter the current 
produces auroras analogous to those on Earth, as well as power-
ful bursts of radio waves that help radio astronomers analyze the 
Jovian current system. Estimate the total power associated with 
this current system, and compare with the 2-TW rate at which 
humankind consumes electrical energy.

54. At a particular point in a material with resistivity r the current 
density has magnitude J. Show that the power per unit volume 
dissipated at this point is J2r.

55. A thermally insulated container of seawater carries a uniform 
current density of 75 mA/cm2. How long does it take for its tem-
perature to increase from 15°C to 20°C? Use the result of the pre-
ceding problem and any other information you might look up.

56. You’re heading out for spring break, but your car won’t start. 
Your friend says you might have corrosion at the battery termi-
nals—a frequent cause of hard starting because of increased re-
sistance. Having read Example 24.4, you know that the resistance 
between battery and starter should be around 1 mΩ. While your 
friend cranks the starter, you measure 4.2 V between the battery 
terminal and the wire carrying current to the starter motor. If the 
motor draws 125 A, is the resistance in its normal range?

57. Two cylindrical resistors are made from the same material and 
have the same length. When connected across the same battery, 
one dissipates twice as much power as the other. How do their 
diameters compare?

58. You’re working on a new high-speed rail system. It uses 
6000-horsepower electric locomotives, getting power from a sin-
gle overhead wire with resistance 15 mΩ/km, at 25 kV poten-
tial relative to the track. Current returns through the track, whose 
resistance is negligible. Energy-efficiency standards call for no 
more than 3% power loss in the wire. How far from the power 
plant can the train go and still meet this standard?

59. A 100%-efficient electric motor is lifting a 15-N weight at  
25 cm/s. How much current does it draw from a 6.0-V battery?

60. A power plant produces 1000 MW to supply a city 40 km away. 
Current flows from the power plant on a single wire with resist-
ance 50 mΩ/km, through the city, and returns via the ground, 
which has negligible resistance. At the power plant the voltage 
between wire and ground is 115 kV. Find (a) the current in the 
wire and (b) the fraction of the power lost in transmission.

61. You’re estimating costs for a new power line with your compa-
ny’s financial group. Engineering specifies a resistance per unit 
length of 50 mΩ/km. The costs of copper and aluminum wire 
are $4.65/kg and $2.30/kg and their densities are 8.9 g/cm3 and 
2.7 g/cm3, respectively. Which material is more economical?

DATA

40. In Fig. 24.17, a 100-mA current flows through a copper wire  
0.10 mm in diameter, a salt solution in a 1.0-cm-diameter glass 
tube, and a vacuum tube where the current is carried by an elec-
tron beam 1.0 mm in diameter. The density of conduction electrons 
in copper is 1.1 * 1029 m-3. The current in the solution is carried 
equally by positive and negative ions with charges {2e; the  density 
of each ion species is 6.1 * 1023 m-3. The electron density in the 
beam is 2.2 * 1016 m-3. Find the drift speed in each region.

Solution
Electron beam

1.0 mm

Vacuum
tube1.0 cm

0.10 mm

Wire Wire

Figure 24.17 Problem 40

41. In a study of proteins mediating cell membrane transport, biolo-
gists measure current versus time through the cell membranes of 
oocytes (nearly mature egg cells) taken from the African clawed 
frog, Xenopus. The measured current versus time is given ap-
proximately by I = 60t + 200t2 + 4.0t3 with t in seconds and I 
in nA. Find the total charge that flows through the cell membrane 
in the interval from t = 0 to t = 5.0 s.

42. There’s a 2.5-V potential difference between opposite ends of a 
6.0-m-long iron wire 1.0 mm in diameter. Assuming a uniform 
electric field in the wire, find (a) the current density and (b) the 
total current.

43. The maximum safe current in 12-gauge (2.1-mm-diameter) cop-
per wire is 20 A. Find (a) the current density and (b) the electric 
field under these conditions.

44. Silver and iron wires of the same length and diameter carry the 
same current. How do the voltages across the two compare?

45. You have a cylindrical piece of material 2.4 cm long and 2.0 mm 
in diameter. When you attach a 9-V battery to its ends, a 2.6-mA 
current flows. Which material from Table 24.1 do you have?

46. How must the diameters of copper and aluminum wire be related 
if they’re to have the same resistance per unit length?

47. You’re writing the instruction manual for a power saw, and you 
have to specify the maximum permissible length for an exten-
sion cord made from 18-gauge copper wire (diameter 1.0 mm). 
The saw draws 7.0 A and needs a minimum of 115 V across its 
 motor when the outlet supplies 120 V. What do you specify for 
the maximum length extension cord, given that they come in  
25-foot increments?

48. An implanted pacemaker supplies the heart with 72 pulses per 
minute, each pulse providing 6.0 V for 0.65 ms. The resistance of 
the heart muscle between the pacemaker’s electrodes is 550 Ω. 
Find (a) the current that flows during a pulse, (b) the energy de-
livered in one pulse, and (c) the average power supplied by the 
pacemaker.

49. A solid rectangular iron bar measures 0.50 cm by 1.0 cm by  
20 cm. Find the resistance between each of the three pairs of 
 opposing faces, assuming the faces in question are equipotentials.

50. Each pulse produced by the Taser described in the Application on 
page 449 typically delivers 100 μC of charge to the victim. Use 
this value, along with other quantities given in the Application, to 
find (a) the instantaneous current during a pulse, (b) the average 
current, and (c) the effective resistance of the victim between the 
points where the probes make contact.

51. The Nissan Leaf is an all-electric car powered by a 107-hp 
electric motor and a lithium-ion battery that stores 24 kWh and 
produces 394 V at its terminals when fully charged. The Leaf’s 
battery can charge at the rate of 3.3 kW from a standard 120-V 
power outlet, at 6.6 kW from a 240-V outlet, and at 44 kW using 
a special 480-V charger. The Leaf’s fuel economy is 3.38 miles 
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448 Chapter 24 Electric Current

end to the other according to the equation r = r011 + x/L2ex/L, 
for 0 … x … L, where r0 = 2.41 * 10-3 Ω #m. Find its resist-
ance.

71. You work for an automobile manufacturer developing a new 
plug-in hybrid car. The car’s mass is 1200 kg, and it uses a 360-V 
battery driving an electric motor that can handle a maximum cur-
rent of 180 A. You’re to specify the greatest slope the car can 
climb, maintaining 60 km/h, without its gasoline engine coming 
on to assist.

Passage Problems
A brownout occurs when an electric utility can’t supply enough power 
to meet demand. Rather than cut off some customers completely, 
the utility reduces the voltage across its system. Brownouts are most 
likely on hot summer days, when heavy air-conditioning loads drive 
up demand for electricity. In a particular brownout, the utility reduces 
the voltage by 10%.
72. During the brownout, the current in conductors whose resistance 

is nearly independent of temperature
a. decreases by approximately 10%.
b. decreases by approximately 20%.
c. decreases by approximately 5%.
d. You can’t tell without knowing the resistance.

73. Which of the following occurs in the conductors of the preceding 
problem during the brownout?
a. Both the electric field and electron drift speed decrease.
b. The electric field decreases but the electron drift speed 

doesn’t.
c. The current is carried by fewer electrons.
d. The electrons undergo more frequent collisions.

74. During the brownout, the power dissipated in conductors whose 
resistance is nearly independent of temperature
a. decreases by approximately 10%.
b. decreases by approximately 20%.
c. decreases by approximately 5%.
d. You can’t tell without knowing the resistance.

75. Metallic conductors like lightbulb filaments and electric stove 
burners have resistance that increases with increasing tempera-
ture. During the brownout, the current in such devices
a. decreases by 10%.
b. decreases by more than 10%.
c. decreases by less than 10%.
d. You can’t tell without knowing more about how the resist-

ance varies.

Answers to Chapter Questions

Answer to Chapter Opening Question
Collisions between electrons and the metal ions in the filament 
 dissipate electric energy as heat. The energy results from the  electrons’ 
being accelerated by an electric field.

Answers to GOt it? Questions
 24.1  (a) current, right to left; (b) current, up; (c) current, left; (d), (e) 

no current
 24.2  (1) JA 6 JB; (2) EA 6 EB; (3) vdA 6 vdB

 24.3  (1) (b) it’s twice as long as (c) but with one-fourth the area and 
half the resistivity; (2) (a) because it has the lowest resistance

 24.4  (a)
 24.5  No, you could still drill or cut into a live electric wire, putting 

metal parts of the tool at dangerous voltages.

CH

62. A 240-V electric motor is 90% efficient, meaning that 90% of the 
energy supplied to it ends up as mechanical work. If the motor 
lifts a 200-N weight at 3.1 m/s, how much current does it draw?

63. A metal bar has rectangular cross section 5.0 cm by 10 cm, as 
shown in Fig. 24.18. The bar has a nonuniform conductivity, and 
as a result the current density increases linearly from zero at the 
bottom to 0.10 A/cm2 at the top. Find the total current in the bar.

10 cm

5.0 cm J = 0.10 A>cm2

J = 0

Figure 24.18 Problem 63

64. An immersion-type heating coil is connected to a 120-V  outlet 
and immersed in a 250-mL cup of water initially at 10°C. 
The  water comes to a boil in 85 s. Assuming no heat loss, and 
 neglecting the heater’s mass, find (a) the power and (b) the 
 heater’s resistance.

65. The resistivity of copper as a function of temperature is given 
approximately by r = r031 + a1T - T024 , where r0 is Table 
24.1’s entry for 20°C, T0 = 20°C, and a = 4.3 * 10-3 °C-1. Find 
the temperature at which copper’s resistivity is twice its room- 
temperature value.

66. Each atom in aluminum contributes about 3.5 conduction elec-
trons. Find the drift speed in a 2.1-mm-diameter aluminum wire 
carrying 20 A.

67. A circular pan of radius b has a plastic bottom and metallic 
sidewall of height h. It’s filled with a solution of resistivity r. 
A metal disk of radius a and height h is at the center, as shown 
in Fig. 24.19. The side and disk are essentially perfect conduc-
tors. Show that the resistance measured from side to disk is 
R = r ln 1b/a2/2ph.

a
h

b

Figure 24.19 Problem 67

68. Figure 24.20 shows a truncated cone of material with resistivity 
r. Assume the equipotentials are planes parallel to the two faces, 
and integrate over slices of thickness dx like the one shown to 
find an expression for the total resistance between the faces.

dx

a
b

L

Figure 24.20 Problem 68

69. The current density in a particle beam with circular cross section of 
radius a points along the beam axis with a magnitude that decreases 
linearly from J0 at the center 1r = 02 to half that value at the edge 
1r = a2. Find an expression for the total current in the beam.

70. A cylindrical resistor is 5.0 mm in diameter and 1.5 cm long. It’s 
made of a composite material whose resistivity varies from one 
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An electric circuit is a collection of electrical components connected by conductors. 
 Human-made circuits range from simple flashlights to computers. Electric circuits also 

exist in nature, including your own nervous system and Earth’s atmospheric circuit in which 
thunderstorms are the batteries and the atmosphere a resistor. Understanding circuits will 
help you use effectively and safely the myriad electrical devices in your life and can even help 
you design new devices or troubleshoot old ones.

25.1 Circuits, Symbols, and Electromotive Force
We diagram circuits using standard symbols for circuit components and lines to 
 represent wires (Fig. 25.1). We usually approximate wires as perfect conductors; then 
all points connected by a wire are at the same potential and are electrically equivalent. 
Realizing this will help you understand circuit diagrams.

How You’ll Use It
■ You’ll revisit circuit concepts 

in Chapter 28, when you study 
alternating current.

■ Understanding circuits will help you to 
use and appreciate the many electrical 
and electronic devices in both your 
personal and professional lives.

■ You’ll encounter natural electric 
circuits in fields as diverse as cell 
biology, atmospheric science, 
oceanography, and astrophysics.

What You’re Learning
■ Here you’ll learn how to “read” 

electric-circuit diagrams, identifying 
individual components and their 
interconnections.

■ You’ll see how series and parallel 
combinations allow you to analyze 
simple circuits.

■ You’ll learn how loop and node laws 
can help you analyze more complex 
circuits.

■ You’ll learn how to use electrical 
measuring instruments.

■ You’ll see how capacitors result in 
time-dependent behavior of circuits.

What You Know
■ You understand the concepts of 

voltage, current, and resistance.

■ You know how Ohm’s law describes 
a linear relationship among these 
three quantities that holds in many 
materials.

■ You recognize several different 
mechanisms of conduction—
in metals, ionic solutions, 
plasmas, semiconductors, and 
superconductors.

■ You know how to calculate electric 
power.

■ You understand the relation between 
charge and voltage in capacitors.

Electric Circuits

25

An electronic circuit board is a complex 
interconnection of electronic components. What 
two fundamental principles allow us to analyze 
even the most complex circuits?

Ammeter Variable
resistor

Variable
capacitor

Ground FuseResistor Capacitor Source
of emf

Voltmeter Switch

−

+
V A

Figure 25.1 Common circuit symbols.
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450 Chapter 25 Electric Circuits

It takes an electric field to drive current through a conductor with nonzero  resistance. 
But unless we actively maintain the field, charge will quickly move to  establish 
 electrostatic equilibrium, with no field inside the conductor and no  current. So we need 
a device that can maintain a fixed potential difference and therefore an electric field in a 
 current-carrying conductor. Such a device is called a source of  electromotive force, or 
emf. (The name “force” here is inaccurate and is used only for historical  reasons.) Most 
sources of emf have two terminals for connection to other circuit components. An emf 
converts some other form of energy to electrical energy by separating positive and  negative 
charge to maintain a fixed potential difference between its terminals. The most familiar 
 example is a battery, in which chemical reactions drive charge to the two  terminals. Others 
include electric generators, which convert mechanical to electrical energy; photovoltaic 
cells, which use sunlight to separate charge; and cell membranes, which control ion flow 
into and out of the cell.

When a source of emf is connected to an external circuit, current flows through the 
 circuit from the emf’s positive terminal to the negative terminal. Energy-conversion 
 processes in the emf then “lift” charge against the emf’s internal electric field, main-
taining a fixed potential difference across its terminals. The charge then “falls” through 
the  external circuit, dissipating its energy in the circuit resistance. The result is a steady 
 current, driven by the constant voltage across the emf. Figure 25.2 shows a gravitational 
analogy for an emf connected across an external circuit.

Quantitatively, emf is the work per unit charge involved in “lifting” charge against the 
electric field. Its units are therefore volts. An ideal emf maintains the same voltage across 
its terminals under all conditions. Real emfs have internal energy losses, and the terminal 
voltage may not equal the rated emf.

In Fig. 25.3 an ideal battery of emf E drives current through resistor R. We’re  assuming 
the wires connecting the battery and the resistor are perfect conductors, so the voltage 
across the resistor is equal to the battery’s emf. Ohm’s law then gives the resistor current: 
I = E/R. Energetically, this circuit is analogous to Fig. 25.2: Charge gains E joules per 
coulomb as it’s “lifted” against the electric field inside the battery, then dissipates that 
energy in heating the resistor.

✓TIp Don’t Get Hung Up on Wires

We approximate wires as perfect conductors, so it takes no potential difference to drive 
current through a wire. Thus all points on the wire are at the same potential and are 
electrically equivalent. That means there are many ways to draw the same circuit; as 
long as two points are connected by a wire, that’s all that matters. Real wires have some 
resistance, but if it’s negligible compared with other resistances in the circuit, then we 
can approximate the wires as being ideal.

GoT IT? 25.1 The figure shows three circuits. Which are electrically equivalent?

(c)(b)(a)

25.2 Series and parallel Resistors
We considered series and parallel capacitors in Section 23.3. Series and parallel are the 
two simplest ways to connect any electric components. Two components are in series if 
the current flowing through one component has nowhere to go but through the other com-
ponent. Two components are in parallel if they’re connected together at each end. Here 
we’ll consider series and parallel resistors.

Figure 25.2 Gravitational analog for emf.

g
u

Gravitational �eld
g is analogous to
electric �eld E.

Mass is
analogous
to charge.

Charge “falls” through
an external circuit, 
dissipating energy in 
collisions.

Lifting against gravity
represents the energy-
conversion process in
an emf.

u

S

Figure 25.3 A circuit consisting of a battery and 
a resistor: (a) physical circuit; (b) schematic 
diagram.

(a)

R

(b)

+

Battery is
the source
of emf c

cand the emf
drives current
through the
resistor.

−

−

+
E I

PheT: Battery Resistor Circuit
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25.2 Series and Parallel Resistors 451

Series Resistors
Figure 25.4 shows a circuit with two resistors in series. We’d like to know the current through 
and the voltage across each resistor. Neither is connected directly across the  battery, so we 
can’t argue that either resistor “sees” the battery emf. But the resistors are in series, and that 
means the only place for current to go after R1 is through R2. In a steady state, with no charge 
buildup in the circuit, that means the current through both  resistors—and through the battery 
as well—must be the same. This is true whenever  circuit  components are in series:

The current through circuit components in series is the same.

If I is the current in Fig. 25.4, then by Ohm’s law there must be a voltage V1 = IR1 across 
R1 to drive the current through this resistor. Similarly, the voltage across R2 is V2 = IR2. 
Thus, the voltage across the two resistors together is V1 + V2 = IR1 + IR2. But the battery 
is connected directly across this series combination, so the voltage across the two resistors 
together is the same as the battery emf E. Therefore IR1 + IR2 = E, or

I =
E

R1 + R2

Comparison with Ohm’s law in the form I = V/R shows that the two resistors in series 
behave like an equivalent resistance equal to the sum of their resistances. In an obvious 
generalization to more resistors in series, we have

 Rseries = R1 + R2 + R3 + g  1series resistors2 (25.1)

In other words, resistors in series add.
Given the current, we can use Ohm’s law in the form V = IR to solve for the voltage 

across each resistor:

 V1 =
R1

R1 + R2
 E  and  V2 =

R2

R1 + R2
 E (25.2a, b)

These expressions show that the battery voltage divides between the two resistors in 
proportion to their resistance. For this reason a series combination of resistors is called a 
voltage divider.

✓TIp How Does the Battery Know?

How does the battery in Fig. 25.4 “know” how much current to supply? For a brief 
 instant when the circuit is first connected, it doesn’t. But in a very short time an 
 electric field is established throughout the wires and resistors, and the circuit settles 
into a steady state, with the same current everywhere. Later, with circuits including 
 capacitors, we’ll analyze the approach to the steady state; for now, assume that the 
 circuit reaches that state essentially instantaneously.

Figure 25.4 A battery and two resistors in 
 series: (a) physical circuit; (b) schematic 
diagram.

(a)

(b)

−

+

Current from R1 
can't go anywhere
but through R2 c

cso current I
through R1 and R2
is the same. 

R2

R1

I
−

+
E

ExAmpLE 25.1  Series Resistors: Designing a Voltage Divider

A lightbulb with resistance 5.0 Ω is designed to operate at a current 
of 600 mA. To operate this lamp from a 12-V battery, what resistance 
should you put in series with it?

Interpret This problem is about a series circuit like Fig. 25.4, with 
the two resistors being the lightbulb and the unknown R1.

Develop We’ve sketched the circuit in Fig. 25.5, taking R1 as the 
unknown and R2 as the 5@Ω lightbulb. The same current flows through 
series resistors, so our plan is to find an expression for that current Figure 25.5 Sketch for Example 25.1.

The lightbulb
is a resistor.

(continued)

PheT: Signal Circuit

PheT: Circuit Construction Kit (DC Only)
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452 Chapter 25 Electric Circuits

GoT IT? 25.2 Rank from highest to lowest the voltages across the identical resistors 
R at the top of each circuit shown, and give the actual voltage for each. In (a) the second 
resistor has the same resistance R, and in (b) the gap is an open circuit (infinite resistance).

R

R6 V

(a)

R

6 V

(b)

R

6 V

(c)

−

+

−

+

−

+

Real Batteries
What’s the difference between the two 1.5-V batteries in Fig. 25.6? If they were ideal, both 
would maintain 1.5 V across their terminals no matter how much current was flowing. But 
these are real batteries. Chemical reaction rates limit the current, so it’s not surprising that 
the larger battery can deliver more current.

We model a real battery as an ideal emf in series with an internal resistance  
(Fig. 25.7). Now, there’s no such thing as an ideal emf; if there were, that’s what battery 
companies would sell! And just one ideal emf could supply infinite power, thus solving all 
the world’s energy problems. So a real battery isn’t made by connecting an internal resist-
ance to an ideal emf. Rather, the internal resistance is intrinsic to the battery, and there’s 
no way to circumvent it. Some of it is actual resistance, but most represents the limited 
rate at which chemical reactions can separate charge. For a given battery voltage, lower 
internal resistance implies a more powerful battery—one that can deliver more current.

Figure 25.8 shows that the internal resistance Rint is in series with the external load 
RL to which the battery supplies power; the resulting circuit is a voltage divider. If Rint is 
small compared with RL, Equation 25.2b shows that the voltage across the load will be 
very nearly the battery voltage. Then the battery is behaving nearly ideally because it has 
essentially E volts across its terminals. But if we lower RL, more current flows and more 
voltage drops across Rint—and that leaves less voltage at the battery terminals and across 
the load. Even if we short-circuit the battery (not a good idea!), we won’t get an infinite 
current; in fact, we’ll get I = E/Rint, which is the most current this battery can deliver.

and then solve for the value of R1 that will make the current 600 mA. 
Since resistors in series add, the current through both resistors follows 
from Ohm’s law: I = E/1R1 + R22.

evaluate We solve for R1 to get

R1 =
E - IR2

I
=

12 V - 10.60 A215.0 Ω2
0.60 A

= 15 Ω

assess Make sense? The lightbulb’s operating voltage is

V = IR2 = 10.60 A215.0 Ω2 = 3.0 V

This is one-fourth of the battery voltage, so Equation 25.2b shows that 
the bulb’s 5@Ω resistance should be one-fourth of the total. That makes 
the total 20 Ω, leaving 15 Ω for R1. This isn’t a very efficient way to 
run the bulb, since a lot more energy gets dissipated in R1 than goes 
into lighting the bulb. Better to use a 3-V battery and no resistor. ■

Figure 25.6 Both batteries are rated at 1.5 V, 
but they have different internal resistances. 
Which do you think has the higher Rint?

Figure 25.7 A real battery modeled as an ideal 
emf in series with an internal resistance.

Rint

−

+

−

+

E

Figure 25.8 A real battery connected to an external load. Some voltage 
drops across the internal resistance, making the terminal voltage less than 
the battery’s rated voltage.

Current I means a voltage
IRint across Rint c

cthat leaves a terminal
voltage less than E.

Rint

Vterminal

−

+

−

+

RL

I

E

M25_WOLF4752_03_SE_C25.indd   452 17/06/15   8:55 PM



25.2 Series and Parallel Resistors 453

parallel Resistors
Figure 25.10 shows two resistors in parallel, connected across an ideal battery. Since the 
two resistors are connected at top and bottom by ideal wires, the voltage across each must 
be the same. We made this point in Chapter 23 when we discussed parallel capacitors, and 
it’s worth repeating here:

The voltage across circuit elements in parallel is the same.

The parallel resistors are connected directly across the battery, so their common volt-
age is the battery emf E. Applying Ohm’s law then gives the current through each resistor:

I1 =
E
R1
  and  I2 =

E
R2

At point A in Fig. 25.10, a current I brings in charge from the battery, while the currents I1 
and I2 carry charge away. Charge can’t accumulate at this point (see Problem 67), so the 
incoming and outgoing currents must be equal: I = I1 + I2. Using our expressions for the 
two resistor currents gives

I =
E
R1

+
E
R2

= E a 1

R1
+

1

R2
b

Comparison with Ohm’s law in the form I = V/R shows that the equivalent resistance of 
the parallel combination is given by

1

Rparallel
=

1

R1
+

1

R2

This result readily generalizes to more parallel resistors:

 
1

Rparallel
=

1

R1
+

1

R2
+

1

R3
+ g  1parallel resistors2 (25.3a)

ExAmpLE 25.2  Internal Resistance: Starting a Car

Your car has a 12-V battery with internal resistance 0.020 Ω. When 
the starter motor is cranking, it draws 125 A. What’s the voltage 
across the battery terminals while starting?

Interpret This problem is about a real battery connected to a load, 
as in Fig. 25.8. We identify one resistor as the internal resistance and 
the load resistance as the starter motor.

Develop Figure 25.9 is our sketch, showing the internal  resistance 
in series with the load. The current is the same everywhere in a  series 
circuit, so we can use Ohm’s law to find the voltage across Rint. 
 Subtracting that voltage from the battery’s emf will then tell what’s 
left across the load.

evaluate For the internal resistance, Ohm’s law gives

Vint = IRint = 1125 A210.020 Ω2 = 2.5 V

That leaves 12 V - 2.5 V or 9.5 V across the battery terminals.

assess Make sense? That 9.5 V is substantially less than the bat-
tery’s 12-V rating, so the battery is hardly behaving ideally. But 

the starter motor runs only briefly; most of the time the load on the 
 battery—headlights, ignition system, electronics, and so on—draws 
far less current and so the battery behaves essentially like an ideal 
12-V emf. A battery voltage of 9-11 V is typical during starting; 
much less than 9 V indicates a weak battery, a defective starter, or 
very cold weather. ■

Figure 25.9 Sketch for Example 25.2.

These points are
the battery terminals.

Figure 25.10 Parallel resistors connected across 
a battery.

A

I1

I

I

I2R1 R2

−

+

I delivers
charge to
point A c

cI1 and I2
carry charge
away from A c

ctherefore, I1 + I2 = I.

E
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454 Chapter 25 Electric Circuits

In other words, resistors in parallel add reciprocally. Equation 25.3a shows that the 
 resistance of a parallel combination is always lower than that of the lowest resistance  
in the combination. You should confirm this for yourself.

An analogy with highway traffic shows why this makes sense: Adding a lane to a 
crowded highway eases congestion (i.e., lowers the overall resistance), allowing a greater 
traffic flow (i.e., greater current). Putting one resistor in parallel with another is like add-
ing an extra traffic lane.

When there are only two parallel resistors, we can rewrite Equation 25.3a using a com-
mon denominator to obtain

 Rparallel =
R1R2

R1 + R2
 (25.3b)

Note that parallel resistors combine in the same way as series capacitors, and vice versa.

GoT IT? 25.3 The figure shows all four possible combinations of three identical 
resistors. Rank them in order of highest to lowest resistance.

(d)(c)(b)(a)

Analyzing Circuits
Many circuits contain series and parallel combinations. We analyze these circuits using the 
tactics outlined next, following the approach we used with series and parallel capacitors in 
Example 23.3.

tactIcs 25.1 Analyzing Circuits with Series and parallel Components

1.  Identify series and parallel combinations. Remember that components are in parallel only if they’re 
connected directly together at each end. Components are in series only if current through one compo-
nent has no place to go but through the next component. If you can’t find at least one series or parallel 
combination, then you’ll have to use the methods of Section 25.3.

2.  Solve for the series and parallel equivalents using Equations 25.1 and 25.3 for resistors:

  Rseries = R1 + R2 + R3 + g  (25.1)

  
1

Rparallel
=

1

R1
+

1

R2
+

1

R3
+ g (25.3a)

  Rparallel =
R1R2

R1 + R2
 (25.3b)

If you’re dealing with capacitors, use Equations 23.6 and 23.5, respectively.
3.  Redraw the circuit, replacing series and parallel combinations with their one-component equivalents.
4.  Repeat Steps 1–3, each time identifying series and parallel combinations and then reducing each to 

a single equivalent. Continue until either you’ve found the quantity you’re asked for or the circuit 
 consists of just an emf and one other component. You can then solve for the current in this component.

5.  Work backward, replacing series and parallel equivalents with combinations of individual components. 
At each point apply Ohm’s law, I = V/R, to find the currents through and/or the voltages across the 
 individual components. As you work backward, remember that series components carry the same 
 current as their series equivalent, and parallel components have the same voltage as their parallel 
equivalent. Continue until you’re able to evaluate the quantity you’re asked for.

Video Tutor Demo | Bulbs Connected in Series and 
in Parallel
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25.2 Series and Parallel Resistors 455

ExAmpLE 25.3  Analyzing a Circuit: Series and parallel Components

Find the current through the 2@Ω resistor in the circuit of Fig. 25.11a.

Interpret This problem asks for the current in one resistor that’s 
part of a more complex circuit. So it’s about analyzing a circuit with 
series and parallel components.

Develop We follow the steps in Tactics 25.1:

1.  We identify the 2@Ω and 4@Ω resistors as being in parallel, and 
we find no other series or parallel resistor combinations. The 
1@Ω resistor, for example, is not in series with either the 2@Ω or 
4@Ω resistor because current leaving the 1@Ω resistor can take 
either of two paths.

2.  We apply Equation 25.3b, Rparallel = R1R2/1R1 + R22, to find 
the parallel combination: 12 Ω214 Ω2/12 Ω + 4 Ω2 = 1.33 Ω.

3.  We redraw the circuit as Fig. 25.11b, replacing the two parallel 
resistors with their 1.33@Ω equivalent.

4.  We repeat Steps 1–3 for the circuit in Fig. 25.11b, this 
time find ing a series combination of three resistors. Apply-
ing Equation 25.1, Rseries = R1 + R2 + R3, gives 5.33 Ω 
for the equivalent resistance, and we redraw the circuit to 
get the simple circuit of Fig. 25.11c. Ohm’s law, I = V/R, 
gives the current in the 5.33@Ω equivalent resistance: 
I5.33 Ω = 112 V2/15.33 Ω2 = 2.25 A.

5.  Now we work backward, “unsimplifying” the circuit. That 
5.33@Ω resistor is really the series combination in Fig. 25.11b; 
since the current through series components is the same, 2.25 A  
flows through each resistor—including the 1.33@Ω resistor 
that’s really the parallel combination shown in Fig. 25.11a. 
We want the current in the 2@Ω member of that combina-
tion, and we could get that if we knew the voltage across it. 
But the voltage across parallel components is the same, and 
the same as the voltage across their parallel equivalent—in 
this case the 1.33@Ω resistance. We’ve found the current 
through that resistance, so Ohm’s law gives the voltage: 
V1.33 Ω = I1.33 Ω R1.33 Ω =  12.25 A211.33 Ω2 = 3.0 V.

evaluate Our last result is the voltage across each of the original 
parallel resistors, including the 2@Ω resistor whose current we want. 
So we’re finally ready to compute our answer: I2Ω = V2Ω/R2Ω =
13.0 V2/12.0 Ω2 = 1.5 A. Done!

assess Make sense? A total of 2.25 A is flowing around the  circuit; 
when it encounters the parallel combination, more should flow 
through the lower resistance, which is just what we found. Quanti-
tatively, the current divides in inverse proportion to the parallel re-
sistances, with 1.5 A through 2 Ω, and half as much, 0.75 A, through 
4 Ω. Note how, in solving this problem, we used Ohm’s law to find, 
alternately, voltage and then current in different resistances. ■

Figure 25.11 Analyzing a circuit.

−

+

1.0 Ω

12 V

3.0 Ω

2.0 Ω 4.0 Ω

(a)

(b)

(c)

Following steps  1  –  3  of Tactics 25.1
gives the equivalent resistance
of the parallel 2-Ω and 4-Ω
resistors in (a).

1 3

Applying steps  1  –  3  again leads
to the equivalent resistance of
the series 1-Ω, 1.33-Ω, and
3-Ω resistors in (b).

1 3

✓TIp Using Ohm’s Law

Ohm’s law relates the voltage across a resistor to the current through that resistor. 
It does not relate arbitrary voltages and currents anywhere in a circuit. Just because 
there’s a 12-V battery in Fig. 25.11 doesn’t mean there’s 12 V across the 2@Ω resistor. 
And just because we found a total current of 2.25 A in Fig. 25.11c doesn’t mean that’s 
the current through the 2@Ω resistor.

GoT IT? 25.4 The figure shows a circuit with three 
identical lightbulbs and a battery. (1) Which, if any, of the 
bulbs is brightest? (2) What happens to each of the other two 
bulbs if you remove bulb C? −

+
A

B C
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456 Chapter 25 Electric Circuits

25.3 Kirchhoff’s Laws and multiloop Circuits
Some circuits can’t be simplified using series and parallel combinations. This happens 
when there’s more than one emf, or when components are connected in complex ways. 
In Fig. 25.12, are R1 and R2 in parallel? No, because R3 separates their lower ends. Are 
R1 and R4 in series? No, because current leaving R1 has two places to go: through R4 and 
through R3. If R1 and R4 were in series, then current through R1 would have no place to go 
except through R4. There are, in fact, no series or parallel combinations in Figure 25.12. 
Analyzing circuits like this requires a more general technique.

Kirchhoff’s Laws
Charges moving through a circuit gain energy at emfs and lose energy in resistors. 
If we go completely around a circuit, the changes in energy per unit charge—that is, 
 increases and decreases in voltage—sum to zero. This is Kirchhoff’s loop law, and it 
holds for any closed loop even if it’s part of a more complex circuit: The sum of voltage 
changes around a closed loop is zero. The loop law is essentially a statement of energy 
 conservation for circuits.

In analyzing parallel resistors, we saw that the current flowing into point A in  
Fig. 25.10 had to equal the current flowing out. That’s because charge is conserved, and in 
a steady state charge can’t be accumulating anywhere in a circuit. A junction between two 
or more circuit components is called a node. In this section, we’ll find it especially useful 
to consider nodes where three or more components join, like point A in Fig. 25.10. If we 
count the currents flowing into a node as positive and those flowing out as negative, then 
we can state Kirchhoff’s node law: The sum of currents at any node is zero.

multiloop Circuits
Kirchhoff’s laws allow us to analyze even the most complex circuits; the following strat-
egy details the approach.

Figure 25.12 This circuit can’t be analyzed 
 using series and parallel combinations.

−

+ R3

R1 R2

R4 R5

E

problem-solvIng strategy 25.1 multiloop Circuits

InTERpRET 

•   Identify circuit loops and nodes. A loop is any complete closed path; a node is any point 
where three or more wires meet.

•   Label the currents at each node, assigning a direction to each. The directions are 
 arbitrary, and the actual direction may not be obvious.

DEVELop 

•   For all but one node, write equations expressing Kirchhoff’s node law: The sum of the 
currents at each node is zero. Take a current flowing into the node as positive, a current 
flowing out as negative.

•   For as many independent loops as necessary, write equations expressing Kirchhoff’s 
loop law: The sum of the voltage changes around a closed loop is zero. You can go either 
clockwise or counterclockwise, following these rules:

°  The voltage change going through a battery from the negative to the positive terminal 
is +E; the voltage change from +  to -  is -E.

°  For resistors traversed in the direction you’ve assigned to the current, the voltage 
change is - IR; for the opposite direction, it’s + IR.

°  For other circuit components, use each component’s characteristics to determine the 
voltage change.

•   You don’t need equations for all the nodes and loops because some are redundant, as 
you’ll see in the next example.

EVALUATE Solve the equations to determine the unknown currents or other quantities.

ASSESS Assess your answer to see that it makes sense, paying particular attention to signs. A 
negative answer for a current means that the current actually flows opposite the direction you 
arbitrarily assigned.

PheT: Circuit Construction Kit (DC Only)
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25.3 Kirchhoff’s Laws and Multiloop Circuits 457

ExAmpLE 25.4  Using Kirchhoff’s Laws: A multiloop Circuit

Find the current in resistor R3 of Fig. 25.13a, following Problem-
Solving Strategy 25.1.

Interpret In Fig. 25.13b we’ve redrawn the circuit with three loops 
and two nodes identified. We also labeled three currents at node A. 
The directions shown are completely arbitrary and may or may not be 
the actual directions of current flow. Because currents in series ele-
ments are the same, we can put the current labels anywhere on the 
series paths leading to the node. Our drawing shows that the same 
currents flow at node B; that’s why one of the node equations is re-
dundant. Note also that loop 3 comprises parts of loops 1 and 2, so 
equations for any two of these loops contain all the information we 
need. So one of the loop equations is redundant.

Develop We need a current equation for one of the two nodes. Given 
the arbitrary directions we’ve assigned to the currents, the equation at 
node A is

- I1 + I2 + I3 = 0  1node A2
To get the equation for loop 1, let’s go counterclockwise around the 
loop, as shown. Starting at node A, we first encounter a positive volt-
age change +E1, then - I1R1, then - I3R3. So the loop 1 equation is 
E1 - I1R1 - I3R3 = 0. Here it’s simplest if we substitute the nu-
merical values shown in Fig. 25.13a and temporarily drop the units to 
avoid clutter. Then we have

6 - 2I1 - I3 = 0  1loop 12
Loop 2 is similar except here we’re going “backward” through R2, so 
its term is positive:

9 + 4I2 - I3 = 0  1loop 22
evaluate We want I3, so we eliminate the other two currents. The 
node equation gives I1 = I2 + I3; substituting in the loop 1 equation 
gives 6 - 2I2 - 3I3 = 0 or I2 = 1

216 - 3I32. We use this result in the 
loop 2 equation to get 9 + 216 - 3I32 - I3 = 0, or 21 - 7I3 = 0. 
Solving gives our answer: I3 = 3 A.

assess We assigned I3 an upward direction through R3, so our posi-
tive answer means that this is indeed the direction of the current in R3. 
This makes sense because both batteries have their negative terminals 
at node A. If either battery had been reversed, however, the situation 
wouldn’t have been so clear and we would have had to rely on the 
algebraic sign to determine the current direction. Even with the cir-
cuit as shown in Fig. 25.13, the directions of I1 and I2 depend on the 
relative strengths of the two batteries. With the values we’re given, I2 
comes out -1.5 A, showing that the current actually flows downward 
in R2. But if we reduce E2 to 2 V, I2 becomes zero; lower still, and it 
flows upward and “backward” through E2. ■

Figure 25.13 Example 25.4

E1 = 6 V E2 = 9 V

R1 = 2 Ω R3 = 1 Ω R2 = 4 Ω

(a)

(b)

−+ − +

AppLICATIon The Cell membrane

RK RNa RLIK IL

C

INa

EK ENa EL

VM

−

+

−

+

−

+

Many natural systems can be modeled as electric circuits. In 1952, Alan L. 
Hodgkin and Andrew F. Huxley developed a circuit model for the cell mem-
brane; their work won them a share of the 1963 Nobel Prize for Physiology 
or Medicine. The figure shows a simplified version of the Hodgkin–Huxley 
model. The batteries EK, ENa, and EL represent the electrochemical effects of 
potassium, sodium, and other ions, respectively; their emfs have values in the 
tens of millivolts. RK, RNa, and RL are the resistances the cell membrane offers 
to each ionic species. The currents IK, INa, and IL represent ion flows across the 
membrane, and their values and signs follow from solving a multiloop-circuit 
problem similar to Example 25.4. The voltage VM is the membrane potential 
between the inside and outside of the cell. The Hodgkin–Huxley model also 
contains a capacitor, which causes time-dependent behavior of the sort you’ll 
see in Section 25.5.
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458 Chapter 25 Electric Circuits

25.4 Electrical measurements
Voltmeters
A voltmeter is a device that indicates the potential difference across its two terminals. The 
indicator is usually a digital readout, although older meters use a moving needle. Potential 
difference—voltage—is a property of two points, and therefore to measure the voltage 
between two points, we connect the two terminals of the voltmeter to those points. So to 
measure the voltage across resistor R2 in Fig. 25.14a we connect the voltmeter across R2, 
as shown. We do not break the circuit and insert the meter as in Fig. 25.14b, for then we 
wouldn’t be measuring the voltage across the resistor; in fact, as Conceptual Example 25.1 
makes clear, we would radically alter the circuit.

GoT IT? 25.5 Which circuit(s) cannot be analyzed using series and parallel 
 combinations?

(a) (b) (c)

Figure 25.14 Correct (a) and incorrect (b) ways 
to connect a voltmeter for measuring the 
 voltage across R2.

−

+
V

R1

R2

(a)

R2
−

+ V

R1

(b)

E

E

−

+
V

R1

R2

(a)

R2
−

+ V

R1

(b)

E

E

GoT IT? 25.6 All resistors in the figure have the same value 
and the battery is ideal. If an ideal voltmeter is connected between 
points A and B, will it read (a) 10 V, (b) between 5 and 10 V, (c) 5 V,  
(d) between 0 and 5 V, or (e) 0 V?

−

+
R

R R
A

B

10 V

ConCEpTUAL ExAmpLE 25.1  measuring Voltage

What should be the electrical resistance of an ideal voltmeter?

evaluate Before we attach the voltmeter in Fig. 25.14a, the bat-
tery “sees” the resistors R1 and R2 in series. When we connect a meter 
with resistance Rm, then we’ve got a parallel combination of R1 and 
Rm where before we had just R1. Since two parallel resistors have a 
lower resistance than either of the individual resistors, the overall cir-
cuit current increases—and so, therefore, does the voltage across R1, 
which carries the total current. That in turn leaves the voltage across 
R2 lower than before. Even if the meter is perfectly accurate, the volt-
age it reads will be lower than it was before we connected the meter.

How can we avoid this effect? By giving the meter a high 
 resistance—ideally, infinite resistance, so the meter won’t draw any 
current and therefore won’t affect the circuit. The meter will therefore 
read the voltage that was there before we connected it.

assess Truly infinite resistance is impossible—but as long as the 
meter’s resistance is much larger than resistances in the circuit, the 
effect of finite meter resistance will be negligible. Modern digital me-
ters come close to the ideal, with resistances of 10 MΩ and higher.

makIng the connectIon What do you get if you measure the volt-
age across the 40@Ω resistor in Fig. 25.15 with (a) an ideal voltmeter 
and (b) a voltmeter whose resistance is 1000 Ω?

evaluate (a) The circuit is a simple voltage divider, and Equation 
25.2b shows that the voltage across the 40@Ω resistor is one-third of 
the battery voltage, or 4.00 V. With its infinite resistance, the ideal 
voltmeter doesn’t alter the circuit, so it reads 4.00 V. (b) Connect-
ing the voltmeter gives the circuit of Fig. 25.16; now Equation 25.3b 
gives 38.5 Ω for the parallel combination of the 1000@Ω meter and 
40@Ω  resistor. Applying Equation 25.2b to the resulting voltage 
 divider gives 3.95 V, 2.5% lower than the ideal voltmeter.

Figure 25.15 What’s the voltage across 
the 40@Ω resistor?

80 Ω

40 Ω12 V
−

+

Figure 25.16 A nonideal voltmeter 1Rm2 alters the circuit.
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25.5 Capacitors in Circuits 459

Ammeters
An ammeter measures the current flowing through itself. To measure the current through 
a circuit component, it’s necessary to break the circuit and insert the ammeter in series 
with that component (Fig. 25.17a); only then will all the current also go through the meter. 
Connecting the ammeter across the resistor as in Fig. 25.17b is wrong because then the 
current through the resistor isn’t going through the meter.

If the ammeter has any resistance, the total resistance of the circuit will increase with 
the meter connected in series. This in turn will decrease the current, giving an incorrect 
reading. So an ideal ammeter should have zero resistance. In practice, an ammeter’s resist-
ance should be much lower than typical resistances in the circuit being measured.

✓TIp Watch Your Language

A voltmeter measures potential difference between two points; hence, we connect it 
across—that is, in parallel with—the circuit element whose voltage we wish to meas-
ure. An ammeter measures the current through itself; hence, we connect it in series 
with the circuit element whose current we wish to measure. If you get used to volt-
ages appearing across things and currents flowing through them, you’ll have no trouble 
connecting meters. The ways to connect meters, and the words across for voltage and 
through for current, go back to the definitions of potential difference as a property of 
two points and of current as a flow.

ohmmeters and multimeters
Often we want the resistance of a particular component. Connecting a known voltage in series 
with an ammeter and the unknown resistance gives both current and voltage, letting us calcu-
late the unknown resistance. A meter used for this purpose can be calibrated directly in ohms 
even though it’s really measuring current; it’s then an ohmmeter. The functions of voltmeter, 
ammeter, and ohmmeter are often combined in a single instrument called a multimeter.

25.5 Capacitors in Circuits
So far we’ve considered only circuits with steady current. A flashlight is a good example: 
Turn it on and current starts almost instantaneously, then flows steadily until you turn the 
flashlight off.

Capacitors alter this picture, causing circuit quantities to change more slowly.  Recall that 
a capacitor is a pair of insulated conductors with charge and voltage related by Q = CV, 
where Q is the magnitude of the charge on either conductor, V is the  potential difference 
between them, and C is the capacitance. Because charge and voltage are  proportional in a 
capacitor, a change in voltage requires a change in charge. Charge changes when current 
flows through the wires connecting the capacitor to the rest of a circuit, and the magnitude 
of the current gives the rate at which capacitor charge increases or decreases. Since the 
current in any real circuit is finite, the charge on the capacitor cannot change instantane-
ously. But capacitor voltage is proportional to charge, so:

The voltage across a capacitor cannot change instantaneously.

This statement is the key to understanding circuits with capacitors. It says that the voltage on 
a capacitor can’t jump abruptly from one value to another; mathematically, capacitor voltage 
VC must be a continuous function of time, its derivative always finite. Just how rapidly the 
voltage can change depends on the capacitance and other circuit quantities, as you’ll now see.

We consider an RC circuit, one that includes a resistor and capacitor. RC circuits are 
ubiquitous, appearing everywhere from microbiological structures to stereo amplifiers to 
giant energy-storage systems. We examine separately the two cases in which the capacitor 
is (1) charging and (2) discharging.

Figure 25.17 Correct (a) and incorrect (b) ways 
to connect an ammeter.
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The RC Circuit: Charging
In Fig. 25.18 the capacitor is initially uncharged, so the voltage across it is zero. Closing 
the switch connects the left side of the resistor to the battery, bringing its potential imme-
diately to E volts (we’re taking V = 0 at the negative battery terminal). The right end of 
the resistor remains at the same voltage as the upper capacitor plate—and that’s still zero 
because the voltage across the capacitor can’t change instantaneously.

So there are E volts across the resistor, and therefore a current I = E/R through it. This 
current delivers positive charge to the upper capacitor plate. At the same time,  positive 
charge leaves the lower plate and flows back to the battery, making the lower plate  negative.
(As always with metallic conductors, it’s actually negative electrons that are moving. But the 
effect is the same: a current flowing clockwise around the circuit in Fig. 25.18, resulting in 
the upper plate of the capacitor becoming more positive and the lower plate more negative.)

As charge accumulates on the plates, the capacitor voltage increases proportionately. But 
the capacitor and resistor voltages sum to the battery voltage E, so as the capacitor  voltage 
increases, the resistor voltage drops. By Ohm’s law, the resistor current I = V/R drops 
as well. This in turn decreases the rate at which charge accumulates in the capacitor. The 
 capacitor voltage continues to increase as charge accumulates, but at an ever-slower rate.

Eventually the capacitor voltage approaches the battery voltage, and the resistor volt-
age and current tend to zero; so, therefore, does the rate at which charge accumulates on 
the capacitor. The whole system approaches a final state in which the capacitor is charged 
to the full battery voltage and the current in the circuit is zero. Figure 25.19 summarizes 
the interplay among current, charge, and voltage.

Figure 25.18 An RC circuit. The switch is closed 
at time t = 0.

−

+

R

Switch

CE

Figure 25.19 Interrelationships among 
 quantities in a charging RC circuit.

Voltage across 
resistor decreases at 
ever-decreasing rate.

Current decreases at 
ever-decreasing rate.

Current puts charge 
on capacitor at 
ever-decreasing rate.

Voltage across 
capacitor increases at 
ever-decreasing rate.

VR

VC

−

+
E

I

I

I

Figure 25.20 Voltage changes in a charging  
RC circuit.
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We can analyze the circuit of Fig. 25.18 quantitatively using the loop law. Going 
 clockwise around the loop, we first encounter a voltage increase E across the battery, 
then a drop IR across the resistor, then a drop VC from the upper to lower capacitor plate  
(Fig. 25.20). But VC = Q/C, so the loop equation becomes

E - IR -
Q

C
= 0

This equation contains two unknowns, I and Q, but they’re related because the current is 
the rate at which charge is accumulating on the capacitor: I = dQ/dt. To use this relation, 
we take the time derivative of the loop equation:

-R 
dI

dt
-

1

C
 
dQ

dt
= 0

The battery voltage E doesn’t appear here because it’s constant, so its derivative is zero. 
Using I = dQ/dt and rearranging the equation gives
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dI

dt
= -

I

RC
 (25.4)

This equation shows that the rate of change of current is proportional to the current itself. 
Equations like this arise whenever a quantity changes at a rate proportional to the quantity 
itself. Population growth, the increase of money in a bank account, and the decay of a 
 radioactive element are all described by similar equations.

Like the equation for simple harmonic motion in Chapter 13, Equation 25.4 is a 
 differential equation because the unknown quantity I occurs in a derivative. The  solution to 
a differential equation isn’t a single number but a function expressing the relation  between 
the unknown quantity—in this case current—and the independent variable—in this case 
time. We can solve this particular differential equation by multiplying both sides by dt/I in 
order to collect all terms involving I on one side of the equation. This gives

dI

I
= -

dt

RC

We can then integrate both sides, noting that RC is constant:

L
I

I0

dI

I
= -

1

RC L
t

0
 dt

where I0 = E/R is the initial current at the time t = 0 just after the switch is closed and 
where the integration runs to an arbitrary time t, when the current has the value I. The 
integral on the left is the natural logarithm of I, and on the right it’s just t. Then we have

ln a I

I0
b = -

t

RC

where we used ln I - ln I0 = ln1I/I02. To get an equation for I we exponentiate both sides, 
recalling that eln x = x. This gives I/I0 = e-t/RC, or, since I0 = E/R,

 I =
E
R

 e-t/RC (25.5)

Thus the current in the circuit decreases exponentially with time, in agreement with our 
qualitative analysis. The capacitor voltage is VC = E - VR, or, since VR = IR = Ee-t/RC,

 VC = E11 - e-t/RC2  1RC circuit, charging2 (25.6)

Equation 25.6 shows that the capacitor voltage starts at zero and rises, with its rate of rise 
ever slowing as it gradually approaches the battery voltage E—just as we reasoned in our 
qualitative analysis. Figure 25.21 plots capacitor voltage and current using the equations 
we’ve just derived.

When is the capacitor fully charged? Never, according to our equations! But the rate 
at which it approaches full charge is determined by the so-called time constant, RC—a 
characteristic time for changes to occur in a circuit containing a capacitor. Equation 25.6 
shows that in one time constant, the voltage rises to E11 - 1/e2, or to about two-thirds of 
the battery voltage. A practical rule of thumb says that in five time constants 1t = 5RC2 a 
capacitor is 99% charged (see Exercise 33). The RC time constant clarifies our statement 
that the voltage across a capacitor can’t change instantaneously. We can now say that the 
voltage can’t change appreciably in times small compared with the time constant. On the 
other hand, after many time constants, we’ll find essentially no current flowing to the ca-
pacitor. We’ve shown quantitatively the role of the time constant RC by marking the time 
in units of RC on Fig. 25.21.

Resistors and capacitors are available in a wide range of values, so practical values for 
RC span many orders of magnitude. RC circuits with time constants from microseconds to 
hours are widely used in electronic devices to control the rates at which electrical quanti-
ties vary. For example, circuits with RC many times the sixtieth-of-a-second period of 
standard AC power produce steady, direct-current power for audio and video equipment. 

Figure 25.21 Time dependence of capacitor 
voltage and circuit current in a charging RC 
circuit. The approximate values 23 and 13 are 
actually 1- 1/e and 1/e, respectively.
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462 Chapter 25 Electric Circuits

Equalizers in audio systems are variable resistances in RC circuits; changing the resist-
ance changes the time constant and therefore the way the circuit handles rapidly changing 
audio signals. Sometimes, though, the time constant can be a nuisance. Capacitance in au-
dio systems can limit high-frequency response, decreasing the quality of music reproduc-
tion. With computer speeds in the GHz range—meaning basic operations occur billions of 
times a second—even tiny RC time constants associated with the resistance of wires and 
the capacitance of adjacent conductors can cause trouble.

The RC Circuit: Discharging
Suppose we connect a charged capacitor across a resistor, as shown in Fig. 25.22. If the 
capacitor voltage is initially V0, then when the circuit is connected, this voltage will drive 
a current I0 = V0 /R through the resistor. This current transfers charge from the positive 
to the negative capacitor plate, lowering the charge on the capacitor. Since capacitor 
charge and voltage are proportional, the capacitor voltage drops, too. So, therefore, does 
the  current and therefore the rate at which the capacitor discharges. We expect both the 
voltage and current in this circuit to decay toward zero. In terms of energy, that happens 
because the energy stored in the capacitor’s electric field is gradually dissipated as heat in 
the resistor.

The loop equation for Fig. 25.22 is particularly simple; going clockwise, we have 
Q/C - IR = 0, where the two terms are the voltage changes across the capacitor and 
resistor, respectively. Since we’ve indicated positive current in Fig. 25.22 in the  direction 
that would reduce the capacitor charge Q, the rate of change dQ/dt and the current have 
 opposite signs: I = -dQ/dt. Differentiating our loop equation and substituting this 
 expression for I gives dI/dt = -I/RC. This is identical to Equation 25.4; the solution is 
therefore  Equation 25.5, but with I0 = V0 /R instead of E/R:

 I =
V0

R
 e-t/RC (25.7)

In this circuit the capacitor and resistor voltages are the same, since the two are in  parallel 
(in this simplest of circuits, they’re also in series). Because the resistor voltage and the 
current are proportional, the voltage across the capacitor and resistor is

 V = V0e
-t/RC  1RC circuit, discharging2 (25.8)

Equations 25.7 and 25.8 show that the capacitor discharges with the same characteristic 
time constant RC that governs its charging.

Figure 25.22 A discharging RC circuit.

−

+
RV C

I

ExAmpLE 25.5  Charging Capacitors: A Camera Flash

A camera flash gets its energy from a 150@μF capacitor and requires 
170 V to fire. If the capacitor is charged by a 200-V source through 
an 18@kΩ  resistor, how long must the photographer wait between 
flashes? Assume the capacitor is fully discharged with each flash.

Interpret This is a problem about a charging capacitor, and we 
want to find the time to reach a given voltage.

Develop Equation 25.6, VC = E11 - e-t/RC2, gives the voltage 
across a charging capacitor, so our plan is to solve this equation for 
the time t.

evaluate First we solve for the exponential term that contains the 
time:

e-t/RC = 1 -
VC

E

Then we take the natural logarithm of both sides, recalling that 
ln ex = x, so

-  
t

RC
= ln a1 -

VC

E
b

Solving for t and setting VC = 170 V, E = 200 V, R = 18 kΩ, and 
C = 150 μF gives

t = -RC ln a1 -
VC

E
b = 5.1 s

assess The time constant here is RC = 2.7 s, and 170 V is well 
over two-thirds of the 200-V source. Therefore, we expect a charging 
time longer than one time constant. Our 5.1-s answer is nearly 2RC. 
 Problem 70 explores energy and power in this circuit. ■
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25.5 Capacitors in Circuits 463

RC Circuits: Long- and Short-Term Behavior
It’s not always necessary to solve exponential equations in analyzing RC circuits. If we’re 
interested only in times much shorter than the time constant, then it’s enough to remember 
that the voltage across a capacitor can’t change instantaneously. And after many time con-
stants, a capacitor has essentially reached its final voltage, and no current is flowing to it. 
These conditions are sufficient to analyze circuits on short and long time scales.

tactIcs 25.2 Analyzing Long- and Short-Term Behavior of RC Circuits

Short-Term Behavior
For times much shorter than the time constant RC, capacitor voltage remains essentially unchanged. There-
fore, you can replace the capacitor with a short circuit if it’s uncharged or, if it’s charged, with a battery whose 
emf is the capacitor’s initial voltage. Then solve the circuit using the techniques of Section 25.2 or 25.3.

Long-Term Behavior
For times much longer than RC, no current is flowing to a capacitor. Therefore, you can replace the capaci-
tor with an open circuit, and again solve using earlier techniques.

ExAmpLE 25.6  An RC Circuit: Long and Short Times

The capacitor in Fig. 25.23a is initially uncharged. Find the current 
through R1 (a) the instant the switch is closed and (b) a long time after 
the switch is closed.

Interpret We interpret “the instant the switch is closed” to mean 
a time much shorter than the time constant RC, and “a long time” to 
mean a time much longer than RC. Then this is a problem involving 
the long- and short-term behavior of a circuit containing a capacitor.

Develop We follow Tactics 25.2 and first redraw the circuit with the 
capacitor replaced by a short circuit (Fig. 25.23b). Solving this circuit 
will give the current in R1 right after the switch is closed. For the long-
term behavior we redraw the circuit with the capacitor an open circuit 
(Fig. 25.23c).

evaluate There can’t be any voltage across a short circuit—a per-
fect conductor—so there’s no voltage across R2 in Fig. 25.23b. Thus 
for part (a) the entire battery voltage appears across R1, giving a cur-
rent I = E/R1. In Fig. 25.23c we have two resistors in series and the 
current in both is I = E/1R1 + R22, our answer to part (b).

assess The current through R1 starts out at E/R1 and gradually drops 
to E/1R1 + R22. That makes sense because the uncharged capacitor 

initially “shorts out” R2, making it irrelevant. But as the capacitor 
charges, current starts flowing through R2 and its presence is “felt.” 
Without solving more complicated equations, we can’t describe 
the intermediate behavior of the circuit, but getting the short- and 
 long-term behavior is straightforward. ■

Figure 25.23 Original (a) and equiva-
lent short-term (b) and long-term  
(c) circuits for Example 25.6.

−

+

(a)

(b)

(c)

E

R1

CR2

−

+

(a)

(b)

(c)

E

R1

CR2
−

+

(a)

(b)

(c)

E

R1

CR2

GoT IT? 25.7 A capacitor is charged to 12 V and then con-
nected between points A and B in the figure, with its  positive plate at A.  
What’s the current through the 2@kΩ resistor (1)  immediately after the 
capacitor is connected and (2) a long time  after it’s  connected?

1 kΩ

2 kΩ
−

+
6 V

A

B
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Chapter 25 Summary
Big Idea

The big idea here is the electric circuit—an interconnection of electric components that usually includes one or more sources of electric energy, 
such as batteries.

Key Concepts and Equations

A source of emf or, simply, an emf, is a battery or 
other device that imparts energy to electric charge 
flowing through it. The value of the emf, E, is the 
energy imparted per unit charge, measured in volts. 
An ideal emf maintains a fixed potential difference 
(voltage) across its terminals.

−

+
E volts

Resistors in series add:

Rseries = R1 + R2 + R3 + g

Resistors in parallel add reciprocally:

1

Rparallel
=

1

R1
+

1

R2
+

1

R3
+ g

R1 R2 R3

R1

R2

R3

Simple circuits are analyzed by evaluating series and parallel 
 combinations.

−

+

−

+

−

+

To analyze more complicated circuits, use Kirchhoff’s node and 
loop laws.

Current into node A is 0:

- I1 + I2 + I3 = 0

Voltage changes around loops sum to 0:

loop 1:     E1 - I1R1 - I3R3 = 0

loop 2:  -E2 - I2R2 + I3R3 = 0

E1 E2

Node B

Loop 1 Loop 2

Node A

R1 R3 R2

−+ − +

I3
I1 I2

Capacitors result in time-changing behavior of circuit quantities.

−

+

Charging Discharging

The time constant RC governs the time scales.

R

RC VC = E11 - e-t>RC 2 VC = V0e
-t>RCCE

Applications

Batteries and other electric-energy sources 
have internal resistance. When they supply 
current, their terminal voltage is therefore 
less than their rated voltage E.

Rint

Vterminal

−

+

−

+

E

A voltmeter measures the voltage across 
its two terminals. It goes in parallel with 
the  component whose voltage you want to 
 measure.

−

+
V

R1

R2

Reads voltage
across R2

An ideal voltmeter has infinite resistance.

An ammeter measures the current 
through itself. It goes in series with the 
component whose current you want to 
measure.

A

R1 R2

Reads current
through R2

−

+

An ideal ammeter has zero resistance.
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Exercises and Problems 465

For homework assigned on MasteringPhysics, go to www.masteringphysics.com

BIO Biology and/or medicine-related problems DATA Data problems ENV Environmental problems CH Challenge problems Comp Computer problems

14. Sketch a diagram for a circuit consisting of two batteries, a 
 resistor, and a capacitor, all in series. Does the circuit description 
 allow you any flexibility?

15. Resistors R1 and R2 are in series, and the series combination is in 
parallel with R3. This parallel combination is connected across a 
battery. Draw a diagram of this circuit.

16. What’s the emf of a battery that delivers 27 J of energy as it 
moves 3.0 C between its terminals?

17. A 1.5-V battery stores 4.5 kJ of energy. How long can it light a 
flashlight bulb that draws 0.60 A?

18. If you accidentally leave your car headlights (current 5 A) on for 
an hour, how much energy drains from the car’s 12-V battery?

Section 25.2 Series and Parallel Circuits
19. A 47@kΩ  resistor and a 39@kΩ  resistor are in parallel, and the 

pair is in series with a 22@kΩ resistor. What’s the resistance of 
the combination?

20. What resistance should you place in parallel with a 56@kΩ 
 resistor to make an equivalent resistance of 45 kΩ?

21. A defective starter motor draws 300 A from a car’s 12-V bat-
tery, dropping the battery terminal voltage to 6 V. A good starter 
should draw only 100 A. What will the battery terminal voltage 
be with a good starter?

22. Find the internal resistance of the battery in Exercise 21.
23. When a 9-V battery is temporarily short-circuited, a 200-mA 

 current flows. What’s the battery’s internal resistance?
24. You have a 1.0@Ω, a 2.0@Ω, and a 3.0@Ω resistor. What equiva-

lent resistances can you form using all three?

Section 25.3 Kirchhoff’s Laws and Multiloop Circuits
25. Find all three currents in the circuit of Fig. 25.13, but now with 

E2 = 1.0 V.
26. What’s the current through the 3@Ω resistor in Fig. 25.26? (Hint: 

This is trivial. Can you see why?)

+

−

+

−
3 Ω

5 Ω

9 V6 V

Figure 25.26 Exercise 26

27. Find I2 in Example 25.4 for the case E2 = 2.0 V.

Section 25.4 Electrical Measurements
28. A voltmeter with 200@kΩ  resistance is used to measure the 

 voltage across the 10@kΩ  resistor in Fig. 25.27. By what 
 percentage is the measurement in error because of the finite 
 meter  resistance?

10 kΩ150 V

5 kΩ

+

−

Figure 25.27 Exercises 28 and 29

29. An ammeter with 100@Ω resistance is inserted in the circuit of 
Fig. 25.27. By what percentage is the measured current in error 
because of the nonzero meter resistance?

30. A new mechanic foolishly connects an ammeter with 0.1@Ω 
 resistance directly across a 12-V car battery with internal 

For thought and Discussion
 1. Are household electrical outlets connected in series or parallel? 

How do you know?
 2. All the resistors in Fig. 25.24 have the same resistance. In which 

circuits does the battery supply the same current?

−

+

(a)

−

+

(b)

−

+

(c)

−

+

(d)

Figure 25.24 For Thought and Discussion 2

 3. Can the voltage across a battery’s terminals differ from the bat-
tery’s rated voltage? Explain.

 4. Can the voltage across a battery’s terminals be higher than the 
battery’s rated voltage? Explain.

 5. In some cities, streetlights are wired in such a way that when one 
burns out, they all go out. Are the lights in series or parallel?

 6. When the switch in Fig. 25.25 is open, what’s the voltage across 
the resistor? Across the switch?

+

−
E R

Figure 25.25 For Thought and Discussion 6

 7. Two identical resistors in series dissipate equal power. How can 
this be, when electric charge loses energy in flowing through the 
first resistor?

 8. When a large electric load such as a washing machine or oven 
comes on, lights throughout a house often dim. Why?

 9. How would you connect a pair of equal resistors across an ideal 
battery in order to get the greatest power dissipation?

10. You have a battery whose voltage and internal resistance are 
unknown. Using an ideal voltmeter and an ideal ammeter, how 
would you determine each of these characteristics?

11. A student who’s confused about voltage and current hooks a 
nearly ideal ammeter across a car battery. What happens?

12. A student who’s confused about voltage and current tries to 
measure the voltage across a lighted lightbulb by inserting a volt-
meter in series with the bulb. What happens to the bulb? Explain.

exercises and problems
Note: Work all circuit problems to two significant figures even if com-
ponent values are given with one significant figure.

Exercises

Section 25.1 Circuits, Symbols, and Electromotive Force
13. Sketch a circuit diagram for a circuit that includes a resistor R1 con-

nected to the positive terminal of a battery, a pair of parallel resistors 
R2 and R3 connected to the lower-voltage end of R1 and then returned 
to the battery’s negative terminal, and a capacitor across R2.
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466 Chapter 25 Electric Circuits

−

+
E R R1

R

Figure 25.29 Problem 45

46. In the circuit of Fig. 25.30, find (a) the current supplied by the 
battery and (b) the current through the 6@Ω resistor.

−

+
2 Ω 6 Ω

1 Ω

4 Ω6 V

Figure 25.30 Problems 46 and 47

47. In Fig. 25.30, how much power is dissipated in the 4@Ω resistor?
48. What’s the ammeter reading in Fig. 25.31?

−

+
2 Ω

6 V

2 Ω

2 Ω 4 Ω

A

Figure 25.31 Problem 48

49. In Fig. 25.32, find the equivalent resistance measured between A 
and B.

2R R

2RR
R

B

A

Figure 25.32 Problem 49

50. Find all three currents in the circuit of Fig. 25.13 with the values 
given, but with battery E2 reversed.

51. The voltage across the 30@kΩ resistor in Fig. 25.33 is measured 
with (a) a 50@kΩ  voltmeter, (b) a 250@kΩ  voltmeter, and (c) a 
10@MΩ  digital meter. What does each read, to two significant 
figures?

−

+
40 kΩ100 V

30 kΩ

40 kΩ

Figure 25.33 Problem 51

52. In Fig. 25.34, what are the meter readings when an ideal (a) volt-
meter or (b) ammeter is connected between A and B?

−

+
48 V

18 kΩ

36 kΩ

A

B

Figure 25.34 Problem 52

53. A resistor draws 1.00 A from an ideal 12.0-V battery. (a) If an 
ammeter with 0.10@Ω resistance is inserted in the circuit, what 
will it read? (b) If this current is used to calculate the resistance, 
by what percent will the result be in error?

54. The voltage across a charging capacitor in an RC circuit rises to 
1 - 1/e of the battery voltage in 5.0 ms. (a) How long will it take 
to reach 1 - 1/e3 of the battery voltage? (b) If the capacitor is 
charging through a 22@kΩ resistor, what’s the capacitance?

55. You’re designing an external defibrillator that discharges a ca-
pacitor through the patient’s body, providing a pulse that stops BIO

 resistance 0.01 Ω. What’s the power dissipation in the meter? 
(No wonder it gets destroyed!)

Section 25.5 Capacitors in Circuits
31. Show that the quantity RC has the units of time (seconds).
32. If capacitance is in μF, what will be the units of the time con-

stant RC when resistance is in (a) Ω, (b) kΩ, and (c) MΩ? (Your 
 answers eliminate the need for tedious power-of-10 conversions.)

33. Show that a capacitor is charged to approximately 99% of the 
 applied voltage in five time constants 15RC2.

34. An uncharged 10@μF capacitor and a 470@kΩ  resistor are in 
 series, and 250 V is applied across the combination. How long 
does it take the capacitor voltage to reach 200 V?

35. Find an expression for the voltage across the capacitor in Exam-
ple 25.6 when it’s fully charged.

problems
36. In Fig. 25.28, all resistors have the same value, R. What will be 

the resistance measured (a) between A and B or (b) between A 
and C?

C

A

B

Figure 25.28 Problems 36 and 37

37. In Fig. 25.28, take all resistors to be 1 kΩ. Find the current in the 
vertical resistor when a 6.0-V battery is connected between A and 
B.

38. Three 1.5-V batteries, with internal resistances 0.01 Ω, 0.1 Ω, 
and 1 Ω, each have 1@Ω resistors connected across their termi-
nals. What’s the voltage between each battery’s terminals, to 
three significant figures?

39. A partially discharged car battery can be modeled as a 9-V emf 
in series with a 0.08@Ω internal resistance. Jumper cables con-
nect this battery to a fully charged battery, modeled as a 12-V 
emf in series with a 0.02@Ω  internal resistance. The cables 
con nect + to + and - to -. What current flows through the dis-
charged battery?

40. Your company is overstocked on 50@Ω, 12-W resistors. Your pro-
ject requires 50@Ω resistors that can be safely connected across a 
12-V power source. How many of the available resistors will you 
need, and how will you connect them?

41. A 6.0-V battery has internal resistance 2.5 Ω. If the battery is 
short-circuited, what’s the rate of energy dissipation in its inter-
nal resistance?

42. How many 100-W, 120-V lightbulbs can be connected in parallel 
before they trip a 20-A circuit breaker?

43. You company is designing a battery-based backup power source, 
and your job is to assess its safety. You know that under damp or 
sweaty conditions, the resistance between two points of unbro-
ken skin on the human body can be as low as 500 Ω. Your prod-
uct uses a 72-V battery whose internal resistance is 100 Ω. Is it 
capable of passing a fatal 100 mA (Table 24.3) through a damp 
human body?

44. Take E = 12 V and R1 = 270 Ω in Fig. 25.4. (a) What’s the re-
sistance R2 if there’s 4.5 V across it? (b) What will be the power 
dissipation in R2?

45. In Fig. 25.29, R1 is a variable resistor and the other two resistors 
have equal resistances R. (a) Find an expression for the voltage 
across R1, and (b) sketch a graph of this voltage as R1 varies from 
0 to 10R.

BIO
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65. The voltage on a charged capacitor is monitored with a voltmeter 
whose resistance is 1.00 MΩ. The table below gives the meter 
reading as a function of time. Determine a function of the voltage 
which, when you plot it against time, should give a straight line. 
Make your plot, establish a best-fit line, and use it to determine 
the capacitance.

Time (s) 0 1 2 3 4

Voltage (V) 15.0 10.3 6.36 3.78 2.43

66. Find the resistance needed in an RC circuit to bring a 20@μf ca-
pacitor from zero charge to 45% charge in 140 ms.

67. Suppose the currents into and out of a circuit node differ by 
1 μA. If the node consists of a small metal sphere with diameter 
1 mm, how long would it take for the electric field around the 
node to reach the 3-MV/m breakdown field in air?

68. Show that a battery delivers the most power when the load resist-
ance across its terminals is equal to its internal resistance. (This 
is not the way to treat a battery, but it’s the basis for load match-
ing in amplifiers; see Problem 69.)

69. You’re writing the instruction manual for a stereo amplifier with 
a maximum output of 100 W. The amplifier can be modeled as an 
emf in series with an 8@Ω resistance. What should you specify 
for the loudspeaker resistance to be used with the amplifier? How 
much power can the amplifier deliver to a speaker with half the 
optimum resistance?

70. Show that only half the total energy drawn from a battery in 
charging an RC circuit ends up stored in the capacitor. (Hint: 
What happens to the rest? You’ll need to integrate.)

71. Find the equivalent resistance between A and B for the circuits in 
Fig. 25.38.

(a) (b) (c)

R1 R1

R1 R1

A

B

R2

R1 R1

R1 R1

A

B

R1 R1

R1 R1

A

B

Figure 25.38 Problem 71

72. A 270@Ω resistor is connected across a battery and a 31-mA cur-
rent flows. When the resistor is replaced with a 120@Ω resistor, 
the current increases to 63-mA. Find (a) the battery’s voltage and 
(b) its internal resistance.

73. Obtain an expression for the rate of increase 1dV/dt2 of the volt-
age across a charging capacitor in an RC circuit. Evaluate your 
result at time t = 0, and show that if the capacitor continued 
charging steadily at this rate, it would reach full charge in exactly 
one time constant.

74. The circuit in Fig. 25.39 extends forever to the right, and all the 
resistors have the same value R. Show that the equivalent resist-
ance measured across the two terminals at left is R11 + 152/2. 
(Hint: You don’t need to sum an infinite series.)

 c

 c

Figure 25.39 Problem 74

75. Figure 25.40 on the next page shows the voltage across a capaci-
tor that’s charging through a 4700@Ω resistor in the circuit of Fig. 
25.18. Use the graph to determine (a) the battery voltage, (b) the 
time constant, and (c) the capacitance.

DATA

CH

CH

CH

CH

ventricular fibrillation. Specifications call for a capacitor stor-
ing 250 J of energy; when discharged through a body with 40@Ω 
transthoracic resistance, the capacitor voltage is to drop to half its 
initial value in 10 ms. Determine the capacitance (to the nearest 
10 μF) and initial capacitor voltage (to the nearest 100 V) that 
meet these specs.

56. A capacitor used to provide steady voltages in the power supply 
of a stereo amplifier charges rapidly to 35 V every 1/60 second. 
It must then hold that voltage to within 1.0 V for the next 1/60 s 
while it discharges through the amplifier. If the amplifier draws 
1.2 A from the 35-V supply, (a) what’s its effective resistance, 
and (b) what capacitance is needed?

57. A capacitor is charged until it holds 5.0 J of energy, then con-
nected across a 10@kΩ resistor. In 8.6 ms, the resistor dissipates 
2.0 J. Find the capacitance.

58. In Fig. 25.35 the 2.0@μF capacitor is charged to 150 V, while the 
1.0@μF capacitor is initially uncharged. Switch S is then closed. 
Find the total energy dissipated in the resistor as the circuit comes 
to equilibrium. (Hint: Think about charge  conservation.)

2.2 kΩ

2.0 μF 1.0 μF

S

Figure 25.35 Problem 58

59. For the circuit of Example 25.6, take E = 100 V, R1 = 4.0 kΩ, 
and R2 = 6.0 kΩ,  and assume the capacitor is initially 
 uncharged. Find the capacitor voltage and the currents in both 
resistors (a) just after the switch is closed, and (b) a long time 
after the switch is closed. Long after the switch is closed it’s 
 re-opened. What are VC, I1, and I2 (c) just after this switch open-
ing, and (d) a long time later?

60. In Fig. 25.36, the switch is initially open and both capacitors are 
initially uncharged. All resistors have the same value R. Find 
 expressions for the current in R2 (a) just after the switch is closed, 
and (b) a long time after the switch is closed.

−

+
E

R1 C2

C1 R3R2

Figure 25.36 Problem 60

61. A battery’s voltage is measured using a voltmeter with resistance 
10.00 kΩ; the result is 4.982 V. A 15.00@kΩ meter gives 4.993 V.  
Find (a) the battery’s voltage and (b) its internal resistance.

62. An ammeter with resistance 1.42 Ω  is connected momentarily 
across a battery, and the meter reads 9.78 A. When the measure-
ment is repeated with a 2.11@Ω meter, the reading is 7.46 A. Find 
(a) the battery voltage and (b) its internal resistance.

63. In Fig. 25.37, take E1 = 12.0 V, E2 = 6.00 V, E3 = 3.00 V,
R1 = 1.00 Ω, R2 = 2.00 Ω, and R3 = 4.00 Ω. Find the current 
in R2 and give its direction.

R2

R3

R1

E1 E2 E3

−

+ −

+−

+

Figure 25.37 Problems 63 and 64

64. With all values except E2 as given in the preceding problem,  
(a) find E2 such that there is no current in this battery. (b) What 
are the currents in R1 and R3 under these conditions?
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468 Chapter 25 Electric Circuits

bowls, feed troughs, or milking equipment. Cows feel shocks that 
make them nervous, reducing milk output and sometimes leading 
to  mammary gland infections. As a result, farmers can face serious 
 financial losses. Figure 25.43 shows a typical stray-voltage situation, 
with the source of stray voltage modeled as a 6-V emf in series with 
a 1@kΩ  resistance.

Water bowl

Ground

Rcow = 500 Ω 

1 kΩ 

6.0 V
−
+

Figure 25.43 Stray voltage can bankrupt a dairy farm (Passage  
Problems 83–86)

83. The current through the 500@Ω cow will be
a. 3 mA.
b. 4 mA.
c. 6 mA.
d. 12 mA.

84. The voltage across the cow shown is
a. 2 V.
b. 4 V.
c. 6 V.
d. nearly 0 V.

85. In an effort to diagnose the problem, a farmer connects an ideal 
voltmeter between the water bowl and ground, with the cow ab-
sent. The voltmeter reading is
a. 2 V.
b. 4 V.
c. 6 V.
d. none of the above.

86. To explore the problem further, a farmer connects an ideal am-
meter between the water bowl and ground, with the cow absent. 
The ammeter reading is
a. 4 mA.
b. 6 mA.
c. 12 mA.
d. infinite.

answers to Chapter Questions

Answer to Chapter opening Question
Conservation of charge and conservation of energy, as expressed by 
the node and loop laws, respectively.

Answers to GoT IT? Questions
 25.1  (a) and (b)
 25.2  (c) 6 V 7  (a) 3 V 7  (b) 0 V
 25.3  Ra 7 Rd 7 Rc 7 Rb

 25.4  (1) A is brightest because it carries more current; after A the 
current splits between B and C. (2) A and B become equally 
bright, with A dimming and B brightening relative to when C 
was in the circuit.

 25.5  (a) and (c)
 25.6  (c)
 25.7  (1) 6 mA; (2) 2 mA

0
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9

10
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V
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ge
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V
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Figure 25.40 Problem 75

76. Figure 25.41 shows a portion of a circuit used to model muscle 
cells and neurons. All resistors have the same value R = 1.5 MΩ, 
and the emfs are E1 = 75 mV, E2 = 45 mV, and E3 = 20 mV. 
Find the current through E3, including its direction.

−

+

−

+

−

+
E1 E2 E3

Figure 25.41 Problems 76 and 77

77. An electrochemical impulse traveling along the cell modeled in 
Fig. 25.41 changes the value of E3 so now it supplies a 40-nA 
upward current. Assuming the rest of the circuit remains as de-
scribed in Problem 76, what’s the new value of E3?

78. A parallel-plate capacitor has plates of area 10 cm2 sepa-
rated by a 0.10-mm layer of glass insulation with resistivity 
r = 1.2 * 1013 Ω  #  m and dielectric constant k = 5.6. Because of 
the finite resistivity, charge leaks through the insulation. (a) How 
can such a leaky capacitor be represented in a circuit diagram? 
(b) Find the time constant for this capacitor to discharge through 
its insulation, and show that it depends only on the properties of 
the insulating material and not on its dimensions.

79. Write the node and loop equations for the circuit in Fig. 25.23a 
(Example 25.6), and find the time constant.

80. In Problem 60, take C1 = C2 = C, and find the current through 
R2 as a function of time. (Hint: Use the node and loop laws to 
get a differential equation for the current, and use the initial con-
ditions on current and its derivative to evaluate the constants of 
integration.)

81. You’re about to purchase a battery. Normally, batteries are rated 
in ampere-hours—the total charge they can deliver. Your applica-
tion calls for a 5@A #  h battery. But the 6-V battery you see while 
shopping online is rated at 50 watt-hours. Will it work?

82. In the circuit of Fig. 25.42 the switch is initially open and the ca-
pacitor is uncharged. Find expressions for the current I supplied 
by the battery (a) just after the switch is closed and (b) a long 
time after the switch is closed.

2R

2R R

R

C
E
−

+

Figure 25.42 Problem 82

Passage Problems

BIO Stray voltage is a serious problem on dairy farms, often result-
ing from corroded wiring or poor wiring practices. These conditions 
can produce several volts between the ground and metal watering 

BIO

BIO

CH

CH
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People are fascinated with magnets and the mysterious, invisible force they  produce. 
 Magnetism plays essential roles in technology and the natural universe. We use  magnetism 

for everything from holding notes on refrigerators to storing computer data to propelling 
high-speed trains. Earth’s magnetism protects us from dangerous solar radiation, which  itself 
originates in violent magnetic storms on the Sun. Without magnetism we wouldn’t even 
see, for light itself results from an interaction between magnetism and  electricity. In fact, 
 magnetism and electricity are intimately related, and you’ll soon see them as inseparable 
 aspects of the same underlying phenomenon.

How You’ll Use It
■ Magnetic phenomena are 

fundamental aspects of physical 
reality, important in both natural 
and technological systems, so your 
understanding of magnetism will be 
important in both your everyday life 
and your professional life.

■ The remaining chapters of Part 4 
will reveal an intimate connection 
between electricity and magnetism 
that will lead ultimately to an 
understanding of light.

What You’re Learning
■ This chapter introduces the magnetic 

field, analogous to the electric field 
but in some ways more complex.

■ You’ll learn that magnetism is 
fundamentally a phenomenon 
involving moving electric charge.

■ You’ll see how the magnetic force on a 
charged particle depends on its charge, 
its velocity, and the magnetic field.

■ You’ll learn how magnetic fields 
originate from moving electric charges.

■ You’ll learn that there’s no magnetic 
analog of electric charge, at least not in 
our everyday universe, and you’ll see this 
expressed in Gauss’s law for magnetism.

■ You’ll learn how Ampère’s law 
describes the magnetic field in terms 
of electric current.

■ You’ll learn about three forms of 
magnetism that occur in matter.

What You Know
■ You understand the electric field and 

how it produces a force F
S

= qE
S

 on a 
charged particle.

■ You can interpret and evaluate vector 
cross products; if not, you should 
review the introduction of the cross 
product in Chapter 11.

■ You know about electric current.

■ You understand the concept of flux, 
particularly for the electric field.

Magnetism: Force and Field

26

This ultraviolet image shows delicate loops of million-kelvin ionized gas—plasma—in the Sun’s 
atmosphere. What force shapes the gas into such intricate structures, and why don’t we see similar things 
in Earth’s atmosphere?
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470 Chapter 26 Magnetism: Force and Field

26.1 What Is Magnetism?
You know from experience that magnets exert forces on each other and on certain 
 materials, like iron. As we did with the gravitational and electric forces, it’s convenient to 
describe this interaction in terms of a magnetic field (symbol B

S
). One magnet produces a 

magnetic field, and another responds to the field in its vicinity. We use field lines to  picture 
the field, and we can trace those lines using small iron filings that align with the field  
(Fig. 26.1). In our illustrations, we’ll use color for magnetic field lines to distinguish them 
from electric fields.

But the magnetism you’re most familiar with is only one manifestation of a much more 
fundamental and universal phenomenon that’s intimately linked with electricity. Here 
we’ll go straight to the essence of magnetism; later, we’ll see how familiar magnets fit into 
the big picture.

In Chapter 20 we introduced electric charge, a fundamental property of matter, and 
described its interactions using the concept of electric field. Magnetism, too, is based in 
electric charge. One crucial point both distinguishes and relates electricity and magnetism:

The phenomena of magnetism involve moving electric charge.

In particular, moving electric charge is the source of magnetic fields, and moving  electric 
charge is what responds to magnetic fields.

26.2 Magnetic Force and Field
In Chapter 20 we defined the electric field E

S
 with the equation F

S
E = qE

S
, where F

S
E is 

the electric force on a charge q. Now consider a region where there’s no electric field, but 
where there is a magnetic field. You could confirm the presence of the field and determine 
its direction with a compass, which is just a small magnet free to pivot into alignment 
with the field. Or, more fundamentally, you could explore the behavior of an electric point 
charge q in this field. If the charge is at rest, nothing happens. But if it’s moving, it experi-
ences a magnetic force as shown in Fig. 26.2. Experiment shows that:

1.  The magnetic force is always at right angles to both the velocity v
!
 of the charge and 

the magnetic field B
S

.
2.  The magnitude of the force is proportional to the product of the charge q, its speed v, 

and the magnetic field strength B.
3.  The force is greatest when the charge moves at right angles to the field and is zero 

for motion parallel to the field. In general, the force is proportional to sin u, where u 
is the angle between the velocity v

!
 and the field B

S
.

Putting these facts together lets us write the magnetic force compactly using the vector 
cross product introduced in Chapter 11:

 F
S

B = qv
!

* B
S
  1magnetic force2 (26.1)

Recall that the cross product v
!

* B
S

 is a vector of magnitude vB sin u, so the magnitude 
of the magnetic force is

�F
S

B � = �q�vB sin u

The direction of v
!

* B
S

is given by the right-hand rule (Fig. 26.3), and Equation 26.1 
shows that the magnetic force has that same direction as v

!
* B

S
for positive q and the 

 opposite  direction for negative q.
Equation 26.1 shows that the units of magnetic field are N 

#
 s/1C 

#
 m2, a unit given the 

name tesla (T) after the Serbian-American inventor Nikola Tesla (1856–1943). One tesla 
is a strong field, and a smaller unit called the gauss (G), equal to 10-4 T, is often used. 
Earth’s magnetic field is a little less than 1 G, while the field of a refrigerator magnet is 
about 100 G. The fields used in magnetic resonance imaging (MRI) may be as strong as 

Figure 26.1 Iron filings align with the magnetic 
field, tracing out the field of a bar magnet.

Figure 26.2 
The magnetic force on a charged particle is 
perpendicular to both the particle’s velocity v

!
 

and the magnetic field B
!
.

v
u

v
u

v
u

B
S

F
S

F
S

F = 0

v # B:
greatest force

v } B:
no force

u S

u S
S S

PheT: Magnet and Compass

Video Tutor Demo | Magnet and Electron Beam
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26.2 Magnetic Force and Field 471

several tesla, while the incredibly dense, rapidly rotating collapsed stars called magnetars 
have fields up to 1011 T.

v
u

B
S
u

v * B

Curl your �ngers
in the direction
that would rotate
v onto B c

cand your 
thumb points
in the direction 
of v * B.

(a) (b)

v * B

u S

u

u

S

S

u S

Figure 26.3 Finding the direction of the cross product v
!

* B
S

 with the 
 right-hand rule.

Got It? 26.1 The figure shows a proton in a mag-
netic field. (1) For which of the three proton  velocities 
shown will the magnetic force be greatest? (2) What will 
be the direction of the force in all three cases? B

S
(a) (b)

(c)

Although electricity and magnetism are related, the electric and magnetic forces are 
distinct. Both may be present simultaneously, in which case a charged particle  experiences 
both an electric force F

S
E = qE

S
 and a magnetic force F

S
B given by Equation 26.1. The 

 result is an electromagnetic force:

 F
S

= qE
S

+ qv
!

* B
S
 1electromagnetic force2 (26.2)

Because the magnetic force depends on velocity but the electric force doesn’t, it’s possible 
to use perpendicular electric and magnetic fields to select particles of a particular velocity 

ExaMPLE 26.1  Finding the Magnetic Force: Steering Protons

Figure 26.4 shows three protons entering a 0.10-T magnetic field. All 
three are moving at 2.0 Mm/s. Find the magnetic force on each.

Interpret This problem is about the magnetic force on  moving 
charged particles with the same speed but different directions of 
 motion.

Figure 26.4 What’s the magnetic force on each proton?

B
S

1 3

2

Develop Equation 26.1, F
S

B = qv
!

* B
S

, gives the magnetic force, 
so we’ll apply it to each of the particles.

evaluate Proton 2 is moving parallel to the field, so v
!
2 * B

S
= 0 

and it experiences no magnetic force. Protons 1 and 3 are mov-
ing at right angles to the field, so sin u = 1, and the magnitude of 
the force on each is FB = qvB sin u = qvB. Using the proton charge 
q = e = 1.6 * 10-19 C and the given values for B and v yields 
F = 32 fN. Since protons are positive, the direction of F

S
B is the same 

as that of v
!

* B
S

; applying the right-hand rule shows that the direction 
is out of the page for proton 1 and into the page for proton 3.

assess Our answer 32 fN 132 * 10-15 N2 is a tiny force, but that’s 
not surprising given the proton’s tiny charge. Note that the magnetic 
field alone doesn’t determine the force; in this example identical par-
ticles experience different forces because they’re moving in different 
directions relative to the field. ■
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472 Chapter 26 Magnetism: Force and Field

(Fig. 26.5). Such velocity selectors serve to prepare particle beams with uniform velocity 
as well as to analyze charged-particle populations in interplanetary space.

26.3 Charged Particles in Magnetic Fields
Following Newton’s law, the magnetic force deflects charged particles from their other-
wise straight-line paths. Magnetic forces “steer” charged particles in a host of practical de-
vices ranging from microwave ovens to giant particle accelerators, and they shape particle 
trajectories throughout the astrophysical universe.

The magnetic force always acts at right angles to a particle’s velocity. Therefore, it 
changes the direction of motion but not the speed, and it does no work. In the spe-
cial case of a particle moving at right angles to a uniform field, the magnetic force has a 
constant magnitude and the result, as Fig. 26.6 shows, is uniform circular motion. With 
v
!
 perpendicular to B

S
, the magnetic force of Equation 26.1 has magnitude qvB. This 

force provides the acceleration v2/r that characterizes circular motion with radius r. Then  
Newton’s law, F = ma, reads qvB = mv2/r. We can solve for the radius of the particle’s 
circular path to get

 r =
mv

qB
 (26.3)

This result makes sense: The greater the particle’s momentum mv, the harder it is for the 
magnetic force to bend its path and the larger the radius. On the other hand, a larger charge 
or field increases the force and makes a tighter orbit.

Got It? 26.2 A uniform magnetic field points out of this page. Will an electron 
that’s moving in the plane of the page circle (a) clockwise or (b) counterclockwise as 
viewed from above the page?

Figure 26.5 A velocity selector. The electric and 
magnetic forces cancel when qE = qvB, so only 
particles with speed v = E/B pass through un-
deflected. The velocity v

!
 points into the page.

v
u

B
S

E
SFB

S
FE
S

Magnetic and electric
forces cancel when
v = E>B.

Figure 26.6 A charged particle moving at right 
angles to a uniform magnetic field describes 
circular motion.

v
u

v
u

v
u

Bout
S

F
S

F
S

F
S

Dots represent
magnetic �eld
lines coming
out of the page.

The magnetic force
is always perpendicular
to the velocity.

The magnitude of
the velocity is
constant.

ExaMPLE 26.2  Magnetic Deflection: a Mass Spectrometer

A mass spectrometer separates ions according to their ratio of charge to 
mass. Such devices are widely used in science and engineering to ana-
lyze unknown mixtures and to separate isotopes of chemical elements.  
Figure 26.7 shows ions of charge q and mass m first being accelerated from 
rest through a potential difference V and then entering a region of uniform 
magnetic field B pointing out of the page. Only the magnetic force acts on 
the ions in this region, so they undergo circular motion and, after half an 
orbit, land on a detector. Find an expression for the horizontal distance x 
from the entrance slit to the point where an ion lands on the detector.

Interpret This problem is about charged particles undergoing cir-
cular motion in a uniform magnetic field. The distance we’re asked for 
is the diameter of the particles’ circular path.

Develop Equation 26.3, r = mv/qB, shows that the path radius de-
pends on the field and on the particle’s mass, charge, and speed. We know 
everything but the speed, so this becomes a two-step problem in which 
we’ll first find the speed. We’re given the potential difference—energy 
per unit charge—so we can use energy conservation to find the kinetic 
energy and hence the ions’ speed in the magnetic-field region. Then we’ll 
use Equation 26.3 to find the radius of the ions’ circular path.

evaluate A charge q gains kinetic energy qV in “falling” through a 
potential difference V, so an ion’s kinetic energy once it enters the mag-
netic field is 1

2mv2 = qV. Solving for v gives v = 12qV/m. Our an-
swer, the path diameter x, is then twice the radius given in Equation 26.3:

x = 2r =
2mv

qB
=

2m12qV/m

qB
=

2

BA2mV

q

assess Make sense? The greater the mass or speed—which in-
creases with the accelerating voltage V—the harder it is to deflect the 
ion and the larger the diameter of its semicircular path. The larger the 
field or charge, the larger the force and the smaller the semicircle. 
Note that for a fixed voltage and magnetic field, this device sorts ions 
by their charge-to-mass ratio q/m. ■

Figure 26.7 A mass 
 spectrometer.

Bout of page
S

−

+

Ion source

Detector

q

x
V
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26.3 Charged Particles in Magnetic Fields 473

the Cyclotron Frequency
What’s the period of a particle’s circular orbit in a uniform magnetic field? The orbit 
 circumference is 2pr, so the period is T = 2pr/v. Using Equation 26.3 for the radius gives

T =
2pr

v
=

2p
v

 
mv

qB
=

2pm

qB

Remarkably, the period is independent of the particle’s speed and orbital radius.  
Equation 26.3 shows why: The higher the speed v, the larger the radius r and hence the 
circumference. So a faster particle describes a larger circle and ends up taking the same 
amount of time to go around.

Equivalently, we can describe the particle’s circular motion in terms of its frequency f, 
in revolutions per second, which is just the inverse of the period:

 f =
qB

2pm
 1cyclotron frequency2 (26.4)

This quantity is the cyclotron frequency. Because it depends only on the field and the 
charge-to-mass ratio, cyclotron motion provides astrophysicists with a direct measure of 
magnetic fields in distant objects. Conversely, a fixed magnetic field guarantees a specific 
cyclotron frequency regardless of the particles’ speeds. Microwave ovens exploit this fact, 
with their microwaves generated by electrons circling 2.4 billion times per second in a 
special tube called a magnetron.

Particle trajectories in three Dimensions
When a charged particle moves in an arbitrary direction, we consider velocity components 
both perpendicular and parallel to the magnetic field. Our previous analysis applies to the 
perpendicular component, giving circular motion in a plane perpendicular to the field. And 
because there’s no magnetic force with velocity parallel to the field, the parallel compo-
nent is unaffected. The result, in a uniform field, is a spiral path along the field direction 
(Fig. 26.8).

Figure 26.8 A particle in a uniform magnetic 
field describes a spiral path.

B
S

Motion parallel to the
�eld isn’t affected
by the magnetic force.

Physicists use high-energy particles to probe the structure of matter; engineers 
and physicians need high-energy particle beams in manufacturing, diagnostic, 
and therapeutic procedures. The easiest way to produce such beams is to accel-
erate ions through a potential difference, but the difficulties of handling high 
voltages make that impractical for all but the lowest energies. One of the earli-
est and most successful devices to circumvent this problem is the cyclotron, 
whose essential parts are shown in the figure. The device consists of an evacu-
ated chamber between the poles of a magnet. Ions are produced at the center 
and undergo circular motion in the magnetic field.

Also in the chamber are two hollow conducting structures shaped like the 
letter D. A modest potential difference is applied across these “dees,” and it 
alternates polarity at the cyclotron frequency. As ions circle around inside 
the cyclotron, they gain energy from the strong electric field associated with 
the potential difference at the gap. Inside the hollow conducting dee there’s 
no electric field, so here the particles follow circular paths in the magnetic 
field. Halfway around they again encounter the dee gap. Because the potential 
is changing polarity in step with the particles’ cyclotron motion, they again 
gain energy as they cross the gap. They move faster and in ever-larger circles, 

aPPLICatIon the Cyclotron

B
S

Dees

Magnet
To source of

alternating emf

To target

N

(continued)
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474 Chapter 26 Magnetism: Force and Field

The absence of magnetic force in the field direction means it’s easy to move charged 
particles along the field. But try to push a charged particle at right angles to the field, 
and it goes into circular motion; push harder and the circle only gets bigger. As a result, 
charged particles are effectively “frozen” to the field lines and move along the field like 
beads strung on a wire (Fig. 26.9). Nonuniform fields and particle collisions make this 
“freezing” less than perfect, but in many cases particle density is low enough that the “fro-
zen” assumption is an excellent approximation. The coronal loops in this chapter’s open-
ing photo are a beautiful example of charged particles “frozen” to the solar magnetic field. 
Similarly, high-energy particles from the Sun get trapped on Earth’s magnetic field lines; 
where the field intersects the atmosphere, particles collide with atmospheric nitrogen and 
oxygen to produce the spectacular displays we call the aurora. You can explore auroral 
particles quantitatively in Example 26.3. Here on Earth, trapping of charged particles on 
magnetic field lines enables researchers to confine plasmas at temperatures of 100 MK in 
attempts to harness the energy of nuclear fusion.

but always with the same orbital period. When they approach the edge of the 
machine, an electric field deflects the ions and they emerge as a high-energy 
beam.

Cyclotrons produce ions with energies of millions of electronvolts. This is 
high enough to cause nuclear reactions, and many medically useful radioac-
tive isotopes are made using cyclotrons. In particular, the diagnostic proce-
dure called PET (positron emission tomography) relies on cyclotron-produced 

 radioisotopes. Because these isotopes are short-lived, hospitals doing PET 
scans generally have cyclotrons on site. The photo shows a hospital-based cy-
clotron used in the development of PET technology. At higher energies the 
theory of relativity alters our conclusion that the cyclotron frequency is inde-
pendent of energy, and the cyclotron becomes useless. An alternative design is 
the synchrotron, in which both the magnetic field and the frequency vary to 
account for increasing particle energy.

Figure 26.9 (a) Charged particles undergoing spi-
ral motion about the magnetic field are “frozen” 
to the field like (b) beads sliding along a wire.

B
S

Beads

Wire

(a)

(b)

ExaMPLE 26.3  auroral Particles

Energetic electrons approach Earth’s atmosphere along magnetic field 
lines; their collisions with atmospheric atoms generate auroral displays. 
The field strength at the electrons’ location is 47 nT. A given electron 
has 0.72 fJ of kinetic energy, and its velocity makes an angle u = 60° 
with the magnetic field. Find the radius of its spiral trajectory.

Interpret This problem involves a charged particle undergoing three-
dimensional motion in a magnetic field. The trajectory is a spiral, as 
 suggested in Figs. 26.8 and 26.9. Because the magnetic field has no effect 
on motion parallel to the field, we anticipate needing to consider sepa-
rately the parallel and perpendicular components of the proton’s motion. 
Then we can think of the spiral trajectory as made up of uniform circular 
motion perpendicular to the field and uniform motion along the field.

evaluate The magnetic force on the electron is given by Equation 
26.1, F

S
= -ev

!
* B

S
, where we’ve written –e for the electron charge. 

We break the electron’s velocity into two components: v} along 
the magnetic field and v# at right angles to the field. Equation 26.1 
shows that the parallel component does not contribute to the magnetic 
force, while the perpendicular component results in a force of magni-
tude F = ev#  B. The right-hand rule shows that the force points to-
ward the center of the electron’s spiral path, and it’s this force that 
keeps the electron in circular motion perpendicular to the field. The 
speed of this circular motion is v# , so we can write Newton’s second 
law as ev#B = mv2

# /r, where r is the radius of the circle and thus 
of the spiral trajectory. We’ve sketched the situation in Fig. 26.10, 
where it’s evident that v# = v sin u. Solving our Newton’s law equa-
tion for the unknown radius gives r = mv#/eB—the same result we 
got in Equation 26.3, but now for three-dimensional motion where 
only the perpendicular velocity interacts with the magnetic field. Fi-
nally, we can get the electron’s speed v from its given kinetic energy 
K = 1

2  mv2: v = 22K/m, and thus v# = 22K/m sin u. Using this 
result in our expression for the radius r yields our answer:

r =
m22K/m sin u

eB
=

22Km sin u

eB
=2210.72 * 10- 15 J219.11 * 10- 31 kg2 sin 60°

11.6 * 10- 19 C2147 * 10- 9 T2 = 4.2 km

where we found the electron mass in the table inside the front cover, 
along with the SI prefix giving 1 fJ = 10–15 J.

assess: That’s a big spiral, but given that Earth’s magnetic field 
lines extend thousands of kilometers between the polar regions, it 
would be barely discernable on a scaled drawing. Energetic protons 
also spiral in the field, as you can explore in GOT IT? 26.3. Inciden-
tally, a space physicist would have given that electron energy in eV, 
expressing 0.72 fJ as 4.5 keV, and would have called that 60° angle 
the pitch angle. Although we treated the field as uniform in this exam-
ple, Earth’s field isn’t actually uniform, and over large distances that 
results in particles actually reflecting back and forth between the north 
and south polar regions. ■

u = 60°
v }

v#v
u

B
S

r

Figure 26.10 Our sketch of the electron’s trajectory. We’ve marked the 
60° angle on one turn of the spiral and on another turn we’ve shown the 
 breakdown of the velocity vector into parallel and perpendicular compo-
nents; the same angle applies on both turns.

M26_WOLF4752_03_SE_C26.indd   474 17/06/15   8:56 PM



26.4 The Magnetic Force on a Current 475

Got It? 26.3 A proton of the same energy as the electron in Example 26.3 spirals 
in the same magnetic field. Compared with the electron, the proton (a) has a larger spiral 
and spirals in the same direction; (b) has a smaller spiral and spirals in the same direction; 
(c) has a smaller spiral and spirals in the opposite direction; (d) has a larger spiral and 
 spirals in the opposite direction.

26.4 the Magnetic Force on a Current
An electric current consists of charges in motion, so a current in a magnetic field should 
experience a magnetic force. Figure 26.11 shows a straight wire in a magnetic field B

S
. 

Charges in the wire are moving about with thermal motions, but because these are random, 
the magnetic force on all the charges averages to zero. But if there’s a current I in the wire, 
then the charges share a common drift velocity v

!
d, and thus each experiences a magnetic 

force given by Equation 26.1: F
S

q = qv
!
d * B

S
. If the wire has cross-sectional area A and 

contains n charges per unit volume, then the force on all the charge carriers in a length l 
of wire is F

S
= nAlqv

!
d * B

S
. But nAqvd is the current, I, as we found in Chapter 24. If we 

define a vector l
!
 whose magnitude is the wire length l and whose direction is along the 

current, then we can write

 F
S

= Il
!

* B
S
 1magnetic force on a current2 (26.5)

This force is perpendicular to both the current and the magnetic field, or out of the page in 
Fig. 26.11. The direction of the magnetic force doesn’t depend on the sign of the charge 
carriers; they could be negative electrons moving leftward, opposite the current direction 
in Fig. 26.11, or positive charges moving rightward. For a given current, changing the sign 
of the charge carriers reverses both the sign of q and the direction of v

!
d, leaving the force 

unchanged.
Equation 26.5 gives the net force on the charge carriers in the wire. In a physical wire, 

the magnetic force deflects charge carriers to one side of the wire, producing a charge 
separation and an electric field that results in a force on the rest of the wire (Fig. 26.12); 
this electric force is also what confines electrons within the wire. Although its origin is 
not entirely magnetic, we loosely call the force in Equation 26.5 “the magnetic force on 
a wire.” The magnetic force on a current-carrying wire is the basis for many practical de-
vices, including loudspeakers and the electric motors that start cars and run refrigerators, 
disk drives, subway trains, pumps, food processors, power tools, and myriad other instru-
ments of modern society.

Equation 26.5 holds for straight wires in uniform magnetic fields. In other cases we ap-
ply Equation 26.5 to very short segments of a wire that’s curved or in a nonuniform field, 
and we integrate to find the net force. Problem 57 explores this situation.

Figure 26.11 A straight wire carrying current I 
through a uniform magnetic field.

B
S

u I

l

The magnetic force acts on all 
moving charges and points out
of the page.

Figure 26.12 Origin of the magnetic force on a 
current-carrying wire.

Binto page
S

Fmag. on 
   electrons

S
Felec. 
   on ions

S

I

Electrons moving leftward are de�ected
upward by the magnetic force c

cthe resulting charge separation
leads to an upward electric force on
the rest of the wire.

Got It? 26.4 The figure shows a flexible wire passing 
through a magnetic field that points out of the page. The wire 
is deflected upward, as shown. Is the current flowing (a) to the 
left or (b) to the right?

ConCEPtUaL ExaMPLE 26.1  Magnetic Force: a Power Line

A power line runs along Earth’s equator, where the magnetic field 
points horizontally from south to north; the line carries current flow-
ing from west to east. What’s the direction of the magnetic force on 
the power line?

evaluate We’ve sketched the situation in Fig. 26.13. Using 
the right-hand rule with the current eastward and magnetic field 
 northward shows that the force is vertically upward.

Video Tutor Demo | Current-Carrying Wire in Magnetic 
Field

(continued)

Bout
S
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476 Chapter 26 Magnetism: Force and Field

the Hall Effect
We noted earlier that the direction of the magnetic force depends on the direction of the 
current, not on the sign of the charge carriers. However, there’s a subtle difference between 
two conductors with the same current yet different charge carriers. In Fig. 26.14, moving 
charge carriers of either sign are deflected to the upper surface of the conductor. Again, 
that’s because the signs of both charge and velocity are opposite in the two cases. In both 
cases the result is a small electric field and its associated potential difference across the 
wire. The direction of the electric field and the sign of the potential difference depend on 
the sign of the charge carriers.

The separation of charges across a current-carrying wire is the Hall effect, and the 
potential difference is the Hall potential. In a steady state, the magnetic force on the 
charge carriers is just balanced by the electric force associated with charge separation, 
giving qE = qvd 

B, or simply E = vd 

B. In the rectangular conductor of Fig. 26.14, the 
electric field is uniform and the Hall potential is then VH = Eh = vd 

Bh. Using I = nqAvd 
and solving for vd, we can then write VH = IBh/nAq. Since A = ht, with t the conductor 
 thickness in the field direction (see Fig. 26.14), this becomes

 VH =
IB

nqt
 1Hall potential2 (26.6)

The quantity 1/nq is the Hall coefficient. Measuring the Hall coefficient gives information 
on the nature and density of the charge carriers. Alternatively, measuring VH in a material 
of known Hall coefficient carrying a known current gives a direct measure of the magnetic 
field strength.

Today, Hall-effect sensors are used not only to measure magnetic fields but also in 
a variety of practical applications including motion sensors using magnets mounted on 
 rotating machinery such as car and bicycle wheels, as contact-free switches that change 
state when a magnet approaches, and as compasses in smartphones.

26.5 origin of the Magnetic Field
Electric charges respond to electric fields, and electric charges produce electric fields. 
So it is with magnetism. We’ve just explored how moving electric charges respond to 
 magnetic fields; we’ll now see how moving electric charges produce magnetic fields. 
The first  inkling of a relation between electricity and magnetism came in 1820 when the 
 Danish scientist Hans Christian Oersted discovered that a compass needle is deflected by 
an electric current. A month after Oersted’s discovery became known in Paris, the French 
scientists Jean Baptiste Biot (rhymes with “Leo”) and Félix Savart (rhymes with “bazaar”) 
had experimentally determined the form of the force arising from a steady current.

Figure 26.13 Sketch for Conceptual Example 26.1.

assess As always, the force is at right angles to both the current and 
the magnetic field. As you’ll see in “Making the Connection,” below, 
this force is pretty feeble compared with the power line’s weight.

MakIng the ConneCtIon Earth’s equatorial field strength is 
30 μT, and the power line carries 500 A. What’s the magnetic force on 
a kilometer of the line?

evaluate Equation 26.5 gives

F = � Il
!

* B
S

� = IlB  sin 90° = 1500 A211.0 km2130 μT2112 = 15 N

That’s far less than the line’s weight, which is on the order of 10 kN.

Figure 26.14 The Hall electric field E
!
 H and Hall 

potential VH arise from the magnetic  deflection 
of charge carriers. In both (a) and (b) the current 
is to the right, carried in (a) by negative charge 
moving to the left and in (b) by positive charge 
moving to the right.

B
S

B
S

EH
S

EH
S

VH

t

h I
-

+

VH

t

h I

-

+

Electrons moving to
left are de�ected upward c

Magnetic
�eld points 
into page.

Protons moving to right 
are de�ected upward c

cresulting in a Hall electric
�eld pointing upward. Current

direction
is the same.

cresulting in a Hall electric �eld pointing
downward.

(a)

(b)
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26.5 Origin of the Magnetic Field 477

the Biot–Savart Law
The Biot–Savart law gives the contribution dB

S
 to the magnetic field at a point P due to a 

small element of current, in much the way that Coulomb’s law gives the electric field dE
S

 
due to a charge element dq. Figure 26.15 shows a wire carrying a steady current I and the 
contribution dB

S
 to the field at P from a small length dl of the wire. The current element 

I dl is the source of the field; it plays the same role as the charge dq in Coulomb’s law. The 
magnetic field decreases with the inverse square of the distance, just as in Coulomb’s law 
for the electric field.

There are important differences between the Coulomb and Biot–Savart laws. Charge—
the source of electric field—is a scalar quantity. But moving charge—the source of mag-
netic field—has direction. The Biot–Savart law accounts for that direction by defining a 
vector dl

!
 along the current; then the field contribution dB

S
 from the source element I dl

!
 

depends on the sine of the angle between dl
!
 and the unit vector rn  from the source toward 

the point where we’re evaluating the field. Mathematically, all this is summarized in a 
compact vector equation:

 dB
S

=
m0

4p

Idl
!

* rn

r2  1Biot9Savart law2 (26.7)

where m0 is the permeability constant, whose exact value is 4p * 10-7 N/A2 (equivalent 
and often-used units are T #  m/A).

Besides the more complicated directionality evidenced by the cross product in the 
Biot–Savart law, there’s another distinction between the Coulomb and Biot–Savart laws. 
Both describe fields of localized structures—namely, point charges and current elements. 
It makes sense to talk about an isolated point charge. But an isolated current element is im-
possible in the steady state; any steady current must flow in a complete circuit. So a Biot–
Savart calculation necessarily involves the fields produced by current elements around an 
entire circuit. The magnetic field obeys the superposition principle, so the net field at any 
point is the vector sum, or integral, of the field contributions of all the individual current 
elements:

 B
S

= LdB
S

=
m0

4pL
I dl

!
* rn

r2  1Biot9Savart law, integrated2 (26.8)

The field given in Equation 26.8 depends on the details of the current distribution, but 
the directionality associated with the cross product means that, quite generally, magnetic 
field lines encircle the current that is their source (Fig. 26.16). The next two examples use 
the Biot–Savart law; later we’ll find a simpler way to calculate magnetic fields for some 
 current distributions.

Figure 26.15 The Biot–Savart law gives the 
magnetic field d B

S
 at the point P arising from 

the current I flowing along the infinitesimal 
vector dl

!
.

rn

r

I

u

dl

P

dl is a small
piece of the wire.

dB is into page.

r  is a unit vector
from dl toward P.

u

S

u

u

n

Figure 26.16 Magnetic field lines generally 
encircle a current, with direction given by the 
right-hand rule.

B
S

Point your right
thumb in the direction
of the current.

Then curl your
�ngers to get
the �eld direction.

I

I

Find the magnetic field at an arbitrary point P on the axis of a circular 
loop of radius a carrying current I.

Interpret This is a problem involving the magnetic field produced 
by a specified current distribution.

Develop Figure 26.17a shows the current loop with the point P a 
distance x along the axis. The Biot–Savart law determines the field at 
P, and we’ve identified the vectors dl

!
 and rn  that appear in the law. As 

Fig. 26.17b shows, the individual field components perpendicular to 
the axis cancel, giving a net field that’s along the axis. So our plan is 
to find an expression for the x-components of the field contributions 
dB

S
, and then integrate to get the net field.

evaluate Figure 26.17a shows that the x-component of any dB
S

 is 
dBx = dB cos u, where cos u = a/r = a/2x2 + a2. The figure also 
shows that dl

!
 and rn  are perpendicular; since rn  is a unit vector, the 

product dl
!

* rn has magnitude dl. Then the term dl
!

* rn/r2 in the 
Biot–Savart law has magnitude dl/1x2 + a22, and we have

 B = LdBx =
m0 I

4p Lloop

dl

x2 + a2 
a2x2 + a2

 =
m0Ia

4p1x2 + a223/2 Lloop
 dl

ExaMPLE 26.4  Using the Biot–Savart Law: the Field of a Current Loop

(continued)
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478 Chapter 26 Magnetism: Force and Field

where the integral reduces to a simple form because the distance x is 
the same for all points on the loop. The remaining integral is the sum 
of infinitesimal lengths around the loop, or the loop circumference 
2pa. So we have

 B =
m0 Ia

2

21x2 + a223/2 (26.9)

The direction of the field, as suggested in Fig. 26.17b, is along the axis.

assess The field is strongest right at the loop center 1x = 02 
 because here we’re closest to the loop and so the contributions from 
all  segments of the loop are greatest. The field decreases as we move 
away from the loop. In general the field is a complicated function of 
distance, but for large distances 1x W a2 it falls off as 1/x3. That 
should remind you of the field we found for an electric dipole in 
Chapter 20. We’ll have more to say about this dipole-like behavior in 
Section 26.6. ■

Figure 26.17 Finding the magnetic field on the axis of a current loop.

rn

a

r
dB

P

x

I

dl and r are
perpendicular.

Field contributions
perpendicular to the
axis cancel c

cleaving a
net �eld along
the axis.

Same u;
cosu = a>r

I

B =  dB 

(a)

(b)

u

u

n

S

SS

dl
u

L

u

ExaMPLE 26.5 Using the Biot–Savart Law: the Field of a Straight Wire

Find the magnetic field produced by an infinitely long straight wire 
carrying steady current I.

Interpret This example, too, is about the field produced by a speci-
fied current distribution.

Develop Figure 26.18 is our drawing of the wire on a coordinate 
system with the x-axis along the wire. Since the wire is infinite, the 
field magnitude must be the same at all points equidistant from the 
wire. We show one such point P, a distance y from the wire. We also 
show an infinitesimal segment dl

!
 of the wire and the unit vector rn  to-

ward the field point. Our plan is to calculate the field contributions dB
S

 
from all such current elements, and then integrate to find the field B

S
.

Figure 26.18 Calculating the magnetic field at P due to an infinite straight 
wire carrying current I along the x-axis.

evaluate Both dl
!
 and rn  lie in the plane of the page, so at P the 

vector dl
!

* rn in the Biot–Savart law is out of the page. This is true 
for any segment of the wire. Therefore, we can sum the magnitudes 
of the contributions dB

S
 to find the magnitude of the net field, and we 

know its direction at P will be out of the page. With rn  a unit  vector, 
� dl

!
* rn � = dl sin u, where the triangle in Fig. 26.18 shows that 

sin u = y/r =  y/2x2 + y2. Then the Biot–Savart law gives a field 
contribution of magnitude

dB =
m0 I

4p
 
� dl

!
* rn �

r2 =
m0 I

4p
 
dl sin u

r2 =
m0 I

4p
 

y dl

1x2 + y223/2

Since the segment dl
!
 lies along the x-axis, dl = dx. Also, y is a 

 constant here, so the net field becomes

B = L  dB =
m0 Iy

4p
 L

∞

-∞

dx

1x2 + y223/2

where we chose the limits to include the entire infinite wire. The inte-
gral is a standard one, given in the integral tables of Appendix A; the 
result is

 B =
m0 I

2py
 (26.10)
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26.6 Magnetic Dipoles 479

the Magnetic Force Between Conductors
In Section 26.4 we found the force on a current-carrying wire in a magnetic field: 
F
S

= Il
!

* B
S

. Now you’ve seen that a straight wire produces a magnetic field. That 
means current-carrying wires exert magnetic forces on each other. Figure 26.20 shows the 
 situation for two parallel wires carrying currents in the same direction. The wires are a 
 distance d apart, so the field of wire 1 at the location of wire 2 follows from Equation 26.10: 
B1 = m0 I1/2pd. The field is perpendicular to wire 2, so the force on a length l of wire 2 is

 F2 = I2 l B1 =
m0 I1I2 l

2pd
 1magnetic force between two wires2 (26.11)

Figure 26.20 shows that the direction of this force is toward wire 1, so the parallel currents 
attract. Analyzing the force on wire 1 from wire 2 amounts to interchanging the subscripts 
1 and 2, giving an attractive force of the same magnitude. Reversing one of the currents 
would change the signs of both forces, showing that antiparallel currents repel.

The force between nearby conductors can be quite large, so engineers who design high-
strength electromagnets must provide enough physical support to withstand the magnetic 
force (Problem 85 considers this situation). The hum you often hear around electrical equip-
ment comes from the mechanical vibration of nearby conductors in transformers and other 
devices, as they respond to the changing force associated with 60-Hz alternating current.

assess This result for the magnetic field of a long current-carrying 
wire should remind you of our earlier finding for the electric field of a 
line charge; both decrease as the inverse of the distance from the line. 
But where the electric field of a line charge points radially outward, 
the magnetic field of a line current encircles the current, as shown in 
Fig. 26.19. Of course, an infinite line current is impossible, but our 
 result is a good approximation to the fields of finite wires if we’re 
close compared with the wire’s length. ■

B
S

B
S

I

I

Figure 26.19 Magnetic field lines encircle a 
straight wire, with their direction given by 
the right-hand rule.

Figure 26.20 The magnetic force between par-
allel currents in the same direction is attractive.

B1
S

B2
S

F
SF

S

I2

I1

l

l

Got It? 26.5 A flexible wire is wound into a flat spiral as shown 
in the figure. (1) If a current flows in the direction shown, will the coil (a) 
tighten or (b) become looser? (2) Does your answer depend on the current 
direction? Note: The current enters and leaves the coil through wires (not 
shown) at each end, perpendicular to the page.

I

26.6 Magnetic Dipoles
The current loop of Example 26.5 shows the essential characteristic of all steady-state 
currents—namely, a closed loop with current everywhere the same. Equation 26.9 gives 
the field on the loop axis: B = m0 Ia

2/21x2 + a223/2. For x W a we can ignore a2 com-
pared with x2 in the denominator, giving B ≃  m0 Ia

2/2x3. Multiply both sides by 2p to 
get B ≃  2m0 IA/4px3, where A is the loop area. Compare this result with the field on the 
axis of an electric dipole, Equation 20.6b: Both show the inverse-cube dependence of the 
dipole field, and both involve fundamental constants from the Coulomb and Biot–Savart 
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480 Chapter 26 Magnetism: Force and Field

laws that relate fields and their sources. Where the electric-field expression contains the 
electric dipole moment p, the product of charge and separation, the magnetic-field ex-
pression contains IA, the product of the loop current and loop area. We identify IA as the 
magnitude, m, of the current loop’s magnetic dipole moment. Then the on-axis magnetic 
dipole field becomes

 B =
m0

2p
 
m

x3  1on@axis field, magnetic dipole2 (26.12)

The magnetic dipole moment is a vector whose direction follows from the right-hand 
rule shown in Fig. 26.21. If we describe the loop by a vector of magnitude A whose direc-
tion is perpendicular to the loop as shown in Fig. 26.21, then we can write the magnetic 
dipole moment as m

!
= IA

S
. Practical current loops often have multiple turns; since each 

carries the same current, an N-turn loop has effective current NI, so its dipole moment 
becomes

 m
!

= NIA
S
  amagnetic dipole moment,

N@turn current loop b  (26.13)

Although we’ve found the magnetic field for a current loop only on the loop axis, 
a more elaborate calculation shows that the magnetic field anywhere far from the loop 
has exactly the same configuration as the electric field far from an electric dipole. And 
 although we developed the magnetic dipole moment for a circular loop, Equation 26.13 
in fact gives the dipole moment of any closed loop of current. We conclude that any 
current loop constitutes a magnetic dipole, and that far from the loop, its field will be 
that of a dipole. Electric and magnetic dipoles are analogous: Both have the same field 
configuration and mathematical form far from their sources (Fig. 26.22), and both are 
characterized by their respective dipole moments. But their fields aren’t the same. One is 
an electric field, its origin in static electric charge; the other is a magnetic field, its origin 
in moving electric charge—specifically, charge moving in a closed loop. And the similar-
ity in field configurations holds only at large distances; as Fig. 26.22 shows, the fields 
near electric and  magnetic dipoles are very different, reflecting the different structures 
that give rise to each.

Current loops are ubiquitous, and so are dipole magnetic fields. Multiple turns 
of current-carrying wire produce the strong magnetic fields of electromagnets, and 
 superconducting loops provide the fields in MRI scanners. At the atomic level, orbiting 
and spinning electrons constitute miniature magnetic dipoles. Even planets and stars have 
magnetic dipole fields.

Figure 26.21 Finding the direction of a current 
loop’s magnetic dipole moment.

m
u

Direction of I

I

Figure 26.22 
(a) The electric field of an electric dipole and 
(b) the magnetic field of a current loop. Far 
from their sources, both have the shape and 
the 1/r3 dependence of the dipole field.

B
S

E
S

+
−

(a)

I

(b)

Far away,
the �elds look 
similar c

cbut close in,
they’re different.

Many astrophysical objects have magnetic fields resulting from the interac-
tion of conducting fluids with the objects’ rotation. Earth’s field arises in its 
liquid-iron outer core, where convective flows work with Earth’s rotation 
to produce electric currents. The figure shows that Earth’s field approxi-
mates that of a dipole; the magnitude of the dipole moment is approximately 
m = 8.0 * 1022 A #  m2. The direction of the dipole moment vector differs from 
that of Earth’s rotation axis, which accounts for the difference between mag-
netic and true north. Earth’s field reverses roughly every million years, and 
geologists track seafloor spreading from the resulting magnetization in rocks. 
Farther out, Earth’s magnetic field traps high-energy particles and thus protects 
us from dangerous radiation. You can see from the figure that magnetic field 
lines concentrate toward the polar regions, which is why energetic particles 
tend to enter Earth’s atmosphere near the poles, making the aurora a high-lati-
tude phenomenon (recall Example 26.3).

The Sun’s gaseous nature makes its magnetic field much more dynamic, 
and magnetism is the dominant force in its hot, electrically conducting 

 atmosphere. The Sun’s field reverses approximately every 11 years, coinciding 
with the rise and fall of sunspots—regions of intense magnetic field that are 
often sources of violent outbursts.

aPPLICatIon Magnetic Fields of Earth and Sun

m

Rotation axisMagnetic
axis

N

S

11°
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26.6 Magnetic Dipoles 481

Dipoles and Monopoles
Atoms, molecules, and radio antennas are among the many structures that behave as elec-
tric dipoles. In all these, separation of positive and negative electric charge gives rise to 
the dipole. Magnetism is different. No one has ever found an isolated magnetic north 
or south pole analogous to an electric charge. Electromagnetic theory doesn’t rule out 
such  magnetic monopoles, and indeed some theories suggest that monopoles might have 
formed in the Big Bang. But they’ve never been found. All magnetic fields we’ve ever seen 
come from moving electric charge. As you’ll see in Section 26.7, that includes the fields 
of permanent magnets. Because steady currents form closed loops, the simplest magnetic 
entity is the dipole.

Electric field lines generally begin or end on electric charges. But there aren’t any 
“ magnetic charges”—magnetic monopoles. Magnetic field lines don’t begin or end, but 
form closed loops encircling the moving electric charges that are their sources. In  Chapter 21  
we developed Gauss’s law to quantify the statement that the number of electric field lines 
emerging from any closed surface depends only on the charge enclosed. Because there’s 
no magnetic charge, the net number of magnetic field lines and therefore the  magnetic 
flux A B

S
 #  dA

S
 emerging from any closed surface is always zero. Thus Gauss’s law for 

magnetism is

 C B
S # dA

S
= 0  1Gauss>s law for magnetism2 (26.14)

Like Gauss’s law for electricity, Equation 26.14 is one of the four fundamental laws that 
govern all electromagnetic phenomena in the universe. We’ll meet the remaining two laws 
shortly. Although Gauss’s law for magnetism has zero on its right side, it’s not devoid of 
content; rather, it says that all magnetic fields are configured so that their field lines have 
no beginnings or endings.

Got It? 26.6 The figure 
shows two fields. Which could be a 
magnetic field?

(a) (b)

the torque on a Magnetic Dipole
In Section 20.5 we found that an electric dipole p

!
 in a uniform electric field E

S
experi-

ences a torque t
!

= p
!

* E
S

; in a nonuniform field there’s a net force as well. The same is 
true for a magnetic dipole in a magnetic field, as you can see by considering the rectan-
gular current loop in a uniform field shown in Fig. 26.23a. Current flowing along the top 
and bottom of the loop results in upward and downward forces of equal magnitude, and 
neither a net force nor a net torque is associated with these forces. Currents flowing along 
the vertical sides also result in equal but opposite forces. However, as Fig. 26.23b shows, 
these forces result in a net torque about a vertical axis through the center of the loop. The 
vertical sides have length a and the currents are perpendicular to the horizontal magnetic 
field, so the force on each has magnitude Fside = IaB. The vertical sides are half the loop 
width b from the axis, so the torque due to each is tside = 1

2 bFside sin u = 1
2 bIaB sin u. Tor-

ques on the two sides are in the same direction (out of the page in Fig. 26.23b), so the net 
torque is t = IabB sin u = IAB sin u, with A the loop area. We’ve already identified IA as 
the magnitude of the loop’s magnetic dipole moment m

!
 and, given the direction of m

!
 as 

Figure 26.23 (a) A rectangular current loop in 
a uniform magnetic field. (b) Top view of the 
loop, showing that magnetic forces on the 
vertical sides result in a net torque.
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482 Chapter 26 Magnetism: Force and Field

shown in Figs. 26.21 and 26.23b, we can incorporate the directionality and the factor sin u 
into a cross product:

 t
!

= m
!

* B
S
  1torque on a magnetic dipole2 (26.15)

analogous to the torque on an electric dipole.
The magnetic torque of Equation 26.15 causes magnetic dipoles—current loops—to align 

with their dipole moment vectors along the magnetic field. It takes work to rotate a dipole out of 
alignment with the field, and in analogy with Equation 20.11 the associated potential energy is

 U = -m
! # B

S
 (26.16)

In a nonuniform field, a dipole also experiences a net force. That’s why the nonuniform 
field near the poles of a bar magnet attracts magnetic materials that, as we’ll see in the 
next section, contain magnetic dipoles.

The torque on a magnetic dipole is important in many technologies, including electric 
motors and MRI imaging. Some satellites use the torque produced by Earth’s magnetic 
field to orient themselves in space; with electricity generated from solar panels powering 
current loops, there’s no fuel to run out.

Electric motors are so much a part of our lives that we hardly think of them. 
Yet refrigerators, disk drives, subway trains, vacuum cleaners, power tools, 
food processors, fans, washing machines, water pumps, hybrid cars, and most 
industrial machinery would be impossible without electric motors.

At the heart of every electric motor is a current loop in a magnetic field. But 
instead of a steady current, the loop carries a current that reverses to keep the 
loop always spinning. In direct-current (DC) motors, this is achieved through 
the electrical contacts that provide current to the loop. The figure shows how 
current flows to the loop through a pair of stationary brushes that contact rotat-
ing conductors called the commutator. The current loop rotates to align with 
the field, but just as it does so, the brushes cross the gaps in the commutator 
and reverse the loop’s current and therefore its dipole moment vector. Now 
the loop swings another 180° to its new “desired” position, but again the com-
mutator reverses the current and so the loop rotates continuously. A rigid shaft 
spinning with the coils delivers mechanical energy. Thus the motor is a device 
that converts electrical energy to mechanical energy; the magnetic field is an 
intermediary in this energy conversion.

aPPLICatIon Electric Motors

−+

Rotating
loop

Brushes

Battery

Commutator

N

S

ExaMPLE 26.6 torque on a Current Loop: Designing a Hybrid-Car Motor

Toyota’s Prius gas–electric hybrid car uses a 60-kW electric motor 
that develops a maximum torque of 207 N #  m. Suppose you want to 
 produce this torque in a motor like the one in the preceding Application, 
consisting of a 700-turn rectangular coil measuring 30 cm by 20 cm  
in a uniform field of 50 mT. How much current does the motor need?

Interpret This problem is about an electric motor, which accord-
ing to the Application is essentially a current loop in a magnetic field. 
We’re given the torque and asked for the current.

Develop Equation 26.15, t
!

= m
!

* B
S

, determines the torque on 
a current loop. Figure 26.24 is a sketch of the loop at the point of 
maximum torque, tmax = mB, which occurs when  sin u = 1. To 
solve for the current, we need the magnetic dipole moment from  
Equation 26.13, m = NIA. Then tmax = NIAB. Figure 26.24 Loop for the motor of Example 26.6, shown in the position of 

maximum torque.

Magnetic dipole
moment is out
of page, so
m # B, giving
maximum
torque.

700-turn
coil

u S
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26.7 Magnetic Matter 483

26.7 Magnetic Matter
So far, we’ve said remarkably little about magnets. That’s because magnetism is funda-
mentally about moving electric charge. Magnets and magnetic matter are just a minor 
manifestation of this universal phenomenon.

The magnetism of everyday magnets and of magnetic materials like iron results from 
atomic-scale current loops. An electron orbiting a nucleus constitutes a simple current loop 
and therefore has a magnetic dipole moment (Fig. 26.25). More importantly, an electron 
possesses an intrinsic magnetic dipole moment associated with a quantum-mechanical an-
gular momentum called spin. Interactions among these magnetic moments determine the 
magnetic properties of atoms and of bulk matter. The details necessarily involve quantum 
mechanics; here we give a qualitative overview of magnetism in matter, which manifests 
itself in three distinct forms.

Ferromagnetism
The magnetism you’re familiar with is ferromagnetism, which is limited to a few  substances, 
including iron, nickel, cobalt, and some alloys and compounds. Strong  interactions among 
atomic magnetic moments result in magnetic domains, regions that contain 101791021  
atoms whose magnetic moments are all aligned in the same  direction. Normally the  
magnetic moments of different domains point in random directions, so there’s no net mag-
netic moment. But when an external magnetic field is applied, the  domains all align and the 
material acquires a net magnetic moment. If the field is  nonuniform, the material then expe-
riences a net force, which is why ferromagnetic materials are attracted to magnets.

So-called hard ferromagnetic materials retain their magnetism even after the applied 
field is removed; the result is a permanent magnet. A bar magnet, for example, has its 
internal magnetic moments aligned along its long dimension. You can think of its field as 
arising from currents circulating around the surface of the magnet (Fig. 26.26)—currents 
that ultimately result from the superposition of individual atomic current loops. Computer 

evaluate Solving for I using the maximum torque and the loop 
 dimensions gives

I =
tmax

NAB
=

207 N #  m
1700210.30 m210.20 m210.050 T2 = 99 A

assess That’s a large current, but propelling a car is a big job. The 
actual Prius motor operates at 650 V, so its 60-kW power requires cur-
rent I = P/V = 92 A, close to our answer. ■

Figure 26.25 In the classical model of the atom, 
the circling electron constitutes a miniature 
current loop. The current is opposite the 
 motion because the electron is negative. 
Drawing is only suggestive; the electron’s 
intrinsic magnetic dipole moment is usually 
more important than that resulting from its 
orbital motion.

m
u

−

I

v

+

Figure 26.26 (a) Cross section of a bar magnet, 
showing atomic current loops all aligned the 
same way and making a net current around 
the magnet. (b) Side view showing the field 
that results from this magnetization current.

B
S

(a) (b)

Field lines go into the south
pole of the magnet c

cand emerge
at the north pole.

There's no cancellation at
the edges, giving the net 
current around the magnet.

Adjacent loops cancel, so
there's no net current
within the material.

Atomic current loops are all
counterclockwise, producing 
magnetic dipole moments 
that point out of the page.

PheT: Magnets and Electromagnets
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484 Chapter 26 Magnetism: Force and Field

disks and credit card strips use hard ferromagnetic materials that retain information as 
patterns of permanent magnetization. Soft ferromagnetic materials, in contrast, don’t hold 
magnetization. They’re used where magnetization must be turned on and off rapidly, as in 
the “heads” that write information to computer disks. Ferromagnetism disappears at the 
so-called Curie temperature, as random thermal motions disrupt the organized alignment 
of magnetic dipoles; for iron this phase transition occurs at 1043 K.

Paramagnetism
Many substances that aren’t ferromagnetic nevertheless consist of atoms or molecules that 
have permanent magnetic dipole moments. There’s no strong interaction among the indi-
vidual dipoles, so these paramagnetic materials respond only weakly to external mag-
netic fields. Paramagnetic effects are generally significant only at very low temperatures.

Diamagnetism
Materials without intrinsic magnetic moments can have moments induced by changes 
in an applied magnetic field. Whereas ferromagnetic and paramagnetic materials are at-
tracted to magnets, these diamagnetic materials are repelled. We’ll explore the origins of 
diamagnetism in Chapter 27.

Magnetic Permeability and Susceptibility
We found in Chapter 20 that the alignment of molecular electric dipoles reduces the elec-
tric field in a material. In paramagnetic and ferromagnetic materials, alignment of mag-
netic dipoles causes an increase in the field. Figure 26.27 shows that this difference occurs 
because the magnetic field within a current loop points in the same direction as the loop’s 
magnetic dipole moment, whereas the internal field of an electric dipole is opposite the 
dipole moment. Ferromagnetic behavior is further complicated because it depends on the 
material’s past history, which is what makes permanent magnets possible. Coils for elec-
tromagnets and computer disk “heads” are wound on ferromagnetic cores to provide a 
much stronger magnetic field than the coil current alone could produce.

Got It? 26.7 Which of the following best describes the phenomenon  responsible 
for ordinary magnets? (a) high concentrations of magnetic monopoles; (b) collective 
 alignment of atomic magnetic dipoles; (c) electric currents due to free charges  circulating 
in magnetic materials; (d) separation of positive and negative electric charges to the 
 magnetic poles

26.8 ampère’s Law
Computing electric fields with Coulomb’s law in Chapter 20 was cumbersome for all 
but the simplest charge distributions. In Chapter 21 we saw how Gauss’s law greatly 
 simplified electric-field calculations for symmetric charge distributions. Is there an 
 analogous  approach for magnetic fields? Gauss’s law for magnetism, Equation 26.14, 
won’t do  because it doesn’t relate a magnetic field to its source—namely, moving charge.

Figure 26.28 shows two of the circular magnetic field lines surrounding a long wire 
carrying a current I out of the page. Imagine moving around the inner circle, and as you 
go a little way, take the product of a small length dl of the circular path with the magnetic 
field in the direction you’re going. Here you’re moving in the direction of the field, so that 
product is B dl; more generally, it’s the dot product B

S#  dl
!
. Now add up all these products 

around the circle. Formally, the result is the line integral A B
S#

 dl
!
, where the circle indicates 

that we’re integrating around a closed path. In this case the integral becomes just AB dl 
because B

S
and dl

!
 are in the same direction. But here the field magnitude is given by 

Equation 26.10: B = m0 I/2pr, where we’ve replaced y with the radius r. Since r has the 

Figure 26.27 Internal fields of electric and 
magnetic dipoles have opposite directions. 
(a) Electric dipoles reduce an applied electric 
field; (b) magnetic dipoles increase an applied 
magnetic field.
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26.8 Ampère’s Law 485

constant value r1 on the inner circle in Fig. 26.28, the integral becomes 1m0 I/2pr12Adl. 
NowAdl is the total length of the circular path, or its circumference 2pr1. So the value of 

A B
S#

 dl
!
 is m0 I. If you try the same thing for the outer circle in Fig. 26.28, r2 replaces r1, 

but the result is the same: A B
S#

 dl
!

= m0 I, independent of the radius.
We get the same result even if the path doesn’t coincide with a field line, as Fig. 26.29 

suggests. On the radial segments of the path shown, B
S

 #  dl
!

= 0 and there’s no contribu-
tion to the integral. On segment AB, the field is stronger than if we had stayed on CD, but 
the segment is proportionately shorter and the integral remains unchanged. We could ap-
proximate any arbitrary path as a sequence of radial segments and circular arcs, showing 
that the value of A B

S#
 dl

!
 is independent of path as long as the path surrounds the current I. 

The value of that integral is simply m0 I. Magnetic fields obey the superposition principle, 
so this result must be true for any current distribution, not just a single line current. That 
is, the line integralA B

S#
 dl

!
 around any closed path is directly proportional to the current 

encircled by that path. This result is Ampère’s law, a universal statement about current 
and magnetic field:

 A B
S#  dl

!
= m0 Iencircled 1Ampère>s law, steady currents2 (26.17)

Ampère’s law is another of the four fundamental laws of electromagnetism, although 
in the form of Equation 26.17 it’s limited to steady currents; it also provides a decent 
 approximation for slowly varying currents. In Chapter 29 we’ll generalize Ampère’s law 
to remove the restriction to steady currents.

Ampère’s law relates the magnetic field to its source—namely, moving charge in 
the form of electric current—as does the Biot–Savart law. In fact, the laws of Ampère 
and Biot–Savart are related in the same way as Gauss’s and Coulomb’s laws. Coulomb 
and Biot–Savart show how fields arise from pointlike sources—charge elements dq and 
 current elements I dl

!
. Gauss and Ampère are global descriptions, telling how the field 

must  behave over a geometric structure (a closed surface for Gauss, a closed loop for 
 Ampère) in  relation to the source (charge or current) enclosed or encircled by that struc-
ture. In both cases the field E

S
or B

S
that appears in the integral is the net field arising from 

all sources, not just the enclosed charge or encircled currents.
Ampère’s law, like Gauss’s, is a truly universal statement. It holds in the electromag-

netic devices we build, in atomic and molecular systems, and in distant  astrophysical 
objects. Find a path around which A B

S#
  dl

!
 isn’t zero, and you’ve found a region where 

electric current must be flowing (Fig. 26.30). Although it’s difficult to show mathemati-
cally, the Biot–Savart law follows from Ampère’s law just as Coulomb’s law follows 
from Gauss’s.

Figure 26.28 Two magnetic field lines 
 surrounding a wire carrying current out of the 
page.

B
S

Iout

r1
r2

dl
u

Figure 26.29 A closed loop that does not 
 coincide with a field line. The line integral 

A B
S

 #  dl
!
 around this loop has the same value 

m0 I that it has around a circular loop.

B
S

Iout

D C

B A

B and dl are
perpendicular along
radial segments, so B # dl = 0 here.

S

S

u

u

Figure 26.30 (a) Coronal streamers in the Sun’s atmosphere contain oppositely directed 
magnetic fields. (b) A model calculation of the magnetic field in a single streamer. Since 

A B
S#

 dl
!
 is clearly nonzero around the loop shown, there must be an encircled current.

B
S

Sun

(b)(a)
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486 Chapter 26 Magnetism: Force and Field

Using ampère’s Law
For charge distributions with sufficient symmetry, we used Gauss’s law to solve for the 
electric field in a simple and elegant way. We can do the same with Ampère’s law for 
 sufficiently symmetric current distributions. Here’s the approach:

ExaMPLE 26.7 ampère’s Law: Solar Currents

The long dimension of the rectangular loop in Fig. 26.30b is 400 Mm, 
and the magnetic field strength near the loop has a constant magnitude 
of 2 mT. Estimate the total current encircled by the rectangle.

Interpret This is a problem about currents encircled by a loop, so it 
must involve Ampère’s law.

Develop Figure 26.30b provides our drawing. Ampère’s law 
( Equation 26.17) equates A B

S#
 dl

!
 to m0 Iencircled, so we want to evaluate 

the integral around the loop shown and then solve for Iencircled.

evaluate On the short segments of the path, B
S
#dl

!
, so there’s no 

contribution to the integral. On both long segments, B
S

is constant 
and lies in the direction we’re traversing the path, so here 1 B

S#
 dl

!
 

 becomes simply Bl, where l is the length of the path segments. Each 
side contributes this much, so A B

S#
 dl

!
= 2Bl. Ampère’s law equates 

this quantity to m0Iencircled, so we can solve to get

Iencircled =
2Bl
m0

=
12212 mT21400 Mm2

4p * 10-7 N/A2 = 1012 A

assess This is a large current, but we’re dealing with a region 
much larger than Earth, so that shouldn’t be too surprising. You can 

get the direction of the current from the right-hand rule: Curl your 
 fingers around the loop in the direction that gives positiveA B

S#
 dl

!
, and 

your thumb points in the direction of the current. Here that’s into the 
page. In three dimensions this current actually flows around the Sun 
in approximately the equatorial plane. Note that our result depends 
crucially on the field reversing across the equatorial plane. In a truly 
uniform field, one side of the loop would have contributed Bl to the 
line integral, the other -Bl. That would make the integral zero and 
imply no encircled current. This shows that we can have a uniform 
field in a current-free region, but not a field that reverses sign—at 
least not abruptly as in this solar example.

✓tIP Ampèrian Loops

The loop used with Ampère’s law is truly arbitrary. It needn’t 
 coincide with a field line. In this example, the rectangular loop 
 coincided with the field over its long sides but not along its 
ends. The loop used with Ampère’s law is called an Ampèrian 
loop. Don’t confuse Ampèrian loops with field lines; they might 
 coincide, but they don’t have to.

Got It? 26.8 The figure shows three parallel wires 
carrying current of the same magnitude I, but in one of 
them the current direction is opposite that of the other two. 
If A B

S#
 dl

!
≠ 0 around loop 2, (1) what’s A B

S#
 dl

!
 around 

loop 1, and (2) which current is the opposite one?
A

B

C 2

1

probleM-solvIng strategy 26.1 ampère’s Law

IntEPrEt Interpret the problem to be sure it’s about magnetic field and current. Identify the 
symmetry.

DEvELoP Based on the symmetry, sketch some field lines. Then find an Ampèrian loop over 
which you’ll be able to evaluate A B

S#
 dl

!
. That means the field should be constant and parallel 

to the loop over all or part of the loop; where they’re not parallel they should be perpendicular. 
Like a gaussian surface, the Ampèrian loop is a purely mathematical construct; it need not 
 correspond to anything physical. Draw your loop.

EvaLUatE 

•   EvaluateA B
S#

 dl
!
 for your loop. This should be straightforward because you’ll be able to 

take B outside the integral over those segments where it’s constant, and segments where 
B
S

is perpendicular to the loop won’t contribute to the integral.

•   Evaluate the encircled current.

•   Equate your result forA B
S#

 dl
!
 to m0Iencircled, and solve for B. Symmetry should give you the 

direction of B
S

.

aSSESS Does your answer make sense in terms of what you know about the fields of simple 
charge and current distributions?

■
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26.8 Ampère’s Law 487

ExaMPLE 26.8  Using ampère’s Law: outside and Inside a Wire

A long, straight wire of radius R carries a current I distributed uni-
formly over its cross section. Find the magnetic field (a) outside and 
(b) inside the wire.

Interpret We follow our strategy and identify this as a situation 
with line symmetry. Therefore, the field depends only on the radial 
distance from the wire’s central axis.

Develop Magnetic field lines encircle their source, so the only field 
lines consistent with the symmetry are concentric circles. We’ve sketched 
some of these circular field lines in Fig. 26.31. The field is tangent to the 
field lines and, by symmetry, has the same magnitude B everywhere on 
a field line. So the field lines themselves make good Ampèrian loops.

evaluate 

•   The field is everywhere parallel to a circular Ampèrian 
loop, and its magnitude is constant on the loop, so for a loop 
of radius r,A B

S#
 dl

!
 becomes B Adl, or just 2prB, because 

Adl is the circumference 2pr. This is true both outside and 
inside the wire.

We’ll first answer (a):

•   For any loop outside the wire, the encircled current is the 
total current I.

•   Equating  our  expression  for  A B
S#

 dl
!
 to m0 times the 

 encircled current gives 2prB = m0I, so

 B =
m0 I

2pr
  a field outside any current

distribution with line symmetryb  (26.18)

Now on to (b):

•   Inside the wire, a circular Ampèrian loop encloses only 
some of the current. How much? With the current uniformly 
distributed over the wire’s cross section, there’s a uniform 
current density J = I/A = I/pR2. The encircled current is 
the current density times the area pr2 within our loop, so 
Iencircled = I1r2/R22.

•  Then we have 2prB = m0 I1r2/R22, which gives

 B =
m0 Ir

2pR2 a field inside a uniform current
distribution with line symmetryb  (26.19)

In both cases application of the right-hand rule shows that the field 
circles counterclockwise, as shown in Fig. 26.31.

assess Equation 26.18 is identical to our result for the line current of 
Example 26.5, and shows that the field outside any current distribution 
with line symmetry is the same as that of a line current at the symme-
try axis. We found the same thing for the electric fields outside cylin-
drical charge distributions, including the 1/r decrease with distance 
from the axis. Inside the wire, meanwhile, the field increases linearly 
with distance r from the cylinder axis. This makes sense  because, as r 
increases, we encircle more current in proportion to r2—while at the 
same time the field decreases as 1/r. You found a similar result for a 
uniformly charged cylinder if you worked Problem 56 in Chapter 21. 
Now, the electric and magnetic fields of cylindrical distributions look 
very different— E

S
 is radial, while B

S
 forms circles—but the depend-

ence on distance is the same in both cases.

✓tIP Symmetry Is Crucial

Our use of Ampère’s law to derive the field of a long wire depends 
crucially on symmetry. We can’t arbitrarily pull B outside the in-
tegral unless we know—as we do here from symmetry—that it’s 
constant in magnitude and in direction relative to our Ampèrian 
loop.

Figure 26.31 Cross section of a long cylindrical wire. Any field line can serve 
as an Ampèrian loop. Inside the wire, the loop’s radius r is less than the 
wire’s radius R; outside, r 7 R.

B
S

I

■

An infinite flat sheet carries current out of this page. The current is 
distributed uniformly along the sheet, with current per unit width 
given by Js. Find the magnetic field of this sheet.

Interpret We follow our strategy, identifying the current distribu-
tion as having plane symmetry. Then the only thing the field might 
depend on is the distance from the current-carrying sheet.

Develop The only field lines consistent with the symmetry are 
straight lines parallel to the plane; we’ve drawn the current and some 
field lines in Fig. 26.32. The situation is similar to Example 26.7, and 
a suitable Ampèrian loop is a rectangle with sides along the field lines 
and perpendicular edges; we’ve sketched one such rectangle of width l.

ExaMPLE 26.9  ampère’s Law: a Current Sheet

Figure 26.32 A current sheet extends infinitely to the left and right, as well 
as in and out of the page. Field lines and a rectangular Ampèrian loop are 
shown.

B
S

l

Iout

(continued) 
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488 Chapter 26 Magnetism: Force and Field

Fields of Simple Current Distributions
We’ve just used Ampère’s law to calculate the fields of two symmetric current distributions, 
and we compared them with analogous results for electric fields. Table 26.1 summarizes 
these and other analogies. Although the magnetic and electric fields may look different, they 

We drew the field in opposite directions on either side of the sheet; it 
had better be that way if, as we discussed for the oppositely directed 
solar magnetic fields in Example 26.7,A B

S#
 d l

!
 is to be nonzero. And it 

has to be nonzero because we know that our Ampèrian loop encircles 
current.

evaluate 

•   We evaluate A B
S#

 d l
!
 just as in Example 26.7, getting 2Bl.

•   The sheet carries current Js per unit width, so our rectangle 
of width l encircles a current Iencircled = Jsl.

•   Equating our expression for  A B
S#

 d l
!
 to m0 Iencircled gives 

2Bl = m 0 Js l, or

 B = 1
2 m 0 Js 1field of an infinite current sheet2 (26.20)

assess Make sense? Like the electric field of an infinite plane 
charge, the magnetic field of an infinite current sheet doesn’t  depend 
on distance from the sheet. Now, there’s no such thing as a truly 
 infinite sheet, so our result is an approximation valid near a finite 
sheet but not close to its edges. As Fig. 26.33 shows, the lines of a 

finite sheet wrap around the ends to form closed loops, and far from 
the loop the field begins to resemble that of a wire. But close in,   
Equation 26.20 holds. ■

Figure 26.33 Field of a finite-width current sheet.

Iout

Close in, the
�eld resembles
that of an in�nite sheet.

Far out, the �eld
lines become nearly circular.

Table 26.1 Fields of Some Simple Charge and Current Distributions

1

r3

1

r2

1

r

Field Dependence
on Distancea

Charge
Distribution

Electric
Field

Current
Distribution

Magnetic
Field

aFor �eld outside distribution

Electric dipole Magnetic dipole

Point charge
or spherically 
symmetric

Impossible for steady current

Charge distribution
with line symmetry

Current distribution
with line symmetry

In�nite �at sheet
of charge

Current sheetUniform �eld;
no variation
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exhibit the same general relationships between geometry and the way the fields  decrease 
with distance. Real distributions are more complicated, but may often be  approximated by 
these simple cases. Far from any current loop, for example, its field  approximates that of a 
dipole. Very near any wire, its field is essentially that of a long, straight wire. Very near any 
flat sheet of current, the field is essentially that of Example 26.9.

Solenoids
We found in Chapter 23 that there’s an essentially uniform electric field inside a parallel-
plate capacitor. Here we explore a current configuration that produces an analogously uni-
form magnetic field.

Figure 26.34a shows a single current loop and its magnetic field. Add a few turns 
to form an extended coil, and the field isn’t much different (Fig. 26.34b); more turns  
(Fig. 26.34c), and the region of strongest field is increasingly confined within the coil. 
With a very long coil (Fig. 26.34d), the field is strong and uniform deep within the coil 
and very weak outside. The limit of an infinitely long, tightly wound coil would produce a 
uniform field within and no field outside.

A tightly wound coil is a solenoid. For a long solenoid—much longer than its 
 diameter—we can use Ampère’s law to find the magnetic field inside the solenoid.  
Figure 26.35 shows a cross section through a solenoid, with a rectangular Ampèrian loop 
of width l. Since the field is zero outside, the only contribution to A B

S#
 d l

!
 is from the in-

terior  segment parallel to the field, and with a uniform field that gives Bl. If the solenoid 
carries current I and consists of n turns of wire per unit length, then Fig. 26.35 shows that 
our  Ampèrian loop encircles a total current nlI. So Ampère’s law reads Bl = m0nlI, or

 B = m0 nI 1solenoid field2 (26.21)

Since the rectangle’s vertical dimension never entered the calculation, the field has 
this same magnitude everywhere inside the solenoid. Although Fig. 26.34 depicts circular 
coils, Equation 26.21 holds for a solenoid of any cross section.

Solenoids produce uniform magnetic fields in a variety of applications, including the 
long cylindrical “tunnel” of an MRI scanner. Because the field becomes nonuniform at  

Figure 26.34 As the coil gets longer, 
the interior field stays nearly constant 
but the exterior field weakens as the 
field lines spread ever farther apart.

(a)

(b)

(c)

(d)

Figure 26.35 Cross section of a long  solenoid, 
showing a rectangular Ampèrian loop 
 straddling the region where solenoid coils 
emerge from the plane of the page.

B
S

n turns per unit
length c

cso length l
encircles nl turns c

ceach carries
the current I,
so encircled 
current is nlI.Iout

l

Iin
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490 Chapter 26 Magnetism: Force and Field

the ends of a solenoid, ferromagnetic materials are attracted into the coil. Small  solenoids 
can thus produce straight-line motion of an iron plunger. One application is the  solenoid 
on a car starter, which engages the starter motor’s gear with the gasoline engine. 
 Solenoid-operated valves are widely used in controlling fluid flows; the valves that admit 
water to your washing machine and dishwasher are solenoid valves.

With its current flowing around an essentially cylindrical surface, the solenoid might 
remind you of the bar magnet in Fig. 26.26. There, atomic current loops produce a mag-
netization current flowing around the cylindrical magnet. Indeed, a solenoid and a bar 
magnet are very similar, and they produce similar magnetic fields (Fig. 26.37). Wrap a so-
lenoid around on itself and you’ve got a toroid—a donut-shaped coil whose circular field 
lines close back on themselves. Passage Problems 88–91 explore toroids.

Figure 26.37 Iron filings trace the magnetic 
field of a loosely wound solenoid. Compare 
with the field of a bar magnet shown in  
Fig. 26.1.

ExaMPLE 26.10  a Solenoid: the Current in an MrI Scanner

The solenoid used in an MRI scanner is 2.4 m long and 95 cm in di-
ameter. It’s wound from superconducting wire 2.0 mm in diameter, 
with adjacent turns separated by an insulating layer of negligible 
thickness. Find the current that will produce a 1.5-T magnetic field 
inside the solenoid.

Interpret This is a problem about a solenoid, which involves relat-
ing current and field.

Develop Equation 26.21, B = m0 nI, provides the relation we need. 
To use it we need n, the number of turns per unit length. Figure 26.36 
shows how we find n from the wire diameter. Knowing n, we can use 
Equation 26.21 to find the current.

evaluate Figure 26.36 shows that n = 500 turns per meter. So now 
we can solve Equation 26.21 to get

I =
B

m0 n
=

1.5 T

14p * 10-7 N/A221500 m-12 = 2.4 kA

assess That’s a large current, but it’s readily handled by the  niobium–
titanium superconductor in the MRI scanner. Notice that more turns per 
unit length would reduce the current demand; that’s because each turn 
carries the same current I, so more turns increase the encircled current 
and thus the field for a given total current. Our answer here is only 
approximate; with its 2.4-m length and a diameter of nearly 1 m, our 
solenoid barely approaches the limit of a “long” solenoid. ■

Figure 26.36 Finding n.

1
500Wire diameter is 2 mm =      m c

ctherefore, 500 wire diameters
occupy 1 m, so n = 500 turns>meter.
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Magnetism in matter arises from the 
 interactions of atomic-scale current 
loops. Ferromagnetic materials have 
strong  interactions and exhibit the bulk 
 magnetism associated with permanent 
magnets and with magnetic materials like 
iron. Paramagnetism and diamagnetism 
are weaker manifestations of magnetism in 
matter.

Chapter 26 Summary
Big Idea

The big new idea here is magnetism—an interaction that fundamentally involves moving electric charge. Moving charge produces magnetic fields, 
and moving charges respond to magnetic fields by experiencing a magnetic force.

Key Concepts and Equations

The magnetic force on a charge q moving with velocity v
!
 in a magnetic field B

S
is

F
S

= qv
!

* B
S
  1magnetic force2

The force acts at right angles to both v
!
 and B

S
, and therefore it does no work. v

u

B
S

F
S

q

Force is 
perpendicular
to both v and B.

u S

The Biot–Savart law describes the magnetic field 
dB

S
 arising from a small element of steady current:

dB
S

=
m0

4p
 
I dl

!
* rn

r2

Here m0 is the permeability constant, with value 
4p * 10-7 N/A2.

rn
dl

dl is a small
piece of the wire.

dB is into page.

r  is a unit vector
from dl toward P.

I

P

r

u

S

u

u

u

n

Ampère’s law provides a more global description of how 
magnetic fields arise from currents, relating the line inte-
gral around any closed loop to the encircled current:

C B
S # dl

!
= m 0 Iencircled

Ampère’s law in this form applies only to steady currents.

Gauss’s law for magnetism expresses the fact that there are no magnetic monopoles— magnetic 
analogs of electric charge—and that magnetic field lines therefore do not begin or end:

C B
S # dA

S
= 0

Static electric fields, in contrast, always begin or end on electric charges.

Electric �eldMagnetic �eld

applications

A charged particle moving  perpendicular to 
a uniform magnetic field undergoes  circular 
mot ion with  the  cyclotron frequency 
f = qB/2pm. More generally, charged particles 
in magnetic fields follow spiral paths, “trapped” 
on the field lines.

The magnetic force on a straight wire of 
length l carrying current I in a uniform mag-
netic field is F

S
= Il

!
* B

S
. Parallel wires 

a distance d apart experience forces from 

each other’s magnetic field: F =
m0I1 I2l

2pd
. 

The force is attractive for currents in the 
same direction, repulsive for currents in op-
posite directions.

F
SF

S

I2

I1

A current loop gives rise to a magnetic 
field that, at distances large compared 
with the loop’s size, is a dipole field. The 
loop’s magnetic dipole moment has mag-
nitude m = IA, with A the loop area, and 
the loop responds to an external magnetic 
field by experiencing the torque typical 
of a dipole: t

!
= m

!
* B

S
.

B
S

I

Fields of simple current distributions:

Line current: B =
m0 I

2pr
 Current sheet: B = 1

2 m0 Js Solenoid: B = m 0 nI

B
S

l

Iout
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17. Find the magnitude of the magnetic force on a proton moving at 
2.5 * 105 m/s (a) perpendicular; (b) at 30°; (c) parallel to a 0.50-T 
magnetic field.

18. The magnitude of Earth’s magnetic field is about 0.5 gauss near 
Earth’s surface. What’s the maximum possible magnetic force 
on an electron with kinetic energy of 1 keV? Compare with the 
gravitational force on the electron.

19. A velocity selector uses a 60-mT magnetic field perpendicular 
to a 24-kN/C electric field. At what speed will charged particles 
pass through the selector undeflected?

Section 26.3 Charged Particles in Magnetic Fields
20. Find the radius of the path described by a proton moving at  

15 km/s in a plane perpendicular to a 400-G magnetic field.
21. How long does it take an electron to complete a circular orbit 

perpendicular to a 1.0-G magnetic field?
22. Radio astronomers detect electromagnetic radiation at a fre-

quency of 42 MHz from an interstellar gas cloud. If the radiation 
results from electrons spiraling in a magnetic field, what’s the 
field strength?

23. In a microwave oven, electrons describe circular motion in a 
magnetic field within a special tube called a magnetron; as you’ll 
learn in Chapter 29, the electrons’ motion results in the produc-
tion of micowaves. (a) If the electrons circle at a frequency of 
2.45 GHz, what’s the magnetic field strength? (b) If the magne-
tron can accommodate electron orbits with maximum diameter 
2.72 mm, what’s the electrons’ energy in eV?

24. Two protons, moving in a plane perpendicular to a uniform 
500-G magnetic field, undergo an elastic head-on collision. How 
much time elapses before they collide again?

Section 26.4 The Magnetic Force on a Current
25. Find the magnitude of the force on a 65.5-cm-long wire carrying 

12.0 A at right angles to a 475-G magnetic field.
26. A wire carrying 15 A makes a 25° angle with a uniform magnetic 

field. The magnetic force per unit length of wire is 0.31 N/m. 
Find (a) the magnetic field strength and (b) the maximum force 
per unit length that could be achieved by reorienting the wire.

27. You’re on a team performing a high-magnetic-field experiment. 
A conducting bar carrying 4.1 kA will pass through a 1.3-m-long 
region containing a 12-T magnetic field, making a 60° angle with 
the field. A colleague proposes resting the bar on wooden blocks. 
You argue that it will have to be clamped in place, and to back 
up your argument you claim that the magnetic force will exceed 
10,000 pounds. Are you right?

28. A wire with mass per unit length 75 g/m runs horizontally at 
right angles to a horizontal magnetic field. A 6.2-A current in 
the wire results in its being suspended against gravity. What’s the 
magnetic field strength?

Section 26.5 Origin of the Magnetic Field
29. A wire carries 6.71 A. You form it into a single-turn circular 

loop and measure a magnetic field of 42.8 μT at the loop center.  
(a) What’s the loop’s radius? (b) What’s the field strength on the 
loop axis at 10.0 cm from the loop center?

30. A single-turn wire loop is 2.0 cm in diameter and carries a  
650-mA current. Find the magnetic field strength (a) at the loop 
center and (b) on the loop axis, 20 cm from the center.

For thought and Discussion
 1. A charged particle moves through a region containing only a 

magnetic field. Under what condition will it experience no force?
 2. An electron moving with velocity v

!
 through a magnetic field  

B
S

experiences a magnetic force F
S

. Which of the vectors F
S

, v
!
, 

and B
S

must be at right angles?
 3. A magnetic field points out of this page. Will a positively charged 

particle moving in the plane of the page circle clockwise or coun-
terclockwise as viewed from above?

 4. Do particles in a cyclotron gain energy from the electric field, the 
magnetic field, or both? Explain.

 5. An electron and a proton moving at the same speed enter a region 
containing a uniform magnetic field. Which is deflected more 
from its original path?

 6. Two identical particles carrying equal charge are moving in op-
posite directions, perpendicular to a uniform magnetic field, when 
they collide elastically head-on. Describe their subsequent motion.

 7. In what two senses does a current loop behave like a magnetic 
dipole?

 8. The Biot–Savart law shows that the magnetic field of a current 
element decreases as 1/r2. Could you put together a complete cir-
cuit whose field exhibits this decrease? Why or why not?

 9. Do currents in the same direction attract or repel? Explain.
10. If a current is passed through an unstretched spring, will the 

spring contract or expand? Explain.
11. Figure 26.38 shows some magnetic field lines associated with 

two parallel wires carrying equal currents perpendicular to the 
page. Are the currents in the same or opposite directions? How 
can you tell? Note: The only currents in Fig. 26.38 are those in 
the two wires.

B
S

Figure 26.38 For Thought and Discussion 11

12. Why is a piece of iron attracted into a solenoid?
13. Would there be a magnetic force on a piece of iron deep inside a 

long solenoid? Explain.
14. An unmagnetized piece of iron has no net magnetic dipole 

 moment, yet it’s attracted to either pole of a bar magnet. Why?

exercises and problems
Exercises

Section 26.2 Magnetic Force and Field
15. Find (a) the minimum magnetic field needed to exert a 5.4-fN 

force on an electron moving at 21 Mm/s and (b) the field strength 
required if the field were at 45° to the electron’s velocity.

16. An electron moving at right angles to a 0.10-T magnetic field ex-
periences an acceleration of 6.0 * 1015 m/s2. (a) What’s its speed? 
(b) By how much does its speed change in 1 ns?
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(radius 3000 km). What current would give the 62@μT field meas-
ured at the north magnetic pole?

46. A beam of electrons moving in the x-direction at 8.7 Mm/s enters 
a region where a uniform 180-G magnetic field points in the y-
direction. The boundary of the field region is perpendicular to the 
beam. How far into the field region does the beam penetrate?

47. Show that the orbital radius of a charged particle moving at 
right angles to a magnetic field B can be written r = 12Km/qB, 
where K is the kinetic energy in joules, m the particle’s mass, and 
q its charge.

48. A 90-cm-diameter cyclotron with a 2.0-T magnetic field is used 
to accelerate deuterium nuclei (one proton plus one neutron). 
(a) At what frequency should the dee voltage be alternated?  
(b) What’s the maximum kinetic energy of the deuterons?  
(c) If the magnitude of the potential difference between the dees 
is 1500 V, how many orbits do the deuterons complete before 
reaching maximum energy?

49. An electron is moving in a uniform 0.25-T magnetic field; its 
velocity components parallel and perpendicular to the field are 
both 3.1 Mm/s. (a) What’s the radius of the electron’s spiral path?  
(b) How far does it move along the field direction in the time it 
takes to complete a full orbit about the field?

50. A wire of negligible resistance is bent into a rectangle as in  
Fig. 26.40, and a battery and resistor are connected as shown. 
The right-hand side of the circuit extends into a region containing 
a uniform 38-mT magnetic field pointing into the page. Find the 
magnitude and direction of the net force on the circuit.

Bin
S

−

+
12 V 10 cm

3.0 Ω

Figure 26.40 Problem 50

51. You’re designing a prosthetic ankle that includes a miniature 
electric motor containing a 150-turn circular coil 15 mm in di-
ameter. The motor needs to develop a maximum torque of 
3.1 mN #m. The strongest magnets available that will fit in the 
prosthesis produce a 220-mT field. What current do you need in 
your motor’s coil?

52. A 20-cm-long conducting rod with mass 18 g is suspended by 
wires of negligible mass (Fig. 26.41). A uniform magnetic 
field of 0.15 T points horizontally into the page, as shown. An 
external circuit supplies current between the supports A and B.  
(a) What’s the minimum current necessary to move the bar to the 
upper position, so it’s supported against gravity? (b) What direc-
tion should the current flow?

Bin
S

A B

20 cm

Figure 26.41 Problem 52

53. A rectangular copper strip measures 1.0 mm in the direction of a 
uniform 2.4-T magnetic field. When the strip carries a 6.8-A cur-
rent perpendicular to the field, a 1.2@μV Hall potential develops 
across the strip. Find the number density of free electrons in the 
copper.

BIO

31. A 2.2-m-long wire carrying 3.5 A is wound into a tight coil 5.0 cm  
in diameter. Find the magnetic field at its center.

32. What’s the current in a long wire if the magnetic field strength 
1.2 cm from the wire’s axis is 67 μT?

33. In standard household wiring, parallel wires about 1 cm apart 
carry currents of about 15 A. What’s the force per unit length 
between these wires?

Section 26.6 Magnetic Dipoles
34. Earth’s magnetic dipole moment is 8.0 * 1022 A #m2. Find the 

magnetic field strength at Earth’s magnetic poles.
35. A single-turn square wire loop 18.0 cm on a side carries a 

1.25-A current. (a) What’s the loop’s magnetic dipole moment?  
(b) What’s the magnitude of the torque the loop experiences 
when it’s in a 2.12-T magnetic field with the loop’s dipole mo-
ment vector at 65.0° to the field?

36. An electric motor contains a 250-turn circular coil 6.2 cm in di-
ameter. If it develops a maximum torque of 1.2 N #m at a current 
of 3.3 A, what’s the magnetic field strength?

Section 26.8 Ampère’s Law
37. The line integral of the magnetic field on a closed path surround-

ing a wire has the value 8.8 μT #m. Find the current in the wire.
38. The magnetic field shown in Fig. 26.39 has uniform magnitude 

75 μT, but its direction reverses abruptly. Find the current encir-
cled by the rectangular loop shown.

B
S

20 cm

15 cm

Figure 26.39 Exercise 38

39. Number 12 gauge wire, commonly used in household wiring, is 
2.053 mm in diameter and can safely carry currents of up to 20.0 
A. For a wire carrying this maximum current, find the magnetic 
field strength (a) 0.150 mm from the wire’s axis, (b) at the wire’s 
surface, and (c) 0.375 mm beyond the wire’s surface.

40. Show that Equations 26.18 and 26.19 give the same results when 
evaluated at the wire’s surface.

41. A superconducting solenoid has 3300 turns per meter and carries 
4.1 kA. Find the magnetic field strength in the solenoid.

Problems
42. A particle carrying a 50@μC charge moves with veloc-

ity v
!

= 5.0in + 3.2kn  m/s through a magnetic field given by 
B
S

= 9.4 in + 6.7 jn T. (a) Find the magnetic force on the particle. 
(b) Form the dot products F

S # v
!
 and F

S # B
S

 to show explicitly 
that the force is perpendicular to both v

!
 and B

S
.

43. Jupiter has the strongest magnetic field in our solar system, about 
14 G at its poles. Approximating the field as that of a dipole, find 
Jupiter’s magnetic dipole moment. (Hint: Consult Appendix E.)

44. A proton moving with velocity v
!
1 = 3.6 * 104 jn m/s experiences 

a magnetic force of 7.4 * 10-16 in N. A second proton moving on 
the x-axis experiences a magnetic force of 2.8 * 10-16 jn N. Find 
the magnitude and direction of the magnetic field (assumed uni-
form), and the velocity of the second proton.

45. A simplified model of Earth’s magnetic field has it originating in 
a single current loop at the outer edge of the planet’s liquid core 
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494 Chapter 26 Magnetism: Force and Field

63. A long, straight wire carries a 25-A current. A 10-cm by 15-cm 
rectangular wire loop carrying 850 mA is 3.0 cm from the wire, 
as shown in Fig. 26.45. Find the magnitude and direction of the 
net magnetic force on the loop.

10 cm

I2 = 850 mA

3.0 cm

15 cm

I1 = 25 A

Figure 26.45 Problem 63

64. A long conducting rod of radius R carries a nonuniform  current 
density J = J0r/R, where J0 is a constant and r is the radial dis-
tance from the rod’s axis. Find expressions for the magnetic field 
strength (a) inside and (b) outside the rod.

65. A long, hollow conducting pipe of radius R carries a uniform 
 current I along the pipe, as shown in Fig. 26.46. Use Ampère’s 
law to find the magnetic field strength (a) inside and (b) outside 
the pipe.

R I

Figure 26.46 Problem 65

66. The coaxial cable shown in Fig. 26.47 consists of a solid inner 
conductor of radius a and a hollow outer conductor of inner radius 
b and thickness c. The two carry equal but opposite currents I,  
uniformly distributed. Find expressions for the magnetic field 
as a function of radial position r (a) within the inner conductor,  
(b) between the inner and outer conductors, and (c) beyond the 
outer conductor.

c

2b
2a

Figure 26.47 Problems 66 and 71

67. A solenoid used in a plasma physics experiment is 10 cm in di-
ameter, is 1.0 m long, and carries a 35-A current to produce a 
100-mT magnetic field. (a) How many turns are in the solenoid? 
(b) If the solenoid resistance is 2.7 Ω, how much power does it 
dissipate?

68. You have 10 m of 0.50-mm-diameter copper wire and a battery 
capable of passing 15 A through the wire. What magnetic field 
strengths could you obtain (a) inside a 2.0-cm-diameter solenoid 
wound with the wire as closely spaced as possible and (b) at the 
center of a single circular loop made from the wire?

69. Derive Equation 26.21 for the solenoid field by considering  
the solenoid to be made of infinitesimal current loops. Use Equa-
tion 26.9 for the loop fields, and integrate over all loops.

70. The largest lightning strikes have peak currents of around 250 kA,  
flowing in essentially cylindrical channels of ionized air. How far 
from such a flash would the resulting magnetic field be equal to 
Earth’s magnetic field strength, about 50 μT?

CH

54. A single-turn wire loop 10 cm in diameter carries a 12-A current. 
It experiences a 0.015 N #m torque when the normal to the loop 
plane makes a 25° angle with a uniform magnetic field. Find the 
magnetic field strength.

55. A simple electric motor consists of a 220-turn coil, 4.2 cm in 
diameter, mounted between the poles of a magnet that produces 
a 95-mT field. When a 15-A current flows in the coil, what are  
(a) the coil’s magnetic dipole moment and (b) the motor’s maxi-
mum torque?

56. Nuclear magnetic resonance (NMR) is a technique for analyzing 
chemical structures and also the basis of magnetic resonance im-
aging used for medical diagnosis. NMR relies on sensitive meas-
urements of the energy needed to flip atomic nuclei by 180° in a 
given magnetic field. In an apparatus with a 9.4-T magnetic field, 
what energy is needed to flip a proton (m = 1.41 * 10- 26 A #m2) 
from parallel to antiparallel to the field?

57. A wire carrying 1.5 A passes through a 48-mT magnetic field. 
The wire is perpendicular to the field and makes a quarter-circle 
turn of radius 21 cm in the field region, as shown in Fig. 26.42. 
Find the magnitude and direction of the magnetic force on the 
curved section of wire.

1.5 A

21 cm

Bin

Figure 26.42 Problem 57

58. Your company is developing a device incorporating a 20-cm- 
diameter coil carrying 0.50 A that, when properly oriented, will 
just cancel Earth’s 50@μT magnetic field at the coil’s center. How 
much wire must you requisition for each coil?

59. A single piece of wire carrying current I is bent so it includes a 
circular loop of radius a, as shown in Fig. 26.43. Find an expres-
sion for the magnetic field at the loop center.

I

a
I I

Figure 26.43 Problem 59

60. You and a friend get lost while hiking, so your friend pulls out 
a magnetic compass to get re-oriented. However, you’re stand-
ing right under a power line carrying 1.5 kA toward magnetic 
north; it’s 10 m above the compass. The horizontal component of 
Earth’s magnetic field at your latitude points northward and has 
magnitude 0.24 G. Will the compass help you find your way?

61. Part of a long wire carrying current I is bent into a semicircle 
of radius a, as in Fig. 26.44. Use the Biot–Savart law to find the 
magnetic field at P, the center of the semicircle.

P

aI

Figure 26.44 Problem 61

62. Three parallel wires of length l each carry current I in the same 
direction. They’re positioned at the vertices of an equilateral tri-
angle of side a, and oriented perpendicular to the triangle. Find 
an expression for the magnitude of the force on each wire.

BIO

CH
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 colleague argues you’ll get the greatest dipole moment and there-
fore the most torque with a multi-turn coil. You say a 1-turn coil 
is best. Who’s right?

80. The structure shown in Fig. 26.50 is made from conducting rods. 
The upper horizontal rod (mass 22 g, length 95 cm) is free to 
slide vertically on the uprights while maintaining electrical con-
tact. A battery connected across the insulating gap at the bottom 
of the left-hand upright drives 66 A through the structure. At 
what height h will the upper wire be in equilibrium?

− +
l = 95 cm

h
Gap

Figure 26.50 Problem 80

81. A long, flat conducting ribbon of width w is parallel to a long, 
straight wire; its near edge is a distance a from the wire (Fig. 26.51).  
Wire and ribbon carry the same current I; it’s distributed uni-
formly over the ribbon. Use integration to show that the force per 

unit length between the two has magnitude 
m0I

2

2pw
 ln aa + w

a
b .

w

I

a

I

Figure 26.51 Problem 81

82. Find an expression for the magnetic field at the center of a square 
loop of side a carrying current I.

83. Repeat the calculation in Problem 69 for a solenoid of finite 
length l and cross-sectional radius a to find the magnetic field 
strength at the center of the solenoid’s axis.

84. A magnetic dipole m
!

= m in is on the axis of a circular current 
loop of radius a oriented as shown in Fig. 26.17a, a distance x 
from the center. Differentiate Equation 26.16 to find the force on 
the dipole, and evaluate its magnitude for x = a. Is the force at-
tractive or repulsive?

85. You’re an engineer at a nuclear power plant, and one of your col-
leagues has drawn up plans to reroute the conductors carrying 
current from the plant’s electric generator. Your colleague wants 
to carry this current on two parallel conducting rods 30 cm apart; 
each rod carries 15 kA with the currents flowing in opposite di-
rections. The proposal calls for clamping the conductors in place 
every meter, with clamps capable of withstanding a maximum 
force of 100 N. Is the clamp design adequate?

86. Derive Equation 26.20 by considering the current sheet to be 
made of infinitely many infinitesimal line currents.

87. Your roommate is sold on “magnet therapy,” a sham treatment 
using small bar magnets attached to the body. You skeptically 
ask your roommate how this is supposed to work. He mumbles 
something about the Hall effect speeding blood flow. In reply, 
you estimate the Hall potential associated with typical blood pa-
rameters in the 100-G field of a bar magnet: red blood cells car-
rying 2-pC charge in a 12-cm/s flow through a 3.0-mm-diameter 
blood vessel containing 5 billion red blood cells per mL. To show 
that the Hall potential is negligible, you compare your estimate 
with the tens of mV typical of bioelectric activity. How do the 
two values compare?

CH

CH

CH

CH
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71. A coaxial cable (see Fig. 26.47) consists of a 1.0-mm-diameter 
inner conductor and a 0.20-mm-thick outer conductor with in-
terior diameter 1.0 cm. A 100-mA current flows down the inner 
conductor and back along the outer conductor. Find the magnetic 
field strength (a) 0.10 mm, (b) 5.0 mm, and (c) 2.0 cm from the 
cable axis.

72. Indium antimonide (InSb) is a semiconductor commonly used 
in Hall-effect devices because of its relatively large Hall coef-
ficient. A magnetic-field sensor is made from a 50@μm-thick strip 
of InSb, with Hall coefficient 228 cm3/C. The table below shows 
the Hall potential as a function of current when the sensor is ori-
ented with its current perpendicular to the unknown magnetic 
field. Plot the Hall potential against a quantity that should give a 
straight line, determine a best-fit line, and from it find the mag-
netic field strength.

I (mA) 10.0 20.0 30.0 40.0 50.0

VH (mV) 0.393 0.750 1.24 1.56 1.97

73. Suppose the current sheet in Example 26.9 is actually a slab 
with non-negligible thickness d and that the current is distrib-
uted uniformly throughout its volume. Find an expression for the 
magnetic field inside the slab as a function of the perpendicular 
distance x from the center plane of the slab. Show that your result 
agrees with that of Example 26.9 at the surface of the slab.

74. A circular wire loop of radius 15 cm and negligible thickness 
carries a 2.0-A current. Use suitable approximations to find the 
magnetic field of this loop (a) in the loop plane, 1.0 mm outside 
the loop, and (b) on the loop axis, 3.0 m from the loop center.

75. A long, flat conducting bar of width w carries a total current I 
distributed uniformly, as shown in Fig. 26.48. Use approxima-
tions to write expressions for the magnetic field strength (a) near 
the conductor surface 1r V w2 but not near its edges and (b) far 
from the conductor 1r W w2.

w

I

Figure 26.48 Problem 75

76. A long, hollow conducting pipe of radius R and length l carries 
a uniform current I flowing around the pipe (Fig. 26.49). Find 
expressions for the magnetic field (a) inside and (b) outside the 
pipe. (Hint: What configuration does this resemble?)

R I

Figure 26.49 Problem 76

77. A solid conducting wire of radius R runs parallel to the z-axis and 
carries a current density given by J

S
= J011 - r/R2kn, where J0 is 

a constant and r is the distance from the wire axis. Find expres-
sions for (a) the total current in the wire and (b) the magnetic 
field for r 7 R and (c) r 6 R.

78. A disk of radius a carries uniform surface charge density s and 
rotates with angular speed v about the disk axis. Show that the 
magnetic field at the disk’s center is 12 m 0sva.

79. You’re developing a system to orient an orbiting telescope. The 
system uses three perpendicular coils, with torques developed in 
Earth’s magnetic field when current passes through them. Weight 
limitations restrict you to a length l of wire for each coil. A 

DATA

CH
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496 Chapter 26 Magnetism: Force and Field

The ITER consortium, an international collaboration, is building a large 
toroidal fusion experiment in France; it’s expected to be the first fusion 
device to produce energy on a large scale. Figure 26.52b shows a cross 
section of a toroid, with current emerging from the page at the inner edge 
and descending at the outer edge. The black circle is an Ampèrian loop.

Passage Problems
A toroid is a solenoid-like coil bent into a circle (Fig. 26.52a). Toroids 
are the configuration of choice in magnetic-confinement nuclear fusion 
experiments, which, if successful, could provide us with an almost un-
limited energy source using deuterium fuel extracted from seawater. 

88. The magnetic field associated with the toroid is nonzero
a. only within the “hole” in the donut-shaped coil.
b. only within the region bounded by the coils.
c. only outside the coils.
d. everywhere.

89. In Fig. 26.52b, the magnetic field lines must be
a. straight, and pointing into the page.
b. straight, and pointing out of the page.
c. straight, and pointing radially.
d. circular.

90. Doubling the total number of turns N in the toroid, without 
changing its size or the current, will
a. double the magnetic field.
b. quadruple the magnetic field.
c. halve the magnetic field.
d. not change the magnetic field.

91. The toroid has inner radius Rin and outer radius Rout, while r is 
the radial coordinate measured from the center. The toroid is 
made from wire wound into a total of N turns, and carries current 
I. Which of the following is the correct formula for the magnetic 
field within the coils?
a. B = m0NI
b. B = m 0NI/2pRin

c. B = m 0NI/2pRout

d. B = m 0NI/2pr

Answers to Chapter Questions

Answer to Chapter Opening Question
Magnetic force shapes the structure of the solar atmosphere. Magnet-
ism is fundamentally an interaction involving moving electric charge, 
and the hot, ionized gas of the solar atmosphere contains free charge 
that responds to magnetism. Earth’s cooler atmosphere consists of 
neutral molecules that don’t experience a magnetic force.

Answers to GOt it? Questions
 26.1  (1) greatest for (a), 0 for (c); (2) direction for (a) and (b) is into 

the page
 26.2  (b); it’s a negative charge
 26.3  (d)
 26.4  (a)
 26.5  (1) (a), because adjacent currents are in the same direction  

(2) Changing the current direction doesn’t matter because the 
currents are still parallel.

 26.6  (b), because the field lines form closed loops
 26.7  (b)
 26.8  (1) 0; (2) current A

I

RinRout

Ampèrian loop

Iout

Rout

Iin

Rin

r
+

+

+

+
+++

+

+

+

+

+

+

+

+
+ + +

+

+

+

+

(a) (b)

Figure 26.52 Diagram of (a) a toroidal coil and (b) a cross section of the coil (Passage Problems 88–91)
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Electromagnetic Induction
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What You Know
■ You understand the concepts of 

electric and magnetic fields.

■ You know that electric fields originate 
in electric charge and magnetic fields 
in moving electric charge.

■ You can determine the forces that 
both types of field exert on electric 
charges.

■ You’re familiar with the fields of simple 
charge and current distributions.

■ You understand the concept of flux 
and how to evaluate surface integrals 
for electric flux.

■ You know that the solenoid is a device 
that produces a uniform magnetic 
field.

The electric and magnetic fields we’ve encountered so far originated in electric charge, 
either stationary or moving. We recognized a link between electricity and magnetism that 

lies in their common involvement with electric charge. In the remainder of our study, we’ll ex-
plore a more intimate relation between electricity and magnetism, in which the fields them-
selves interact directly. This relation is the basis for new electromagnetic technologies, reveals 
the nature of light, and points toward the theory of relativity.

What You’re Learning
■ Here you’ll learn about 

electromagnetic induction—a deep 
connection between electric and 
magnetic fields whose existence 
enables a host of modern 
technologies and helped lead Einstein 
to the theory of relativity.

■ You’ll learn to use Faraday’s law to 
calculate induced emfs and electric 
currents that result from changing 
magnetic flux.

■ You’ll see how conservation of energy 
manifests itself in electromagnetic 
induction.

■ You’ll learn that magnetic fields 
store energy, just as you learned in 
Chapter 23 that every electric field 
in the universe represents stored 
energy.

■ You’ll see how circuit elements 
called inductors use induction to 
store and release magnetic energy 
in circuits.

■ You’ll come to recognize that 
changing magnetic fields join electric 
charge as sources of electric fields.

How You’ll Use It
■ Myriad technologies, ranging from 

credit card swiping to electric 
power generation, make use of 
electromagnetic induction—so the 
concepts you learn here in Chapter 27  
are behind many devices you use 
every day.

■ In Chapter 28 you’ll explore 
alternating-current circuits, and you’ll 
see how capacitors and inductors are 
complementary devices that reflect an 
underlying complementarity between 
electricity and magnetism.

■ In Chapter 29 you’ll see how 
electromagnetic induction is crucial 
to the existence of electromagnetic 
waves, including light.

In 1989, a high-energy outburst from the Sun disrupted power grids in northeastern North America, and 
blacked out the entire Canadian province of Quebec. How was the energy stored at the Sun, and how did it 
result in power failures on Earth? How was the electricity generated when the power grid behaved normally?
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498 Chapter 27 Electromagnetic Induction

27.1 Induced Currents
In 1831, the English scientist Michael Faraday and the American Joseph Henry indepen-
dently found that electric currents arose in circuits subjected to changing magnetic fields. 
Here are four experiments that illustrate this phenomenon:

1.  Move a bar magnet in the presence of a circuit consisting of a wire coil and an ammeter 
(Fig. 27.1). There’s no battery or other obvious source of emf. As long as you hold the 
magnet stationary, there’s no current. But move the magnet, and the ammeter registers a 
current—which we call an induced current. Move the magnet faster, and the induced 
current increases. Reverse the direction of motion, and the induced current reverses.

Figure 27.1 When a magnet moves near a closed circuit, current flows in the circuit.

S

S

S N

S N

NS N

S N

I

0

 - +

0

 -  + 

Stationary magnet
results in no current.

A faster moving magnet
results in increased current.

I

I

0

 -  + 

0

 -  + 

A rightward-moving magnet
results in a current.

A leftward-moving magnet
results in an opposite current.

(a) (b)

(c) (d)

2.  Move a coil near a stationary magnet, and a similar induced current results  
(Fig. 27.2). So the effect is the same whether it’s the magnet that moves, or the coil. 
All that matters is the relative motion between magnet and coil.

3.  Replace the bar magnet with a second coil, this one carrying a steady current from 
a battery (Fig. 27.3). The new coil creates a magnetic field like that of a bar magnet 
and, not surprisingly given the results of experiments 1 and 2, an induced current 
arises in the original coil when the two coils move relative to one another.

Figure 27.2 Moving the coil instead of the 
magnet gives the same result, as in Fig. 27.1b.

S N
I

0

 -  + 

Figure 27.3 An induced current also results when a 
current-carrying circuit replaces the magnet.

− +

I

0

 -  + 

4.  Hold both coils stationary, and there’s no induced current (Fig. 27.4). But now open 
the switch connecting the battery to the left-hand coil. The current in the left-hand 
coil drops quickly to zero, and during that brief interval the ammeter registers a cur-
rent in the right-hand coil. Then the induced current ceases as the current in the left-
hand coil remains at zero. Now close the switch again; as current briefly rises in the 
left-hand coil, the ammeter registers an induced current in the right-hand coil—and 
its direction is opposite what it was when you opened the switch. Once the current in 
the left coil reaches a steady value, the induced current in the right coil again ceases.

The common feature in these experiments is a changing magnetic field. It doesn’t mat-
ter whether the field changes because a magnet moves, or a circuit moves, or because the 
current giving rise to the field changes. In each case, an induced current appears in a  circuit 

PheT: Faraday’s Law
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27.2 Faraday’s Law 499

subjected to a changing magnetic field. Here’s a new phenomenon— electromagnetic 
 induction—whereby electrical effects arise from changing magnetic fields.

27.2 Faraday’s Law
It takes a force acting on charged particles to drive electric current. In the circuits we’ve 
studied so far, that force was provided by devices like batteries, and we described 
a  battery’s effect by its emf—the energy per unit charge that it provides. With induced 
 currents, there’s no battery, but there still must be an emf. This induced emf isn’t necessar-
ily localized, as with a battery, but may be spread throughout the conductors making up the 
circuit. We’ll now explore further just how emfs arise in the experiments of Section 27.1.

Motional EMF and Changing Fields
In experiment (1), described in Fig. 27.1, we moved a bar magnet toward a stationary coil 
and got an induced current. As you’ve just seen, that implies the presence of an induced 
emf in the coil. In experiment (2), described in Fig. 27.2, we held the magnet stationary 
and moved the coil. Again, we got an induced emf that drove an induced current. All that 
mattered was the relative motion of the magnet and the coil.

Although they produce the same effect—an induced current—the physical interpreta-
tion of the two experiments is very different. You can actually explain experiment (2) us-
ing what you already know of the magnetic force. Here the conducting coil is moving 
through the magnetic field of the stationary magnet, so free charges in the coil experience 
magnetic forces. We’ll analyze a simpler version of this situation in Section 27.3, where 
you’ll see that those forces do, in fact, lead to the induced current that’s observed. We use 
the term motional emf to describe an induced emf that arises as a result of a conductor 
moving through a magnetic field.

Although it gives the same result, experiment (1) is very different. Here the coil is 
stationary, so its free charges don’t experience magnetic forces. Yet there’s an induced cur-
rent, which must be caused by an induced emf. Here the emf arises not from any motion 
of the coil but from a changing magnetic field. This is a truly new phenomenon. In experi-
ment (1) the change is a strengthening of the field at the coil as the magnet approaches, but 
it could equally well be a change in magnetic field that’s not associated with any motion 
whatsoever; experiment (4) is a case in point, where the magnetic field changes because 
the current in an adjacent coil increases or decreases. You’ll gain deeper insights into the 
remarkable phenomenon of electromagnetic induction as you study the remaining chap-
ters of Part 4.

So there are two ways to produce induced emfs: through the motion of a conductor or 
by changing a magnetic field. We’ll next explore how to describe induction quantitatively, 
but first it’s worth a closer look at our observation that, in comparing moving-magnet and 
moving-coil experiments, only the relative motion matters. That fact was known since the 
first induction experiments of the early 19th century, but it took Albert Einstein to recog-
nize its deep significance. Indeed, the second and third sentences of Einstein’s 1905 paper 
introducing the special theory of relativity read, “Take, for example, the reciprocal electro-
dynamic action of a magnet and a conductor. The observable phenomenon here depends 
only on the relative motion of the conductor and the magnet, whereas the customary view 
draws a sharp distinction between the two cases in which either the one or the other of 
these bodies is in motion.” The first of these sentences recognizes what we’ve been saying: 
all that matters is the relative motion of the coil and magnet. The “sharp distinction” in 

I

− +

0

 -  + 

Figure 27.4 A current is also induced when the current in 
an adjacent circuit changes.
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500 Chapter 27 Electromagnetic Induction

Einstein’s second sentence is the distinction between the very different physical descrip-
tions of the two experiments, depending on whether it’s the magnet or the coil that moves. 
Einstein went on to develop his relativity theory, which downplays that “sharp distinction” 
by saying that descriptions of the magnet–coil experiment—and indeed any descriptions 
of physical reality—are equally valid as long as they’re made from the viewpoint of iner-
tial reference frames. (You learned about inertial reference frames way back in Chapter 4, 
and you’ll explore relativity theory in Chapter 33, where Section 33.8 will provide addi-
tional insights into the relation between magnetism and electricity.)

Magnetic Flux
To describe electromagnetic induction quantitatively we need to use the concept of 
 magnetic flux. We introduced magnetic flux in Chapter 26 when we formulated Gauss’s 
law for magnetism, the statement that the magnetic flux through any closed surface is zero.

Here we’re interested in the flux through open surfaces, which need not be zero  
(Fig. 27.5). Like the electric flux defined in Chapter 21, magnetic flux is the integral of the 
magnetic field over a surface:

 ΦB = LB
S # dA

S
 (magnetic flux) (27.1a)

With electromagnetic induction, we’re interested in the flux through a surface bounded 
by a circuit. For a loop like the one in Fig. 27.5, that surface can be the circular disk whose 
circumference is the loop. More generally, it can be any surface bounded by the loop.

Since we’re dealing here with an open surface, there’s an ambiguity in the direction of 
the area vector dA

S
as we discussed when we introduced electric flux in Chapter 21. We 

won’t resolve the ambiguity at this point, but will wait until Section 27.3, which intro-
duces the all-important connection between electromagnetic induction and conservation 
of energy.

For a flat surface in a uniform magnetic field, Equation 27.1a reduces to

 ΦB = B
S # A

S
= BA cos u (magnetic flux, uniform field and flat area) (27.1b)

where u is the angle between the field and the normal to the area. When the field and area 
are perpendicular, as in the next example, Equation 27.1b reduces further to ΦB = BA. 
Magnetic flux has the units of field times area, or T #  m2. Unlike electric flux, magnetic 
flux is also given its own named unit, with 1 T #  m2 being a weber (Wb). Exercise 27.14 
shows that the units of magnetic flux can also be expressed as V #  s.

Figure 27.5 A circular wire loop in the magnetic 
field of a bar magnet. As the magnet moves 
closer, the flux through the loop increases.

B
S

S N

Move magnet right,
and more lines pass 
through the loop.

ExaMpLE 27.1  Magnetic Flux: a Solenoid

A solenoid of circular cross section has radius R, consists of n turns 
per unit length, and carries current I. Find the magnetic flux through 
each turn of the solenoid.

Interpret The solenoid creates a uniform magnetic field, and we’re 
asked for the flux of this field through an area bounded by one turn of 
the solenoid.

Develop The solenoid field is perpendicular to the turns of wire 
that make up the solenoid, as we’ve drawn in Fig. 27.6. So we have 
a uniform field at right angles to a flat area, and the flux becomes 
ΦB = BA. Equation 26.20 gives the solenoid field, B = m 0  nI, and 
the area is that of a circle, pR2.

evaluate ΦB = BA = m0 nIpR2

assess The flux increases with any factor that increases either the 
field or the area, so this result makes sense. We’re being a little loose in 
thinking of a single turn of the solenoid as a closed loop, but if the so-
lenoid is tightly wound, then this is an excellent approximation. What 
we’ve found is the flux through one turn; if the solenoid has N turns, 
then the flux through the entire solenoid is N times our result. ■

Figure 27.6 Sketch for Example 27.1.

n turns per unit length Magnetic �eld is out of
page, perpendicular to 
circular turn.
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27.2 Faraday’s Law 501

Flux and Induced EMF
Although motional emfs and emfs induced by changing fields seem to be different 
 phenomena, Faraday showed that both can be described in terms of changing  magnetic 
flux. The result is a preliminary statement of Faraday’s law of electromagnetic  induction, 
another of the four basic laws of electromagnetism:

The induced emf in a circuit is proportional to the rate of change of magnetic flux 
through any surface bounded by that circuit.

This statement is a special case of Faraday’s law that describes electromagnetic induction 
specifically in circuits; later we’ll present a more general form that applies even when no 
circuit is present. The induced emf tends to oppose the change in flux—a crucial point to 
which we’ll devote all of Section 27.3—and so in SI the proportionality between emf and 
rate of change of flux is -1. Thus Faraday’s law is

 E = -  
dΦB

dt
 (Faraday>s law) (27.2)

where E is the induced emf in a circuit and ΦB is the magnetic flux through any surface 
bounded by that circuit.

Faraday’s law relates the induced emf to the change in flux. It isn’t magnetic field 
or flux that causes an induced emf—it’s the change in flux. The flux in a uniform field 
is given by Equation 27.1b, ΦB = B

S#AS = BA cos u, which shows that we can change 
flux by changing the field strength B, the area A, or the angle u describing the orientation 
 between area and field.

A changing field strength can result from relative motion of a conductor and a mag-
net or other system that produces a field, or from a change in the current that produces 
a magnetic field. A changing orientation can result from a change in the orientation of 

ExaMpLE 27.2  Magnetic Flux: a Nonuniform Field

A long, straight wire carries current I. A rectangular wire loop of 
 dimensions l by w lies in a plane containing the wire, with its  closest 
edge a distance a from the wire and its dimension l parallel to the wire. 
Find the magnetic flux through the loop.

Interpret The long, straight wire gives rise to a magnetic field, and 
we’re asked for the flux of this field through an adjacent rectangular 
area.

Develop Figure 27.7 shows the situation. Field lines encircle the long 
wire, and at the rectangular loop they’re pointing into the page, perpen-
dicular to the loop area. Thus B

S
 #  dA

S
in Equation 27.1a becomes just 

B dA. Equation 26.17 gives the field strength: B = m0  I  /2pr. Since 
this field varies with distance from the wire, we have to integrate. We 
divide the rectangle into thin strips of width dr and area dA = l dr. 
Knowing B and dA, we can integrate over all such strips.

evaluate We have

ΦB = LB dA = L
a + w

a
 
m0  I

2pr
 l dr =

m0  Il

2p
 L

a + w

a
 
dr

r

The integral is the natural logarithm, so

ΦB =
m0  Il

2p
 ln r 2 a + w

a
=

m0  Il

2p
 ln aa + w

a
b

assess This result is directly proportional to the current, which 
 determines the field strength, and to the loop length l. But it isn’t 
 directly proportional to the width w because the field strength falls off, 
and increasing w would expand the loop into regions of weaker field, 
contributing less to the overall flux. ■

Figure 27.7 A rectangular loop in the magnetic field of a long wire.

Area element
for integration
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502 Chapter 27 Electromagnetic Induction

a conducting system or of a nearby magnet. For an induced emf to occur as a result of a 
change in area, however, that change must involve the physical motion of conductors; the 
induced emf in such cases is always, therefore, motional emf. You’ll see such a case in  
Example 27.4, and we’ll analyze a similar situation in detail in Section 27.3. There are 
some unusual situations where it appears that a circuit area is changing but where the 
 conductors either aren’t moving or where their motion doesn’t correspond to the area 
change. In general, analysis of true motional emf leads to an expression for the emf that 
involves the product of the magnetic field, the velocity of the moving conductors, and an 
appropriate length—as you’ll find in Example 27.4.

problem-solvIng strategy 27.1 Faraday’s Law and Induced emf

INTErprET Make sure the problem involves a circuit in which current flows because of a chang-
ing magnetic flux. Identify the circuit and the cause of the changing flux. Possibilities include:

•   A changing magnetic field, caused either by relative motion between the circuit and a  magnet 
or by a changing current in an adjacent circuit. Alternatively, the problem may  simply state 
that a magnetic field is changing at some specified rate, without giving the cause.

•   A changing area, caused by the circuit expanding or contracting in the presence of a 
 magnetic field.

•   A changing orientation of the circuit relative to the field, causing a change in cos u.

DEvELop Find an appropriate expression for the magnetic flux through your circuit. If the field 
varies with position, you’ll have to set up the integral in Equation 27.1a: ΦB = 1B

S  #  dA
S

; if not, 
you can use the simpler expression of Equation 27.1b: ΦB = B

S  #  AS = BA cos u. Since the flux 
is changing, your expression for flux should either have an explicit time dependence or contain 
a quantity whose rate of change you’re given.

EvaLUaTE Differentiate the flux with respect to time. Faraday’s law, E = -dΦB /dt, then gives 
the induced emf. If you’re asked about the circuit current, you can find it using Ohm’s law: 
I = E/R, with R the circuit resistance.

aSSESS Does your answer make sense? Does the induced emf or current increase with an 
 increased rate of whatever quantity is changing? Do the induced effects vanish if you set the 
rate of change to zero?

ExaMpLE 27.3  Induced Current: a Changing Magnetic Field

A wire loop of radius 10 cm has resistance 2.0 Ω. The plane of the 
loop is perpendicular to a uniform magnetic field B

S
 that’s increasing 

at 0.10 T/s. Find the magnitude of the induced current in the loop.

Interpret We apply our problem-solving strategy, noting that this 
is a problem about induction in a circular loop, with the flux change 
caused by a changing magnetic field.

Develop Figure 27.8 shows the loop with a field pointing into the 
page. With the field uniform and perpendicular to the loop area, we 
have ΦB = BA = Bpr2. We’re given the rate of change dB/dt, so we 
can evaluate the derivative dΦB /dt.

evaluate The rate of change of flux is

dΦB

dt
=

d

dt
 1Bpr22

Since the radius isn’t changing, this becomes

dΦB

dt
= pr2 

dB

dt

We’re given dB/dt = 0.10 T/s and r = 10 cm. So with E = -dΦB /dt,  
the  magni tude  of  the  induced  emf  then  has  the  va lue 
pr2dB/dt = 3.14 mV.  Ohm’s  l aw  then  g ives  the  cu r r en t : 
I = E/R = 3.14 mV/2.0 Ω = 1.6 mA.

assess Make sense? The induced emf and hence the current scale 
 directly with the value of dB/dt, confirming that the  changing  magnetic 
field is indeed the cause of the induced effects. Does it bother you 
that we took B

S
 as uniform even though it’s changing, thus avoiding 

the integral of Equation 27.1a? The field is indeed changing, but that 
change is in time, not space, and the integral for the flux is over space. 
So at each instant the field is uniform, and we can  dispense with the 
integral. ■

Figure 27.8 A circular conducting loop 
in a plane perpendicular to a uniform 
magnetic field.

PheT: Faraday’s Electromagnetic Lab
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27.3 Induction and Energy 503

Example 27.4 provides a clear case of motional emf. Note that the induced emf E  =  Blv  
is, as we suggested earlier, expressed as a product of magnetic field strength,  velocity, 
and a length—in this case the length of the bar. Although we worked this example  using 
 Faraday’s law and changing magnetic flux, the physical mechanism behind motional 
emf always begins with the magnetic force on free charges in a conductor. This results 
in charge separation and therefore in an electric field that is the ultimate driver of the 
current in the case of motional emf. In Section 27.3 we’ll explore a similar case in more 
detail, and we’ll show how consideration of the forces on a moving conductor confirms 
 conservation of energy in electromagnetic induction.

✓TIp It’s the Change That Matters

You may wonder why, in problems like the preceding two examples, you’re not given 
values for the magnetic field itself or for the location of the sliding bar—quantities that 
determine the magnetic flux. But the flux itself doesn’t matter, only its rate of change. 
And in both cases the rate followed from the given information: in one case the rate of 
change of the field and in the other the speed of the bar.

Examples 27.3 and 27.4 take care of two ways to change magnetic flux. The third—
changing orientation—is at the heart of an important electromagnetic technology, and 
we’ll do an example in the next section.

27.3 Induction and Energy
Move a bar magnet toward a wire loop, as in Fig. 27.10. An induced current flows, 
 dissipating energy as it heats the loop. Where did that energy come from? It came from 
work you did in moving the magnet.

Normally it doesn’t take work to move with constant speed. But the induced current 
makes the loop a magnetic dipole whose field, as Fig. 27.10 shows, opposes the field of 
the approaching magnet. You have to do positive work to overcome the resulting repulsive 
force. It had better be this way! Otherwise, you’d get something for nothing, heating the 
loop without any source of energy.

ExaMpLE 27.4 Induced Current: a Changing area

Two parallel conducting rails a distance l apart are connected at one 
end by a resistance R. A conducting bar completes the circuit, join-
ing the two rails electrically but free to slide along them. The whole 
circuit is perpendicular to a uniform magnetic field B

S
, as shown in  

Fig. 27.9. Find the current when the bar is pulled to the right with 
constant speed v.

Interpret Here the circuit is formed by the rails, the resistance, and 
the conducting bar. The circuit area increases as the bar slides along 
the rails, so we’ve got a case of induction caused by a changing mag-
netic flux resulting from a changing area.

Develop In this case of a uniform field perpendicular to the circuit, 
the flux is the product ΦB = BA. We can express this flux in terms of 
the changing position x of the sliding bar; since we’re given the bar’s 
speed, we’ll be able to evaluate the rate of change of flux. If we take 
x = 0 at the left end of the rails, then the circuit area is A = lx, so the 
flux is ΦB = BA = Blx.

evaluate Differentiating the flux with respect to time gives

dΦB

dt
= Bl 

dx

dt
= Blv

since dx/dt is the bar’s velocity v. Faraday’s law says that Blv is the 
magnitude of the induced emf E, so the current in the circuit becomes

I =
E
R

=
Blv

R

assess Make sense? Yes: The faster the bar moves, the greater  
the rate of change of flux, and so the greater the induced emf and 
 current. ■

Figure 27.9 Pulling the bar to the right increases the circuit area, increasing 
the magnetic flux and inducing an emf that drives a current.
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504 Chapter 27 Electromagnetic Induction

You can always find the direction of induced emfs and currents by asking: What 
 direction of induced current will make it hard to move the magnet? The answer for  
Fig. 27.10 is a current that makes the loop a magnet with its north pole on the left, to repel 
the  approaching bar magnet. By the right-hand rule, that gives the current direction shown: 
into the page at the top of the loop and out at the bottom. If, on the other hand, you move 
the magnet away from the loop, then the current flows in the opposite direction,  putting 
the loop’s south pole on the left and attracting the magnet, making it hard to pull the 
 magnet away (Fig. 27.11).

Figure 27.10 Conservation of energy determines the direction of the induced current. (a) Fields of 
bar magnet and loop. (b) The loop acts like a magnet with north pole to the left, making it hard to 
move the rectangular bar magnet at the left.

v
u

Bloop
S

Bloop
S

Bmagnet
S

S N SN

I

(a) (b)

Loop acts like a bar magnet
with N pole to left.

Right-hand rule: Fingers in 
direction of current point 
thumb in direction of N pole.

I

Figure 27.11 Now the direction of the induced current puts the loop’s south pole to the left, making 
it hard to pull the magnet away.
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Loop acts like a bar magnet
with S pole to left.

Right-hand rule: Fingers in 
direction of current point 
thumb in direction of N pole.
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This discussion is ultimately about energy conservation in the context of electromag-
netic induction. Lenz’s law summarizes what we’ve found:

The direction of an induced emf or current is such that the magnetic field 
 created by the induced current opposes the change in magnetic flux that created 
the current.

Mathematically, Lenz’s law is contained in the minus sign that appears in Faraday’s 
law, provided careful attention is paid to the direction of the area vector dA

S
that appears in 

Equation 27.1a for magnetic flux. So it’s possible to determine the direction of the induced 
effects from algebra alone. But we’ll stick with the easier and more physically meaningful 
approach of using Faraday’s law to find the magnitude of the induced emf and then reason 
out the direction using energy conservation.
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GoT IT? 27.1 You push a bar magnet toward a loop, with the north pole toward the 
loop as in Fig. 27.10. If you keep pushing the magnet straight through the loop, (1) what 
will be the direction of the current as you pull it out the other side? (2) Will you need to do 
work, or will work be done on you?

Motional EMF and Lenz’s Law
We’ve noted that motional emf is a special case of induction that we can explain in terms 
of the magnetic forces on charge carriers. Here we’ll explore a case of motional emf to 
show explicitly that Lenz’s law requires energy conservation.

Consider a square conducting loop of side l and resistance R pulled with constant speed 
v out of a uniform magnetic field B

S
(Fig. 27.12). The magnetic flux through the loop is 

changing, so there’s an induced emf that drives a current. Energy is dissipated as heat and 
so, as we’ve just argued, the agent pulling the loop must do work. We’ll now demonstrate 
quantitatively that energy is conserved by showing that the rate of heating in the loop is 
exactly equal to the rate at which the agent pulling the loop does work.

Pulling the conducting loop to the right moves its free electrons through the magnetic 
field; initially, that motion is also to the right. Then the magnetic force qv

!
* B

S
on the 

electrons is downward in Fig. 27.12 (opposite v
!

* B
S

because the electrons are negative). 
The result is an accumulation of negative charge near the bottom of the left-hand side of 
the square and therefore of positive charge near the top. As with a battery, the separated 
charge drives a current around the circuit, here in the clockwise direction. Although we 
say, loosely, that the magnetic force on the moving conductor is what produces the current, 
it’s actually more complicated than that: The magnetic force results in separated charge, 
which gives rise to electric forces that drive the current. Furthermore, electric forces are 
what keep the electrons confined to the wire; otherwise they would exhibit circular motion 
as we showed in Section 26.3. Once the current is flowing, the magnetic force on the up-
ward current causes a Hall-effect separation of charge, and the resulting electric field pro-
vides the force that opposes the applied force that’s pulling the loop. These observations 
are consistent with our statement in Chapter 26 that magnetic forces themselves can do 
no work because they’re always perpendicular to charge velocities, implying that electric 
forces must be involved as well.

You saw in Chapter 26 that the magnetic force on a current-carrying conductor of length 
l is F

S
= I l

!
* B

S
—although, again, “magnetic force” here is shorthand for a  combination 

of magnetic and electric effects as we described in Section 26.4. Applying this expression 
to our conducting loop shows that there’s no force on the right-hand side, where B

S
= 0

!
, 

and that oppositely directed forces on the top and bottom of the loop cancel (Fig. 27.13). 
So the net force on the loop is that on the left side alone. The magnitude of this force is 
IlB, and the right-hand rule shows that it points to the left. This leftward force cancels the 
rightward-applied force, giving the zero net force that Newton’s law requires for the loop 
to move with constant velocity.

We could equally well determine the current direction from magnetic-flux 
 considerations. As the loop leaves the field, the flux decreases. The direction of the 
 resulting induced current is such as to oppose this decrease. Therefore, the magnetic field 
of the induced current points into the page, as the induced current tries to maintain the flux. 
By the right-hand rule, a field within the loop and into the page requires that the  induced 
current flow clockwise.

To calculate the current, we first find the induced emf. With the field perpendicular to  
the loop, and uniform in the region where it’s nonzero, the magnetic flux is the product of 
the magnetic-field strength and the loop area that lies within the field: ΦB = Blx. Here x is 
the distance between the left edge of the loop and the right edge of the  magnetic-field  region. 
The magnetic field remains constant, but as the loop moves, the distance x  decreases at the 
rate dx/dt = -v, where the minus indicates a decrease. Then the rate of change of flux is

dΦB

dt
=

d1Blx2
dt

= Bl 
dx

dt
= -Blv

Figure 27.12 A conducting loop being pulled 
out of a magnetic field.
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Figure 27.13 Forces on the loop. The subscript 
EM indicates that the forces on the conducting 
loop result from both electric and magnetic 
fields.
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506 Chapter 27 Electromagnetic Induction

so Faraday’s law gives

E = -  
dΦB

dt
= Blv

This induced emf drives a current I around the loop, where I = E/R = Blv/R. The rate of 
energy dissipation in the loop is the product of the emf and the current (Equation 24.7):

P = IE =
Blv

R
 Blv =

B2
 l 2

 v2

R
  1electric power dissipated in loop2

We’ve found that the force on the loop resulting from its motion through the magnetic 
field has magnitude F = IlB; since the loop is moving with constant velocity, this is also 
the magnitude of the applied force. Equation 6.19 gives P = F

S   #  v! for the power supplied. 
Here, with F

S
and v

!
 in the same direction, we have

P = Fv = IlBv =
Blv

R
 lBv =

B2
 l 2

 v2

R
  1mechanical power supplied to pull loop2

the same as our expression for the power dissipated in the loop. Thus, all the work done 
by the agent pulling the loop ends up heating the resistor, showing explicitly that energy is 
indeed conserved.

GoT IT? 27.2 When the loop in Fig. 27.12 first enters the field, coming in from the 
left, will the loop current be (a) clockwise or (b) counterclockwise?

Electromagnetic induction is the principle behind many important technologies, from 
credit cards to electric-power generation. Induction also gives us the flexibility to trans-
form voltage levels in electric-power systems, and to provide wireless charging systems 
for devices ranging from electric cars to toothbrushes.

appLICaTIoN Electric Generators

Probably the most important technological application of induction is the elec-
tric generator. Humanity uses electrical energy at the phenomenal rate of about 
2 TW, which is 2 * 1012 W and roughly equal to the power output of 20 billion 
human bodies. Virtually all this power comes from generators. A generator is 
just a system of conducting loops in a magnetic field, as shown in the figure. 
Mechanical energy rotates the conductors, resulting in a changing magnetic 
flux and therefore an induced emf. Current flows through the generator and 
on to whatever electrical loads are connected to it. Because the changing flux 
results from a change in the orientation of the loop relative to the field—that 

is, a change in u in the expression ΦB = BA cos u—a generator such as the 
one shown here produces an alternating emf that varies sinusoidally with time.

Any source of mechanical energy can power the generator, but the most 
common is steam from burning fossil fuels or from nuclear fission. Electrical 
energy is also generated from kinetic energy of water or wind. A small electric 
generator, driven by the car’s engine, is used to recharge your car’s battery.

Lenz’s law, the conservation of energy in electromagnetic induction, 
is very much applicable to electric generators. Were it not for Lenz’s law, 
 generators would turn on their own and happily supply electricity without  
coal, oil, or uranium! The voluminous quantities of fuel consumed by power 
plants are dramatic testimony to the minus sign on the right-hand side of 
 Equation 27.2.

Turn a hand-cranked or pedal-driven generator, and you can literally feel 
Lenz’s law. Without any electrical load, turning the generator is easy. Switch 
on increasingly heavy loads, and the generator gets harder to turn. Most  people 
find they can just sustain a 100-W lightbulb with a hand generator. Think 
about this next time you leave a light on!

If the diagram here reminds you of the motor in the Application in 
 Chapter 26, that’s no coincidence. Motors and generators are similar devices, 
just run in opposite ways. A motor converts electrical energy to mechanical 
energy; a generator converts mechanical energy to electrical energy. Often 
the same physical device serves both purposes. In a hybrid car, for example, 
an electric motor takes energy from a battery to provide propulsion. When 
the car brakes, the wheels turn the motor, which then acts as a generator and 
puts the car’s energy back into the battery instead of dissipating it as heat. 
Such regenerative braking is one of the hybrid’s several means of achieving 
greater energy efficiency.

Rotation of loop changes the
magnetic �ux, inducing
an emf.

N

Stationary
brushes Rotating

conducting 
loop

Rotating
slip rings

Electric
load

S

PheT: Generator
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GoT IT? 27.3 If you lower the electrical resistance connected across a  generator 
while turning the generator at a constant speed, will the generator get (a) easier or  
(b) harder to turn?

ExaMpLE 27.5  Induction: Designing a Generator

An electric generator consists of a 100-turn circular coil 50 cm in 
diameter. It’s rotated at f = 60 rev/s to produce standard 60-Hz 
 alternating current like that used throughout North America. Find the 
magnetic-field strength needed for a peak output voltage of 170 V 
(which is the actual peak in standard 120-V household wiring).

Interpret Here we have a conducting coil rotating in a fixed mag-
netic field, so this is an induction problem where changing flux results 
from a changing orientation.

Develop We sketched the coil and magnetic field in Fig. 27.14. 
With a uniform field and flat, circular area, the flux through one 
turn of the coil is given by Equation 27.1b, Φ1 turn = B

S
 #  AS =

BA cos u = Bpr2 cos u. The angle u changes as the loop rotates, and 
with it the flux. We need to express the total flux as a function of time 
so we can evaluate its derivative and thus the emf. Because the loop 
rotates with constant angular speed v = 2pf, its angular position is 
u = 2pft. Then the flux through each turn is Bpr2 cos12pft2, and the 
total flux through all N = 100 turns is NBpr2 cos12pft2.

evaluate Faraday’s law equates the induced emf with the rate of 
change of this flux:

E = -  
dΦB

dt
= -NBpr2

 

d

dt
3cos12pft24 = -NBpr23-2pf sin12pft24

The emf has its peak value when the sine is 1, so Epeak = 2p2
 r2

 NBf. 
We want this value to be 170 V; using r = 25 cm, N = 100 turns, and 
f = 60 rev/s then gives B = 23 mT.

assess This value is about 200 G, typical of the field strength near 
the poles of a permanent magnet. Note that you don’t need a value for 
time t to find the peak emf; when a quantity varies sinusoidally, its 
peak occurs when the sine or cosine function is 1, so the peak value is 
the magnitude of whatever quantity multiplies the sine or cosine. ■

Figure 27.14 Coil in the generator of Example 27.5; at this instant the normal 
to the coil makes an angle u with the magnetic field.

Loop
rotation

Wires
to load

Electromagnetic induction is also the basis of magnetic recording, once the dominant 
means of storing audio, video, and computer information but now more common in credit 
cards and similar applications. The magnetic strip on your credit card is a ferromagnetic 
material that stores information in regions of differing magnetization. Swiping your card 
induces current in a wire coil, which extracts the stored information as an electrical sig-
nal (Fig. 27.15). Early computer disks worked on the same principle, although in today’s 
disks the magnetic field of the spinning disk causes changes in electrical resistance in the 
“head” that reads the disk information.

Eddy Currents
Induced currents aren’t limited to conducting loops and circuits. They also occur in solid 
conductors subject to changing magnetic flux. The resistance of a solid conductor is low, 
which can result in large induced currents and significant power dissipation. That can 
make it hard to move a conducting material into or out of a magnetic field, as it’s  subject 
to a changing flux. The result is a kind of magnetic friction that saps energy. On the 
other hand, the effect can be useful in providing an alternative to friction brakes.  Rapidly 
 rotating saw blades or train wheels, for example, can be stopped quickly by turning on a 
nearby electromagnet; the resulting eddy currents quickly dissipate the rotational kinetic 
energy. The mechanical resistance you feel in exercise machines like elliptical trainers or 
stationary cycles results from a magnet positioned near the machine’s rotating parts. And 
eddy currents are guardians of our security, as the next Application shows.

Figure 27.15 Swiping a credit card. Patterns of 
magnetization on the strip induce currents in 
the coil.

Coil Iron

Magnetic
strip

Card
motion

Information is
contained in
magnetization
pattern.

Video Tutor Demo | Eddy Currents in 
Different Metals
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508 Chapter 27 Electromagnetic Induction

GoT IT? 27.4 A copper penny falls on a path that takes it between the poles of a 
magnet. Does it hit the ground going (a) faster than, (b) slower than, or (c) at the same 
speed as if the magnet weren’t present?

Closed and open Circuits
Figure 27.16 shows a closed, conducting loop in a magnetic field that points into the page. 
Suppose the field is increasing in strength; then in order to oppose this change, the  induced 
current must be in such a direction as to oppose the increase. Here that means the field in 
the interior of the loop needs to come out of the page, and by the right-hand rule that means 
the induced current is counterclockwise. It’s not that the induced field always  opposes the 
inducing field—rather, it opposes the change. If the field in Fig. 27.16 had been decreas-
ing, then the induced current would have “tried” to reinforce it by flowing clockwise to 
make additional field into the page.

What if we have an open circuit, like the conducting loop with a small gap shown 
in Fig. 27.17? Then there’s no induced current whose effects can oppose a change in 
the field. But we can imagine what would happen if the circuit were completed; as  
in Fig. 27.16, current would flow counterclockwise. Open the gap, and that means posi-
tive charge accumulates at the upper end of the gap and negative charge at the bottom. 
Charge buildup continues until the potential difference at the gap opposes the induced 
emf’s tendency to move charge. The result is a steady state in which the gap voltage 
equals the induced emf.

Metal detectors used in airports and other security checkpoints rely on eddy 
currents. In one type of detector, shown in the figure, an alternating current in 
one coil—the transmitter—produces a changing magnetic field that induces a 
current in a second coil, the receiver. A detector, basically an electronic am-
meter, monitors the receiver current. Eddy currents are induced in any con-
ducting material that comes between the two coils, and the direction of the 
induced currents is, as always, such as to reduce the changing flux. The su-
perposition of the transmitter’s changing flux with the changing flux from the 
eddy currents therefore reduces the changing flux at the receiver, dropping the 
receiver current and triggering an alarm. Other detectors have a single coil, us-
ing a short pulse of current to induce eddy currents and then “listening” for the 
currents induced back in the coil. Either way, you can thank Faraday’s law if 
you’ve ever been stopped while going through a metal detector!

appLICaTIoN Metal Detectors

0
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Figure 27.16 The field B
S

is into the page and 
increasing; the induced current is counter-
clockwise, so its field opposes the increase.

Bin
S I

Field of induced current
points out of page c

cso right-hand
rule gives counter-
clockwise current.

Figure 27.17 In a changing magnetic field, the 
induced emf results in charge buildup at the 
gap of an open circuit. The polarity shown 
results when the field is increasing.
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GoT IT? 27.5 A long wire carries a current I 
as shown. What’s the direction of the current in the 
 circular conducting loop when I is (1) increasing and 
(2) decreasing?

I
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27.4 Inductance
There are many ways to change magnetic flux and thus induce emfs and currents. We can 
move a magnet, or move or rotate the circuit. Or, as in Fig. 27.4 or Fig. 27.18, we can 
change the magnetic flux by changing the current in a circuit and therefore the magnetic 
field it produces. In that case we speak of the inductance of a circuit or circuits.

Mutual Inductance
Figure 27.18 shows two coils in proximity. If we send a changing current through the left-
hand coil, there results a changing magnetic field, which gives rise to a changing magnetic 
flux in the right-hand coil. There’s then an induced emf in the right-hand coil and, if it’s 
connected in a complete circuit, an induced current as well.

The two coils in Fig. 27.18 have mutual inductance, meaning a changing current in one 
coil produces a changing flux at the other coil, thereby inducing an emf. Just how strong this 
effect is depends on the construction and orientation of the coils; for maximum inductance 
they should be arranged so that most of the flux from each coil goes through the other. Often 
coils are wound on iron cores to concentrate the flux and increase the mutual inductance.

Mutual inductance is the basis of transformers, which change voltage levels in alter-
nating-current circuits; more on that in Chapter 28. Your car’s ignition coil uses mutual 
inductance to produce the tens of kilovolts needed to fire the spark plugs and ignite the 
gasoline–air mixture in the engine. Current to the coil is interrupted at just the right in-
stant, producing a rapid change in magnetic flux and inducing the emf that drives the 
spark. More mundane is an electric toothbrush, whose batteries charge without electrical 
connection to a power source. Instead, a small coil in the device is placed in proximity 
with a coil in the charging base, and alternating current in the base coil transfers energy 
via mutual inductance to provide the charging current.

Self-Inductance
Inductance isn’t limited to two-coil systems. Magnetic flux from current in a single coil 
or circuit passes through that circuit itself (Fig. 27.19). If the current changes, so does 
the flux—and that induces an emf. As always, the induced emf opposes the change that 
produces it. Suppose, for example, that the current in Fig. 27.19 is increasing. Then the 
induced emf will be in the direction that opposes the current increase—clockwise, or 
 opposite the current in Fig. 27.19. The induced emf therefore makes it harder to  increase 
the current. On the other hand, if the current in Fig. 27.19 is decreasing, then the induced 
emf will try to drive additional current to counter the decrease; the induced emf is  therefore 
in the same direction as the current. Either way, the induced emf makes it hard to change 
the current in a circuit.

This property whereby a circuit’s own magnetic field opposes changes in the circuit 
current is called self-inductance. All circuits have self-inductance, but it’s most important 
in circuits that encircle a great deal of their own magnetic flux, or when currents change 
rapidly. A simple piece of wire has little impact on the 60-Hz alternating current used for 
electric power. But in TVs and computers, where currents change billions of times per 
second, even the slightest self-inductance can have deleterious effects.

An inductor is designed specifically to exhibit self-inductance. Inductors have many 
uses in electric circuits, including establishing the frequencies of radio transmitters and 
helping “steer” high- and low-frequency signals to the tweeters and woofers of loud-
speaker systems. We’ll explore some of these uses in the next chapter. A typical inductor 
consists of a wire coil, sometimes wound on an iron core to promote flux concentration. 
Ideally, the only electrical property of an inductor is its inductance, but real inductors have 
resistance as well.

As long as the current in an inductor is steady, the magnetic flux is constant, so there’s 
no induced emf and the inductor behaves, electrically, just like a wire. But when the 
 current changes, the changing magnetic flux induces an emf that opposes the change in 
current. The more rapidly the current changes, the greater the rate of change of flux and so 
the greater the emf. The induced emf depends also on how much of its own magnetic flux 

Figure 27.18 Mutual inductance. A changing 
current in either coil induces an emf in the 
other coil.

I1 E2

Figure 27.19 Magnetic flux from a current loop 
passes through the loop itself; a change in 
the current induces an emf that opposes the 
change.
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510 Chapter 27 Electromagnetic Induction

the inductor encircles; consequently, we define self-inductance, L, as the ratio of magnetic 
flux through the inductor to current in the inductor:

 L =
ΦB

I
 (self@inductance) (27.3)

Equation 27.3 shows that the units of self-inductance are T #  m2/A. This unit is given the 
name henry (H) in honor of the American scientist Joseph Henry (1797–1878).  Inductances 
in common electronic circuits usually range from microhenrys 1μH2 up to several henrys.

Inductance is a constant determined by the physical design of an inductor. In principle 
we can calculate the inductance of any inductor, but in practice that’s difficult unless the 
geometry is particularly simple.

A long solenoid of cross-sectional area A and length l has n turns per 
unit length. Find its self-inductance.

Interpret We’re asked for self-inductance, which Equation 27.3 
shows is the ratio of magnetic flux through the solenoid to current in 
the solenoid.

Develop We’ll assume a current in the solenoid and find the 
 resulting magnetic flux. Then we can take their ratio to get the 
 self-inductance. We need the magnetic field of a solenoid, which 
follows from Equation 26.20: B = m0 nI. The field is uniform and 
perpendicular to the solenoid coils, as we showed in our draw-
ing for Example 27.1, so the flux through each turn follows from  
Equation 27.1b: Φ1 turn = BA.

evaluate With n turns per unit length, the solenoid contains a total 
of nl turns, so the flux through all the turns is

ΦB = nlBA = 1nl21m0  nI2A = m0 n2
 AlI

Equation 27.3 gives the self-inductance as the ratio of flux to current, so

 L =
ΦB

I
= m0 n2

 Al  (inductance of solenoid) (27.4)

assess Make sense? As the area increases, so does the flux and 
therefore the inductance. As the length increases, so does the number 
of turns, so again the total flux increases. And as the number of turns 
per unit length increases, two things happen. First, the magnetic field 
of Equation 26.20 increases, increasing the flux BA through each turn. 
Second, the total number of turns increases, again increasing the total 
flux. That’s why the inductance, L, depends on n squared. ■

ExaMpLE 27.6  Calculating Inductance: a Solenoid

The induced emf in an inductor always acts to oppose the change in current through the 
inductor. That change generally results from events happening in the rest of the circuit in 
which the inductor is connected, such as closing a switch, changing a resistance, or con-
necting a battery or other source of emf. If the inductor current is increasing, that means 
the inductor develops an emf that “pushes back” against current flowing in from the exter-
nal circuit. In that case the inductor emf is called a back emf, and here you can think of 
the inductor as acting like a battery that’s connected backward to oppose incoming current 
(Fig. 27.20a). If the inductor current is decreasing, on the other hand, the inductor emf 
acts to help keep the current flowing, as in Fig. 27.20b.

Figure 27.20 The direction of 
the induced emf in an induc-
tor depends on whether the 
current is (a) increasing or  
(b) decreasing.(a) (b)

Current comes in
from an external
circuit.

Inductor
emf is
positive
at top to
“push back”
against
increasing
current.

Here I
is decreasing
with time.

Inductor acts like
a battery connected
this way.

Here I
is increasing
with time.

Induction
emf is
positive
at bottom
to help
the current
keep �owing.
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Quantitatively, the inductor emf follows from Faraday’s law, which relates emf to the 
rate of change of magnetic flux: E = -dΦB /dt. If we differentiate Equation 27.3, the defi-
nition of self-inductance, we get

dΦB

dt
= L

dI

dt

Substituting this expression for dΦB /dt in Faraday’s law then gives

 EL = -L 
dI

dt
  (inductor emf) (27.5)

This equation gives the emf EL induced in an inductor L when the inductor current is 
changing at the rate dI/dt. The minus sign again tells us that the emf opposes the change 
in current. When the current isn’t changing, dI/dt = 0 and there’s no induced emf. In this 
case, the inductor acts like a piece of wire. But when the current changes, the inductor 
produces an emf whose magnitude depends on the rate of change of current, dI/dt. You 
can get the direction of that emf by thinking about which way the emf has to go to oppose 
the change in current, as described in Fig. 27.20. You can also get it formally from Equa-
tion 27.5, as described in Fig. 27.21. We’ll use this approach in the next section, when we 
 consider circuits containing inductors.

The dependence of the induced emf on dI/dt in Equation 27.5 isn’t just mathematics! 
Rapid switching of inductive devices such as solenoid valves or electric motors results 
in induced emfs that can destroy delicate electronic components. And people have been 
 electrocuted opening switches in circuits containing large inductors. Figure 27.21 Sign conventions for the inductor 

emf of Equation 27.5. The coil is the circuit 
symbol for an inductor.

EL

Voltage increasing
across inductor
in direction of
current de�nes
positive EL c

cso EL is positive
when current is
decreasing
1dI>dt 6 02.

Current
directionI

−

+

GoT IT? 27.6 Current flows from left to right through the 
inductor shown. A  voltmeter connected across the inductor gives 
a constant reading, and shows that the left end of the inductor is 
positive. Is the current in the inductor (a) increasing, (b) decreas-
ing, or (c) steady? Why?

ExaMpLE 27.7  Back EMF: a Dangerous Inductor

A 5.0-A current is flowing in a 2.0-H inductor. The current is then 
reduced steadily to zero over 1.0 ms. Find the magnitude and direction 
of the inductor emf during this time.

Interpret There’s an emf in the inductor because the current is 
changing; we want the magnitude and direction of that emf.

Develop Figure 27.22 shows the situation, complete with an exter-
nal circuit that’s the source of the decreasing current. Equation 27.5, 
EL = -L1dI/dt2, gives the inductor emf in terms of the rate of change 
of current. Since the current changes steadily, the latter is just the 
change in current 1-5.0 A2 divided by the time involved.

evaluate 

EL = -L 
dI

dt
= -12.0 H2a -5.0 A

1.0 ms
b = 10,000 V

That this answer is positive tells us that the emf increase across the induc-
tor is in the same direction as the current, as we’ve indicated in Fig. 27.22.

assess That’s a potentially lethal voltage! Our answer is unrelated 
to the battery or whatever is supplying the inductor current. One could 
have a 6-V battery and still be electrocuted opening a circuit with a 
large inductance. Note that the direction we deduced is consistent with 
Lenz’s law; here the inductor emf opposes the decrease in current, and 
that means it provides an emf in the direction that would keep current 
flowing in the external circuit—just the opposite of the situation in 
GOT IT? 27.6. ■

Figure 27.22 Sketch for Example 27.7.

+ at this end
helps keep
current
�owing.

EL

I
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512 Chapter 27 Electromagnetic Induction

Inductors in Circuits
In Chapter 25 you saw that the voltage across a capacitor can’t change instantaneously. We 
can make an analogous statement for inductors. Because the inductor emf depends on the 
rate of change of current and because an infinite emf is impossible, the current through 
an inductor can’t change instantaneously. Much of your understanding of capacitors 
applies to inductors if you interchange the words “voltage” and “current.”

Figure 27.23 shows a circuit with a battery, switch, resistor, and inductor. With the 
switch open there’s no current (Fig. 27.23a). Close the switch, and the current at that 
 instant is still zero because the inductor current can’t change instantaneously. With no 
 current, there’s no voltage across the resistor, so the inductor must be producing a back 
emf equal in magnitude to the battery emf (Fig. 27.23b). Although at this instant there’s 
zero current in the inductor, the nonzero emf EL = -L1dI/dt2 shows that the rate of 
change of current, dI/dt, isn’t zero.

Figure 27.23 An RL circuit at three times.

dI
dt

+

-−

+

−

+

−

+
E0 0 EL 0 = E0

Switch open:
No current �ows.

Immediately after switch is closed,
still no current �ows, but      isn’t zero. After a long time, the rate of change of

current and the inductor emf both approach zero.

The inductor
then acts like
a wire.

The inductor’s 
back emf is equal 
in magnitude to 
the battery emf E0.

(c)(b)(a)

RS

L E0 EL = 0

RS

E0

RS

L

So the inductor current rises from zero, and with it the resistor current and therefore the 
resistor voltage IR. The battery emf E0 is constant, so as IR increases, the magnitude of the 
inductor emf drops. Equation 27.5 shows that the rate of change of current drops as well. 
Eventually the whole circuit reaches a steady state in which dI/dt and therefore the inductor 
emf are both zero (Fig. 27.23c). At this point the inductor acts like a wire, and the resistor 
determines the current: I = E0 /R. Figure 27.24 summarizes this analysis of the RL circuit.

Figure 27.24 Interrelationships among circuit quantities as 
 current builds up in an RL circuit. Compare with Fig. 25.19 for a 
charging capacitor.

−

+

−

+

As current increases, so 
does resistor voltage IR, 
at an ever-decreasing rate.

Current I increases at an 
ever-decreasing rate.

Battery emf stays constant. 
Resistor and inductor voltages 
sum to battery voltage.

Change in current results in 
emf in the inductor. Emf 
decreases with decreasing 
rate of current change.

IR

L ELE0

We can analyze the circuit quantitatively using the loop law. Going clockwise, we 
 encounter a voltage increase E0 at the battery, a decrease -IR at the resistor, and a change 
EL at the inductor. This change is actually a decrease, but we’ll let Equation 27.5 take care 
of the signs. Then the loop law reads E0 - IR + EL = 0. The battery emf is constant, so 
if we differentiate this equation, we get

dEL

dt
= R 

dI

dt
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27.4 Inductance 513

But Equation 27.5 gives dI/dt = -EL  /L, so

dEL

dt
= -R 

EL

L

This looks like Equation 25.4 for the RC circuit, but with EL in place of current I, L in place 
of C, and 1/R in place of R. So the solution is that of Equation 25.4 with the  appropriate 
substitutions:

 EL = -E0 e-Rt/L (27.6)

This shows that the inductor emf decays exponentially from its initial value -E0 (negative 
because the inductor emf opposes the battery emf) to zero. Using the undifferentiated loop 
equation, we can now solve for the current:

 I =
E0 + EL

R
=

E0

R
 11 - e-Rt/L2 (27.7)

With a capacitor, we characterized time-changing quantities with the capacitive time 
 constant RC. Here the inductive time constant is L/R. In contrast to the capacitor case, the 
inductive time constant depends inversely on resistance. That’s because a lower  resistance 
means a higher steady-state current, which therefore requires a longer time to build up. 
Significant changes in current can’t occur on time scales much shorter than L/R. Wait 
many time constants, and the circuit approaches a steady state with EL = 0. Figure 27.25 
summarizes the time-dependent behavior of circuit quantities in an RL circuit.

Figure 27.25 Inductor current and emf as 
 functions of time.

0 L>R 2L>R 3L>R 4L>R 5L>R

In
du

ct
or

 e
m

f
C

ir
cu

it 
cu

rr
en

t

Time, t

0 EL 0

I

E0

E0>R

A large electromagnet used for lifting scrap iron has self-inductance 
L = 56 H. It’s connected to a constant 440-V power source; the total 
resistance of the circuit is 2.8 Ω. Find the time it takes for the current 
to reach 75% of its final value.

Interpret This is a problem about the buildup of current in an RL 
circuit.

Develop Equation 27.7, I = 1E0 /R211 - e-Rt/L2,  determines 
the current; here E0 /R is the final current, and we want to solve 
for the time t when I is 75% of this final value. That is, we want 
0.75 = 1 - e-Rt/L.

evaluate Rearranging, we have e-Rt/L = 0.25; then taking natural 
logs of both sides and using ln ex = x gives -Rt/L = ln10.252, or

t = -  
L

R
 ln10.252 = -  

56 H

2.8 Ω
 ln10.252 = 28 s

assess This is a little more than one time constant 1L/R = 20 s2
—not surprising because we found with capacitors that we reach 
 approximately two-thirds of the full charge in one time constant. 
Analogously, with inductors, we reach about two-thirds of the final 
current in one time constant. ■

ExaMpLE 27.8  The Inductive Time Constant: Firing Up an Electromagnet

Figure 27.26 shows a circuit with a two-way switch. Throw the switch to A, and current 
builds up as we just described. Throw it to B, and current continues to flow through the 
inductor and resistor because the inductor current can’t change instantaneously. We won’t 
go through the math, but it’s straightforward to show that the current decays exponentially 
with the same time constant L/R:

 I = I0 e-Rt/L (27.8)

This is analogous to our result for the discharging capacitor.

Figure 27.26 Buildup and decay of 
current in an RL circuit.

E0 EL L
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−

+
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B

L

With switch at A,
current builds up.

Switching to B takes the
battery out of the circuit.
The current decays 
exponentially.
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514 Chapter 27 Electromagnetic Induction

As with capacitors, it’s not necessary to use exponential equations to analyze the short- 
and long-term behavior of circuits with inductors. All you need to remember is that for 
short times inductor current can’t change instantaneously, and for long times inductors 
produce no emfs and therefore act like wires. The next example explores this situation.

CoNCEpTUaL ExaMpLE 27.1  Inductors: Short Times, Long Times

Figure 27.27 Conceptual Example 27.1

+

−
E

Switch open:
No current �ows.

Switch closed:
Inductor acts like
open circuit.

After a long time:
Inductor acts
like short circuit.

Reopen switch:
Inductor current
keeps �owing.

R1

0
R2 L

(a)

(c)

(b)

(d)

Figure 27.28 Currents in R2 and L for Conceptual Example 27.1.

Switch
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(b)

(c)

(d)

The switch in Fig. 27.27a is initially open. It’s then closed and, a long 
time later, reopened. What’s the direction of the current in R2 after the 
switch is reopened?

evaluate To see what’s happening here, we sketch the circuit in 
three situations, beginning with the switch closing and ending with 
it reopening (Fig. 27.27b–d). There’s no inductor current with the 
switch initially open, so there’s no current right after it closes. Then 
the inductor might as well be an open circuit, so we drew Fig. 27.27b 
with only the two resistors. After a long time the current stops chang-
ing, and the inductor behaves like a wire (Fig. 27.27c). Finally, what-
ever current was flowing in the inductor continues to flow after the 
switch is reopened. That current was flowing downward in the induc-
tor, so, as Fig. 27.27d shows, it’s flowing upward through R2.

assess Does this surprising result make sense? Yes: Current in an 
inductor can’t change instantaneously, and once the switch opens the 
current has nowhere to go but upward through R2. The resistor has 
no say in the matter; as Making the Connection shows, its current is 
determined entirely by the battery voltage and R1. If the switch stays 

open, the current in Fig. 27.27d decays exponentially as the resistor 
dissipates the energy that was stored in the inductor.

Figure 27.28 shows currents in the inductor and R2 as functions of 
time. If R

2
 weren’t in the circuit, the voltage would rise dangerously 

high as the inductor tries to keep the current flowing. Resistors are 
often wired in parallel with large inductors to alleviate this danger.

makIng the ConneCtIon Verify that the current in R2 just after the 
switch is reopened has the value indicated in Fig. 27.28.

evaluate Just before the switch is reopened, Fig. 27.27c shows 
that the current through the inductor is IL = E0 /R1; R2 is irrelevant 
here because it’s short-circuited by the inductor. Just after the switch 
opens, the current continues flowing, now going upward through R2 
as we reasoned above. So the current in R2 is -E0 /R1, with the minus 
sign designating the upward direction according to the sign conven-
tions in Fig. 27.28.

27.5 Magnetic Energy
In Figs. 27.26b and 27.27d, current flows in circuits containing only a resistor and an 
 inductor. Energy is dissipated, heating the resistor. Where does this energy come from?

Because there’s a current in the inductor, there’s also a magnetic field. The change 
in that magnetic field is what produces the emf that drives the current. As the current 
 decreases, so does the magnetic field. Eventually the circuit reaches a state where there’s 
no current, no magnetic field—and a hot resistor. So where did the resistor’s thermal 
 energy come from? It came from the magnetic field.
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27.5 Magnetic Energy 515

Like the electric field, the magnetic field contains stored energy. Our decaying RL 
circuit is analogous to a discharging RC circuit, in which the electric field between the 
capacitor plates disappears as thermal energy appears in the resistor. As in the electric 
case, magnetic energy isn’t limited to circuits: Any magnetic field contains energy. Release 
of magnetic energy drives a number of practical devices and also powers violent events 
throughout the universe; an important example that directly impacts us here on Earth is 
described in the Application on page 516.

Magnetic Energy in an Inductor
We can find the stored energy by reconsidering the buildup of current in the inductor. 
 Earlier we wrote the loop law for the circuit of Fig. 27.23; if we multiply that equation by 
the current I, we get IE0 - I2

 R + IEL = 0 or, using Equation 27.5 for EL,

IE0 - I2
 R - LI 

dI

dt
= 0

The three terms here have the units of voltage times current, or power. The first shows 
that the battery supplies energy to the circuit at the rate IE0. The second, -I2

 R, is the 
rate of energy dissipation in the resistor; the negative sign means the resistor takes energy 
from the circuit. The current is increasing 1dI /dt 7 02, so the third term is also negative; 
it describes energy the inductor takes from the circuit. But the inductor doesn’t dissipate 
this energy; rather, it stores the energy in its magnetic field. The rate at which the inductor 
stores energy is thus

P = LI 
dI

dt

Suppose we increase the current in an inductor by some small amount dI over a small 
time interval dt. Since the power is the rate of energy storage, the energy dU stored during 
this time is

dU = P dt = LI 
dI

dt
 dt = LI dI.

We find the total energy stored in bringing the inductor current from zero to some final 
value I by summing—that is, integrating—all the dU values:

U = LdU = LP dt = L
I

0
 LI dI = 1

2 LI2 2 I
0

Evaluating at the two limits then gives the stored energy:

 U = 1
2 LI2  1energy stored in inductor2 (27.9)

This much energy is therefore released when the magnetic field decays.

ExaMpLE 27.9  Magnetic Energy: an MrI Disaster

Superconducting electromagnets like the solenoids in MRI scanners 
store a lot of magnetic energy. Loss of coolant can be dangerous be-
cause the current is suddenly left without its zero-resistance path and 
quickly decays. The result is an explosive release of magnetic energy. 
A particular MRI solenoid carries 2.4 kA and has a 0.53-H induct-
ance. When it loses superconductivity, its resistance goes abruptly to 
31 mΩ. Find (a) the stored magnetic energy and (b) the rate of energy 
release at the instant superconductivity is lost.

Interpret We’re asked first for the total stored energy and then for 
the power dissipated in the resistance of the coils at the instant they 
cease to be superconducting.

Develop Equation 27.9, U = 1
2 LI2, determines the stored energy, 

while P = I2
 R determines the resistor power. Just before the cool-

ant loss, the MRI solenoid carries 2.4 kA; since current can’t change 
instantaneously in an inductor, this current remains momentarily 

(continued)
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516 Chapter 27 Electromagnetic Induction

Magnetic-Energy Density
In Example 27.6 we found the inductance of a solenoid with length l and cross-sectional 
area A: L = m0 

 n2
 Al. Equation 27.9 then gives the magnetic energy stored in the solenoid:

U = 1
2 LI2 = 1

2 m0 n2
 AlI2 =

1

2m0
 1m0 nI22

 Al =
B2

2m0
 Al

where we recognized the quantity m0 
 

nI  as B, the magnetic field in the solenoid (Equa-
tion 26.20). The quantity Al is the volume containing this field, so the energy per unit 
 volume—the magnetic-energy density—is

 uB =
B2

2m0
  (magnetic@energy density) (27.10)

Although we derived this expression for the field of a solenoid, it is, in fact, a universal 
 expression for the local magnetic-energy density. Wherever there’s a magnetic field, there’s 
stored energy.

Equation 27.10 is similar to Equation 23.7 for the energy density in an electric field: 
uE = 1

2 P0 E2. Each energy density is proportional to the square of the field strength, and 
each contains the appropriate constant, m0 or P0. That the constant appears in the  numerator 

 unchanged. Therefore, we have everything we need to find the power 
dissipation.

evaluate (a) Equation 27.8 gives

U = 1
2 LI2 = 11

2210.53 H212.4 kA22 = 1.5 MJ

while for (b) we have

P = I2
 R = 12.4 kA22131 mΩ2 = 0.18 MW

assess This is substantial power, equivalent to 1800 100-W  lightbulbs 
burning in the space of this roughly human-size  device! You can show 
in Problem 57 that it takes some 20 s before 90% of the energy has dis-
sipated. To prevent explosive energy  release,  superconducting wires 
generally incorporate copper or silver to carry the  current in the event 
of coolant loss that quenches the  superconductivity. ■

This chapter’s opening image depicts a power failure that blacked out the en-
tire Canadian province of Quebec. That blackout was no accident but resulted 
from electrical failures caused, ultimately, by a massive outburst of particles 
from the Sun. Solar physicists—including your author—are still exploring the 
mechanisms of such outbursts, but it’s clear that they involve the sudden re-
lease of energy stored in the magnetic field that permeates the Sun’s atmos-
phere, or corona. Thus the energy described by Equation 27.10 becomes the 
kinetic energy of solar particles, mostly electrons and protons. The resulting 
coronal mass ejections (CMEs) propagate outward through the solar system 
at hundreds of kilometers per second and, if they happened to be aimed to-
ward Earth, reach our planet in several days; the image shows a large CME 
erupting from the Sun. The particle burst and associated shock wave pummels 
Earth’s magnetic field, and some particles become trapped on the field lines; 
there they cause auroras, as described in Section 26.3. The impact also com-
presses Earth’s magnetic field, resulting in a rapidly changing field that extends 
down to Earth’s surface. And time-changing magnetic fields, as Faraday’s law 
shows, give rise to induced currents in any conductors that might be present. 
On Earth, such conductors include power lines and related electrical equip-
ment, as well as Earth itself. Current surges in these conductors can damage 
critical components of the electric power grid, resulting in a cascade of fail-
ures that, in extreme cases, causes massive blackouts like the Quebec event. 
Even buried cables aren’t immune, as induced currents surge through the solid 
Earth—although in Quebec, poorly conductive rock underlying the province 
reduced ground currents and actually exacerbated current surges in the above-
ground power grid. Solar-induced magnetic disturbances at Earth are called 

geomagnetic storms, and in addition to power systems they can damage or in-
terfere with satellites and communications. As humankind depends more on 
electrical, electronic, and space systems, we worry about massive geomagnetic 
storms that could plunge far greater areas than Quebec into power, commu-
nications, and information blackouts. Indeed, a record-strength geomagnetic 
storm in 1859 caused auroras that were seen as far south as Hawaii and Cuba 
and resulted in worldwide failures of newly developed electric telegraph sys-
tems. A similar event today could cost the world some $3 trillion in damages.

appLICaTIoN  Solar outbursts and Geomagnetic Storms
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27.6 Induced Electric Fields 517

in one case and in the denominator in the other is merely a consequence of the way SI 
units are defined.

GoT IT? 27.7 If you keep the current in a solenoid constant while doubling both 
its overall length and the number of turns per unit length, will the magnetic energy in the 
solenoid (a) double, (b) quadruple, (c) increase by a factor of 8, (d) increase by a factor of 
16, or (e) decrease by a factor of 1/22?

27.6 Induced Electric Fields
So far we’ve been talking about induction in terms of emfs and circuits. But what, really, 
is emf? In the case of a battery, it results from chemical reactions that separate charge. 
With motional emf (Section 27.3), magnetic forces on a moving conductor act to separate 
charge. But what causes the emf in a conducting loop subject to a changing magnetic field? 
There’s no motion, yet there must be a force on the free charges in the  conductor. The only 
force we know that acts on stationary charges is the electric force, which  results from 
 electric fields. Therefore, there must be an electric field—an induced electric field—in 
the conducting loop. This field has the same effect on charges, exerting a force qE

S
, as did 

the electric fields we considered earlier. But the induced field originates not in electric 
charge but in changing magnetic field.

An induced electric field results whenever a magnetic field changes with time—
whether or not an electric circuit is present. If there is a circuit, then the field drives 
 induced  currents. But the induced field, not the current, is fundamental. A single, station-
ary electron in a changing magnetic field experiences an electric force—clear evidence for 
the existence of the induced electric field.

We wrote Faraday’s law as Equation 27.2, giving the relation between induced emf 
and changing magnetic flux. But the induced electric field is more fundamental, and emf 
simply means the work per unit charge gained as charge goes around a circuit—or for that 
matter any closed loop. Thus we can write E = AE

S#
 dl

!
, and Faraday’s law becomes

 C E
S #  d l

!
= -  

dΦB

dt
  (Faraday>s law) (27.11)

Here we’re using dl
!
 for the infinitesimal vector along the integration loop, to be consistent 

with the notation introduced in Chapter 26 for Ampère’s law. Faraday’s law in the form of 
Equation 27.11 is a universal statement about electric fields and changing magnetic flux. 
The line integral on the left-hand side is over any closed loop, which need not coincide 
with a circuit or conductor. The flux on the right-hand side is the surface integral of the 
magnetic field over any open surface bounded by the loop on the left-hand side.

Faraday’s law tells us that there’s another source of electric fields besides electric 
charge—namely, changing magnetic field:

A changing magnetic field creates an electric field.

This direct interaction between fields is the basis for many practical devices and, as we’ll 
see in Chapter 29, is essential to the existence of light.

Faraday’s law is similar to Ampère’s law (Equation 26.16). On the left side, both  involve 
the line integral of a field, E

S
for Faraday and B

S
for Ampère. On the right is a source of 

that field, changing magnetic field for E
S

and moving electric charge— current—for B
S

. 
Both fields encircle their sources. That means the configuration of an induced electric 
field is very different from that of an electric field originating in charge. Field lines of 
an induced electric field have no beginnings or ends; they generally form closed loops 
 encircling regions of changing magnetic field (Fig. 27.29).

When a changing magnetic field has sufficient symmetry, we can evaluate the induced 
electric field in the same way we did the magnetic field of a symmetric current  distribution.

Figure 27.29 (a) Static electric fields originate  
in charges and look very different from  
(b) induced fields that result from changing 
magnetic fields.
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518 Chapter 27 Electromagnetic Induction

ExaMpLE 27.10  Finding the Induced Electric Field: a Solenoid

A long solenoid has circular cross section of radius R. The solenoid 
current is increasing, and as a result so is the magnetic field in the 
solenoid. The field strength is given by B = bt, where b is a constant. 
Find the induced electric field outside the solenoid, a distance r from 
the axis.

Interpret Here’s a problem about a changing magnetic field 
 producing an electric field—that is, about Faraday’s law. We’ll  follow 
the steps in Chapter 26’s strategy for Ampère’s law, modifying as 
 appropriate to Faraday’s law. We begin by identifying the symmetry, 
which here is line symmetry.

Develop Symmetry requires that encircling electric field lines be cir-
cular. We’ve drawn some field lines in Fig. 27.30 and marked one of 
them as a loop for the integration in Faraday’s law. We chose a loop 
coinciding with a field line because symmetry requires that the field 
strength E be constant over a circle concentric with the  symmetry axis.

evaluate The situation on the left-hand side of Faraday’s law is 
just as in Example 26.8, except with E

S
instead of B

S
. So A E

S # dl
!
 

evaluates to 2prE. Instead of current on the right-hand side, we 
have changing magnetic flux -dΦB /dt. Here the loop is outside the 
 solenoid, so it encircles the entire flux, which is ΦB = BA = btpR2.  
Then the rate of change of flux is dΦB /dt = pR2b. As usual, we’ll use 
Faraday’s law for the magnitude of the induced effect, and then invoke 
energy conservation for the direction. Equating 2prE to the rate of change 
of flux pR2b then gives the magnitude of the induced electric field:

E =
R2b

2r
What about the direction? If a current were flowing as a result of the 
induced electric field, its direction would be such as to oppose the 
increase in the solenoid’s magnetic field. Since the solenoid’s field 
points into the page, any induced current would have to produce a 
field pointing out of the page. Applying the right-hand rule by curling 
your fingers in the counterclockwise direction of the field arrows in 
Fig. 27.30 shows that a counterclockwise current would produce such 
an outward field. Since an induced current would be driven by the 
electric field, the counterclockwise direction we chose for the electric 
field lines in Fig. 27.30 is correct.

assess The 1/r dependence here shouldn’t surprise you; we found 
the same dependence for other fields, both electric and magnetic, re-
sulting from sources with line symmetry. Note how we used a hypo-
thetical induced current here to reason out the direction of the induced 
electric field. Even though there isn’t any induced current in this case, 
you can still think about what would happen if there were such a cur-
rent, and Lenz’s law will then lead you to the direction of the induced 
electric field. Calculating the electric field inside the solenoid would 
be similar to this example, but a given field line would encircle only 
part of the magnetic flux; Exercise 33 covers that situation.  ■

Figure 27.30 Cross section of a solenoid whose magnetic field points into 
the page and is increasing. Field lines of the induced electric field are circles 
concentric with the solenoid axis.

Loop for Faraday’s law

Conservative and Nonconservative Electric Fields
Static electric fields—those beginning and ending on stationary charge distributions—are 
conservative, meaning that the work required to move a charge between two points is path 
independent. A consequence is that it takes no work to move around a closed path in an 
electrostatic field; mathematically, we express this by writing

C E
S  #  dl

!
= 0  (electrostatic field)

In contrast, induced electric fields generally form closed loops, and here Faraday’s law 
shows that the line integral of the electric field around a closed path is decidedly not zero. 
That means the induced electric field does work on a charge moved around a closed path 
and that the work done in moving between two points cannot be independent of the path 
taken (Fig. 27.31). The induced electric field, therefore, is not conservative.

GoT IT? 27.8 The figure shows three resistors in  series 
surrounding an infinitely long solenoid with a  changing 
 magnetic field; the resulting induced electric field drives a 
 current counterclockwise, as shown. Two identical voltmeters 
are shown connected to the same points A and B. What does 
each read? Explain any apparent contradiction. Hint: This is a 
challenging question!

A

R R

R

C B

I

0

 -  + 

0
 -  + 

Figure 27.31 The work done to move charge in 
an induced electric field isn’t path independ-
ent, so the induced field isn’t conservative.

E
S

Move charge this way
from A to B, and you do
work against the �eld.

A

B

Go this way from 
A to B and E does
work on the charge.

S
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27.6 Induced Electric Fields 519

Figure 27.32 A simple model for diamagnetism.

mout
u

min
u

B
S

Result: nonzero net magnetic moment

This electron slows down cand this one speeds up.

No net magnetic moment

(b)

(a)

-e -e

-e -e

Increasing B induces E that 
changes electrons' motions.

S S

Diamagnetism
We introduced diamagnetism in Chapter 26 but couldn’t explain it there because it in-
volves induced electric fields. Figure 27.32 shows a highly simplified model representing 
two atomic electrons with equal but opposite magnetic moments. Although a proper treat-
ment of diamagnetism requires quantum mechanics, this model shows qualitatively how 
diamagnetism arises.

The dipole moments in Fig. 27.32a cancel, so the associated atom has no magnetic 
dipole moment. But what happens when a magnetic field is applied, pointing into the page 
(Fig. 27.32b), perhaps by moving the north pole of a bar magnet toward the page? The 
changing magnetic field results in an electric field that alters the electrons’ speeds. In 
order to oppose the imposition of the magnetic field, the electron on the right speeds up. 
Its dipole moment, which points out of the page, increases and opposes the bar magnet’s 
field. Meanwhile the left-hand electron’s dipole moment decreases. Now the atom has a 
net dipole moment pointing out of the page, opposing the incoming magnet and resulting 
in the repulsive force that characterizes diamagnetism.

Figure 27.33 Induced currents in a 
 superconductor completely cancel an applied 
magnetic field.

B
S

I

I

Figure 27.34 A small magnet levitates 
above a wafer of high-temperature 
 superconductor in a bath of liquid 
 nitrogen.

A superconductor is perfectly diamagnetic, meaning that the magnetic field resulting from 
induced currents completely cancels any applied field. Since these induced currents persist 
in the zero-resistance superconductor, the material completely excludes magnetic fields from 
its interior, a phenomenon known as the Meissner effect (Fig. 27.33). The repulsive force 
associated with the magnetic moments of a permanent magnet and a nearby superconductor 
results in the widely publicized phenomenon of magnetic levitation (Fig. 27.34).
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Faraday’s law describes induction quantitatively, relating the line inte-
gral of the induced electric field to changing magnetic flux:

A E
S#  dl

!
= -dΦB /dt

B
S

E
S

Induced
electric
�eld

Region of
increasing B

S

In conductors, Faraday’s law gives the induced emf: E = -dΦB /dt.

Chapter 27 Summary
Big Idea

The big idea here is electromagnetic induction, a phenomenon in which a changing magnetic field produces an electric field. Applied to 
 circuits, induction results in induced emfs that drive induced currents.

S S N
I

− +

I

0

 -  + 

0

 -  + 

S S N
I

− +

I

0

 -  + 

0

 -  + 

Here a moving magnet produces the changing magnetic field. Here a change in current produces the changing magnetic field.

Key Concepts and Equations

Lenz’s law shows that electromagnetic induction is consistent with 
conservation of energy, which requires that induced effects act to 
oppose the changes that give rise to them.

I

Counterclockwise 
current makes loop 
magnetic moment 
out of page, opposing 
increase in B.

SIncreasing
B into page
S

Magnetic fields contain stored energy, as do electric fields. The magnetic-energy density is

uB =
B2

2m0

applications

Electric generators convert mechanical energy to electrical en-
ergy by moving conductors in magnetic fields to induce emfs that 
drive currents.

Rotation of loop changes the
magnetic �ux, inducing
an emf.

N

Stationary
brushes Rotating

conducting 
loop

Rotating
slip rings

Electric
load

S

Inductors are wire coils that encircle their own magnetic flux, giving 
self-inductance L = ΦB /I. An inductor opposes changes in current, 
 producing an emf given by E = -L1dI/dt2. Circuit quantities in a simple 
RL circuit change with inductive time constant L/R.

−

+
E0

R

I

L

L>R
Time

I

E0>R

I =
E0

R
 11 - e-Rt/L2

Diamagnetism occurs when electromagnetic induction results in atoms acquiring net magnetic moments; the result is a repulsive interaction.
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Exercises and Problems 521

For homework assigned on MasteringPhysics, go to www.masteringphysics.com

BIO Biology and/or medicine-related problems DATA Data problems ENV Environmental problems CH Challenge problems Comp Computer problems

12. A small magnet is dropped into each of two hollow vertical tubes 
of equal length, one made of copper and one of aluminum. Does 
it take longer for the magnet to fall through the aluminum tube 
or the copper tube, or does it take the same amount of time for 
each? (Hint: Consult Table 24.1.)

13. Figures 27.1b and 27.2 actually describe the same situation, just 
from the viewpoints of two different inertial reference frames. In 
Fig. 27.2, in the reference frame of the magnet, you can think 
of the induced current as arising from the magnetic force on the 
electrons in the coil (motional emf). From the coil’s reference 
frame (Fig. 27.1b), how would you describe the origin of the 
induced current? (This comparison played an important role in 
Einstein’s thinking about relativity, and the phrase “the recipro-
cal electrodynamic action of a magnet and a conductor” appears 
in the second sentence of Einstein’s 1905 paper introducing the 
special theory of relativity; more in Chapter 33.)

exercises and problems
Exercises

Sections 27.2 Faraday’s Law and 27.3 Induction  
and Energy
14. Show that the volt is the SI unit for the rate of change of magnetic 

flux, making Faraday’s law dimensionally correct. Your result 
also shows why the unit of flux itself can be expressed as V #  s.

15. Find the magnetic flux through a 5.0-cm-diameter circular 
loop oriented with the loop normal at 36° to a uniform 75-mT 
 magnetic field.

16. A circular wire loop 45 cm in diameter has resistance 120 Ω 
and lies in a horizontal plane. A uniform magnetic field points 
 vertically downward, and in 25 ms it increases linearly from  
5.0 mT to 55 mT. Find the magnetic flux through the loop at (a) the 
beginning and (b) the end of the 25-ms period. (c) What’s the loop 
current during this time? (d) Which way does this current flow?

17. A conducting loop of area 240 cm2 and resistance 12 Ω is perpen-
dicular to a spatially uniform magnetic field and carries a 320-mA  
induced current. At what rate is the magnetic field changing?

18. The magnetic field inside a 23-cm-diameter solenoid is 
 increasing at 2.4 T/s. How many turns should a coil wrapped 
around the outside of the solenoid have so that the emf induced in 
the coil is 15 V?

Section 27.4 Inductance
19. Find the self-inductance of a 1500-turn solenoid 55 cm long and 

4.0 cm in diameter.
20. The current in an inductor is changing at 110 A/s and the induc-

tor emf is 45 V. What’s the self-inductance?
21. A 1.9-A current is flowing in a 22-H inductor. A switch opens, inter-

rupting the current in 1.0 ms. Find the induced emf in the inductor.
22. Your little sister is building a radio from scratch. Plans call for a 

450@μH inductor wound on a cardboard tube. She brings you the 
tube from a toilet-paper roll (12 cm long, 4.0 cm diameter), and 
asks how many turns she should wind on the full length of the 
tube. Your answer?

23. What inductance should you put in series with a 150@Ω resistor 
to give a time constant of 2.2 ms?

24. The current in a series RL circuit increases to 20% of its final 
value in 3.1 μs. If L = 1.8 mH, what’s the resistance?

For thought and Discussion
 1. In Fig. 27.35, a bar magnet moves toward a conducting ring. 

What’s the direction of the induced current in the ring?

v
u

N S

Figure 27.35 For Thought and Discussion 1

 2. Figure 27.36 shows two concentric conducting loops, the outer 
connected to a battery and a switch. The switch is initially open. 
It’s then closed, left closed for a while, and then reopened. De-
scribe the currents in the inner loop during the entire procedure.

−

+

Figure 27.36 For Thought and Discussion 2

 3. Fluctuations in Earth’s magnetic field due to changing solar ac-
tivity can wreak havoc with communications, even those using 
underground cables. How is this possible?

 4. Chapter 26 stated that a static magnetic field cannot change the 
energy of a charged particle. Is this true of a changing magnetic 
field? Discuss.

 5. Can an induced electric field exist in the absence of a conductor?
 6. A car battery has a 12-V emf, yet energy from the battery pro-

vides the 30,000-V spark that ignites the gasoline. How is this 
possible?

 7. You have a fixed length of wire to wind into an inductor. Will you 
get more inductance if you wind a short coil with large diameter, 
or a long coil with small diameter?

 8. In a popular demonstration of induced emf, a lightbulb is con-
nected across a large inductor in an RL circuit, as shown in  
Fig. 27.37. When the switch is opened, the bulb flashes brightly 
and may even burn out. Why?

−

+
L

R

S

LightbulbE

Figure 27.37 For Thought and Discussion 8

 9. List some similarities and differences between inductors and ca-
pacitors.

10. A 1-H inductor carries 10 A, and a 10-H inductor carries 1 A. 
Which contains more stored energy?

11. It takes work to push two bar magnets together with like poles 
facing. Where does this energy go?
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522 Chapter 27 Electromagnetic Induction

40. In Example 27.2 take a = 1.0 cm, w = 3.5 cm, and l = 6.0 cm. 
Suppose the rectangular loop is a conductor with resistance 
50 mΩ, and the current I in the long wire is increasing at 25 A/s. 
Find the induced current in the loop. What’s its direction?

41. A 2000-turn solenoid is 2.0 m long and 15 cm in diameter. The 
solenoid current is increasing at 1.0 kA/s. (a) Find the current in 
a 10-cm-diameter wire loop with resistance 5.0 Ω lying inside 
the solenoid and perpendicular to the solenoid axis. (b) Repeat 
for a similarly oriented 25-cm-diameter loop with the same re-
sistance, lying entirely outside the solenoid.

42. A stent is a cylindrical tube, often made of metal mesh, that’s in-
serted into a blood vessel to overcome a constriction. It’s some-
times necessary to heat the stent after insertion to prevent cell 
growth that could cause the constriction to recur. One method is 
to place the patient in a changing magnetic field, so that induced 
currents heat the stent. Consider a stainless-steel stent 12 mm long 
by 4.5 mm in diameter, with total resistance 41 mΩ. Treating the 
stent as a wire loop in the optimum orientation, find the rate of 
change of magnetic field needed for a heating power of 250 mW.

43. A uniform magnetic field is given by B
S

= bt kn, where b =  
0.35 T/s. Find the induced current in a conducting loop with area 
240 cm2 and resistance 0.20 Ω that lies in the x–y plane. In what 
direction is the current, as viewed from the positive z-axis?

44. You’re an electrical engineer designing an alternator (the genera-
tor that charges a car’s battery). Mechanical engineers specify a 
10-cm-diameter rotating coil, and you determine that you can fit 
250 turns in this coil. To charge a 12-V battery, you need a peak 
output of 14 V when the alternator is rotating at 1200 rpm. What 
do you specify for the alternator’s magnetic field?

45. A generator consists of a rectangular coil 75 cm by 1.3 m, spin-
ning in a 0.14-T magnetic field. If it’s to produce a 60-Hz alter-
nating emf with peak value 6.7 kV, how many turns must it have?

46. Figure 27.39 shows a pair of parallel conducting rails a distance 
l apart in a uniform magnetic field B

S
. A resistor R is connected 

across the rails, and a conducting bar of negligible resistance is 
being pulled along the rails with velocity v

!
 to the right. (a) What 

direction is the current in the resistor? (b) At what rate does the 
agent pulling the bar do work?

v
u

B
S

lR

Figure 27.39 Problems 46–49 and 75

47. The resistor in Problem 46 is replaced by an ideal voltmeter.  
(a) To which rail should the positive meter terminal be connected 
if it’s to indicate a positive voltage? (b) At what rate does the 
agent pulling the bar do work?

48. A battery of emf E  is inserted in series with the resistor in  
Fig. 27.39, with its positive terminal toward the top rail. The bar 
is initially at rest, and now nothing’s pulling it. (a) Describe the 
bar’s subsequent motion. (b) The bar eventually reaches a con-
stant speed. Why? (c) What is that constant speed, in terms of the 
magnetic field, the battery emf, and the rail spacing l? Does the 
resistance R affect the final speed? If not, what role does it play?

49. In Fig. 27.39, take l = 10 cm, B = 0.50 T, R = 4.0 Ω, and 
v = 2.0 m/s. Find (a) the current in the resistor, (b) the magnetic 
force on the bar, (c) the power dissipation in the resistor, and 
(d) the mechanical power supplied by the agent pulling the bar. 
Compare your answers to parts (c) and (d).

50. The magnetic field inside a solenoid of circular cross section is 
given by B

S
= bt kn, where b =  2.1 T/ms. At time t = 0.40 μs, a 

BIO

Section 27.5 Magnetic Energy
25. How much energy is stored in a 5.0-H inductor carrying 35 A?
26. What’s the current in a 24-mH inductor storing 75 μJ of energy?
27. A 220-mH inductor carries 350 mA. How much energy must be 

supplied to the inductor in raising the current to 850 mA?
28. A 1250-turn solenoid 23.2 cm long and 1.58 cm in diameter 

 carries 165 mA. How much magnetic energy does it contain?
29. Show that the quantity B2/2m0 has the units of energy density.
30. The world’s strongest magnet that can produce a sustained field 

is a 45-T device at the National High Magnetic Field Laboratory 
in Florida. What’s the corresponding magnetic-energy density?

31. Find the magnetic-field strength in a region where the magnetic-
energy density is 7.8 J/cm3.

Section 27.6 Induced Electric Fields
32. The induced electric field 12 cm from the axis of a 10-cm-radius 

solenoid is 45 V/m. Find the rate of change of the solenoid’s 
magnetic field.

33. Find an expression for the electric-field strength inside the 
 solenoid of Example 27.10, a distance r from the axis.

problems
34. A conducting loop of area A and resistance R lies at right 

 angles to a spatially uniform magnetic field. At time t = 0, the 
 magnetic field and loop current are both zero. Subsequently, the 
current increases according to I = bt2, where b is a constant with 
units A/s2. Find an expression for the magnetic-field strength as a 
function of time.

35. A conducting loop with area 0.15 m2 and resistance 6.0 Ω  lies 
in the x–y plane. A spatially uniform magnetic field points in the  
z-direction. The field varies with time according to Bz = at2 - b,  
where a = 2.0 T/s2 and b = 8.0 T. Find the loop current (a) at 
t = 3.0 s and (b) when Bz = 0.

36. A square wire loop of side l and resistance R is pulled with con-
stant speed v from a region of no magnetic field until it’s fully 
inside a region of constant, uniform magnetic field B

S
perpendic-

ular to the loop plane. The boundary of the field region is  parallel 
to one side of the loop. Find an expression for the total work 
done by whatever is pulling the loop.

37. A 5-turn coil 1.0 cm in diameter is rotated at 10 rev/s about an 
axis perpendicular to a uniform magnetic field. A voltmeter con-
nected to the coil through rotating contacts reads a peak value 
360 μV. What’s the magnetic-field strength?

38. A magnetic field is given by B
S

= B0(x /x0)
2kn, where B0 and x0 

are constants. Find an expression for the magnetic flux through a 
square of side 2x0 that lies in the x–y plane with one corner at the 
origin and sides coinciding with the positive x- and y-axes.

39. A square wire loop 3.0 m on a side is perpendicular to a uniform 
2.0-T magnetic field. A 6-V lightbulb is in series with the loop, 
as shown in Fig. 27.38. The magnetic field is reduced steadily to 
zero over time ∆t. (a) Find ∆t such that the bulb will shine at full 
brightness. (b) Which way will the loop current flow?

B
S

Figure 27.38 Problem 39
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64. Your hospital is installing a new MRI scanner using a 3.5-H su-
perconducting solenoid carrying 1.8 kA. Copper is embedded in 
the coils to carry the current in the event of a quench (see Exam-
ple 27.9). As safety officer, you’re to specify (a) the maximum 
resistance that will limit power dissipation to 100 kW immedi-
ately after a loss of superconductivity and (b) the time it will take 
the power to drop to 50 kW. What specs do you give?

65. A neutron star’s magnetic field is about 108 T. Consult Appendix C  
to compare the energy density in this field with that of (a) gaso-
line and (b) pure uranium-235 (mass density 19 * 103 kg/m3).

66. A single-turn loop of radius R carries current I. How does the 
magnetic-energy density at the loop center compare with that of 
a long solenoid of the same radius, carrying the same current, 
and consisting of n turns per unit length?

67. A wire of radius R carries current I distributed uniformly over its 
cross section. Find an expression for the total magnetic energy 
per unit length within the wire.

68. (a) Use Equation 27.8 to write an expression for the resistor’s 
power dissipation as a function of time, and (b) integrate from 
t = 0 to t = ∞  to show that the total energy dissipated is equal 
to the energy initially stored in the inductor.

69. An electric field and a magnetic field have the same energy den-
sity. Find an expression for the ratio E/B and evaluate this ratio 
numerically. What are its units? Is your answer close to any of 
the fundamental constants listed inside the front cover?

70. A rectangular conducting loop of resistance R, mass m, and width w  
falls into a uniform magnetic field as shown in Fig. 27.41.  
(a) Explain why the loop eventually reaches a terminal speed.  
(b) Find an expression for the terminal speed.

v
u

B
S

¥

w

Figure 27.41 Problem 70

71. A conducting disk with radius a, thickness h, and resistivity r 
is inside a solenoid of circular cross section, its axis coinciding 
with the solenoid axis. The magnetic field in the solenoid is given 
by B = bt, where b is a constant. Find expressions for (a) the 
current density in the disk as a function of the distance r from 
the disk center and (b) the power dissipation in the entire disk. 
(Hint: Consider the disk as consisting of infinitesimal conducting 
loops.)

72. A long, straight coaxial cable consists of two thin, tubular 
 conductors, the inner of radius a and the outer of radius b. Cur-
rent I flows out along one conductor and back along the other. 
Show that the self-inductance per unit length of the cable is 
m0

2p
 ln 1b/a2.

73. The table below shows the current in a circuit like that of  
Fig. 27.26, where a current has been established with the switch 
in position A, and then it’s thrown to position B at time t = 0. 
The resistance is 180 Ω. Determine an appropriate function of 
current that, when plotted against time, should produce a straight 
line. Make your plot, determine a best-fit line, and use its slope to 
find the inductance in the circuit.

Time (ms) 0 20.0 40.0 60.0 80.0 100.0

Current (mA) 66.5 23.0 9.15 3.56 1.50 0.450

BIO

CH

CH

CH

CH

DATA

proton is inside the solenoid at x = 5.0 cm, y = z = 0, and is 
moving with velocity v

!
= 4.8jn Mm/s. Find the electromagnetic 

force on the proton.
51. An electron is inside a solenoid, 28 cm from the axis. It expe-

riences a 1.3-fN electric force. At what rate is the solenoid’s 
 magnetic field changing?

52. During lab, you’re given a circular wire loop of resistance R 
and radius a with its plane perpendicular to a uniform magnetic 
field. You’re supposed to increase the field strength from B1 to B2 
and measure the total charge that moves around the loop. Your 
lab partner claims that the details of how you vary the field will 
make a difference in the total charge; your hunch is that it won’t. 
By integrating the loop current over time, determine who’s right.

53. A flip coil is used to measure magnetic fields. It’s a small coil 
placed with its plane perpendicular to a magnetic field, and then 
flipped through 180°. The coil is connected to an instrument that 
measures the total charge Q that flows during this process. If 
the coil has N turns, area A, and resistance R, show that the field 
strength is B = QR/2NA.

54. The current in a series RL circuit rises to half its final value in 7.6 s.  
What’s the time constant?

55. In a series RL circuit like Fig. 27.23a, E0 = 45 V, R = 3.3 Ω, 
and L = 2.1 H. If the current is 9.5 A, how long has the switch 
been closed?

56. In Fig. 27.23a, take R = 2.5 kΩ  and E0 = 50 V. When the 
switch is closed, the current through the inductor rises to 10 mA 
in 30 μs. Find (a) the inductance and (b) the current in the circuit 
after many time constants.

57. How long does it take to dissipate 90% of the magnetic energy in 
Example 27.9?

58. A series RL circuit like Fig. 27.23a has E0 = 60 V, R = 22 Ω, 
and L = 1.5 H. Find the rate of change of the current (a) imme-
diately after the switch is closed and (b) 100 ms later.

59. You’re a safety engineer reviewing plans for a university’s new 
high-rise dorm. The elevator motors draw 20 A and behave elec-
trically like 2.5-H inductors. You’re concerned about dangerous 
voltages developing across the switch when a motor is turned off, 
and you recommend that a resistor be wired in parallel with each 
motor. (a) What should be the resistance in order to limit the emf 
to 100 V? (b) How much energy will the resistor dissipate?

60. In Fig. 27.26, take E0 = 12 V, R = 2.7 Ω, and L = 20 H. Ini-
tially the switch is in position B and there’s no current anywhere. 
At t = 0 the switch is thrown to position A, and at t = 10 s it’s 
returned to B. Find the inductor current at (a) t = 5.0 s and (b) 
t = 15 s.

61. In Fig. 27.40, take E0 = 12 V, R1 = 4.0 Ω , R2 = 8.0 Ω , and 
R3 = 2.0 Ω. Find current I2 (a) immediately after the switch is 
first closed and (b) a long time later. (c) After a long time, the 
switch is reopened. Now what’s I2?

E0

−

+

R1

R2 L

R3

I1 I3

I2

Figure 27.40 Problem 61

62. A battery, switch, resistor, and inductor are connected in series. 
When the switch is closed, the current rises to half its steady-
state value in 1.0 ms. How long does it take for the magnetic 
energy in the inductor to rise to half its steady-state value?

63. When a nonideal 1.0-H inductor is short-circuited, its magnetic 
energy drops to one-fourth of its original value in 3.6 s. What is 
its resistance?
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524 Chapter 27 Electromagnetic Induction

81. If the loop’s vertical dimension were doubled by extending it 
 toward the power line (dashed line in Fig. 27.42), the induced 
emf would
a. double.
b. quadruple.
c. more than double but not quadruple.
d. increase but not quite double.

82. Suppose the same crime were committed in Europe, where the 
standard frequency is 50 Hz. Assuming everything else about the 
situation were the same, the induced emf would
a. be greater.
b. be less.
c. be unchanged.
d. depend on the nature of the energy source.

83. When this crime occurs,
a. more fuel must be consumed at the power plant supplying the 

line.
b. the power company does not suffer any economic damage.
c. the power company can’t determine that it’s being robbed 

without an on-site inspection.
d. there’s no power left for customers further down the line.

Answers to Chapter Questions

Answer to Chapter Opening Question
The energy was stored in the Sun’s magnetic field. The power grid 
was disrupted by surges of current induced by changes in Earth’s 
magnetic field in response to the solar outburst. Normally, electricity 
is generated by moving electrical conductors in magnetic fields. All 
three of these answers involve electromagnetic induction.

Answers to GOt it? Questions
 27.1  (1) Opposite the direction shown in Fig. 27.10, but (2) you’ll 

still have to do work.
 27.2  (b) counterclockwise
 27.3  (b) It gets harder to turn. Constant rate implies a fixed peak 

emf, so lowering the resistance increases the current and there-
fore the power.

 27.4  (b)The penny hits with a slower speed because eddy currents 
dissipate some of its kinetic energy.

 27.5  Changing current in the long wire produces an increasing mag-
netic field that points into the page at the loop. (1) The loop 
current opposes the increase in this field by producing a field in 
its interior that’s out of the page. Therefore, the loop current is 
counterclockwise. (2) The loop current opposes the decrease in 
the into-the-page field, so it’s clockwise.

 27.6   (a) The current increases because the inductor emf is in such a 
direction as to oppose the current supplied by the external circuit.

 27.7  (c)
 27.8  Left-hand meter reads 2IR, right-hand meter reads IR—even 

though they’re electrically connected to the same points. 
There’s no contradiction because the field isn’t conservative, 
and electric potential therefore can’t be defined unambiguously.

74. A circular wire loop of radius a and resistance R is pulled with 
constant speed v into a uniform magnetic field B. The loop is per-
pendicular to the field, and it begins entering the field at time 
t = 0. Find an expression for the current in the loop from t = 0 
until the loop is fully immersed in the field.

75. The bar in Problem 46 has mass m and is initially at rest. A 
 constant force F

S
to the right is applied to the bar.  Formulate 

Newton’s second law for the bar, and find its velocity as a 
 function of time.

76. Use the node and loop laws to determine the current in R2 as 
a function of time after the switch is closed in Conceptual  
Example 27.1.

77. (a) Find the magnetic-energy density as a function of radial 
 distance for the coaxial cable of Problem 72, and integrate over 
the volume between the conductors to show that the total en-
ergy per unit length of the cable is given by 1m0I

2/4p2 ln 1b/a2.  
(b) Use the expression U = 1

2 LI2 to find the inductance per 
unit length, and show that your result agrees with that of  
Problem 72.

78. You and your roommate are headed to Cancún for spring break. 
Your roommate, who has had only high school physics, has read 
that an emf can be induced in the wings of an airplane and won-
ders whether this would give enough voltage to power a portable 
music player. What’s your answer? (Assume that the wingspan 
of your 747 is 60 m, the plane is flying at 600 mph, and Earth’s 
magnetic field is 0.3 G.)

79. One way to measure blood flow when blood vessels are exposed 
during surgery is to use an electromagnetic flowmeter. This de-
vice surrounds the blood vessel with an electromagnet, creating 
a magnetic field perpendicular to the blood flow. Since blood is 
a modest conductor, a motional emf develops across the blood 
vessel. Given vessel diameter d, magnetic field B, and voltage V 
measured across the vessel, show that the volume blood flow is 
given by pd2V/4Bd.

Passage Problems
Clever farmers with power lines crossing their land have been known to 
steal power by stringing wire near the power line and making use of the 
induced current. At least one such crime went to court and resulted in a 
conviction—despite the defense’s claim that the defendant didn’t touch 
the lines. Figure 27.42 shows a possible crime scene, with a rectangular 
wire loop mounted in a vertical plane beneath a power line. The power 
line carries a current of 104 A, alternating sinusoidally at 60 Hz.

To farmer’s equipment

I = 104 A

Figure 27.42 Crime scene for Passage Problems 80–83

80. If the loop were mounted in a horizontal rather than vertical 
plane at the same distance from the power line, the induced emf 
would
a. increase slightly.
b. decrease slightly.
c. remain the same.
d. become essentially zero.
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Alternating-Current Circuits

28

What You Know
■ You understand the terms amplitude, 

frequency, and phase as they apply to 
oscillatory motion and waves.

■ You’ve learned about three separate 
electrical components: resistors, 
capacitors, and inductors.

■ You can analyze circuits containing 
batteries, resistors, and capacitors or 
batteries, resistors, and inductors.

So far we’ve considered electric circuits energized by steady sources like batteries. But 
many circuits—from household power to audio and video signals to the “clock” that or-

chestrates events inside your computer—involve time-varying electrical quantities. Here we 
consider such alternating-current (AC) circuits.

28.1 Alternating Current
We saw in Chapter 27 how rotational motion in electric generators naturally leads to 
voltage and current that vary sinusoidally with time. Audio, video, and computer sig-
nals have more complicated time dependence, but, as we showed in Fig. 14.17, those 
signals can be analyzed as sums of sinusoidal terms. Studying circuits with sinusoi-
dally varying electrical quantities therefore provides insights into all AC circuits.

A sinusoidal AC voltage or current is characterized by its amplitude, frequency, and 
phase constant—the same quantities we developed in Chapter 13 to describe simple 
harmonic  motion. Amplitude is specified by the peak value 1Vp, Ip2 or the root-  mean-
square (rms) value 1Vrms, Irms2. The rms is an average obtained by squaring the signal, 
taking the time average, and then taking the square root. For a sine wave, rms and peak 
values are related by

 Vrms =
Vp12
 and Irms =

Ip12
 (28.1)

What You’re Learning
■ You’ll learn to characterize alternating 

voltages and currents (AC) in terms of 
amplitude, frequency, and phase.

■ You’ll learn to relate voltage and current 
in capacitors and inductors, including 
both amplitude and phase relations.

■ You’ll see how circuits containing both 
capacitors and inductors undergo 
electrical oscillations analogous to the 
simple harmonic motion of Chapter 13.

■ You’ll learn how transformers and 
power supplies make direct-current 
power from alternating-current sources.

How You’ll Use It
■ The electric power grid supplies 

you with AC power, so this chapter 
provides a basic understanding of 
everyday household electricity.

■ Circuits with capacitors and inductors 
provide insight into a fundamental 
complementarity between 
electricity and magnetism, which 
will lead to your understanding of 
electromagnetic waves in Chapter 29.

Why do most power lines carry alternating current?
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526 Chapter 28 Alternating-Current Circuits

The 120 V of household wiring in North America, for example, is the rms value (see Fig. 28.1).
In practical situations we usually describe frequency f  in cycles per second, or hertz (Hz).  

In mathematical analysis it’s more convenient to use the angular frequency v in radians 
per second or, equivalently, inverse seconds 1s-12. The relation between the two,

 v = 2pf  (28.2)

is the same as for rotational and simple harmonic motion, and for the same reason: A full 
cycle contains 2p radians.

The phase constant f of an AC signal tells when the sine curve crosses zero with posi-
tive slope (Fig. 28.1). A full mathematical description of an AC voltage or current then 
includes its amplitude 1Vp, Ip2, frequency 1v2, and phase constant 1f2:

 V = Vp sin1vt + fV2 and I = Ip sin1vt + fI2 (28.3)

Here we’ve labeled the phase constants with subscripts V and I to indicate that voltage and 
current—even in the same circuit element—need not have the same phase.

Figure 28.1 A sinusoidally varying AC voltage, 
showing peak and rms amplitudes and phase f.

3p

2

p

2

Voltage completes
a full cycle when
vt advances by 2p.

Here
vt + f = 0.

Sine curve starts at
vt = -p>6, or 30°
before t = 0, so f = p>6. 

    Here
vt + f = 2p.

Vrms

Vp

-Vp

vt
-ϕ p 2p

ExAmpLE 28.1  AC: Characterizing Household Voltage

Standard household wiring in North America supplies 120 V rms at 
60 Hz. Express this mathematically in the form of Equation 28.3, as-
suming the voltage is rising through zero at time t = 0.

Interpret We’re given an AC voltage in “practical” units, and we’re 
asked to express it in the more mathematical form of Equation 28.3. 
We identify 120 V as the amplitude Vrms, 60 Hz as the frequency f, and 
the information about timing as describing the phase.

Develop Equation 28.3, V = Vp sin1vt + fV2, contains the peak 
amplitude Vp and angular frequency v. Equations 28.1, Vrms = Vp /12, 
and 28.2, v = 2pf, determine these quantities from the values we’re 
given.

evaluate Equation 28.1 gives Vp = 12Vrms = 11221120 V2 =
170 V, and Equation 28.2 gives v = 2pf = 12p2160 Hz2=  377 s-1. 
We don’t have an equation for phase, but the fact that the sine curve 
rises through zero at t = 0 tells us that f = 0. So Equation 28.3’s 
description of this AC voltage becomes V = 170 sin1377t2 V.

assess Make sense? Both the peak voltage and the angular fre-
quency are numerically greater than their more familiar counterparts. 
That’s because the rms voltage is an average, lower than the peak, 
and because the angular frequency measures radians per second rather 
than full cycles. Incidentally, wires entering your house actually carry 
240 V rms, which is split into separate 120-V circuits except for major 
appliances like stoves, dryers, and water heaters; these operate at the 
full 240 V rms. In Europe and India, standard household voltage is 
230 V rms at 50 Hz, while China, South Korea, and much of the rest 
of the world use 220-V, 50-Hz power. ■

Got It? 28.1 What are the peak voltage and angular frequency of the 220-V,  
50-Hz AC power used in China and Korea? (a) 170 V, 20 ms; (b) 350 V, 377 s-1;  
(c) 311 V, 314 s-1; (d) 120 V, 50 ms

28.2 Circuit Elements in AC Circuits
Here we examine separately the AC behavior of resistors, capacitors, and inductors so we 
can subsequently understand what happens when we combine these elements in AC circuits.

Resistors
An ideal resistor is a device whose current and voltage are proportional: I = V/R.  
Figure 28.2 shows a resistor R connected across an AC generator, making the voltage 
across the resistor equal to the generator voltage. The generator voltage is described by 
Equation 28.3, where we take fV = 0. Then the current is

I =
V

R
=

Vp sin vt

R
=

Vp

R
 sin vtFigure 28.2 A resistor connected across an AC 

generator (symbol ).

RVp sinvt

PheT:  Circuit Construction Kit (AC + DC)
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28.2 Circuit Elements in AC Circuits 527

The current has the same frequency as the voltage, and, since its phase constant is also 
zero, voltage and current are in phase—they peak at the same time. The peak current is the 
peak voltage divided by the resistance: Ip = Vp /R. Both voltage and current are sinusoidal, 
so their rms values are in the same ratio as their peak values; thus Irms = Vrms /R.

Capacitors
Figure 28.3 shows a capacitor connected across an AC generator. In Chapter 23, we saw 
that voltage and charge are directly proportional in a capacitor: q = CV. Differentiating 
this relation gives

dq

dt
= C 

dV

dt

But dq/dt is the current flowing to the capacitor plates (which we’ll call the “capacitor  current” 
even though charge doesn’t actually flow through the space between the plates). So we have 
I = C1dV/dt2. The generator voltage Vp sin vt appears directly across the  capacitor, so

 I = C 
d

dt
 1Vp sin vt2

  = vCVp cos vt = vCVp sin avt +
p

2
b  (28.4)

Because the cosine curve is a sine curve shifted to the left by p/2 or 90°, Equation 28.4 
tells us that in a capacitor, current leads voltage by 90° (Fig. 28.4).

The term vCVp multiplying the cosine in Equation 28.4 is the peak current, so 
Ip = vCVp or, in a form resembling Ohm’s law,

 Ip =
Vp

1/vC
=

Vp

XC
 (28.5)

where we’ve defined XC = 1/vC.
Equation 28.5 shows that the capacitor acts somewhat like a resistance XC = 1/vC. 

But not quite! This “resistance” gives the relation between peak voltage and peak cur-
rent, but it doesn’t tell the whole story. The capacitor also introduces a phase difference 
between voltage and current. This phase difference reflects a fundamental physical dif-
ference between resistors and capacitors. A resistor dissipates electric energy as heat. A 
capacitor stores and releases electric energy. Over a complete cycle, the agent turning the 
generator in Fig. 28.3 does no net work, while the agent turning the generator with the re-
sistive load of Fig. 28.2 continuously does work that gets dissipated as heat in the resistor. 
We give the quantity XC in Equation 28.5 the name capacitive reactance. Like resistance, 
reactance is measured in ohms 1Ω2.

Does it make sense that XC depends on frequency? Yes. As frequency goes to zero, XC 
goes to infinity. At zero frequency nothing is changing; there’s no charge moving on or 
off the plates, and the capacitor might as well be an open circuit. As frequency increases, 
larger currents flow to move charge on and off the plates in ever-shorter times, so the 
capacitor looks increasingly like a short circuit. To summarize, a capacitor at low frequen-
cies acts like an open circuit, while at high frequencies it acts like a short circuit.

Why does the capacitor current lead the voltage? Because the capacitor voltage is pro-
portional to its charge, and it takes current to move charge onto the capacitor plates. There-
fore, current flows before the voltage changes significantly. We found this same relation 
in the RC circuit of Section 25.5, where closing the switch in the circuit of Fig. 25.18 
resulted in an immediate current followed by a slow rise in the capacitor voltage.

Inductors
Figure 28.5 shows an inductor connected across an AC generator. The loop law for 
this circuit is Vp sin vt + EL = 0. From Chapter 27 we know that the inductor emf is 
EL = -L1dI/dt2, so the loop law becomes

Vp sin vt = L 
dI

dt

Figure 28.3 A capacitor connected across  
an AC generator.

CVp sinvt

Figure 28.4 The current in a capacitor leads  
the voltage by one-fourth of a cycle, p/2 
radians or 90°.

Vp

Ip = vCVp

Time

V

I

Current peaks
1>4 cycle before
voltage.

Figure 28.5 An inductor connected across an 
AC generator.

Vp sinvt L
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528 Chapter 28 Alternating-Current Circuits

To obtain a relation involving the current I rather than its derivative, we integrate:

LVp sin vt dt = LL 
dI

dt
 dt = LL dI = LLdI = LI

The integral of sine is the negative cosine, so

-  
Vp

v
 cos vt = LI

Here we’ve set the integration constants to zero because nonzero values would represent a 
DC emf and current that aren’t in this circuit. Solving for I gives

 I = -  
Vp

vL
 cos vt =

Vp

vL
 sin avt -

p

2
b  (28.6)

where the last step follows because sin1a - p/22 = -cos a for any a.
Equation 28.6 shows that current in the inductor lags the voltage by p/2 or 90°. 

 Equivalently, the voltage across an inductor leads the inductor current by 90°  
(Fig. 28.6). Equation 28.6 also shows that the peak current is

 Ip =
Vp

vL
=

Vp

XL
 (28.7)

Again, this equation resembles Ohm’s law, with inductive reactance XL = vL. As with 
the capacitor, no power is dissipated; instead, energy is alternately stored and released as 
the inductor’s magnetic field builds and decays.

Does it make sense that inductive reactance increases with v and L? Through its 
 induced back emf, an inductor opposes changes in current. The greater the inductance, the 
greater the opposition. And the more rapidly the current is changing, the more vigorously 
the inductor opposes the change, so inductive reactance increases at high frequencies. At 
very high frequencies, an inductor looks like an open circuit. But at very low frequencies, 
it looks more and more like a short circuit, until with direct current (zero frequency), an 
inductor exhibits zero reactance because current isn’t changing.

Why does the inductor voltage lead the current? Because a changing current in an 
 inductor induces an emf. Before the current can build up significantly, there must first, 
therefore, be a voltage across the inductor.

Table 28.1 summarizes amplitude and phase relations in resistors, capacitors, and 
 inductors.

Figure 28.6 The voltage across an inductor 
leads the current by p/2 or 90°.

Vp

Ip = Vp>vL

Time

V

I

Voltage peaks
1>4 cycle before
current.

Table 28.1 Amplitude and Phase Relations in Circuit Elements

Circuit element Peak Current versus Voltage Phase relation

Resistor Ip =
Vp

R
V and I in phase

Capacitor Ip =
Vp

XC
=

Vp

1/vC
I leads V by 90°

Inductor Ip =
Vp

XL
=

Vp

vL
V leads I by 90°

Got It? 28.2 A capacitor and inductor are connected across separate but identical 
electric generators, and the same current flows in each. If the frequency of the generators 
is doubled, how will the currents in the two components compare? (a) they will continue 
to carry equal currents; (b) the capacitor will carry twice as much current as the inductor; 
(c) the inductor will carry twice as much current as the capacitor; (d) the capacitor will 
carry four times as much current as the inductor; (e) the inductor will carry four times as 
much current as the capacitor
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28.2 Circuit Elements in AC Circuits 529

phasor Diagrams
Phasor diagrams summarize phase and amplitude relations in AC circuits. A  phasor 
is an arrow whose length represents the amplitude of an AC voltage or current,  rotating 
 counterclockwise with the angular frequency v of the AC quantity. The phasor’s 
 component on either axis represents the sinusoidally varying AC quantity. We’ll use the 
vertical axis; others, especially electrical engineers, may use the horizontal.

Figure 28.7a shows phasors for current and voltage in a resistor. Since current and 
voltage are in phase in a resistor, the two phasors point in the same direction. For ca-
pacitors and inductors, current and voltage phasors are at right angles, indicating 90° 
phase differences (Fig. 28.7b, c). The phasor magnitudes are related by Vp = Ip X, with 
X being the appropriate reactance. As they rotate, the phasors’ vertical components 
trace out current and voltage graphs like those of Figs. 28.4 and 28.6. You should con-
vince yourself that the relations of Table 28.1 are correctly described by the phasor 
diagrams of Fig. 28.7.

ExAmpLE 28.2 Inductors and Capacitors: Equal Currents?

A capacitor is connected across a 60-Hz, 120-V rms power line, and 
an rms current of 200 mA flows. (a) Find the capacitance. (b) What 
inductance, connected across the same power line, would result in the 
same current? (c) How would the phases of the inductor and capacitor 
currents compare?

Interpret We’re being asked about the relation between AC  voltage 
and current in capacitors and inductors. The idea here is that the 
 voltage–current relation depends not only on the component values 
but also on frequency, and it involves phase as well as amplitude.

Develop Equations 28.5, ICp = VCpvC, and 28.7, ILp = VLp /vL, 
 relate the peak current and peak voltage in the two devices. Since rms 
and peak values are proportional, similar equations also relate rms 
current and voltage. The equations and associated phase relations also 
appear in Table 28.1.

evaluate (a) For the capacitor, we know the voltage and current. 
Equation 28.5 then gives C = ICrms /vVCrms = 4.42 μF, where we 
used ICrms = 0.20 A and v = 2pf = 377 s-1 as we found in Exam-
ple 28.1 for 60-Hz AC power. (b) For an inductor to pass the same 
current, it must have the same reactance; comparing Equations 28.5 

and 28.7 shows that vL = 1/vC, or

L =
1

v2C
=

1

1377 s-12214.42 μF2 = 1.59 H

(c) Table 28.1 shows that the capacitor current leads the voltage by 
90°, while the inductor current lags by 90°; therefore, the capacitor 
and inductor currents must be out of phase by 180° or p radians.

assess Our expression for L shows that a larger capacitor would re-
quire a smaller inductor for the same current. That’s because a larger 
capacitor has lower reactance and so passes more current at a given 
frequency. But an inductor is the opposite: A larger inductor has 
higher reactance. So at a fixed frequency, the inductance required for 
a given current scales inversely with the capacitance required for the 
same current. ■

Figure 28.7 Phasor diagrams showing voltage and current in (a) a resistor, (b) a capacitor, and (c) an inductor.

vt vt

Phasor projections
onto vertical axis
give instantaneous
values.

Current and voltage
phasors point in same 
direction, showing
they're in phase.

Both phasors rotate
counterclockwise with 
angular frequency v.

In capacitors,
current phasor
leads voltage by 90°.
Peak values
are related by
Vp  = IpXC.

In inductors, voltage 
phasor leads current by
90°. Their magnitudes
are related by Vp  = IpXL.

In resistors,
peak voltage
and current
are related
by Vp  = IpR. 
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530 Chapter 28 Alternating-Current Circuits

Capacitors and Inductors: A Comparison
Capacitors and inductors are complementary. A capacitor opposes instantaneous changes 
in voltage; an inductor opposes instantaneous changes in current. In an RC circuit, voltage 
builds up across the capacitor. In an RL circuit, current builds up in the inductor.  Similar curves 
describe capacitor voltage and inductor current over time. A capacitor stores electric energy 
1
2 CV2. An inductor stores magnetic energy 12 LI2. A capacitor acts like an open circuit at low 
frequencies; an inductor like a short circuit at low frequencies. Each exhibits the opposite be-
havior at high frequencies. These comparisons reflect a deeper  complementarity between elec-
tric and magnetic fields. Any verbal description of a capacitor  applies to an inductor if we 
replace the words “capacitor” with “inductor,” “electric” with “ magnetic,” and “voltage” with 
“current.” Table 28.2 summarizes the complementary  aspects of capacitors and inductors.

Table 28.2 Capacitors and Inductors

Capacitor inductor

Defining relation C =
q

V L =
ΦB

I

Defining relation; differential form I = C 
dV

dt
E = -L 

dI

dt

Opposes changes in Voltage Current

Energy storage In electric field U = 1
2 CV2 In magnetic field U = 1

2 LI2

Behavior in low-frequency limit Open circuit Short circuit

Behavior in high-frequency limit Short circuit Open circuit

Reactance XC = 1/vC XL = vL

Phase Current leads voltage by 90° Voltage leads current by 90°

Loudspeakers convert electrical energy to sound, using the magnetic force on a coil 
that fits loosely around a permanent magnet. Part (a) of the figure shows that the coil 
is attached to a flexible cone. Cone and coil move back and forth as AC current cor-
responding to the audio signal flows in the coil, resulting in a time-varying magnetic 
force. The moving cone disturbs the air, producing sound waves.

Most loudspeaker systems include at least two separate units. A small tweeter pro-
duces high-frequency sound, while a larger, more massive woofer handles the low fre-
quencies. A crossover network uses inductors and capacitors to “steer” the high- and 
low-frequency signals to the appropriate speakers. As the circuit diagram in part (b) 
shows, an inductor in series with the woofer blocks high frequencies but lets low fre-
quencies pass unimpeded; a capacitor in series with the tweeter does the opposite. This 
circuit is an example of a filter, used in electronic systems to pass preferentially a range 
of frequencies.

AppLICAtIon Loudspeaker Systems

Magnet

Coil Flexible
cone

S

S

N

C

L

Tweeter

Woofer

From
ampli�er

(a) (b)

Capacitor passes 
high frequencies.

Inductor passes 
low frequencies.

28.3 LC Circuits
Suppose we charge a capacitor to some voltage Vp and corresponding charge qp, and 
then connect it across an inductor, as shown in Fig. 28.8. The capacitor contains stored 
electric energy, but initially there’s no current in the inductor and so no stored magnetic 
energy (Fig. 28.9a). The capacitor begins to discharge through the inductor, but slowly 
at first because the inductor opposes changes in current. Gradually the current rises, and 
with it the magnetic energy in the inductor. The capacitor voltage, charge, and stored 
 energy  decrease. At some time the initial energy is divided equally between capacitor and 
 inductor (Fig. 28.9b). But the capacitor keeps discharging, eventually reaching zero charge  
(Fig. 28.9c). Now all the energy that was originally in the electric field of the capacitor is 
in the magnetic field of the inductor.

Does everything stop at this point? No, because there’s current in the inductor, and 
inductor current can’t change instantaneously. So the current keeps flowing and begins Figure 28.8 An LC circuit.

LC

PheT: Circuit Construction Kit (AC + DC)
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28.3 LC Circuits 531

 piling positive charge on the bottom plate of the capacitor (Fig. 28.9d). Stored electric 
energy increases, and current and magnetic energy both decrease. Eventually the capaci-
tor is fully charged but opposite its initial state (Fig. 28.9e). Again all the energy is in the 
capacitor. Now the capacitor begins to discharge, and the process repeats, with a counter-
clockwise current (Fig. 28.9f). All the energy is transferred to the inductor (Fig. 28.9g), 
and then back to the capacitor (Fig. 28.9a again). The circuit is now back to its initial state. 
Provided there’s no energy loss, the oscillation repeats indefinitely.

This LC oscillation should remind you of the mass–spring system of Chapter 13. There, 
energy went back and forth between kinetic energy of the mass and potential energy of the 
spring. Here, energy goes between magnetic energy of the inductor and electric energy of 
the capacitor. The mass–spring system oscillates with frequency determined by the mass 
m and spring constant k. The LC circuit oscillates with frequency determined by the in-
ductance L and capacitance C, as we’ll show next. Figure 28.10 illustrates this analogy 
between the mass–spring system and the LC circuit.

Figure 28.9 LC oscillations transfer energy between electric and magnetic fields.
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Figure 28.10 An LC circuit is the electrical 
analog of a mass–spring system.

Inductor L
corresponds
to mass m.

Current I
corresponds
to velocity v.

Capacitor C
corresponds
to spring k.

k
m

C L

I
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532 Chapter 28 Alternating-Current Circuits

Analyzing the LC Circuit
The total energy in the LC circuit is the sum of magnetic and electric energy:

U = UB + UE = 1
2 LI2 + 1

2 CV2

In an ideal LC circuit this quantity doesn’t change, so its derivative is zero:

dU

dt
=

d

dt
 11

2 LI2 + 1
2 CV22 = 0

Carrying out the differentiation, we have

LI 
dI

dt
+ CV 

dV

dt
= 0

We substitute V = q/C, dV/dt = 11/C2dq/dt, I = dq/dt, and dI/dt = d2q/dt2 and then 
 divide by I to get

 L 
d2q

dt2 +
1

C
 q = 0 (28.8)

This is a differential equation describing capacitor charge q as a function of time. 
We encountered a similar equation in Chapter 13 for the mass–spring system: 
m1d2x/dt22 + kx = 0. The solution there was a sinusoidal oscillation with angular fre-
quency v = 1k/m. In Equation 28.8, L replaces m and 1/C replaces k; therefore, the solu-
tion to Equation 28.8 is a sinusoidal oscillation:

 q = qp cos vt (28.9)

with angular frequency

 v =
11LC

 (28.10)

Equation 28.9 readily provides other electrical quantities in the LC circuit. Using q = CV  
gives the voltage, and differentiating gives I = dq/dt. From there you can get the electric 
and magnetic energies, UE = 1

2 CV2 and UB = 1
2 LI2. Sum them to verify that the total 

 energy remains constant (Fig. 28.11; see Problem 62 for details).

Got It? 28.3 You have an LC circuit that oscillates at a typical AM radio frequency of 
1 MHz. You want to change the capacitor so it oscillates at a typical FM frequency, 100 MHz.  
(1) Should you make the capacitor (a) larger or (b) smaller? (2) By what factor?

Utotal

UE

UB

vt
2pp

Figure 28.11 Electric and magnetic energies in 
an LC circuit sum to a constant total energy.

You wish to make an LC circuit oscillate at 440 Hz (A above  middle C)  
to use in tuning pianos. You have a 25-mH inductor. (a) What value of 
capacitance should you use? (b) If you charge the capacitor to 5.0 V, 
what will be the peak current in the circuit?

Interpret This problem is about designing an LC circuit for a given 
frequency; in (b) we want the peak current—that is, the current when 
all the energy is in the inductor.

Develop Equation 28.10, v = 1/1LC,  relates frequency, 
 capacitance, and inductance; we’re given L and f. With v = 2pf, we 
can solve for C. We’ve recognized that the peak current comes when 
all the energy is the magnetic energy 1

2 LI2 of the inductor. Given the 
 initial capacitor voltage, we can equate this with the initial electric 
energy 12 CV2 and solve for I.

evaluate (a) Equation 28.10 gives C =  1/v2L =  1/4p2f 2L =  5.23 μF,  
where f = 440 Hz and L = 25 mH. (b) Now that we know C, we 
equate the peak magnetic energy with the peak electric energy to get 
1
2 LI2 = 1

2 CV2. Solving gives

I = BC

L
 V = B5.23 μF

25 mH
 15.0 V2 = 72 mA

assess Our expression shows that the higher the initial voltage, the 
greater the current. That makes sense because a higher initial  voltage 
means greater energy; therefore, a greater current is needed when this 
energy becomes all magnetic. A larger capacitance also raises the 
electric energy 1

2 CV2, while a larger inductance lowers the current 
needed to achieve the same magnetic energy 12 LI2. ■

ExAmpLE 28.3 An LC Circuit: tuning a piano
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28.4 Driven RLC Circuits and Resonance 533

Resistance in LC Circuits—Damping
Real inductors, capacitors, and wires have resistance (Fig. 28.12). If the resistance is low 
enough that only a small fraction of the energy is lost in each cycle, then the analysis in 
the preceding discussion applies. The circuit oscillates at a frequency given very nearly by 
Equation 28.10, but the oscillation amplitude slowly declines as energy is dissipated in the 
resistance.

We can analyze an RLC circuit by evaluating dU/dt as before, this time setting the re-
sult not to zero but to the rate of energy dissipation, -I2R, where the minus sign indicates 
energy loss from the circuit:

dU

dt
=

d

dt
 11

2 LI2 + 1
2 CV22 = -I2R

Making the same substitutions as before leads to

L 
d2q

dt2 + R 
dq

dt
+

q

C
= 0

This is mathematically identical to Equation 13.16 for damped harmonic motion, with 
L again replacing m, 1/C replacing k, and now R replacing the damping constant b. The 
solution follows by analogy with Equation 13.17, which is the solution to Equation 13.16:

 q1t2 = qpe
-Rt/2L cos vt (28.11)

Voltage and current behave similarly, with oscillation amplitude decaying exponentially 
with time constant 2L/R (Fig. 28.13).

As the resistance increases, oscillations decay more rapidly and the frequency of 
 oscillation decreases. Eventually, when the time constant 2L/R equals the inverse of the 
 frequency given in Equation 28.10, we have critical damping. Then all circuit quanti-
ties decay to zero without oscillation, just as we found for mechanical systems. In circuits 
 designed to oscillate, like radio transmitters or TV tuners, engineers want to minimize 
damping. But in situations where oscillations would be a nuisance, it’s important that 
 circuits have enough resistance to suppress oscillation.

28.4 Driven RLC Circuits and Resonance
Figure 28.14 shows an RLC circuit connected across an AC generator. Adding the genera-
tor is like adding the external driving force on the mechanical oscillator that we considered 
in Section 13.7. We’ll call the generator frequency vd, the driving frequency, just as we 
did in Chapter 13. Pursuing the mechanical analogy, we expect the driven RLC circuit to 
exhibit resonant behavior as we discussed in Section 13.7. Such electrical resonance is 
crucial to the operation of radio, TV, and other frequency-specific devices.

Resonance in the RLC Circuit
Suppose we vary the generator frequency vd in Fig. 28.14 while keeping the generator’s 
peak voltage constant. At low frequencies the capacitor acts almost like an open circuit (its 
reactance XC = 1/vC is large), so little current flows. At high frequencies the inductor 
acts almost like an open circuit (its reactance XL = vL is large), so little current flows. 
At some intermediate frequency the current must be a maximum. We now show that this 
resonant frequency is the undamped natural frequency v0 = 1/1LC.

Figure 28.14 is a series circuit, so the same current flows through all components. The 
voltage in a capacitor lags the current by 90°, while the voltage in an inductor leads by 
90°. Since the same current flows in both series components, the inductor and capacitor 
voltages are therefore 180° out of phase and thus they tend to cancel (Fig. 28.15). But that 
cancellation is complete only when the two voltages have the same peak value. Since the 
current is the same in both components, comparison of Equations 28.5 for the capacitor, 
Ip = Vp /XC, and 28.7 for the inductor, Ip = Vp /XL, shows that the peak voltages are the 

Figure 28.12 An RLC circuit.

LC

R

Figure 28.13 An oscilloscope displays the 
capacitor voltage in an RLC circuit.

Figure 28.14 A series RLC circuit driven by an 
AC generator.

L

C

R

V = Vp sinvdt

PheT: Circuit Construction Kit (AC + DC)
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534 Chapter 28 Alternating-Current Circuits

same when the capacitive reactance XC = 1/vC equals the inductive reactance XL = vL. 
Equating the reactances gives

v0 =
11LC
  1resonant frequency2

This is precisely the undamped natural frequency of Equation 28.10.
At resonance the capacitor and inductor voltages completely cancel. The voltage across 

the pair together is zero and—at the resonant frequency only—the pair might just as well 
be a wire. At resonance the resistance alone determines the circuit current. At any other 
frequency the capacitor and inductor voltages don’t cancel, and the current is lower.

Got It? 28.4 You measure the capacitor and inductor voltages in a driven RLC 
 circuit, and find 10 V for the rms capacitor voltage and 15 V for the rms inductor voltage. 
Is the driving frequency (a) above or (b) below resonance?

Frequency Response of the RLC Circuit
Here we’ll use a phasor diagram (recall Section 28.2) to find the current in an RLC circuit 
as a function of the driving frequency (Fig. 28.16). Since the same current flows through 
all elements of this series circuit, a single phasor of length Ip represents the current. The 
resistor voltage is in phase with the current, so its phasor, VRp, is in the same direction as 
Ip. But the inductor voltage leads the current and the capacitor voltage lags, each by 90°, 
so their phasors, VLp and VCp, are perpendicular to the current phasor. At each instant 
the three voltages sum to give the generator voltage; Fig. 28.16 shows that this sum has 

 magnitude Vp = 2VRp
2 + 1VLp - VCp22. Expressing this in terms of the common cur-

rent Ip and the resistance and reactances gives Vp = 2Ip
2R2 + 1Ip XL - Ip XC22. Solving 

for Ip gives

 Ip =
Vp2R2 + 1XL - XC22

=
Vp

Z
 (28.12)

where we’ve defined the impedance, Z, as Z = 2R2 + 1XL - XC22. Impedance is a 
generalization of resistance to include frequency-dependent effects of capacitance and 
 inductance. Equation 28.12 is the corresponding generalization of Ohm’s law. Impedance 
is lowest when XL = XC or v = 1/1LC; then it’s equal to the resistance alone. But Z 
 becomes large at high frequencies, where XL = vL becomes large, and at low frequen-
cies, where XC = 1/vC is large.

Figure 28.17 plots resonance curves from Equation 28.12, showing peak current versus 
frequency for three resistance values. With low resistance, the curve peaks sharply. Such 
a high-Q (for high-quality) circuit does a good job distinguishing its resonance frequency 
from nearby frequencies. High-Q circuits are important in applications such as radio, TV, 
and cell phones, where many signals occupy nearby frequencies. With higher resistance, 
the resonance curve broadens and the circuit responds to a range of frequencies; such a 
circuit has low Q. Problem 68 gives a rigorous definition of Q.

Equation 28.12 relates peak current and voltage in the RLC circuit, but it doesn’t tell 
the whole story. As Fig. 28.16 shows, current and voltage are out of phase by the angle f. 
Trigonometry gives  tan f = 1VLp - VCp2/VRp or, since voltages are proportional to reac-
tances and resistance,

  tan f =
XL - XC

R
=

vL - 1/vC

R
 (28.13)

where f = fV - fI is the phase difference between voltage and current. Positive f 
means voltage leads current; negative f means current leads voltage.

Figure 28.15 Capacitor and inductor voltages 
are 180° out of phase, but their relative magni-
tudes vary with frequency.

Capacitor dominates
at low frequencies, vd 6 v0.

Inductor dominates
at high frequencies, vd 7 v0.

Capacitor and inductor
voltages cancel at resonance frequency, 
vd = v0.

VL

VC

VL + VC
 = 0

Time

V
ol

ta
ge

(c)

Time

V
ol

ta
ge

VC

VL
VL + VC

(b)

Time

V
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ta
ge VL

VL + VC
VC

(a)

Figure 28.16 Phasor diagram for the driven RLC 
circuit, for the case v 7 v0.

f

f is the phase
difference between
voltage and current.

Vp = VRp
2 + 1VLp - VCp22

VRp

VLp

VLp - VCp

VCp

Ip

2
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28.4 Driven RLC Circuits and Resonance 535

At resonance, XL = XC and f = 0. Here capacitor and inductor voltages cancel, 
and the circuit behaves like a pure resistance. At low frequencies, capacitive reactance 
 dominates; here f is negative and the current leads the voltage. This is just what we 
 expect in a capacitive circuit. The opposite is true at high frequencies, where the inductive 
 reactance dominates. Figure 28.18 shows the phase difference as a function of frequency 
for three resistance values.

✓tIp Phase Matters

You can’t analyze AC circuits by treating resistors, capacitors, and inductors all as “resis-
tors” with resistances R, XC, and XL. That’s because each component has a different phase 
relation between current and voltage. Phasor diagrams correctly account for these rela-
tions, which show up in the minus sign joining capacitive and inductive reactance, and in 
the Pythagorean addition of resistance and reactance in Fig. 28.16 and Equation 28.12.

Figure 28.17 Resonance curves for an RLC 
circuit with three different resistances.
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Figure 28.18 Phase relations for the RLC circuits 
whose resonance curves are shown in Fig. 28.17.
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ExAmpLE 28.4 An RLC Circuit: Designing a Loudspeaker System
Current flows to the midrange speaker in a loudspeaker system through 
a 2.2-mH inductor in series with a capacitor. (a) What should the ca-
pacitance be so that a given voltage produces the greatest current at 1.0 
kHz? (b) If the same voltage produces half this current at 618 Hz, what 
is the speaker’s resistance? (c) If the peak output voltage of the ampli-
fier is 24 V, what will the peak capacitor voltage be at 1 kHz?

Interpret This is a problem about the peak current and voltage in a 
series RLC circuit, where we identify the speaker as R and the ampli-
fier as the generator in Fig. 28.14.

Develop The peak current is at the resonant frequency of Equation 
28.10, v = 1/1LC, so in (a) we can solve this equation for C. Equa-
tion 28.12 relates peak voltage and current to the component values 
and the frequency, so in (b) we can solve for R. In (c) we’ll need to 
find the current at 1 kHz, and then use Equation 28.5, Ip = Vp /XC, 
which relates peak voltage and current in a capacitor, to find VCp.

evaluate (a) We solve Equation 28.10 for C, using v = 2pf:
C = 1/312pf22L4 ; with f = 1.0 kHz and L = 2.2 mH, this gives 
C = 11.5 μF. (b) Equation 28.12 shows that we’ll have half the 
peak current when Z is twice the value Z = R that it has at reso-
nance. So we want Z = 2R2 + 1XL - XC22 = 2R at the frequency 
v2 = (2p)(618 Hz). Squaring and solving for R gives

R =
113

` v2L -
1

v2C
` = 8.0 Ω

where we used XL = v2L and XC = 1/v2C for the reactances. For (c), 
note that the impedance at the 1-kHz resonant frequency is just R, so 
the peak current is Ip = Vp /R. Then Equation 28.5 gives the peak ca-
pacitor voltage:

VCp = Ip XC = a
Vp

R
ba 1

vC
b = 43 V

where Vp is the 24-V peak voltage applied to the circuit and v = 2pf  
with f = 1 kHz. (This answer is for the 1-kHz resonant frequency; 
Problem 71 shows that VCp is actually somewhat higher than 43 V at 
frequencies just below resonance.)

assess Our 43-V answer for (c) is greater than the 24-V peak output 
of the amplifier, so how can it be right? Remember that there’s an-
other source of emf in the circuit—the inductor, whose emf depends 
on the rate of change of current. Although the capacitor and inductor 
voltages cancel at resonance, individually both can be higher than the 
applied voltage. In this low-Q circuit, the peak capacitor voltage isn’t 
too much higher than the applied voltage, but in high-Q circuits like 
radio transmitters, capacitors may have to withstand voltages hun-
dreds of times the applied voltage. Incidentally, that 8@Ω answer in 
(b) is typical of loudspeakers. ■
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536 Chapter 28 Alternating-Current Circuits

28.5 power in AC Circuits
Capacitors and inductors don’t dissipate energy; rather, in an AC circuit they alternately 
store and release it. Therefore, the average power consumption over one cycle is zero in 
a purely reactive circuit—one containing only capacitance and/or inductance. You can 
see this mathematically in Fig. 28.19a, which shows current, voltage, and power—the 
product IV—over one cycle for a capacitor. Although the capacitor absorbs energy during 
part of the cycle—when the power is positive—it returns the same amount later (negative 
power), giving zero net power consumption over the cycle. That’s because current and 
voltage are out of phase, so their product can be negative or positive at different times. In 
 contrast, a resistor’s V and I are in phase (Fig. 28.19b), so power is always positive and the 
 resistor takes energy from the circuit. In a circuit containing resistance, capacitance, and 
 inductance, the phase relation between current and voltage depends on the circuit details. 
Figure 28.19c shows a case where I and V are only slightly out of phase; the result is a net 
power consumption, but less than with a pure resistance.

We can develop a general expression for power in AC circuits by considering the time-
average product of voltage and current with arbitrary phase difference f:

8P9 = 83Ip sin1vt - f24 3Vp sin vt49
where 8 9  indicates a time average over one cycle. Expanding the current term using a trig 
identity (see Appendix A) gives

8P9 = Ip Vp81sin2 vt21cos f2 - 1sin vt21cos vt21sin f29

The average of 1sin vt21cos vt2 is zero, as we’ve just shown for two signals 90° out of 
phase. The quantity sin2 vt swings symmetrically from 0 to 1, so its average is 12. Then we 
have 8P9 = 1

2 Ip Vp cos f. Writing the peak values as 12 times the rms values gives

 8P9 = 1
212 Irms12 Vrms cos f = Irms Vrms cos f (28.14)

This confirms our earlier graphical arguments. When the voltage and current are in phase, 
the average power is the product Irms Vrms. But with current and voltage out of phase, the 
average power is lower; at 90° phase difference it’s zero.

The factor  cos f is the power factor. A purely resistive circuit has power factor 1, 
while a circuit with only inductance and capacitance has power factor 0. In general, the 
power factor depends on frequency; in the series RLC circuit, for example, it’s 1 at reso-
nance but lower at other frequencies.

Figure 28.19 Energy consumption over one 
cycle is the area under the curve P = IV, with 
areas below the axis counted as negative.

Time

I
V

P = IV

(a)

Time

P = IV

I
V

(b)

(c)

Time

P = IV

I

V

In a capacitor, I leads V by 90°.

Positive and negative areas sum to
zero, so energy consumption over
one cycle is zero.

In a resistor, I and V are in phase c

cand energy consumption is positive.

As I and V go out of phase c

cenergy consumption drops.

ConCEptUAL ExAmpLE 28.1 managing the power Factor

You’re chief engineer for a power company. Should you strive for a 
high or a low power factor on your lines?

evaluate For a given power, Equation 28.14 shows that the prod-
uct IrmsVrms will need to be higher as the power factor drops below 1. 
Your equipment operates at fixed voltage, so that means more current 
when  cos f 6 1. Power lost in the lines is I2R, and therefore you’ll 
have greater transmission loss with a low power factor. Furthermore, 
you’ll risk overloading your lines. So you’re best served by keeping 
the power factor close to 1.

assess Our answer helps explain some real-life power failures: 
The August 2003 blackout that affected 50 million people in the 
United States and Canada resulted in part from too low a power 

 factor,  resulting in an overloaded line that drooped from excessive 
 heating, short-circuited to a tree, and triggered chain-reaction failures 
 throughout the power grid.

MakIng the ConneCtIon Transmission losses on a well-managed 
electric grid average about 8% of the total power delivered. How does 
this figure change if the power factor drops from 1 to 0.71?

evaluate To get the same power down the line, Equation 28.14 
shows that the current must increase by 1/ cos f = 1/0.71 = 1.4. The 
transmission loss is I2R, so the loss increases by a factor 1.42 = 2. 
That will more than double the original 8% loss rate, because the line 
will need to carry still more power to overcome the loss, and the line 
will heat more, increasing its resistance.
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28.6 Transformers and Power Supplies 537

Got It? 28.5 A resistor and capacitor are connected in series across an AC 
 generator. If the capacitor is replaced with a second resistor whose resistance is equal to the 
capacitor’s reactance, will the power supplied by the generator (a) increase, (b)  decrease, 
or (c) stay the same?

28.6 transformers and power Supplies
A transformer is a pair of wire coils, often wound on an iron core to concentrate mag-
netic flux (Fig. 28.20). A changing current in the primary coil results in a changing mag-
netic flux through the secondary, and this induces an emf in the secondary. The induced 
emf, in turn, drives current in any circuit connected across the secondary. Thus the device 
transfers electric power between two circuits without direct electrical contact.

The transformer in Fig. 28.20 is a step-up transformer because it has more turns in its 
secondary. Since each turn encircles the same changing magnetic flux, each gets the same 
induced emf and therefore the emf across the secondary is greater than across the primary. 
Interchanging primary and secondary in Fig. 28.20 would give a step-down transformer. 
In general, the ratio of the peak (or rms) secondary voltage V2 to the peak (or rms) primary 
voltage V1 is the same as the ratio of turns in the two coils:

 V2 =
N2

N1
 V1 (28.15)

Aren’t we getting something for nothing with a step-up transformer? No. A step-up 
transformer increases voltage, but not power. An ideal transformer passes all the power 
supplied to its primary on to the secondary, so I1V1 = I2V2. If voltage goes up, current goes 
down, and vice versa. Real transformers have losses, but good engineering holds these to a 
few percent of the total power.

Transformers work only with AC because they use electromagnetic induction and 
 therefore require changing current. One reason for the near-universal use of AC power is 
the ease of changing voltage levels (Fig. 28.21). Relatively low voltages are safer for the end 
user. But since power P = IV, using a higher voltage in long-distance transmission means 
lower current. Power dissipated in the conductors themselves is I2R, so that in turn means 
less power lost in transmission. Transformers readily handle the voltage conversions in AC 
power systems. Changing the voltage from a DC source, in contrast, requires first interrupt-
ing the DC to produce a changing current; a car’s ignition system is one example.

Figure 28.20 (a) A transformer consisting of two 
coils wound on an iron core. (b)  Transformer 
circuit symbol.

(a) (b)

Primary Secondary

Figure 28.21 Transformers change voltage levels throughout the power distribution network.

Transmission
line

Distribution
line in city

365 kV 4 kV20 kV 240 V
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538 Chapter 28 Alternating-Current Circuits

Direct-Current power Supplies
Lightbulbs and heaters work equally well on AC or DC, but electronic equipment requires 
DC. In Chapter 24 we found that a junction between P- and N-type semiconductors passes 
current in one direction but not the other. A diode is a PN junction that serves as a “one-
way valve” for electric current. An ideal diode acts like a short circuit in the preferred 
direction, and like an open circuit in the opposite direction (Fig. 28.22).

Figure 28.23a shows a DC power supply using a transformer, diode, and capacitor, de-
livering power to a load symbolized by the resistor R. The transformer steps the voltage to 
the desired level, while the diode passes current only in its preferred direction, “chopping 
off” the negative half of the AC cycle. The capacitor smoothes, or filters, the remaining 
half to produce nearly steady DC. Figure 28.23b shows how this works: As the AC voltage 
rises, the capacitor charges rapidly through the low resistance of the diode in its “on” state. 
But the diode “turns off” when the AC voltage drops, leaving only the resistor as a dis-
charge path for the capacitor. If the RC time constant is long enough—much longer than 
the typical 1/60-s period of the 60-Hz AC cycle—then the capacitor voltage hardly drops 
before the next cycle again sends in a surge of charge. Large capacitors are expensive, 
so practical power supplies often use additional filtering and voltage regulation involving 
semiconductor devices.

Figure 28.22 Circuit symbol for a diode, with 
preferred current direction indicated.

I

Figure 28.23 (a) A simple DC power supply using a diode and capacitive filter. (b) Voltage 
across R exhibits a variation called ripple as the capacitor discharges slightly between cycles. 
A practical power supply would use a larger capacitor, resulting in less ripple.

Time

V
ol

ta
ge

Voltage across R

AC voltage from transformer

RC

(b)(a)

Got It? 28.6 A distribution line in a city supplies AC power at 7.2 kV to a trans-
former that steps it down to 240 V for an individual home. If the current in the transform-
er’s primary is 1.5 A, the current flowing to the home is approximately (a) 3.0 A, (b) 1.5 A, 
(c) 240 A, or (d) 45 A.
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Chapter 28 Summary
Big Idea

The big idea here is alternating current (AC), which in its simplest form exhibits sinusoidal variation in current and voltage. Resistors respond 
to AC as to DC, with current directly proportional to voltage. In capacitors and inductors, the current–voltage relation depends on frequency, and 
the current and voltage are out of phase.

Key Concepts and Equations

An AC voltage or current is characterized 
by its amplitude (rms or peak value), its 
frequency, and phase:

V = Vp sin1vt + f2

3p

2

p

2

Voltage completes
a full cycle when
vt advances by 2p.

Here
vt + f = 0.

Sine curve starts at
vt = -p>6, or 30°
before t = 0, so f = p>6 .

    Here
vt + f = 2p.

Vrms

Vp

-Vp

2pp-ϕ
vt

Reactance, X, characterizes the rela-
tion between peak (or rms) current and 
voltage in capacitors and inductors:

Ip =
Vp

X

XC = 1>vC XL = vL

Inductor:Capacitor:

where v = 2pf  is the angular fre-
quency of the AC voltage and current.

Phasors are arrows used to describe time-varying 
AC quantities. They rotate with angular velocity 
equal to the angular frequency v, and the projec-
tion of the phasor on the vertical axis gives the 
 instantaneous value of voltage or current.

Vp

Ip
IpVpI(t) I(t)

V(t)
V(t)

Capacitor: Current
leads voltage by 90°.

Inductor: Current lags
voltage by 90°.

vt vt

Applications

In an LC circuit, energy oscillates between 
electric and magnetic forms with frequency

v0 =
11LC

LC

In a series RLC circuit, capacitor and inductor voltages cancel at the resonant frequency, v0. 
Here the circuit exhibits the minimum impedance, Z = 2R2 + 1XL - XC22, and passes the 
maximum current. The phase difference between voltage and current is tan f = 1XL - XC2/R.

C
ur

re
nt

, I
p

v0

Frequency

L

C

R

The average power in an AC circuit depends 
on the cosine of the phase difference, also 
called the power factor:

8P9 = IrmsVrms cos f

Transformers use electromagnetic induction to change 
voltage levels, transferring electric power between two 
circuits. Diodes and capacitive filters change AC to DC.

N2

N1
V1V1 V2 = 

N1
turns

N2
turns
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540 Chapter 28 Alternating-Current Circuits

Section 28.2 Circuit Elements in AC Circuits
18. Find the rms current in a 1.0@μF capacitor connected across 

120-V rms, 60-Hz AC power.
19. A 470@Ω  resistor, 10@μF capacitor, and 750-mH inductor are 

each connected across 6.3-V rms, 60-Hz AC power. Find the rms 
current in each.

20. Find the reactance of a 3.3@μF capacitor at (a) 60 Hz, (b) 1.0 kHz, 
and (c) 20 kHz.

21. A 15@μF capacitor carries 1.4 A rms. What’s its minimum safe 
voltage rating if the frequency is (a) 60 Hz and (b) 1.0 kHz?

22. A capacitor and a 1.8@kΩ  resistor pass the same current when 
connected across 60-Hz power. Find the capacitance.

23. A 50-mH inductor is connected across a 10-V rms AC genera-
tor, and a 2.0-mA rms current flows. What’s the generator fre-
quency?

Section 28.3 LC Circuits
24. Find the resonant frequency of an LC circuit consisting of a 

0.22@μF capacitor and a 1.7-mH inductor.
25. An LC circuit with C = 18 mF undergoes oscillations with 

 period 2.4 s. Find the inductance.
26. Your sister who’s building the radio (Chapter 27 Problem 22) 

wants to use a variable capacitor with her toilet-paper-tube 
 inductor to span the AM radio band (550–1600 kHz). What 
 capacitance range do you suggest?

27. An LC circuit with a 20@μF capacitor oscillates with period 5.0 ms.  
The peak current is 25 mA. Find (a) the inductance and (b) the 
peak voltage.

Section 28.4 Driven RLC Circuits and Resonance
28. A series RLC circuit has R = 75 kΩ, L = 20 mH, and resonates 

at 4.0 kHz. (a) What’s the capacitance? (b) Find the circuit’s 
 impedance at resonance and (c) at 3.0 kHz.

29. Find the impedance at 10 kHz of a circuit consisting of a 1.5@kΩ 
resistor, 5.0@μF capacitor, and 50-mH inductor in series.

30. A series RLC circuit has R =  18 kΩ, C =  14 μF, and L =  0.20 H. 
(a) At what frequency is its impedance lowest? (b) What’s the 
impedance at this frequency?

31. If the peak voltage applied to produce the curves in Fig. 28.17 is 
100 V, and if R = 10 kΩ, what are the peak currents at  resonance 
for the three curves shown?

Section 28.5 Power in AC Circuits  
Section 28.6 Transformers and Power Supplies
32. An electric drill draws 4.6 A rms at 120 V rms. If the current lags 

the voltage by 25°, what’s the drill’s power consumption?
33. A 40-W fluorescent lamp has power factor 0.85 and operates 

from the 120-V rms AC power line. How much current does it 
draw?

34. An electric water heater draws 20 A rms at 240 V rms and is 
purely resistive. An AC motor has the same current and voltage, 
but its inductance causes the voltage to lead the current by 20°. 
Find the power consumption in each device.

35. For safety, medical equipment connected to patients is often pow-
ered by an isolation transformer, whose primary is  connected to 
120-V AC power and whose secondary delivers 120-V power. 
What’s the turns ratio of such a transformer?

36. You’re planning a semester in China, so you want to purchase a 
transformer to step the 220-V Chinese power down to 120 V to 

BIO

For thought and Discussion
 1. Two AC signals have the same amplitude but different frequen-

cies. Are their rms amplitudes the same?
 2. What’s meant by the statement, “A capacitor acts like a DC open 

circuit”?
 3. There’s an insulating gap between capacitor plates, so how can 

current flow in an AC circuit containing a capacitor?
 4. Why does it make sense that inductive reactance increases with 

frequency?
 5. The same AC voltage appears across a capacitor and a resistor, 

and the same rms current flows in each. Is the power dissipation 
the same in each?

 6. When a particular inductor and capacitor are connected across 
the same AC voltage, the current in the inductor is higher than in 
the capacitor. Is this true at all frequencies?

 7. An inductor and capacitor are connected in series across an AC 
generator, and the voltage across the inductor is higher than 
across the capacitor. Is the generator frequency above or below 
resonance?

 8. When the capacitor voltage in an undriven LC circuit reaches 
zero, why don’t the oscillations stop?

 9. Why is Equation 28.5 not a full description of the relation 
 between voltage and current in a capacitor?

10. The applied voltage in a series RLC circuit lags the current. Is the 
frequency above or below resonance?

11. The voltage across two components in series is zero. Is it  possible 
that the voltages across the individual components aren’t zero? 
Give an example.

12. If you measure the rms voltages across the resistor, capacitor, and 
inductor in a series RLC circuit, will they add to the rms genera-
tor voltage?

13. A step-up transformer increases voltage, or energy per unit 
charge. Why doesn’t this violate energy conservation?

exercises and problems
Exercises
Section 28.1 Alternating Current
14. Much of Europe uses AC power at 230 V rms and 50 Hz. Express 

this AC voltage in the form of Equation 28.3, taking fV = 0.
15. An industrial electric motor runs at 208 V rms and 400 Hz. What 

are (a) the peak voltage and (b) the angular frequency?
16. An AC current is given by I = 495 sin(9.43t), with I in mA and t 

in ms. Find (a) the rms current and (b) the frequency in Hz.
17. What are the phase constants for the signals in Fig. 28.24?

3p
2

p
2

p 2pV
ol

ta
ge

vt0

(a)

(b)

(c)

(d)(e)

Figure 28.24 Exercise 17
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Exercises and Problems 541

112 H2420 μF 605 μF

A B

Figure 28.25 Problem 48

49. A damped LC circuit consists of a 0.15@μF capacitor and a  
20-mH inductor with resistance 1.6 Ω. How many oscillation 
 cycles will occur before the peak capacitor voltage drops to half 
its initial value?

50. A damped RLC circuit includes a 5.0@Ω resistor and a 100-mH 
inductor. If half the initial energy is lost after 15 cycles, what’s 
the capacitance?

51. An RLC circuit includes a 1.5-H inductor and a 250@μF capaci-
tor rated at 400 V. The circuit is connected across a sine-wave 
generator with Vp = 32 V. What minimum resistance will ensure 
that the capacitor voltage does not exceed its rated value when 
the circuit is at resonance?

52. The table below shows the ratio of peak voltage to peak  current—
that is, the impedance Z—as a function of frequency for a series 
RLC circuit. Plot the data and use your graph to estimate (a) the 
resonant frequency and (b) the resistance R.

Frequency (Hz) 150 200 230 280 350 400

Impedance (Ω) 320 140 74 77 190 280

53. Figure 28.26 shows the phasor diagram for an RLC circuit. (a) Is 
the driving frequency above or below resonance? (b) Complete 
the diagram by adding the applied voltage phasor, and from your 
diagram determine the phase difference between applied voltage 
and current.

VLp

VRp

VCp

Figure 28.26 Problem 53

54. An AC voltage of fixed amplitude is applied across a series RLC cir-
cuit. The components are such that the current at half the resonant 
frequency is half the current at resonance. Show that the current at 
twice the resonant frequency is also half the current at resonance.

55. A series RLC circuit has resistance 127 Ω and impedance 344 Ω. 
(a) What’s the power factor? (b) If the rms current is 225 mA, 
what’s the power dissipation?

56. A series RLC circuit has power factor 0.764 and impedance 
182 Ω at 442 Hz. (a) What’s the resistance? (b) If the inductance 
is 25.0 mH, what’s the resonant frequency?

57. You’re Chief Financial Officer for a power company, and you con-
sult your engineering department in an effort to minimize power-
line losses. Your power plant produces 60-Hz power at 365 kV rms 
and 200 A rms, and delivers it via transmission lines with total re-
sistance 100 Ω. You ask the engineers for the percentage of power 
that’s lost. They reply that it depends on the power factor. What’s 
the percentage loss for power factors of (a) 1.0 and (b) 0.60?

DATA

power your stereo. (a) If the transformer’s primary has 660 turns, 
how many should the secondary have? (b) You can save money 
with a transformer whose maximum primary current is 1.4 A. If 
your stereo draws 2.9 A, will this transformer work?

problems
37. (a) A 2.2-H inductor is connected across 120-V rms, 60-Hz 

power. Find the rms inductor current. (b) Repeat if the same 
inductor is connected across the 230-V rms, 50-Hz power 
 commonly used in Europe.

38. A 2.0@μF capacitor has 1.0@kΩ  reactance. (a) What’s the fre-
quency of the applied voltage? (b) What inductance would give 
the same reactance at this frequency? (c) How would the reac-
tances compare if the frequency were doubled?

39. Show that the unit of both capacitive and inductive reactance is 
the ohm.

40. Electroencephalography (EEG) elucidates brain function by ana-
lyzing brain waves, AC voltages resulting from electrical activity 
in the brain. Alpha waves are brain waves with frequencies from 
7.5 Hz to 12.5 Hz. A particular alpha wave has frequency 9.84 Hz  
and rms amplitude 31.8 μV. Express this voltage in the form of 
Equation 28.3, assuming zero phase constant.

41. At 15 kHz an inductor has 12 times the reactance of a capacitor. 
At what frequency will their reactances be equal?

42. A 0.75-H inductor is in series with a fluorescent lamp, and the 
combination is across 120-V rms, 60-Hz power. If the rms induc-
tor voltage is 90 V, what’s the rms lamp current?

43. A 2.2-nF capacitor and one of unknown capacitance are in 
parallel across a 10-V rms sine-wave generator. At 1.0 kHz, 
the generator supplies a total current of 3.4 mA rms. The gen-
erator frequency is then decreased until the rms current drops to  
1.2 mA. Find (a) the unknown capacitance and (b) the lower 
 frequency.

44. Connections to the body for electrocardiography (ECG) and 
electroencephalography (EEG) are normally made with metal 
electrodes and conductive gels to ensure good electrical con-
tact. An alternative is the capacitively coupled noncontact elec-
trode, which uses a conductor near but not contacting the skin, 
to form a capacitor. Clothing can serve as the capacitor’s insula-
tion, eliminating skin contact. A particular EEG instrument calls 
for capacitive electrodes with maximum reactance 10 MΩ at a 
typical EEG beta wave frequency of 25 Hz. What’s the minimum 
electrode capacitance?

45. The FM radio band covers the frequency range 88–108 MHz. 
If the variable capacitor in an FM receiver ranges from 10.9 pF 
to 16.4 pF, what inductor should be used to make an LC circuit 
whose resonant frequency spans the FM band?

46. An LC circuit includes a 0.025@μF capacitor and a 340@μH in-
ductor. (a) If the peak capacitor voltage is 190 V, what’s the peak 
inductor current? (b) How long after the voltage peak does the 
current peak occur?

47. One-eighth of a cycle after the capacitor in an LC circuit is fully 
charged, what are the following as fractions of their peak values: 
(a) capacitor charge, (b) energy in the capacitor, (c) inductor cur-
rent, (d) energy in the inductor?

48. The 2420@μF capacitor in Fig. 28.25 is initially charged to 250 V.  
(a) Describe how you would manipulate switches A and B to 
transfer all the energy from the 2420@μF capacitor to the 605@μF 
capacitor. Include the times you would throw the switches.  
(b) What will be the voltage across the 605@μF capacitor once 
you’ve finished?

BIO

BIO
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542 Chapter 28 Alternating-Current Circuits

Passage Problems
A filter is a circuit designed to pass AC signals in some frequency 
range and to attenuate others. Common filters include low-pass filters, 
which allow low-frequency signals to pass but attenuate high frequen-
cies; high-pass filters, which do the opposite; and band-pass filters, 
which pass a range of frequencies while attenuating signals with 
frequencies outside the band. Filters are widely used in electronics. 
Applications include tone and equalizer controls in audio equipment; 
filters to separate nearby frequencies at cell phone towers; and filters 
to eliminate unwanted electrical noise in biomedical instruments such 
as electrocardiographs. A simple design for an RC filter is shown in 
Fig. 28.27.

R

CVin Vout

Figure 28.27 An RC filter (Passage Problems 73–76)

73. The circuit shown in Fig. 28.27 is
a. a low-pass filter.
b. a high-pass filter.
c. a band-pass filter.
d. impossible to tell without knowing the component values.

74. When the angular frequency v of the input voltage Vin is such 
that the capacitor’s reactance is equal to the resistance, the output 
voltage is
a. Vin /4.
b. Vin /2.
c. Vin /12.
d. 2Vin.

75. The circuit of Fig. 28.27
a. exhibits resonance at frequency v = 1/RC.
b. exhibits resonance at frequency v = 1/1RC.
c. produces an output voltage whose frequency differs from that 

of the input.
d. produces an output voltage whose phase differs from that of 

the input.
76. If you replace the capacitor in Fig. 28.27 with an inductor, the 

circuit
a. continues to function as before.
b. becomes the opposite kind of filter.
c. produces zero output voltage because the inductor is a short 

circuit.
d. produces an output voltage that exceeds the input voltage.

Answers to Chapter Questions

Answer to Chapter Opening Question
Alternating current is used because transformers, based on electro-
magnetic induction, can alter voltage levels to ensure both efficient 
long-distance power transmission and safety for end users.

Answers to GOt it? Questions
 28.1  (c)
 28.2  (d)
 28.3  (1) (b); (2) by a factor of 10-4

 28.4  (a) because the inductor’s reactance must be greater
 28.5  (b)
 28.6  (d)

58. A car-battery charger runs off the 120-V rms AC power line and 
supplies 10-A DC at 14 V. (a) If the charger is 80% efficient in 
converting the line power to the DC power it supplies to the bat-
tery, how much current does it draw from the AC line? (b) If elec-
tricity costs 9.5¢/kWh, how much does it cost to run the charger 
for 10 hours if the power factor is 1?

59. A power supply like that of Fig. 28.23 is supposed to deliver 
22-V DC at a maximum current of 150 mA. The transformer’s 
peak output voltage can charge the capacitor to a full 22 V, and 
the primary is supplied with 60-Hz AC. What capacitance will 
ensure that the output voltage stays within 3% of the rated 22 V?

60. An RLC circuit includes a 3.3@μF capacitor and a 27-mH induc-
tor. The capacitor is charged to 35 V, and the circuit begins oscil-
lating. Ten full cycles later the capacitor voltage peaks at 28 V. 
Find the resistance.

61. A series RLC  c ircuit  with R = 1.3 Ω, L = 27 mH,  and  
C = 0.33 μF is connected across a sine-wave generator. If the ca-
pacitor’s peak voltage rating is 600 V, what’s the maximum safe value 
for the generator’s peak output voltage when it’s tuned to resonance?

62. Differentiate Equation 28.9 to find the current in the LC circuit, 
and use q = CV to find the voltage. From these, obtain the elec-
tric energy in the capacitor and the magnetic energy in the in-
ductor, and sum to show that the total energy remains constant. 
(Hint: You’ll need Equation 28.10 and a familiar trig identity.)

63. Find a second frequency where the current in the speaker of 
 Example 28.4 has half its maximum value.

64. Two capacitors are connected in parallel across a 24-V rms,  
7.5-kHz sine-wave generator, and the generator supplies a total 
rms current of 56 mA. With capacitors rewired in series, the rms 
current drops to 2.8 mA. What are the two capacitances?

65. A “black box” has two input connections and two output connec-
tions. With a 12-V rms, 60-Hz sine wave across the inputs, the 
output is a 6.0-V, 60-Hz sine wave leading the input voltage by 
45°. Design a circuit that could be in the “black box.”

66. A series RLC  circuit  with R = 47 Ω, L = 250 mH, and 
C = 4.0 μF is connected across a sine-wave generator whose 
peak output voltage is independent of frequency. Find the fre-
quency range over which the peak current will exceed half its 
value at resonance.

67. A sine-wave generator with 20-V peak output is applied across 
a series RLC circuit. At the resonant frequency of 2.0 kHz, the 
peak current is 50 mA; at 1.0 kHz, it’s 15 mA. Find R, L, and C.

68. For RLC circuits in which the resistance isn’t too high, the Q 
factor may be defined as the ratio of the resonant frequency to 
the difference between the two frequencies where the power dis-
sipated in the circuit is half the power dissipated at resonance. 
Using suitable approximations, show that this definition leads to 
Q = v0  L/R, with v0 the resonant frequency.

69. A triangle wave swings linearly between voltages -Vp and +Vp. 
Show that the rms voltage of a triangle wave is Vp /13.

70. Substitute the expression for q1t2 in Equation 28.11 into the dif-
ferential equation for an LC circuit with resistance, and find an 
expression for the angular frequency of the damped oscillations 
in terms of R, L, and C.

71. Although the maximum current flows in the speaker circuit of 
Example 28.4 at the 1-kHz resonant frequency, the peak volt-
age across the capacitor is a maximum at a somewhat lower fre-
quency. Find that frequency and the corresponding peak voltage.

72. Your professor tells you about the days before digital comput-
ers when engineers used electric circuits to model mechanical 
systems. Suppose a 5.0-kg mass is connected to a spring with 
k = 1.44 kN/m. This is then modeled by an LC circuit with 
L = 2.5 H. What should C be in order for the LC circuit to have 
the same resonant frequency as the mass–spring system?
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Maxwell’s Equations and 
Electromagnetic Waves

29

What You Know
■ You’ve seen four laws of 

electromagnetism: Gauss for 
electricity, Gauss for magnetism, 
Faraday’s law, and Ampère’s law.

■ From Chapter 14, you understand the 
nature of mechanical waves.

■ From Chapter 14, you know how to 
describe waves mathematically.

A t this point we’ve introduced the four fundamental laws of electromagne-
tism—Gauss’s law for electricity, Gauss’s law for magnetism, Ampère’s law, and 

 Faraday’s law—that  govern the behavior of electric and magnetic fields throughout 
the universe. We’ve seen how these laws describe the electric and magnetic interac-
tions that make matter act as it does, and we’ve explored practical electromagnetic 
devices. Here we extend the fundamental laws to their most general form and show 
how they predict the existence of electromagnetic waves. These include the visible 
light, radio, microwaves, X rays, ultraviolet, and infrared with which we see, communi-
cate, cook our food, diagnose diseases, learn about the universe, and perform myriad 
other tasks from mundane to profound.

What You’re Learning
■ You’ll see how Maxwell enhanced 

Ampère’s law, completing the set 
of four equations describing all 
electromagnetic phenomena.

■ You’ll follow a physical and 
mathematical explanation of how 
the equations of electromagnetism 
explain the existence of 
electromagnetic waves.

■ You’ll learn the properties of 
electromagnetic waves, including 
the fact that their speed in vacuum is 
precisely the speed of light.

■ You’ll explore the electromagnetic 
spectrum, including visible light.

■ You’ll learn how electromagnetic waves 
are produced by accelerated charges.

■ You’ll see how electromagnetic waves 
carry energy and momentum.

How You’ll Use It
■ Electromagnetic waves, including 

light, are one of your primary means 
of interacting with the world around 
you.

■ Electromagnetic waves are the basis 
of nearly all wireless communication 
systems, from radio to cell phones to 
WiFi and Bluetooth.

■ Electromagnetic waves provide nearly 
all our knowledge of the universe 
beyond Earth.

■ Electromagnetic waves are the basis 
of optics, which you’ll explore in 
Chapters 30–32.

How does a conversation travel between cell phones?
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544 Chapter 29 Maxwell’s Equations and Electromagnetic Waves

29.1 The Four Laws of Electromagnetism
Table 29.1 summarizes the four laws as we introduced them in earlier chapters. Look at 
these laws and you’ll notice some similarities. On the left-hand sides of the equations, the 
two laws of Gauss are identical except for the interchanging of E

S
 and B

S
; the same is true 

for Ampère’s and Faraday’s laws.
The right-hand sides are more different. Gauss’s law for electricity involves charge, 

while Gauss’s law for magnetism has zero on the right-hand side. Actually, though, these 
laws are similar. Since we have no experimental evidence for the existence of isolated 
magnetic charge, the magnetic charge on the right-hand side of Gauss’s law for magnet-
ism is zero. If and when magnetic monopoles are discovered, then the right-hand side 
of Gauss’s law for magnetism would be nonzero for any surface enclosing net magnetic 
charge.

The right-hand sides of Ampère’s and Faraday’s laws are distinctly different. Ampère’s 
law has current—the flow of electric charge—as a source of magnetic field. We can under-
stand the absence of a similar term in Faraday’s law because we’ve never observed a flow 
of magnetic monopoles. If we had such a flow, then we would expect this magnetic current 
to produce an electric field.

Two of the differences among the laws of electromagnetism would be resolved if we 
knew for sure that magnetic monopoles exist. That current theories of elementary particles 
suggest the existence of monopoles is a tantalizing hint that there may be a fuller symme-
try between electric and magnetic phenomena.

Table 29.1 Four Laws of Electromagnetism (still incomplete)

Law Mathematical Statement What It Says

Gauss for E
S

CE
S#  dA

S
=

q

P0
How charges produce electric field; field 

lines begin and end on charges.

Gauss for B
S

CB
S

 #  dA
S

= 0 No magnetic charge; magnetic field  
lines don’t begin or end.

Faraday CE
S

 #  d l
!

= -  
dΦB

dt
Changing magnetic flux produces  

electric field.

Ampère (steady  
currents only) CB

S
 #  d l

!
= m0 I Electric current produces magnetic field.

29.2 Ambiguity in Ampère’s Law
There’s one difference that magnetic monopoles won’t resolve. On the right-hand side 
of Faraday’s law is the term dΦB /dt that describes changing magnetic flux as a source of 
electric field. There’s no comparable term in Ampère’s law. Are we missing something? 
Is it possible that a changing electric flux produces a magnetic field? So far, you haven’t 
seen any experimental evidence for such a conjecture. It’s suggested only by the sense that 
the near-symmetry between electricity and magnetism is not a coincidence. If a changing 
electric flux did produce a magnetic field, just as a changing magnetic flux produces an 
electric field, then we would expect a term dΦE /dt on the right-hand side of Ampère’s law.

When we first stated Ampère’s law in Chapter 26, we emphasized that it applied only to 
steady currents. Why that restriction? Figure 29.1 shows a situation in which current is not 
steady—namely, an RC circuit. Current in this circuit carries charge onto the capacitor plates. 
The current gradually decreases to zero as the capacitor charges. While it’s flowing, the 
 current should produce a magnetic field. Let’s try to use Ampère’s law to calculate that field.

Ampère’s law says that the line integral of the magnetic field around any closed loop is 
proportional to the encircled current:

CB
S # d l

!
= m0 I

The encircled current is the current through any open surface bounded by the loop.  
Figure 29.2 shows four such surfaces. The same current flows through surfaces 1, 2, and 4 

FIgure 29.1 A charging RC circuit, showing 
some magnetic field lines surrounding the 
current-carrying wire.

B
S

−

+
E

R C
I
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29.2 Ambiguity in Ampère’s Law 545

because a current-carrying wire pierces each surface. But no current flows through surface 
3 because it’s in the gap between the capacitor plates. Charge flows onto the plates of the 
capacitor, but it doesn’t flow through that gap. So for surfaces 1, 2, and 4 the right-hand 
side of Ampère’s law is m0 I, but for surface 3 it’s zero. Thus Ampère’s law is ambiguous in 
this case of a changing current.

This ambiguity doesn’t arise with steady currents. In an RC circuit the steady-state 
 current is zero, and thus the right-hand side of Ampère’s law is zero for any surface. It’s only 
when currents are changing with time that Ampère’s law becomes ambiguous. That’s why 
the form of Ampère’s law we’ve used until now is strictly valid only for steady  currents.

Can we extend Ampère’s law to cover unsteady currents without affecting its valid-
ity in the steady case? Symmetry between Ampère’s and Faraday’s laws suggests that a 
changing electric flux might produce a magnetic field. Between the plates of a charging 
capacitor is an electric field whose magnitude is increasing. That means there’s a changing 
electric flux through surface 3 of Fig. 29.2.

It was the Scottish physicist James Clerk Maxwell who, in about 1860, suggested that 
a changing electric flux should give rise to a magnetic field. Since that time many ex-
periments, including direct measurement of the magnetic field inside a charging capacitor, 
have confirmed Maxwell’s remarkable insight. Maxwell quantified his idea by introducing 
a new term into Ampère’s law, a term that describes changing electric flux:

 CB
S  # d l

!
= m0 I + m0P0 

dΦE

dt
  (Ampère>s law with Maxwell>s modification) (29.1)

Now there’s no ambiguity. The integral is taken around any loop, I is the current through 
any surface bounded by the loop, and ΦE is the electric flux through that surface. With our 
charging capacitor, Equation 29.1 gives the same magnetic field no matter which surface 
we choose. For surfaces 1, 2, and 4 of Fig. 29.2, the current I makes all the contribution 
to the right-hand side of the equation. For surface 3, the right-hand side of Equation 29.1 
comes entirely from the changing electric flux.

Although changing electric flux isn’t the same thing as electric current, it has the same 
effect in producing a magnetic field. For this reason Maxwell called the term P01dΦE /dt2 
the displacement current. The word displacement has historical roots that don’t  provide 
much physical insight. But current is meaningful because displacement current is indistin-
guishable from real current in producing magnetic fields. Although we  developed the idea 
of displacement current using the specific example of a charging capacitor, we emphasize 
that Ampère’s law in its now complete form (Equation 29.1) is truly universal: Any chang-
ing electric flux results in a magnetic field. That fact will prove crucial in establishing the 
existence of electromagnetic waves.

GoT IT? 29.1 Would you expect to find a magnetic field between the capacitor 
plates in Fig. 29.2? Explain.

FIgure 29.2 Four surfaces bounded by the 
same circular Ampèrian loop. Surface 1 is a flat, 
circular disk. The others are like soap bubbles 
in the process of being blown; they’re open at 
the left end, so if current does pass through a 
surface, it does so at the right end only.

Current I �ows
through surfaces 1, 2, and 4.

There's no current
through surface 3.

I

Ampèrian
loop

1 2
3

4

I

ExAmpLE 29.1  Displacement Current: A Capacitor

A parallel-plate capacitor with plate area A and spacing d is charging 
at the rate dV/dt. Show that the displacement current is equal to the 
current in the wires feeding the capacitor.

Interpret This is about a comparison between a familiar quantity—
current—and a new quantity, namely, displacement current.

Develop We’re given the rate at which the capacitor voltage 
 increases. Given that q = CV for a capacitor, we can find the rate of 
charge buildup—and that’s equal to the current I delivering charge to 

the capacitor. Equation 29.1 shows that the displacement current is 
P01dΦE /dt2, so we’ll need the rate of change of electric flux. A par-
allel-plate capacitor produces an essentially uniform field E = V/d. 
Since the field is uniform, the electric flux through a surface within 
the capacitor is simply the field strength times the plate area.

evaluate For the current, we differentiate the capacitor relation 
q = CV  to get dq/dt = I = C dV/dt. For the flux, we multiply the 
electric field by the plate area: ΦE = EA = VA /d. The rate of change 

(continued)
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546 Chapter 29 Maxwell’s Equations and Electromagnetic Waves

29.3 maxwell’s Equations
It was Maxwell’s genius to recognize that Ampère’s law needed modifying to reflect 
the symmetry suggested by Faraday’s law. To honor Maxwell, the four complete laws 
of  electromagnetism are called Maxwell’s equations. The complete set of equations,  
first published in 1864, governs the behavior of electric and magnetic fields everywhere. 
Table 29.2 summarizes Maxwell’s equations.

Table 29.2 Maxwell’s Equations

Law Mathematical Statement What It Says equation Number

Gauss for E
S

CE
S

 #  dA
S

=
q

P0

How charges produce electric 
field; field lines begin and 
end on charges.

(29.2)

Gauss for B
S

CB
S

 #  dA
S

= 0 No magnetic charge; magnetic 
field lines don’t begin or end.

(29.3)

Faraday CE
S

 #  d l
!

= -
dΦB

dt
Changing magnetic flux 

produces electric field.
(29.4)

Ampère CB
S

 #  d l
!

= m0 I + m0P0 
dΦE

dt
Electric current and changing 

electric flux produce 
magnetic field.

(29.5)

These four compact statements are all it takes to describe classical electromagnetic 
phenomena. Everything electric or magnetic that we’ve considered and will consider—
from polar molecules to electric current; resistors, capacitors, inductors, and transis-
tors; solar flares and cell membranes; electric generators and thunderstorms; computers,   
smartphones, and the northern lights—can be described using Maxwell’s equations. And 
despite this wealth of phenomena, we have yet to discuss a most important manifestation 
of electromagnetism—namely, electromagnetic waves. We’ve put off waves until now be-
cause they depend crucially on Maxwell’s extension of Ampère’s law. It’s easiest to un-
derstand electromagnetic waves when they propagate through empty space, so we’ll first 
simplify Maxwell’s equations for the case of a vacuum.

maxwell’s Equations in Vacuum
To express Maxwell’s equations in vacuum, we simply remove all reference to matter—
that is, to electric charge and current:

CE
S # dA

S
= 0  1Gauss, E

S2 (29.6)

CE
S # d l

!
= -

dΦB

dt
  1Faraday2 (29.8)

CB
S # dA

S
= 0 1Gauss, B

S2 (29.7)

CB
S # d l

!
= m0P0 

dΦE

dt
 1Ampère2 (29.9)

In vacuum the symmetry is complete, with electric and magnetic fields appearing on an equal 
footing. With charge and current absent, the only source of either field is a change in the other 
field—as shown by the time derivatives on the right-hand sides of Faraday’s and Ampère’s laws.

of flux is then dΦE /dt = 1A/d21dV/dt2, so the displacement current 
becomes

Id = P0 
dΦE

dt
=

P0 A

d
 
dV

dt

But P0 A/d is the capacitance of a parallel-plate capacitor (given by 
Equation 23.2), so the displacement current is Id = C dV/dt, the same 
as the actual current I.

assess Make sense? It had better be this way, or Ampère’s law 
would still be ambiguous. For any surface pierced by the wire in  
Fig. 29.2, the only contribution to the right-hand side of Ampère’s law 
is from the current I. For any surface between the capacitor plates, the 
only contribution is from the displacement current Id = P01dΦE /dt2. 
For Ampère’s law to give the same magnetic field whichever surface 
we choose, I and Id had better be the same. ■
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29.4 Electromagnetic Waves
Faraday’s law shows that a changing magnetic field induces an electric field. Ampère’s law 
shows that a changing electric field induces a magnetic field. Together, the two suggest the 
possibility of electromagnetic waves, in which each type of field continuously  induces 
the other, resulting in an electromagnetic disturbance that propagates through space as 
a wave. We’ll now confirm this suggestion with a rigorous demonstration, directly from 
Maxwell’s equations, that electromagnetic waves are indeed possible. In the process we’ll 
discover the properties of electromagnetic waves and come to a deep understanding of the 
nature of light.

A plane Electromagnetic Wave
Here we describe the simplest type of electromagnetic wave—a plane wave in vacuum. A 
plane wave’s properties don’t vary in directions perpendicular to the wave propagation, so 
its wavefronts are infinite planes. A plane wave is an approximation to the more realistic 
case of a spherical wave expanding from a localized source, and it’s a good approxima-
tion at distances from the wave source that are large compared with the wavelength. Light 
waves from the Sun, for example, or radio waves miles from the transmitter are essentially 
plane waves.

In vacuum, it turns out that the electric and magnetic fields of an electromagnetic wave 
are perpendicular. They’re both also perpendicular to the direction of wave  propagation—
making the electromagnetic wave a transverse wave, as defined in Chapter 14. To be 
 concrete, we’ll take the x-direction to be the direction of propagation, the y-direction that of 
the electric field, and the z-direction that of the magnetic field (Fig. 29.3). We won’t prove 
that a configuration like this is the only one possible for an electromagnetic wave ( although 
in vacuum it is; see Problem 44). What we will do is prove that this configuration satisfies 
Maxwell’s equations—thus showing that such electromagnetic waves are indeed possible. 
But first we need a mathematical description of our plane electromagnetic wave.

In Chapter 14 we described a sinusoidal wave propagating in the x-direction by a 
function of the form A sin 1kx - vt2, where A is the wave amplitude, k the wave num-

FIgure 29.3 Fields of a plane electromagnetic wave, shown at a fixed instant of 
time. (a) Field vectors for points on the x-axis show sinusoidal variation in the 
fields. (b) A partial representation of the field lines in a rectangular slab. Lines on 
the facing surfaces of the slab are shown as arrows; lines going through the slab 
appear as dots or crosses. Spacing of the field lines reflects the sinusoidal varia-
tion shown in part (a).
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548 Chapter 29 Maxwell’s Equations and Electromagnetic Waves

ber, and v the angular frequency. For mechanical waves, A sin 1kx - vt2 described some 
physical quantity such as the height of a water wave or the pressure variation in a sound 
wave. In an electromagnetic wave, the corresponding physical quantities are the electric 
and  magnetic fields. It turns out that these two wave fields, though perpendicular, are in 
phase— meaning that their peaks and troughs coincide, as shown in Fig. 29.3a. Having 
chosen the y- direction for the electric field and z for the magnetic field, we can write the 
fields of our plane electromagnetic wave as

 E
S1x, t2 = Ep sin 1kx - vt2jn (29.10)

and

 B
S1x, t2 = Bp sin 1kx - vt2kn (29.11)

where the amplitudes Ep and Bp are constants and where jn  and kn are unit vectors in the 
y- and z-directions. Figure 29.3a is a “snapshot” of some field vectors of this wave at 
points on the x-axis, shown at a fixed instant of time. That E

S
 and B

S
 are perpendicular is 

obvious from the figure, as is the fact that they’re perpendicular to the propagation direc-
tion x. You can also see the sinusoidal variation, as the field vectors get alternately longer, 
then shorter, then reverse direction, and so on. And you can see that E

S
 and B

S
 are in phase 

because their peaks coincide. We emphasize that Fig. 29.3a shows field vectors for points 
on the x-axis only; the fields extend forever throughout space, and because this is a plane 
wave, a picture of field vectors along any line parallel to the x-axis would look the same.

We can also draw field lines for our wave, in contrast to the field vectors of Fig. 29.3a. 
We can’t draw complete field lines because they extend forever in both directions. So in 
Fig. 29.3b we’ve shown the field lines only in a rectangular slab; that’s enough to give a 
picture of what the fields look like everywhere. You should convince yourself that Figs. 
29.3a and b show exactly the same thing—namely, a plane electromagnetic wave de-
scribed by Equations 29.10 and 29.11. In one case we use field vectors, whose lengths 
are proportional to the field magnitudes, and in the other we use field lines, which extend 
forever and whose spacing indicates the field magnitudes.

We’ll now show that the electric and magnetic fields pictured in Fig. 29.3 and described 
by Equations 29.10 and 29.11 satisfy Maxwell’s equations. We’ve chosen a sinusoidal 
waveform for our wave fields because of its mathematical simplicity. But the superposition 
principle holds for electric and magnetic fields, and we know from Section 14.5 that we 
can represent any waveform by superposing sinusoids. So our proof that  electromagnetic 
waves can exist holds for any wave shape. That means we can use electromagnetic waves 
to communicate the complex waveforms representing music, images, and computer data.

Gauss’s Laws
In vacuum, Gauss’s laws for electric and magnetic fields both have zero on the right-hand 
side, reflecting the absence of charge. That means the electric and magnetic flux through 
any closed surface must be zero, and therefore the field lines can’t begin or end. With our 
plane wave, the field lines shown partially in Fig. 29.3b extend straight forever in both 
 directions. So they don’t begin or end, and therefore the fields satisfy Gauss’s laws.

Faraday’s Law
To see that Faraday’s law is satisfied, look directly toward the x–y plane in Fig. 29.3b. You 
see electric field lines going up and down and magnetic field lines coming straight in and 
out, as shown in Fig. 29.4. Consider the small rectangular loop of height h and infinitesi-
mal width dx shown in the figure. Evaluating the line integral of the electric field E

S
 around 

this loop, we get no contribution from the short ends at right angles to the field. Going 
around counterclockwise, we get a contribution -Eh as we go down the left side against 
the field direction. Then we get a positive contribution going up the right side.  Because the 
field varies with position, the field on the right side of the loop is different from that on the 

FIgure 29.4 View of Fig. 29.3b in the x–y plane, 
with a rectangular loop for evaluating the line 
integral in Faraday’s law.
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left. Let the change be dE, so the field on the right side is E + dE, giving a contribution 
1E +  dE2h to the line integral. Then the line integral of E

S
 around the loop is

CE
S # d l

!
= -Eh + 1E + dE2h = h dE

This nonzero line integral implies an induced electric field. Induced by what? By a 
 changing magnetic flux through the loop. The electric field of the wave arises because of 
the changing magnetic field of the wave. The area of the loop is h dx, and the magnetic 
field B

S
 is at right angles to this area, so the magnetic flux through the loop is ΦB = Bh dx. 

The rate of change of flux through the loop is then

dΦB

dt
= h dx 

dB

dt

Faraday’s law relates the line integral of the electric field to the rate of change of flux:

CE
S # d l

!
= -

dΦB

dt

or, using our expressions for the line integral and the rate of change of flux, h dE =
-h dx1dB/dt2. Dividing through by h dx gives dE/dx = -dB/dt. In deriving this equation, 
we considered changes in E with position at a fixed instant of time. Similarly, the change 
in B with respect to time is taken at a fixed position. That is, the derivatives are partial 
derivatives—rates of change with respect to one variable while another is held fixed. If 
you’ve studied partial derivatives in calculus, you know that the symbol 0 designates a par-
tial derivative. So our equation dE/dx = -dB/dt should be written with partial derivatives:

 
0E

0x
= -

0B

0t
 (29.12)

This equation—which is Faraday’s law applied to our electromagnetic wave—says that 
the rate at which the electric field changes with position depends on the rate at which the 
magnetic field changes with time.

Ampère’s Law
Now look at Fig. 29.3b from above. You see the magnetic field lines in the x–z plane and 
electric field lines emerging perpendicular to the x–z plane (Fig. 29.5). Apply Ampère’s 
law (Equation 29.9) to the rectangle shown. In the line integral there’s no contribution 
from the short sides because they’re perpendicular to the field. Going down the left side 
gives Bh. Going up the right, against the field, gives -1B + dB2h, where dB is the change 
in B across the rectangle. So the line integral in Ampère’s law is

CB
S # d l

!
= Bh - 1B + dB2h = -h dB

Again, the area of the rectangular loop is h dx, so the electric flux through the rectangle 
becomes Eh dx. Therefore the rate of change of electric flux is

dΦE

dt
= h dx adE

dt
b

Ampère’s law relates the line integral of the magnetic field to this time derivative of the 
electric flux, giving -h dB = P0m0 h dx1dE /dt2. Dividing by h dx and again using partial 
derivatives, we have

 
0B

0x
= -P0 m0 

0E

0t
 (29.13)

FIgure 29.5 View of Fig. 29.3b in the x–z plane, 
with a rectangular loop for evaluating the line 
integral in Ampère’s law.
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550 Chapter 29 Maxwell’s Equations and Electromagnetic Waves

This equation—which is Ampère’s law applied to our electromagnetic wave—says that 
the rate at which the magnetic field changes with position depends on the rate at which 
the electric field changes with time. Note that this is the converse of what you saw with 
 Equation 29.12—reflecting that omnipresent complementarity between electricity and 
magnetism.

Equations 29.12 and 29.13—derived from Faraday’s and Ampère’s laws—express fully 
the requirements that Maxwell’s universal laws of electromagnetism pose on the field 
structure of Fig. 29.3. Each describes an induced field that arises from the changing of the 
other field. That other field, in turn, arises from the changing of the first field. Thus we 
have a self-perpetuating electromagnetic structure, whose fields exist and change without 
the need for charged matter. If Equations 29.10 and 29.11, which describe the fields in  
Fig. 29.3, can be made consistent with Equations 29.12 and 29.13, then we’ll have 
shown that our electromagnetic wave satisfies Maxwell’s equations and is thus a  possible 
 configuration of electric and magnetic fields. An alternative approach, which doesn’t 
 require the sinusoidal fields of Equations 29.10 and 29.11, is to show that Equations 29.12 
and 29.13 lead to the wave equation that we introduced in Chapter 14. You can explore this 
approach in Problem 63.

Conditions on the Wave Fields
To see that Equation 29.12 is satisfied, we differentiate the electric field of Equation 29.10 
with respect to x and the magnetic field of Equation 29.11 with respect to t:

0E

0x
=

0
0x

 3Ep sin1kx - vt24 = k Ep cos1kx - vt2

and

0B

0t
=

0
0t

 3Bp sin1kx - vt24 = -vBp cos1kx - vt2

Putting these expressions in for the derivatives in Equation 29.12 gives

kEp cos1kx - vt2 = - 3-vBp cos1kx - vt24
The cosine cancels, showing that the equation holds if

 kEp = vBp (29.14)

To see that Equation 29.13 is also satisfied, we differentiate the magnetic field given 
by  Equation 29.11 with respect to x and the electric field of Equation 29.10 with 
 respect to t:

0B

0x
= kBp cos1kx - vt2  and  

0E

0t
= -vEp cos1kx - vt2

Using these expressions in Equation 29.13 then gives

kBp cos1kx - vt2 = -P0 m03-vEp cos1kx - vt24
Again, the cosine cancels, so this equation is satisfied if

 kBp = P0 m0 vEp (29.15)

Our analysis has shown that electromagnetic waves whose form is given by Fig. 29.3 
and Equations 29.10 and 29.11 can exist, provided that the amplitudes Ep and Bp, and the 
frequency v and wave number k, are related by Equations 29.14 and 29.15.  Physically, 
the existence of these waves is possible because a change in either field—electric or 
 magnetic—induces the other field, giving rise to a self-perpetuating electromagnetic-field 
structure. Maxwell’s theory thus leads to the prediction of an entirely new phenomenon—
electromagnetic waves. We’ll now explore some properties of these waves.
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GoT IT? 29.2 Equations 29.12 and 29.13 will form the basis for our understanding 
of electromagnetic waves. From which two of the four Maxwell equations do they derive? 
(a) Gauss for electricity and Gauss for magnetism; (b) Gauss for electricity and Ampère; 
(c) Faraday and Ampère; (d) Gauss for magnetism and Faraday

29.5 properties of Electromagnetic Waves
Wave Speed
In Chapter 14 we found that the speed of a sinusoidal wave is the ratio of the angular 
 frequency to the wave number: speed = v/k. To determine the speed of our electromag-
netic wave, we use Equation 29.14 to get Ep = vBp /k, and then use this expression in 
Equation 29.15:

kBp = P0m0vEp =
P0m0v

2Bp

k

The amplitude Bp cancels, and we solve for the wave speed v/k to get

 wave speed =
v

k
=

11P0m0
  1EM wave speed in vacuum2 (29.16a)

This result shows that the speed of an electromagnetic wave in vacuum depends only 
on the electric and magnetic constants P0 and m0. All electromagnetic waves in vacuum, 
 regardless of frequency or amplitude, share this speed. Although we derived this result for 
sinusoidal waves, the superposition principle ensures that it holds for any wave shape.

Using the known values of P0 and m0, let’s evaluate the speed given in Equation 29.16a:

11P0m0
=

1218.85 * 10-12 C2/N # m2214p * 10-7 N/A22
= 3.00 * 108 m/s

But this is the speed of light! During the two centuries before Maxwell, scientists had 
 measured light’s speed with increasing accuracy. They had also recognized, thanks to 
Thomas Young’s 1801 interference experiment, that light consists of waves. Then, in the 
1860s, came Maxwell. Using a theory developed from laboratory experiments on  electricity 
and magnetism, with no reference to optics or light, Maxwell showed how the interplay of 
electric and magnetic fields results in electromagnetic waves. The wave speed—calculated 
from the constants P0 and m0—was the known speed of light.  Maxwell’s conclusion was 
inescapable: Light is an electromagnetic wave.

Maxwell’s identification of light as an electromagnetic phenomenon is a classic 
 example of the unification of knowledge in science. With one simple calculation, Maxwell 
brought the entire science of optics under the umbrella of electromagnetism. Maxwell’s 
work stands as a crowning intellectual triumph, one whose implications are still expanding 
our view of the universe.

Maxwell’s discovery lets us recast Equation 29.16a in the form

 
v

k
= c  1EM wave speed in vacuum: the speed of light, c!2 (29.16b)

where c = 1/1P0m0 is the speed of light. Because v = 2pf  and k = 2p/l, we can 
 rewrite Equation 29.16b in terms of the more familiar frequency f and wavelength l as

 fl = c  1frequency, wavelength, and the speed of light2 (29.16c)

As we saw in Chapter 1, the SI definition of the meter gives c the exact value 
299,792,458 m/s. Some non-SI values for c are approximately 186,000 miles per second, 
approximately 1 foot per nanosecond (see Exercise 20), and exactly 1 light-year per year.
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552 Chapter 29 Maxwell’s Equations and Electromagnetic Waves

Wave Amplitude
The amplitudes Ep and Bp dropped out of our analysis, showing that an electromagnetic 
wave’s speed is independent of amplitude. But the field strengths E and B aren’t independ-
ent. Using v/k = c, we can recast Equation 29.14 to show that

 E =
v

k
 B = cB  1E, B relation in vacuum EM wave2 (29.17)

Here we dropped the “peak” subscript because Ep and Bp multiply identical cosine terms 
in our wave description, so Equation 29.14 applies whether or not we’re at the peak field.

phase, orientation, and Waves in matter
The wave of Fig. 29.3 and Equations 29.10 and 29.11 has E

S
 and B

S
 in phase in time—

peaking at the same time—while they’re perpendicular in space and also perpendicular 
to the propagation direction. Our derivation of the wave speed used these properties, so 
we’ve confirmed that electromagnetic waves in vacuum are transverse waves with E

S
 and 

B
S

 perpendicular and in phase. Specifically, the direction of propagation is that of the 
cross product E

S
* B

S
. These geometrical properties also apply to electromagnetic waves 

in common materials like air and glass. The wave speed in these materials is lower than 
in vacuum, although for air the difference is minuscule. Electromagnetic waves in more 
complex materials can have very different properties and propagation speeds.

GoT IT? 29.3 At a particular point the electric field of an electromagnetic wave 
points in the +y-direction, while the magnetic field points in the -z-direction. Is the prop-
agation direction (a) +x; (b) -x; (c) either +x or -x but you can’t tell which; (d) -y;  
(e) +z; or (f) not along any of the coordinate axes?

ExAmpLE 29.2  Electromagnetic-Wave properties: Laser Light

A laser beam with wavelength 633 nm is propagating through air in 
the +z-direction. Its electric field is parallel to the x-axis and has am-
plitude 6.0 kV/m. (a) Find the wave frequency, (b) the amplitude of 
the magnetic field, and (c) the direction of the magnetic field.

Interpret Light is an electromagnetic wave, so the laser beam 
shares the wave properties we’ve just discussed. As we noted, its 
speed in air is nearly the same as in vacuum. Here we’re given the 
wavelength and peak electric field, Ep.

Develop Equation 29.16c, fl = c, relates wavelength and  frequency, 
so we’ll use that for (a). Equation 29.17, E = cB, relates E and B, so 
we can get (b) from the given value of Ep. For (c), we’ll draw a reori-
ented version of Fig. 29.3a to help infer the direction of B

S
.

evaluate (a) Solving for the frequency gives

f = c/l = 13.0 * 108 m/s2/1633 nm2 = 4.7 * 1014 Hz

(b) Solving for the magnetic-field amplitude gives Bp = Ep /c = 20 μT. 
(c) Figure 29.6 shows that with propagation in the z-direction and E

S
 

along the x-axis, B
S

must be parallel to the y-axis.

assess That 1014@Hz frequency sounds huge, but light has such 
a short wavelength that its frequency is indeed high; more on this 
shortly. Notice both in Fig. 29.3 and in our reoriented wave of  
Fig. 29.6 that the vectors E

S
 and B

S
 and the propagation direction 

form a right-handed coordinate system, so any two of those vectors 
determine the direction of the third. ■

FIgure 29.6 Reoriented version of Fig. 29.3a for Example 29.2. It’s important 
that we still have a right-handed coordinate system, with the x@, y@, and 
z-axes in the same relation as in Fig. 29.3. Equivalently, the direction of 
E
S

* B
S

 is the propagation direction.

polarization
Although E

S
 and B

S
 are necessarily perpendicular, their orientation is still arbitrary within a 

plane perpendicular to the propagation direction. Polarization specifies the direction of the 
electric field and thus determines the perpendicular magnetic-field direction as well (Fig. 29.7).
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FIgure 29.7 The polarization direction is the direction of the wave’s electric field.
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Electromagnetic waves are
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their electric �eld.
Here polarization is vertical,
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The magnetic
�eld is perpendicular
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Electromagnetic waves used in radio and TV originate from antennas that give the waves 
a definite polarization. Most laser light is also polarized. In contrast, light from hot sources 
like the Sun or a lightbulb is unpolarized, consisting of a mix of waves with  random field 
orientations. Unpolarized light becomes polarized when it reflects off  surfaces or passes 
through substances whose structure has a preferred direction. Many crystals and synthetic 
materials such as Polaroid exhibit such a transmission axis. Light  reflecting off roads and a 
car’s hood becomes partially polarized in the horizontal  direction, and  Polaroid  sunglasses, 
with their transmission axis vertical, block the resulting glare. The same thing happens 
with reflection off water, making Polaroid sunglasses especially  useful for  boaters.

A polarizing material passes unattenuated only the component of the wave field E
S

 
along the transmission axis—namely, E cos u, where u is the angle between the field and 
the transmission axis. We’ll show shortly that the intensity of an electromagnetic wave is 
proportional to the square of the field strength. As a result, a wave of intensity S0 emerges 
from a polarizer with intensity given by the law of Malus:

 S = S0 cos2u (29.18)

Thus electromagnetic waves are blocked completely by a polarizer with its transmission 
axis oriented perpendicular to the waves’ polarization (Fig. 29.8).

Measuring polarization tells us about sources of electromagnetic waves and about ma-
terials through which they propagate. Many astrophysical processes produce polarized 
waves; their polarization gives clues to mechanisms operating in the cosmos. Geologists 
pass polarized light through thin sections of rock to reveal the rocks’ composition, and 
engineers use polarization to locate stresses in mechanical structures. Polarization is es-
sential in many technologies, including the ubiquitous liquid crystal displays (LCDs) in 
our cell phones, cameras, computers, and TVs (Fig. 29.9).

FIgure 29.8 Two pieces of polarizing material 
with their transmission axes at right angles. 
Where they overlap, no light gets through.

Light

Horizontal polarizer
passes the now
horizontally polarized
light.

Vertical polarizer
passes only light
with its electric
�eld vertical.

Horizontal polarizer
now blocks the still
vertically polarized
light.

Applying a voltage
aligns the liquid
crystals.  They no
longer rotate the
light’s polarization.

Liquid crystal
molecules align with
striated plates and
rotate the light’s
polarization.

Electric �eld of incident
light points in all
directions perpendicular
to the light’s propagation.

−+

FIgure 29.9 Polarization plays a central role in the operation of a liquid crystal display. Multiple units like 
the one shown—millions in a TV or computer screen—produce the individual pixels on an LCD.

Video Tutor Demo | Parallel-Wire Polarizer for Microwaves
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29.6 The Electromagnetic Spectrum
Although Equations 29.16 relate an electromagnetic wave’s frequency and wavelength, 
one of these quantities remains arbitrary. That means electromagnetic waves can have 
any frequency or, equivalently, any wavelength. Visible light occupies a wavelength 
range from about 400 nm to 700 nm, corresponding to frequencies of 7.5 * 1014 Hz to 
4.3 * 1014 Hz. The different wavelengths or frequencies correspond to different colors, 
with red at the long-wavelength, low-frequency end of the visible region and violet at the 
short- wavelength, high-frequency end (see the enlargement in Fig. 29.10).

ConCEpTUAL ExAmpLE 29.1 Crossed polarizers

Unpolarized light shines on a pair of polarizers with their transmission 
axes perpendicular, so no light gets through the combination. What 
happens when a third polarizer is sandwiched in between, with its 
transmission axis at 45° to the others?

evaluate The middle polarizer’s transmission axis isn’t perpen-
dicular to the first one’s, so some of the light coming through the first 
polarizer gets through the middle one. That light’s polarization isn’t 
perpendicular to the last polarizer’s transmission axis, so some light 
gets all the way through the combination.

assess This result may seem surprising: If the two outer polarizers 
are perpendicular, how can a third polarizer change the situation? But 
it does. No pair of adjacent polarizers is perpendicular, so each pair 
transmits some light. Inserting the third polarizer lets light through 
where none came through before.

MakIng the ConneCtIon How does the intensity of light emerg-
ing from this polarizer “sandwich” compare with the intensity of the 
incident unpolarized light?

evaluate Unpolarized light is a random mix of polarization 
 directions, so cos2u in Equation 29.18 ranges from 0 to 1 for the first 
 polarizer. Its average is 1

2, so the intensity emerging from the first 
 polarizer is half the incident intensity. This light is now polarized in 
the direction of the first polarizer; it then passes through the middle 
polarizer, oriented at 45°. Since cos 45° = 1/12, Equation 29.18 
shows that its intensity is cut in half again. Light emerging from the 
middle polarizer then passes through the last one, oriented at 45° to 
the light’s new polarization, so its intensity is halved yet again. The 
effect of three reductions by one-half each is that light emerges from 
the “sandwich” with one-eighth its incident intensity.

FIgure 29.10 The electromagnetic spectrum ranges from radio waves to gamma rays, with visible 
light occupying only a narrow range of wavelengths and frequencies on a logarithmic scale.

106 103 1 10-3 10-6 10-9 10-12

1031 106 109 1012 1015 1018 1021

Radio Micro-
wave

Infrared Ultra-
violet

X rays Gamma rays

Wavelength (m)

Visible light
Frequency (Hz)

700 nm 650 600 550 500 450 400 nm

Wavelength Red Violet

Figure 29.10 shows the electromagnetic spectrum, including frequencies and wave-
lengths that differ by many orders of magnitude from those of visible light. The invisible 
electromagnetic waves beyond the narrow visible range were unknown in Maxwell’s time. 
A brilliant confirmation of Maxwell’s theory came in 1888, when the German physicist 
Heinrich Hertz succeeded in generating and detecting electromagnetic waves of much 
lower frequency than visible light. Hertz intended his work only to verify Maxwell’s mod-
ification of Ampère’s law, but the practical consequences have proven enormous. In 1901, 
the Italian scientist Guglielmo Marconi transmitted electromagnetic waves across the  
Atlantic Ocean, creating a public sensation. From the pioneering work of Hertz and 
 Marconi, spurred by the theoretical efforts of Maxwell, came the entire technology of radio,  
television, and microwaves—enabling the wireless communications that so dominate mod-
ern society. We now consider all electromagnetic waves in the frequency range from a few 
Hz to about 3 * 1011 Hz as radio waves, with AM radio at about 1 MHz, FM at 100 MHz, 
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television in patches of the spectrum from about 50 MHz to 1 GHz, and microwaves for 
WiFi, radar, cooking, cell phones, and satellite communications at 1 GHz and above.

Between radio waves and visible light lies the infrared frequency range. Electromag-
netic waves in this region are emitted by warm objects, even when they’re not hot enough 
to glow visibly. For this reason, infrared cameras are used to determine subtle body- 
temperature differences in medical diagnosis, to examine buildings for heat loss, and to 
study the birth of stars in clouds of interstellar gas and dust.

Beyond visible light are the ultraviolet rays responsible for sunburn, then the highly 
penetrating X rays, and finally the gamma rays whose primary terrestrial source is 
 radioactive decay. All these phenomena, from radio to gamma rays, are fundamentally 
the same: All are electromagnetic waves, differing only in frequency and wavelength. All 
travel with speed c in vacuum, and all consist of electric and magnetic fields produced 
from each other through the induction processes described by Faraday’s and Ampère’s 
laws.  Naming the different types of electromagnetic waves is just a convenience; there 
are no gaps in the continuous range of frequencies and wavelengths. Practical differ-
ences arise because waves of different wavelengths interact differently with matter; in 
 particular, shorter  wavelengths tend to be generated and absorbed most efficiently by 
smaller  systems.

Earth’s atmosphere is transparent to visible light and to most radio frequencies. But it’s 
opaque to most infrared, the higher-frequency ultraviolet, X rays, and all but the highest-
frequency gamma rays. Earth’s surface would be hazardous to life if ultraviolet weren’t 
absorbed by ozone gas high in the atmosphere, and our planet would be a lot cooler if wa-
ter vapor, carbon dioxide, and other gases didn’t absorb outgoing infrared. But that same 
infrared absorption is at the heart of our worries about global climate change, because 
we humans are increasing the levels of infrared-trapping gases. And, as the Application 
shows, our knowledge of the universe beyond Earth would be severely limited if we could 
only observe electromagnetic waves that make it through Earth’s atmosphere.

GoT IT? 29.4 Figure 29.10 shows that the frequency of gamma rays is (a) about 
50% greater than that of visible light, (b) about one one-millionth that of visible light, or 
(c) more than a million times that of visible light.

29.7 producing Electromagnetic Waves
All it takes to produce an electromagnetic wave is a changing electric or magnetic field. 
Once there’s a change in one field, induction provides the other field, and together the 
changing fields continuously regenerate one another. The wave is on its way! Ultimately, 
changing fields of both types result when we alter the motion of electric charge. Therefore, 
accelerated charge is the source of electromagnetic waves.

In a radio transmitter, the accelerated charges are electrons moving back and forth in an 
antenna, driven by alternating voltage from an LC circuit (Fig. 29.11). In an X-ray tube, 
high-energy electrons decelerate rapidly as they slam into a target; their deceleration is 
the source of the electromagnetic waves, now in the X-ray region of the spectrum. In the 
magnetron tube of a microwave oven, electrons circle in a magnetic field; their centripetal 
 acceleration is the source of the microwaves that cook your food. And the altered move-
ment of electrons in atoms—although described accurately only by quantum mechanics—
is the source of most visible light. If the motion of the accelerated charges is periodic, then 
the wave frequency is that of the motion; more generally, systems are most efficient at pro-
ducing (and receiving) electromagnetic waves whose wavelength is comparable to the size 
of the system. That’s why TV antennas are on the order of 1 m in size, while nuclei—some 
10-15 m in diameter—produce gamma rays.

Calculation of electromagnetic waves from accelerated charges presents challeng-
ing but important problems for physicists and engineers. Figure 29.12 shows the field of 
an oscillating dipole—a configuration approximated by many systems from antennas to 
 atoms and molecules. Note that the waves are strongest in the direction at right angles to 
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AppLICATIon  Windows on the 
Universe

For centuries humankind’s only information 
about the universe beyond Earth—except for 
the occasional meteorite—came from visible 
light. Optical astronomy gave us a good picture 
of objects like the Sun and other stars, but vis-
ible light alone can’t reveal the richness of our 
vast universe. The discovery of radio waves 
from outer space led to the development of ra-
dio astronomy in the 1930s, complementing 
optical telescopes by receiving electromagnetic 
waves of much lower frequency than visible 
light. But, as the figure shows, much of the rest 
of the electromagnetic spectrum is blocked by 
Earth’s atmosphere. So a truly comprehensive 
picture of the universe had to await the devel-
opment of space flight in the late 20th century. 
Today we have space-based observatories that 
gather electromagnetic waves in the infrared, 
ultraviolet, X-ray, and even gamma-ray regions 
of the spectrum. We also observe from space 
in visible light, eliminating atmospheric distor-
tion. Together, astronomical observations across 
the full electromagnetic spectrum let us observe 
phenomena from low-energy processes like the 
birth of stars to high-energy events such as mat-
ter plunging into black holes. The photos show 
two extremes: a ground-based radio telescope 
array and a spacecraft that detects mysterious 
gamma-ray bursts from the distant universe.
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556 Chapter 29 Maxwell’s Equations and Electromagnetic Waves

the acceleration of the charge distribution and that there’s no radiation in the direction of 
the acceleration. This accounts for, among other phenomena, the directionality of radio 
and TV antennas, which transmit and receive most effectively perpendicular to the long 
direction of the antenna.

The field shown in Fig. 29.12 seems to bear little resemblance to the plane-wave fields 
of Fig. 29.3 that we used to demonstrate the possibility of electromagnetic waves. We 
could produce true plane waves only with an infinite sheet of accelerated charge—an 
impossibility. But far from the source, the curved field lines in Fig. 29.12 would appear 
straight, and the wave would approximate a plane wave. So our plane-wave analysis is a 
valid approximation at great distances—typically many wavelengths—from a localized 
wave source. Closer to the source more complicated expressions for the wave fields apply, 
but these, too, satisfy Maxwell’s equations.

GoT IT? 29.5 Molecular biologists and pharmaceutical companies are increasingly 
turning to synchrotron radiation for the study of biomolecules and the development of 
new drugs. This intense electromagnetic radiation comes from electrons circling at high 
speed in so-called storage rings that use magnetic fields to keep the electrons in circular 
paths. Which of the following is most essential for the generation of these  electromagnetic 
waves? (a) the fact that the electrons move in circular paths and are thus accelerated;  
(b) the presence of a strong magnetic field; (c) the electrons’ high speed

29.8 Energy and momentum in  
Electromagnetic Waves
We showed in earlier chapters that electric and magnetic fields contain energy. Electro-
magnetic waves are combinations of electric and magnetic fields; as they propagate, they 
transport the energy contained in those fields.

Wave Intensity
In Chapter 14 we defined wave intensity as the rate at which a wave transports energy 
across a unit area; its units are W/m2. We can calculate the intensity S of a plane electro-
magnetic wave by considering a rectangular box of thickness dx and cross-sectional area A 
with its face perpendicular to the wave propagation (Fig. 29.13). Within this box are wave 
fields E

S
 and B

S
 whose energy densities are given by Equations 23.7 and 26.9: uE = 1

2 P0 E
2 

and uB = B2/2m0. If dx is small enough that E and B don’t vary significantly, the total 

FIgure 29.11 Simplified diagram of a radio transmitter.
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FIgure 29.12 “Snapshot” showing the electric field of an oscillating 
electric dipole at an instant in time.
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FIgure 29.13 A box of length dx and cross- 
sectional area A at right angles to the propaga-
tion of an electromagnetic wave.
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PheT: Radio Waves & Electromagnetic Fields
PheT: Radiating Charge
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energy in the box is the sum of the electric and magnetic energy densities  multiplied by 
the box volume A dx:

dU = 1uE + uB2A dx =
1

2
 aP0 E

2 +
B2

m0
bA dx

This energy moves with speed c, so all the energy moves out of the box in a time dt =  dx/c. 
The rate at which energy moves through the cross-sectional area A is then

dU

dt
=

1

2
 aP0 E

2 +
B2

m0
b  

A dx

dx/c
=

c

2
 aP0 E

2 +
B2

m0
b  A

So the intensity S, or rate of energy flow per unit area, is

S =
c

2
 aP0 E

2 +
B2

m0
b

We can recast this equation in simpler form using E = cB and B = E/c for an electro-
magnetic wave. Replacing one of the E’s in E2 with cB and one of the B’s in B2 with E/c, 
we have

S =
c

2
 aP0  cEB +

EB
m0 c

b =
1

2m0
 1P0  m0  

c2 + 12EB

But c = 1/1P0m0, so P0m0c
2 = 1, giving

 S =
EB
m0

 (29.19a)

Although we derived Equation 29.19a for an electromagnetic wave, it is in fact a spe-
cial case of the more general result that nonparallel electric and magnetic fields entail a 
flow of electromagnetic energy. In general, the rate of energy flow per unit area is given by

 S
S

=
E
S

* B
S

m0
  1Poynting vector2 (29.19b)

Here the vector S
S

 gives the direction of the energy flow as well as its magnitude. 
For an electromagnetic wave in vacuum, with E

S
 and B

S
 at right angles, Equation 29.19b 

 reduces to Equation 29.19a, with the direction of energy flow the same as the direction 
of wave travel. The vector intensity S

S
 is called the Poynting vector after the English 

 physicist J. H. Poynting, who suggested it in 1884. Problem 60 explores an important 
 application of the Poynting vector to fields that don’t constitute an electromagnetic wave.

In an electromagnetic wave the fields oscillate, and so, therefore, does the intensity. 
We’re usually not interested in this rapid oscillation. For example, an engineer design-
ing a solar collector doesn’t care that sunlight intensity oscillates at about 1014 Hz. What 
she really wants is the average intensity, S. Because the instantaneous intensity given by 
Equation 29.19a contains a product of sinusoidally varying terms, which are in phase, the 
average intensity is just half the peak intensity:

 S =
EB
m0

=
EpBp

2m0
  1average intensity2 (29.20a)

Typical values for S in visible light range from a few W/m2 in the faint light of a candle to 
many MW/m2 in the most intense laser beams.

We wrote Equation 29.20a in terms of both the electric and magnetic fields, but we can 
use the wave condition E = cB to eliminate either field in terms of the other:

 S =
Ep

2

2m0c
 and S =

cBp
2

2m0
 (29.20b, c)
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GoT IT? 29.6 Lasers 1 and 2 emit light of the same color, and the electric field 
in the beam from laser 1 is twice as strong as the field in laser 2’s beam. How do their  
(1) magnetic fields, (2) intensities, and (3) wavelengths compare?

ExAmpLE 29.3  Fields and power: Solar Energy

The average intensity of noontime sunlight on a clear day is about 
1 kW/m2. (a) What are the peak electric and magnetic fields in sun-
light? (b) At this intensity, what area of 40% efficient solar collectors 
would you need to replace a 4.8-kW water heater?

Interpret In (a) we’re asked for the peak electric and magnetic 
fields, and we identify 1 kW/m2 as the average intensity, S. In (b) we 
want solar collectors to replace an electric heater whose power we’re 
given.

Develop For (a), Equations 29.20b, S = Ep
2/2m0c, and 29.20c, 

S = cBp
2/2m0, relate peak fields and average intensity. We could 

solve both of these or, more easily, solve one of them and then use 
Equation 29.17, E = cB, to get the other field. In (b) we’ll need to use 
the 40% efficiency to get the effective power per square meter of solar 
collector, and then find the area needed to replace the 4.8-kW power 
of the electric heater.

evaluate (a) We solve Equation 29.20c for Bp:

Bp = 22 m0S/c = 2.9 mT.

Then Equation 29.17 gives E = cB = 0.87 kV/m. (b) At 40% 
 efficiency, each square meter of solar collector in 1@kW/m2 sunlight pro-
duces 0.40 kW. So to get 4.8 kW, we need 14.8 kW2/10.40 kW/m22 =
12 m2 of collector area.

assess The fields we’ve calculated are relatively modest, showing 
that even bright sunlight doesn’t entail large electric and magnetic 
fields. That 12@m2 collector area is also modest—much smaller than 
the 100 m2 of a typical house roof—showing that water heating is 
a practical use of solar technology. Indeed, your author’s house, in 
cloudy Vermont, gets 95% of its summertime hot water from just 9 m2 
of solar collectors. ■

Waves from Localized Sources
When electromagnetic waves originate in a localized source such as an atom, a radio trans-
mitting antenna, a lightbulb, or a star, the wavefronts aren’t planes but expanding spheres 
(recall Fig. 14.13). As the waves expand, their energy is spread over ever-larger spheres—
whose area increases as the square of the distance from the source. Therefore, as we found 
for mechanical waves in Chapter 14, the power per unit area—also called the intensity and 
designated S for electromagnetic waves—decreases as the inverse square of the distance:

 S =
P

4pr2 (29.21)

Here S and P can be either peak or average intensity and power, and r is the distance from 
the source. The intensity decreases not because electromagnetic waves “weaken” and lose 
energy but because their energy gets spread ever more thinly.

Because the intensity of an electromagnetic wave is proportional to the square of the 
field strengths (Equations 29.20), Equation 29.21 shows that the fields of a spherical wave 
decrease as 1/r. Contrast that with the 1/r2 decrease in the electric field of a stationary 
point charge, and you can see why the wave fields associated with an accelerated charge 
dominate in all but the immediate vicinity of the charge.

ExAmpLE 29.4  Electromagnetic-Wave Intensity: Cell-phone Reception

A cell phone’s typical average radiated power is about 0.6 W. If the 
receiver at a cell tower can handle signals with peak electric fields 
as weak as 1.2 mV/m, what’s the maximum distance from phone to 
tower?

Interpret We’re asked to find the distance from the 0.6-W cell 
phone to a cell tower on the condition that the electric field of the 

cell phone’s electromagnetic wave is no weaker than 1.2 mV/m when 
measured at the tower.

Develop Assuming the 0.6-W signal spreads in all directions, 
 Equation 29.21, S = P/4pr2, gives the average intensity at a  distance 
r from the phone. (Here the bars indicate we’re dealing with aver-
age quantities.) Using this expression for S in Equation 29.20b gives 

Video Tutor Demo | Point of Equal Brightness 
between Two Light Sources
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momentum and Radiation pressure
Moving objects carry not only energy but also momentum. So do electromagnetic waves. 
Maxwell showed that wave energy U and momentum p are related by p = U/c. The wave 
intensity S is the average rate at which the wave carries energy per unit area, and therefore 
the wave carries momentum per unit area at the rate S/c. An object that absorbs the wave 
energy (like a black object exposed to sunlight) absorbs this momentum as well. Newton’s 
law in its general form F = dp/dt shows that the object then experiences a force. Since S/c 
is the rate of momentum absorption per unit area, the result is a radiation pressure:

 Prad =
S
c
  1radiation pressure2 (29.22)

Radiation pressure doubles if an object reflects electromagnetic waves, just as bouncing a 
basketball off the backboard changes the ball’s momentum by 2mv and therefore delivers 
momentum 2mv to the backboard.

The pressure of ordinary light is tiny and difficult to measure, but high-power lasers 
can actually levitate small particles. Light pressure has even been suggested for  spacecraft 
propulsion (see Passage Problems 71–74). The idea that electromagnetic waves carry 
 momentum played a crucial role in Einstein’s development of his equation E = mc2. 
 Today, biologists exploit the transfer of momentum from electromagnetic waves to  matter, 
trapping and manipulating viruses, DNA strands, and other microbiological structures 
with laser-based optical tweezers. You can explore optical tweezers in the PhET  simulation 
 referenced here.

P/4pr2 = Ep
2/2m0c. Our plan is to solve for the distance r that gives 

Ep = 1.2 mV/m.

evaluate Solving for r gives r = 22m0cP/4 pEp
2 = 5 km, using 

P = 0.6 W and Ep = 1.2 mV/m.

assess This answer is about 3 miles, a bit more than the cell radius 
discussed in the Application below. That’s enough to provide a margin 
of safety, ensuring reliable communications for all phones within the 
cell. ■

AppLICATIon Cell phones

Your cell phone contains a tiny, low-power radio transmitter whose signal in-
tensity decreases as the inverse square of the distance from the phone. The cell-
phone network consists of antennas and associated circuits that receive and 
transmit signals from and to individual phones. Because of the phones’ low 
power, antennas need to be closely spaced so a phone is rarely out of range. 
The figure shows a typical urban cell-phone network consisting of multiple 
cells—hence the term cell phone—each with an antenna mounted on a tower  
or building. Cells are typically hexagonal regions about 25 km2 in area; 
 approximating them as circles gives a radius of about 2.8 km—roughly the 
maximum distance between a phone and an antenna. As you move through 
an urban area, the network automatically “hands off” your phone to the near-
est cell tower. Cell phones transmit on one frequency and receive on another, 
allowing two-way communications with both parties able to talk at once. The 
system uses thousands of frequency channels, and thus a single cell tower can 
handle many simultaneous calls. Cell towers are more widely spaced in rural 
regions, and phones automatically boost their power to compensate.

A = 25 km2

PheT: Optical Tweezers and Applications
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Maxwell’s equations describe completely the behavior of electric and magnetic 
fields in classical physics:

Law Mathematical Statement What It Says

Gauss for E
S A E

S#  dA
S

=
q

P0

How charges produce electric 
fields; field lines begin and end on 
charges.

Gauss for B
S AB

S#  dA
S

= 0 No magnetic charge; magnetic field 
lines don’t begin or end.

Faraday A E
S#  d l

!
= -

dΦB

dt

Changing magnetic flux produces 
electric fields.

Ampère AB
S#d l

!
= m0I + m0P0 

dΦE

dt

Electric current and changing electric 
flux produce magnetic fields.

Chapter 29 Summary
Big Idea

The big idea here—and one of the biggest ideas in physics—is that electric and 
 magnetic fields together form self-regenerating structures that propagate through 
space as  electromagnetic waves. What makes these waves possible is that changing 
 magnetic fields induce electric fields ( Faraday’s law), and changing electric fields 
 induce  magnetic fields (Ampère’s law, with Maxwell’s  modification). Electromagnetic 
(EM) waves in vacuum consist of electric and magnetic fields  perpendicular to each 
other and to the direction of wave propagation, and in phase.

B
S

B
S

B
S

E
S

E
S

E
S Direction 

of wave 
propagation

y

cz

x

Key Concepts and Equations

Maxwell’s equations show that electromagnetic 
waves are possible and that their speed in vacuum, the 
speed of light c, is related to the electric and magnetic 
 constants P0 and m0:

c =
11P0 m0

The value of c is very nearly 3.00 * 108 m/s. Its exact 
value, used in defining the meter, is 299,792,458 m/s.

In vacuum, the electric and magnetic fields of 
a wave are related by

E = cB

The wave’s frequency and wavelength are re-
lated by

fl = c

x
dx
E E + dE

h B

E, B
SSy

l

l

t = 0

This one-wavelength
section c

cmoves to here 
in one period 
T = 1>f c

ctherefore c = fl

EM waves can have any wavelength; the whole range constitutes the electromagnetic 
 spectrum.
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Applications

Polarization describes the direction of an EM wave’s electric field and 
is a property widely used in scientific research and in technological de-
vices including the ubiquitous liquid crystal displays. When polarized 
light of intensity S0 is incident on a polarizer with its transmission axis 
at angle u to the polarization, the light emerges with intensity

S = S0 cos2u

EM waves carry both energy and momentum. The Poynting vector

S
S

=
E
S

* B
S

m0

describes the rate of energy flow per unit area, while the momentum 
flow results in a radiation pressure:

Prad =
S

c
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Exercises and Problems 561

For homework assigned on MasteringPhysics, go to www.masteringphysics.com

BIO Biology and/or medicine-related problems DATA Data problems ENV Environmental problems CH Challenge problems Comp Computer problems

19. An airplane’s radar altimeter works by bouncing radio waves off 
the ground and measuring the round-trip travel time. If that time 
is 74.7 μs, what should the pilot report to the passengers as the 
current altitude?

20. Roughly how long does it take light to travel 1 foot?
21. If you speak via radio from Earth to an astronaut on the Moon, 

how long is it before you can receive a reply?
22. What are the wavelengths of (a) a 100-MHz FM radio wave,  

(b) a 5.0-GHz WiFi signal, (c) a 600-THz light wave, and  
(d) a 1.0-EHz X ray?

23. A 60-Hz power line emits electromagnetic radiation. What’s the 
wavelength?

24. Microwave ovens for consumers’ use operate at 2.45 GHz. 
What’s the distance between wave crests in such a microwave?

25. An electromagnetic wave is propagating in the z-direction. 
What’s its polarization direction if its magnetic field is in the  
y-direction?

26. Polarized light is incident on a sheet of polarizing material, and 
only 20% of the light gets through. Find the angle between the 
electric field and the material’s transmission axis.

27. Vertically polarized light passes through a polarizer with its 
axis at 70° to the vertical. What fraction of the incident intensity 
emerges from the polarizer?

Section 29.8 Energy and Momentum  
in Electromagnetic Waves
28. A typical laboratory electric field is 1500 V/m. Find the average 

intensity of an electromagnetic wave with this value for its peak 
field.

29. What would be the average intensity of a laser beam so strong 
that its electric field produced dielectric breakdown of air (which 
requires Ep = 3 MV/m)?

30. Estimate the peak electric field inside a 1.1-kW microwave oven 
under the simplifying approximation that the microwaves propagate 
as a plane wave through the oven’s 750@cm2 cross-sectional area.

31. Your new radio says it can pick up signals with peak electric 
fields as weak as 450 μV/m. Will it work if you take it to your 
remote cabin, where the intensity of your favorite radio station is 
0.35 nW/m2?

32. A laser pointer delivers 0.10-mW average power in a beam  
0.90 mm in diameter. Find (a) the average intensity, (b) the peak 
electric field, and (c) the peak magnetic field.

33. Your university radio station has a 5.0-kW radio transmitter that 
broadcasts uniformly in all directions; listeners within 15 km 
have reliable reception. You want to increase the power to double 
that range. What should be the new power?

problems
34. A parallel-plate capacitor has circular plates with radius 50.0 cm 

and spacing 1.0 mm. A uniform electric field between the plates 
is changing at the rate of 1.0 MV/m #  s. Find the magnetic field 
between the plates (a) on the symmetry axis, (b) 15 cm from the 
axis, and (c) 150 cm from the axis.

35. You’re engineering a new cell phone, and you’d like to incorpo-
rate the antenna entirely within the phone, which is 9 cm long 
when closed. The antenna is to be a quarter-wavelength long—a 
common design for vertically oriented antennas. If the cell-phone 
frequency is 2.4 GHz, will the antenna fit?

For thought and Discussion
 1. Why is Maxwell’s modification of Ampère’s law essential to the 

existence of electromagnetic waves?
 2. The presence of magnetic monopoles would require a modifica-

tion of Gauss’s law for magnetism. Which other Maxwell equa-
tion would need modification?

 3. Is there displacement current in an electromagnetic wave? Is 
there ordinary conduction current?

 4. List some similarities and differences between electromagnetic 
waves and sound waves.

 5. The speed of an electromagnetic wave is given by c = lf. How 
does the speed depend on frequency? On wavelength?

 6. When astronomers observe a supernova explosion in a distant 
galaxy, they see a sudden, simultaneous rise in visible light and 
other forms of electromagnetic radiation. How is this evidence 
that the speed of light is independent of frequency?

 7. Turning a TV antenna so its rods point vertically may change the 
quality of your TV reception. Why?

 8. The Sun emits about half of its electromagnetic-wave energy in 
the visible region of the spectrum. Where do you think it emits 
most of the remainder?

 9. An LC circuit is made entirely from superconducting materials, 
yet its oscillations eventually damp out. Why?

10. If you double the field strength in an electromagnetic wave, what 
happens to the intensity?

11. The intensity of light drops as the inverse square of the distance 
from the source. Does this mean that electromagnetic energy is 
lost? Explain.

12. Electromagnetic waves don’t readily penetrate metals. Why not?

exercises and problems

Exercises

Section 29.2 Ambiguity in Ampère’s Law
13. A uniform electric field is increasing at 1.5 1V/m2/μs. Find the 

displacement current through a 1@cm2 area perpendicular to the 
field.

14. A parallel-plate capacitor has square plates 10 cm on a side and  
0.50 cm apart. The voltage across the plates is increasing at  
220 V/ms. What’s the displacement current in the capacitor?

Section 29.4 Electromagnetic Waves
15. The fields of an electromagnetic wave are E

S
= Ep sin1kz + vt2jn  

and B
S

= Bp sin1kz + vt2in. Give a unit vector in the wave’s 
propagation direction.

16. A radio wave’s electric field is given by the expression 
E
S

= E sin 1kz - vt2 *  1in + jn2. (a) Find the peak electric field. 
(b) Give a unit vector in the direction of the magnetic field at a 
place and time where  sin1kz - vt2 is positive.

Section 29.5 Properties of Electromagnetic Waves
17. A light-minute is the distance light travels in 1 minute. Show that 

the Sun is about 8 light-minutes from Earth.
18. Your intercontinental telephone call is carried by electromagnetic 

waves routed via a satellite in geostationary orbit at 36,000 km 
altitude. Approximately how long does it take before your voice 
is heard at the other end?
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49. At 1.5 km from a radio transmitter, the peak electric field is  
350 mV/m. Assuming the transmitter broadcasts equally in all 
 directions, find (a) the transmitted power and (b) the peak  electric 
field 10 km from the transmitter.

50. Find the peak electric and magnetic fields 1.5 m from a 60-W 
lightbulb that radiates equally in all directions.

51. A typical fluorescent lamp is a little more than 1 m long and a 
few cm in diameter. How do you expect the light intensity to vary 
with distance (a) near the lamp but not near either end and (b) far 
from the lamp?

52. A camera flash delivers 2.5 kW of light power for 1.0 ms. Find 
(a) the total energy and (b) the total momentum carried by the 
flash.

53. A laser produces an average power of 7.0 W in a 1.0-mm-diame-
ter beam. Find (a) the average intensity and (b) the peak electric 
field of the laser light.

54. A 180@W/cm2 laser beam shines on a light-absorbing surface. 
What’s the radiation pressure on the surface?

55. A 65-kg astronaut is floating in empty space. If she shines a 
1.0-W flashlight in a fixed direction, how long will it take her to 
accelerate to 10 m/s?

56. A photon rocket emits a beam of light instead of hot gas. How 
powerful a beam would be needed to equal the 40-MN thrust of 
NASA’s new Space Launch System (SLS)? Compare your an-
swer with humanity’s total electric power-generating capability, 
about 2 TW.

57. A white dwarf star is approximately the size of Earth but radiates 
about as much power as the Sun. Estimate the radiation pressure 
on a light-absorbing object at the white dwarf’s surface.

58. Use appropriate data from Appendix E to calculate the radiation 
pressure on a light-absorbing object at the Sun’s surface.

59. A radar system produces pulses consisting of exactly 100 full cy-
cles of a sinusoidal 72.5-GHz electromagnetic wave. The average 
power while the transmitter is on is 66.0 MW, and the waves are 
confined to a beam 22.4 cm in diameter. Find (a) the peak elec-
tric field, (b) the wavelength, (c) the total energy in one pulse, 
and (d) the total momentum in one pulse. (e) If the transmitter 
produces 945 pulses each second, what’s its average power out-
put?

60. A cylindrical resistor of length L, radius a, and resistance R 
 carries current I. Calculate the electric and magnetic fields at the 
surface of the resistor, assuming the electric field is uniform over 
the surface. Calculate the Poynting vector and show that it points 
into the resistor. Calculate the flux of the Poynting vector (that is, 

1 S
S#  dA

S
) over the resistor’s surface to get the rate of electromag-

netic energy flow into the resistor, and show that the result is I2R. 
Your result shows that the energy heating the resistor comes from 
the fields surrounding it. These fields are sustained by the source 
of electric energy that drives the current.

61. In a stack of polarizing sheets, each sheet has its transmission 
axis rotated 14° with respect to the preceding sheet. If the stack 
passes 37% of the incident unpolarized light, how many sheets 
does it contain?

62. You’re an astronomer studying the origin of the solar system, and 
you’re evaluating a hypothesis that sufficiently small  particles 
were blown out of the solar system by the force of sunlight. To see 
how small such particles must be, compare the force of sunlight 
with the force of solar gravity, and solve for the particle radius at 
which the two are equal. Assume spherical particles with density 
2 g/cm3. (Note: Distance from the Sun doesn’t matter. Why not?)

63. Differentiate Equation 29.12 with respect to x and Equation 29.13  
with respect to t. Then, using the fact that mixed  derivatives 

  are equal (e.g., 
0
0t

 a0B

dx
b =

0
0x

 a0B

dt
b ), combine the resulting 

36. An electric field points into the 
page and occupies a  circular 
 region of radius 1.0 m, as shown 
in Fig. 29.14. There are no 
 electric charges in the region, 
but there is a magnetic field 
 forming closed loops point-
ing clockwise, as shown. The 
 magnetic-field strength 50 cm 
from the center of the region is 
2.0 μT. (a) What’s the rate of 
change of the electric field? (b) Is the electric field increasing or 
decreasing?

37. The medical profession divides the ultraviolet region of the elec-
tromagnetic spectrum into three bands: UVA (320 nm–420 nm), 
UVB (290 nm–320 nm), and UVC (100 nm–290 nm). UVA and 
UVB promote skin cancer and premature skin aging; UVB also 
causes sunburn, but helpfully fosters production of vitamin D. 
Ozone in Earth’s atmosphere blocks most of the more dangerous 
UVC. Find the frequency range associated with UVB radiation.

38. Dielectric breakdown in air occurs when the electric field is ap-
proximately 3 MV/m. What would be the peak magnetic field in 
an electromagnetic wave with this peak electric field?

39. A radio receiver can detect signals with electric fields as weak as 
320 μV/m. Find the corresponding magnetic field.

40. A polarizer blocks 75% of a polarized light beam. What’s the an-
gle between the beam’s polarization and the polarizer’s axis?

41. An electro-optic modulator is a device that switches a laser beam 
rapidly from off to on by switching the polarization direction 
through 90° when a voltage is applied. But a brownout results in 
only enough voltage for a 72° rotation. What fraction of the light 
is transmitted during the brownout when the beam is supposed to 
be fully on?

42. Unpolarized light of intensity S0 passes first through a polarizer 
with its axis vertical and then through one with its axis at 35° to 
the vertical. Find the intensity after the second polarizer.

43. Vertically polarized light passes through two polarizers, the first 
at 60° to the vertical and the second at 90° to the vertical. What 
fraction of the light gets through?

44. Show that it’s impossible for an electromagnetic wave in vacuum 
to have a time-varying component of its electric field in the di-
rection of its magnetic field. (Hint: Assume E

S
 does have such 

a component, and show that you can’t satisfy both Gauss’s and 
Faraday’s laws.)

45. High microwave intensities can cause biological damage through 
heating of tissue; a particular concern is cataract formation. The 
U.S. Food and Drug Administration limits microwave radiation 
near the door of a microwave oven to 5.0 mW/m2. The window in a 
particular oven door measures 40 cm by 17 cm and is covered with 
a metal screen to block microwaves. Assuming power leaks uni-
formly through the window area, what percent of the oven’s 900-W 
microwave power can leak without exceeding the FDA standards?

46. Use the fact that sunlight intensity at Earth’s orbit is 1364 W/m2 
to calculate the Sun’s total power output.

47. A quasar 10 billion light-years from Earth appears the same 
brightness as a star 50,000 light-years away. How do the power 
outputs of quasar and star compare?

48. Lasers are classified according to the eye-damage danger they 
pose. Class 2 lasers, including many laser pointers, produce  visible 
light with no greater than 1 mW total power. They’re  relatively 
safe because the eye’s blink reflex limits exposure time to 250 ms. 
Find (a) the intensity of a 1-mW class 2 laser with beam diameter 
1.0 mm, (b) the total energy delivered before the blink reflex shuts 
the eye, and (c) the peak electric field in the laser beam.

B
S

E
S

1 m

FIgure 29.14 Problem 36
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71. If a sunlight-powered sailing spacecraft accelerated at 1 m/s2 in 
the vicinity of Earth’s orbit, what would be its acceleration at 
Mars, about 1.5 times as far from the Sun as Earth?
a. about 0.25 m/s2

b. a little less than 0.5 m/s2

c. a little more than 0.5 m/s2

d. about 0.66 m/s2

72. One spacecraft has a sail that absorbs all light incident on it; the 
other has a perfectly reflective sail. How do their accelerations 
compare in light with the same intensity?
a. The absorptive sail gives twice the acceleration.
b. The reflective sail gives twice the acceleration.
c. The absorptive sail gives greater acceleration, but not twice 

as much.
d. The reflective sail gives greater acceleration, but not twice as 

much.
73. A sail capable of propelling a spacecraft to the outer solar system 

must be able to overcome the Sun’s gravity. Suppose a spacecraft 
is designed so the force of sunlight on its sail is 20 times that 
of solar gravity in the vicinity of Earth’s orbit. If the spacecraft 
reaches Jupiter, some 5 times as far from the Sun as Earth,
a. the sail force will still exceed solar gravity, now by a factor of 4.
b. the sail force will be slightly less than solar gravity.
c. the sail force will now be 25 times solar gravity.
d. the sail force will still be 20 times solar gravity.

74. The intensity of sunlight at Earth’s orbit is about 1.4 kW/m2. A 
100-kg sailing spacecraft with 1@km2 sail area would experience 
an acceleration of about
a. 5 mm/s2.
b. 5 cm/s2.
c. 5 m/s2.
d. 5 km/s2.

answers to Chapter Questions

Answer to Chapter opening Question
Electromagnetic waves, comprising changing electric and magnetic 
fields, carry not only cell-phone conversations but also TV shows, the 
energy of sunlight, and signals from physical processes in the farthest 
reaches of the universe.

Answers to GoT IT? Questions
 29.1  Yes; the displacement current P0 dΦE/dt has the same effect as 

the real current I in producing magnetic fields.
 29.2  (c)
 29.3  (b)
 29.4  (c)
 29.5  (a)
 29.6  (1) B1 = 2B2; (2) S1 = 4S2; (3) l1 = l2

   equations and show that the result is the wave equation (Equa-
tion 14.5) for waves with speed c = 1/2P0m0.

64. Maxwell’s equations in a dielectric resemble those in vacuum 
(Equations 29.6–29.9) but with P 0 replaced by kP 0, where k is 
the dielectric constant introduced in Chapter 23. Show that the 
speed of electromagnetic waves in a dielectric is c/1k.

65. A friend buys a used pickup truck that comes with a CB radio. 
However, the antenna is broken off, and your friend asks you to 
help make one out of a steel rod that he will affix to the rear 
bumper. You know that the CB channel frequency is 27.3 MHz 
and that the antenna must be a quarter-wavelength long. How 
long should you make the rod?

66. Your roommate’s father is CEO of a coal company, so your 
roommate is understandably skeptical of alternative energy pro-
posals. He claims that there’s no future for solar energy, because 
the power in sunlight is insufficient to meet humankind’s energy 
demand. Is he right? To find out, compare the solar power inci-
dent on Earth with our human energy consumption rate of about 
16 TW.

67. The Voyager 1 spacecraft is now beyond the outer reaches of our 
solar system, but earthbound scientists still receive data from 
the spacecraft’s 20-W radio transmitter. Voyager is expected to 
 continue transmitting until about 2025, when it will be some  
25 billion km from Earth. What’s the diameter of a dish antenna 
that will receive 10-20 W of power from Voyager at this time?

68. Your friend who works for the college radio station must make 
electric-field measurements for a report to be filed with the sta-
tion’s application for license renewal. The measurement is made 
4.6 km from the antenna, where your friend measures the electric 
field at 380 V/m. The station is allowed to broadcast at no more 
than 55-kW power. Assuming power spreads equally in all direc-
tions, is the station in compliance with its license?

69. The National Ignition Facility at Lawrence Livermore National 
Laboratory initiates nuclear fusion by converging 192 laser 
beams on a deuterium–tritium target. Each beam has a square 
cross section 38 cm on a side, and each beam delivers 10.0 kJ of 
energy in 20.0 ns. Find (a) the peak electric field and (b) the peak 
magnetic field in each laser beam. (c) Find the combined power 
of all 192 laser beams while they’re firing, and compare with hu-
mankind’s energy consumption rate of about 16 TW.

70. The table below shows the intensity of the radio signal received 
at Earth from a spacecraft on its way to the outer solar system, as 
a function of its distance from Earth. Distances are in astronomi-
cal units (AU, with 1 AU being the mean Earth–Sun distance; see 
Appendix E). Determine a quantity that, when you plot S versus 
that quantity, should give a straight line. Make your plot, estab-
lish a best-fit line, and use it to determine the spacecraft’s trans-
mitter power.

Distance (AU) 1.56 1.81 2.14 2.78 3.17 4.25

Intensity, 
S (10-23 W/m2)

22.5 17.8 11.6 7.10 5.63 3.01

Passage Problems
Proposals have been made to “sail” spacecraft to the outer solar  system 
using the pressure of sunlight, or even to propel interstellar spacecraft 
with high-powered, Earth-based lasers. Sailing spacecraft would need 
no fuel—a great advantage because fuel constitutes much of the initial 
weight of any space mission. NASA’s Sunjammer, launched in 2015, is 
the first sailing spacecraft deployed beyond Earth orbit.  Figure 29.15 
shows what a similar solar sail might look like in space.

FIgure 29.15 Artist’s 
conception of a solar 
 sailing spacecraft. The 
sail is hundreds of 
square  meters in area, 
but is less than 10 µm 
thick ( Passage Problems 
71–74).

DATA
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Maxwell’s equations are the four fundamental laws of electromagnetism:

Law Mathematical Statement What It Says

Gauss for E
S

C E
S#dA

S
=

q

P0

How charges produce electric 
field; field lines begin and 
end on charges.

Gauss for B
S

CB
S#dA

S
= 0

No magnetic charge; 
magnetic field lines don’t 
begin or end.

Faraday C E
S#  d l

!
= -

dΦB

dt

Changing magnetic flux 
produces electric field.

Ampère CB
S#d l

!
= μ0 I + μ0 P0 

dΦE

dt

Electric current and changing 
electric flux produce 
magnetic field.

Coulomb’s law and the Biot–Savart law provide alternatives 
to Gauss’s and Ampère’s laws for determining electric and 
magnetic fields of pointlike elements of charge and moving 
charge, respectively:

E
S

=
kq

r2  rn
 

rn E
S

r

dB
S

=
m0

4p
 
I dl

!
* rn

r2

 

u

rn
r

dl is a small
piece of the wire.

dB is into page.

r  is a unit vector
from dl toward P.

I
P

n

S

u

u

dl
u

Moving electric charges create magnetic fields, and moving electric 
charges respond to magnetic fields. Both electric and magnetic fields 
store energy.

A changing magnetic field creates an electric field, and vice versa. 
Together, changing fields combine to make electromagnetic waves—
self-replicating structures that propagate through empty space at the 
speed of light, c. Light itself is an electromagnetic wave.

Electromagnetism is a fundamental force of nature. The strong at-
traction between positive and negative charge makes most bulk matter 
electrically neutral, and hides from us the essential role electricity and 
magnetism play in the structure of matter.

Electromagnetic interactions are best described in terms of 
 electric fields and magnetic fields. Electric charges create electric  
fields, and electric charges respond to the fields of other charges. 

electromagnetismpart Four Summary

The electromagnetic force on a charged particle consists of the 
electric force and the magnetic force. Both are proportional to 
the charge and to the appropriate field; the magnetic force depends 
also on the particle’s velocity v

!
:

F
S

EM = F
S

E + F
S

B = qE
S

+ qv
!

* B
S

The electric potential difference describes the work per unit charge 
needed to move charge between two points in an electric field; its units 
are N/C or volts (V):

VAB = - L
B

A
E
S # d l

!

Electric current is a flow of electric charge:

I =
∆Q

∆t
= nAqvd

 

n charges>unit volume,
each charge q

L

A

vd
u

In ohmic materials, Ohm’s law relates voltage, current, and 
resistance: I = V/R.

Electric circuits  are 
in te rconnec t ions  o f 
electric components, in-
cluding  batteries, resis-
tors, and others. They 
can often be analyzed by 
considering  series and 
parallel combinations.

1

R

1

R1

1
R2

R1 + R2  =  + R1 R2

R1

R2

Series Parallel

Electromagnetic induction, described 
by Faraday’s law, is the basis of elec-
tric generators and a host of other elec-
tromagnetic technologies and natural 
phenomena.

S S N

A rightward-moving magnet
results in a positive current.

I

0

 -  + 

Electromagnetic waves result from 
changing electric and magnetic 
fields. EM waves include light, and 
all EM waves propagate in vacuum 
at the speed of light, c = 1/1m0P0.

B
S

B
S

B
S

E
S

E
S

E
S Direction 

of wave 
propagation

y

cz
x

part Four Challenge problem
A wire of length L and resistance R forms a rectangular loop twice as long as it is wide. It’s mounted on 
a nonconducting horizontal axle parallel to its longer dimension, as shown in the figure. A uniform mag-
netic field B

S
 points into the page. A long string of negligible mass is wrapped many times around a drum 

of radius a attached to the axle, and a mass m is attached to the string. When the mass is released, it falls 
and eventually reaches a speed that, averaged over one cycle of the loop’s rotation, is constant. Find an 
expression for that average speed.

v
u

B
S

a

m
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Imagine a world without light. We see because light reflects off objects, and our eyes 
form images because light refracts in our corneas and lenses. When our built-in 

optical systems aren’t perfect, we correct them with additional lenses or we use  lasers 
to reshape the cornea. Microscopes and telescopes extend the range of our  vision. The 
phenomenon of interference makes possible some of the most precise measurements 
and is behind the operation of everyday technologies like CDs and DVDs. Light signals 
carry e-mail, web pages, telephone conversations, and computer data through the 
optical fibers that form the world’s communications networks.  Although the behavior 
of light is ultimately grounded in Maxwell’s equations of electromagnetism, we can 
learn much about light from the simpler perspective of optics. The next three  chapters 
explore the behavior of light, images and optical instruments, and phenomena 
 associated with the wave nature of light.

Drops of dew act as miniature optical 
systems, with light refracting through 
the drops to form myriad images of the 
background flowers.

Optics

OverviewPart Five
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Maxwell’s brilliant work shows that the phenomena of optics—the behavior of light—
are manifestations of electromagnetism. Except in the atomic realm, where quantum 

physics reigns, all optical phenomena are understandable in terms of electromagnetic-wave 
fields described by Maxwell’s equations. But when objects with which light or any other wave 
interacts are much larger than the wavelength, light generally travels in straight lines called 
rays. Geometrical optics describes the behavior of light in this approximation. Here we’ll use 
geometrical optics to explore the behavior of light at interfaces between different materials. 
In Chapter 31 we’ll see how geometrical optics explains lenses, the human eye, and many 
optical instruments.

How You’ll Use It
■ In Chapter 31 you’ll use your 

knowledge of reflection to see how 
images form in both flat and curved 
mirrors.

■ You’ll use your knowledge of 
refraction to study image formation 
by lenses and in optical instruments 
such as microscopes and telescopes.

■ If you pursue a career in any scientific 
field, you’ll probably use spectroscopy, 
a technique that exploits dispersion 
to analyze light and infer chemical 
composition, molecular structure, and 
other useful information.

■ Understanding reflection and 
refraction will enhance your 
appreciation of many natural 
phenomena, including rainbows and 
other atmospheric optical effects.

What You’re Learning
■ You’ll learn how to describe reflection 

at plane surfaces like mirrors and 
configurations of multiple mirrors.

■ You’ll learn about refraction at 
flat interfaces between different 
transparent materials.

■ You’ll see how refraction results from 
differences in the speed of light in 
different materials.

■ You’ll use Snell’s law to describe 
refraction quantitatively.

■ You’ll see how total internal reflection 
results when light is incident on an 
interface from a medium of greater 
optical density to one of lesser 
density, as in water to air.

■ You’ll explore how wavelength-
dependent refraction results in 
dispersion, a phenomenon that helps 
explain the rainbow.

What You Know
■ Although this chapter’s material 

is fundamentally based on the 
electromagnetic waves of Chapter 29,  
you don’t need that level of 
understanding to follow this 
introduction to optics.

■ You have considerable real-world 
experience with optical processes—
especially reflection in mirrors.

■ You will need your knowledge of 
trigonometry.

Reflection and Refraction

30

What process causes the upside-down image above the shark, and what’s this got to do with 
the Internet?
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30.1 Reflection 567

30.1 Reflection
Some materials, notably metals, reflect nearly all the light incident on them. It’s no coinci-
dence that these materials are also good electrical conductors. The oscillating electric field 
of a light wave drives a metal’s free electrons into oscillatory motion, which, in turn, pro-
duces electromagnetic waves. The net effect is to reradiate the wave back into the original 
medium. Other materials reflect only part of the incident light. Either way, reflection satis-
fies the same geometrical conditions: The incident ray, the reflected ray, and the normal 
to the interface between two materials all lie in the same plane. The angle of reflection u1′ 
that the reflected ray makes with the normal is the same as the angle of incidence u1 made 
by the incident ray (Fig. 30.1a):

 u′1 = u1 (30.1)

where the subscript 1 denotes the first medium.
In specular reflection, parallel rays reflect off a smooth surface and the entire beam 

is reflected without distortion (Fig. 30.1b). In contrast, a rough surface reflects individual 
rays in different directions (Fig. 30.1c)—even though each ray still obeys Equation 30.1. 
This is diffuse reflection. White paper is a diffuse reflector, while the aluminum coating 
of a mirror is an excellent specular reflector.

Figure 30.1 (a) Angles of reflection and incidence are equal. (b) In specular reflection, a smooth surface 
reflects a light beam undistorted. (c) A rough surface results in diffuse reflection.

(a)

Incident ray Re�ected
ray

(b) (c)

u′1 u′1
u′1u1 u1

u1

AppLIcAtIon Moon’s Distance

Knowing the precise distance to the Moon 
and how it varies with time helps scientists 
 confirm Einstein’s general theory of relativity, 
a  fundamental theory of physics that describes, 
among other things, black holes and the overall 
structure of the universe. In the late 1960s and 
early 1970s, Apollo astronauts left arrays of 
 corner reflectors on the Moon, and they’ve been 
used ever since to reflect laser beams originating 
from Earth. Timing the beams’ round-trip travel 
provides precise measures of the Moon’s dis-
tance. Since 2006, a lunar-ranging experiment 
at New Mexico’s Apache Point Observatory has 
been measuring the lunar distance to within about 
1 millimeter! The photo shows the largest of the 
Apollo reflector arrays, placed by Apollo 15  
astronauts in 1971.

ExAMpLE 30.1  Reflection: the corner Reflector

Two mirrors join at right angles. Show that any light ray incident in a 
plane perpendicular to both mirrors will return antiparallel to its inci-
dent direction.

Interpret We’ve sketched the situation in Fig. 30.2. We’re asked to 
show that the lines representing incident and outgoing rays in the fig-
ure are parallel.

Develop The outgoing ray will be antiparallel to the incident ray if 
the light turns through a total of 180°. Applying Equation 30.1 to each 
of the two reflections shows that the angles u are the same, and so 
are the angles f. Figure 30.2 shows that the first reflection turns the 
incident ray through an angle 180° - 2u. Similarly, the second turns 
it through 180° - 2f.

evaluate The pair of mirrors thus turns the ray through a total angle of

1180° - 2u2 + 1180° - 2f2 = 360° - 21u + f2

But Fig. 30.2 shows that u and f sum to 90°, so the total angle is 
360° - 180° = 180°—which is what we set out to prove.

Second re�ection
turns the ray through
this angle.

This right
triangle shows
that u + f = 90°.

First re�ection
turns the ray
through this
angle.

Figure 30.2 A two-dimensional corner reflector.
(continued)
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568 chapter 30 Reflection and Refraction

assess Here we’ve explored a remarkable device, a pair of perpen-
dicular mirrors that returns a light ray in exactly the direction from 
which it came—provided the light is in the plane perpendicular to 
both mirrors. Add a third mirror at right angles to the other two, and 
you have a corner reflector—a device that returns a light ray in the 

direction from which it came, period. Corner reflectors, often made 
with prisms rather than mirrors, are widely used in optics. You can 
explore the corner reflector in Problem 58, while the Application 
shows how corner reflectors help verify one of the most fundamental 
 theories of physics. ■

Got It? 30.1 The reflection of a London steeple shows 
in a wet pavement. Would you consider this to be (a) specular 
reflection, (b) diffuse reflection, or (c) somewhere in between?

partial Reflection
Some light is reflected even at the interface with a transparent material. The detailed 
 description of such partial reflection follows from Maxwell’s equations, and is akin to 
the partial reflection of waves on strings described in Chapter 14. The least  reflection 
 occurs with normal incidence; for glass, about 4% of normally incident light is reflected. 
 Reflection increases with larger incidence angles. Camera lenses, binoculars, solar 
 photovoltaic cells, and other devices often have special antireflection coatings to reduce 
light loss. You’ll see how these coatings work in Chapter 32.

30.2 Refraction
We saw in Chapter 14 that wave speeds differ in different media. With light, the speed in 
transparent media is lower than in vacuum. We characterize a transparent medium by its 
index of refraction, defined as the ratio of the speed of light c in vacuum to the speed of 
light v in the medium:

 n =
c
v
  1index of refraction2 (30.2)

Although the wave speed changes when light enters a new medium, Fig. 30.3 shows that 
its frequency f  can’t change and therefore, since the wave speed is v = fl, the wavelength 
must change. Equation 30.2 shows that the wavelength in a medium with refractive index 
n is l = v/f = c/nf. Because c and f  don’t change, the wavelength is inversely propor-
tional to n. Table 30.1 lists some refractive indices.

When light is incident at an angle on a transparent material, the light transmitted into 
the material undergoes refraction—a change in its propagation direction (Fig. 30.4). 
 Figure 30.5 shows how refraction results from the change in wave speed and there-
fore wavelength. Here we assume the refractive index is higher in medium 2; our result 
l = c/nf  then shows that the wavelength is shorter in medium 2. We’ve shaded two right 
triangles with a common hypotenuse and one side equal to the appropriate wavelength. 
The angles opposite these sides are the angles of incidence and refraction. In each case the 

Figure 30.3 Wave frequency doesn’t change as 
a wave goes from one medium to another, but 
wavelength does change.

Medium 1

A B

Medium 2

Observers at A and B
see the same number
of wave crests pass in
a given time, so they
both measure the
same frequency f c

ctherefore, because 
v = fl, the wavelength l 
must be shorter where the 
wave moves more slowly.

v2
u

v1
u

l2

l1

Table 30.1 Indices of Refraction*

Substance index of refraction, n

Gases
Air 1.000293
Carbon dioxide 1.00045

Liquids
Water 1.333
Ethyl alcohol 1.361
Glycerine 1.473
Benzene 1.501
Diiodomethane 1.738

Solids

Ice 1H2O2 1.309

Polystyrene 1.49
Glass 1.5–1.9
Sodium chloride  
 (NaCl)

 
1.544

Diamond (C) 2.419

Rutile 1TiO22 2.62

*At 1 atm pressure and temperatures 
ranging from 0°C to 20°C, measured at a 
wavelength of 589 nm (the yellow line of 
sodium).

M30_WOLF4752_03_SE_C30.indd   568 17/06/15   10:43 PM



30.2 Refraction 569

hypotenuse is given by l/sin u. Equating expressions for this common hypotenuse gives 
l1 /sin u1 = l2 /sin u2. Since l = c/nf  with f  the same in both media, we get Snell’s law:

 n1 sin u1 = n2 sin u2  1Snell>s law2 (30.3)

First developed geometrically in 1621 by van Roijen Snell of the Netherlands, and de-
scribed analytically in the 1630s by René Descartes in France, Snell’s law lets us predict 
what will happen at an interface given the refractive indices of the two media.

Snell’s law applies whether light goes from a medium of lower to higher refractive 
index or vice versa. When going from lower to higher index, the beam bends toward the 
normal; when going from higher to lower index, it bends away from the normal.

In some situations, including the human eye and Earth’s atmosphere, the refractive in-
dex varies continuously with position, so light refracts continuously, following a curved 
path. You can explore two examples in Passage Problems 63–66.

Figure 30.4 Refraction and reflection at an 
 interface, here when medium 2 has the 
higher refractive index.

u′1

Incident ray

Medium 2

Re�ected ray

Refracted ray

Medium 1

Angle of
incidence

Angle of
refraction

u1

u2

Figure 30.5 Refraction occurs because wave 
speed and wavelength differ in the two media.

These triangles share
a common hypotenuse.
Their short sides are
the wavelengths
in the two media.

Wave crests

u2

u1

u2

u1

l 1

v1

v2

l2

Medium 1

Medium 2

Interface

ExAMpLE 30.2  Refraction: A plane Slab

A light ray propagating in air strikes a glass slab of thickness d and 
refractive index n at incidence angle u1. Show that it emerges from the 
slab propagating parallel to its original direction.

Interpret This is a problem about refraction, which in this case oc-
curs twice. We identify the two interfaces as first the air–glass inter-
face where the light enters the glass and then the glass–air interface 
where the light exits the glass.

Develop Figure 30.6 is a sketch showing the path of the light 
through the glass. There are two pairs of incidence and refractive an-
gles, which we labeled u1, u2 and u3, u4. Our plan is to apply Snell’s 
law at each interface and thus prove that u4 = u1. At the air–glass 
interface, we have n1 sin u1 = n2 sin u2, and at the glass–air interface, 
n3sin u3 = n4sin u4. Note that u1 and u4 are in the same medium (air), 
so we set n4 = n1. Similarly, n3 = n2 for u2 and u3 in glass. Then our 
equations become n1 sin u1 = n2 sin u2 and n2 sin u3 = n1 sin u4.

evaluate Taking n1 = 1 for air and n2 = n for glass at the air–
glass interface, we have sin u2 = sin u1 /n. But at the glass–air inter-
face, n1 = n and n2 = 1, so here sin u4 = n sin u3. But the slab faces 
are parallel, so u3 = u2. Thus sin u4 = n sin u2. Using our  expression

for u2 from the first interface then gives

sin u4 = n asin u1

n
b = sin u1

showing that the incident and outgoing rays are indeed parallel.

assess This result shows that light isn’t deflected when it passes 
through a parallel-faced slab of transparent material. It is, however, 
displaced by the distance x shown in Fig. 30.6. You can find that 
 displacement in Problem 54. ■

Figure 30.6 Light passing 
through a transparent slab.

PheT: Bending Light (Intro)
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570 chapter 30 Reflection and Refraction

The laser beam that “reads” information from a compact disc is  
0.737 mm wide when it strikes the disc, and it forms a cone with 
half-angle u1 = 27.0° as shown in Fig. 30.7. It then passes through 
a 1.20-mm-thick layer of plastic with refractive index 1.55 before 
reaching the  reflective information layer near the disc’s top surface. 
What’s the beam diameter d at the information layer?

Interpret Rays defining the beam refract toward the normal, mak-
ing a smaller convergence angle within the disc. We’re asked how 
much this converging beam narrows when it reaches the information 
layer.

Develop Snell’s law will give us the angles u2 in the figure: 
n1 sin u1 = n2 sin u2. Given u2, we can use trigonometry to find the 
 distance x marked in the drawing: x = t tan u2, with t the 1.2-mm 
thickness. The beam diameter d then follows from d = D - 2x, 
where D is the 0.737-mm beam diameter at the disc surface.

evaluate With n1 = 1 and n2 = 1.55, Snell’s law gives

u2 = sin -11sin u1 /n22 = 17.03°

Therefore

d = D - 2x = D - 2t tan u2 = 1.80 μm.

assess This answer makes sense because d is just a bit larger than 
the “pits” cut into the CD to store information. Narrowing of the  laser 
beam plays a crucial role in keeping CDs noise free. The tiniest dust 
speck would blot out information at the µm@scale information layer, 
but at the point where the beam enters the disc, it would take  mm-size 
dust to cause problems. We’ll explore CD and DVD technology 
 further in Chapter 32. ■

ExAMpLE 30.3  Refraction: cD Music

Figure 30.7 Section 
through a compact 
disc, showing 
convergence of 
the laser beam to a 
narrow spot at the 
information layer.

u2u2

n = 1.55

t = 1.2 mm

x d x

D = 0.737 mm

Incident
laser beam

Information
layer

u1 = 27

Got It? 30.2 The figure shows the path of a light ray 
through three different media. Rank the media according to their 
refractive indices, in decreasing order.

n1

n2

n3

Refraction, Reflection, and polarization
Both reflection and refraction ultimately involve interactions between the incident light 
wave’s electric field and charges in a material. The oscillation of molecular dipoles in 
response to the field gives rise to both refracted and reflected light. It’s not surprising, 
therefore, that details depend on the direction of the electric field—that is, on polarization. 
When the field lies in the plane defined by the incident and reflected rays, there’s a special 
angle of incidence at which no reflection occurs. This is the Brewster angle, or  polarizing 
angle, and it occurs when the reflected ray would be perpendicular to the transmitted ray 
(Fig. 30.8). Then the molecular dipoles are oscillating along the direction a reflected ray 
would take, and, as we saw in Section 29.7, there’s no electromagnetic  radiation from an 
oscillating dipole along the oscillation direction.

Figure 30.8 shows that the polarizing incidence angle up occurs when up and the angle u2 
of the reflected ray sum to 90°; equivalently, u2 = 90° - up. Since sin u = cos190° - u2, 
that means sin u2 =  cos up. Now, Snell’s law gives sin u2 = 1n1/n22 sin up; substituting 
cos up for sin u2, this becomes cos up = 1n1 /n22 sin up. Multiplying both sides by 1n2 /n12 
and dividing by cos up then gives

 tan up =
n2

n1
  1polarizing angle2 (30.4)

For the air–glass interface shown in Fig. 30.8, up is about 56°.

Figure 30.8 The polarizing incidence angle up  
occurs when the angles of incidence and 
refraction sum to 90°.

E
S

E
S

These angles
sum to 90°.

Incident

Refracted

Glass, n2

Air, n1

up = 56°

up

up
u2 = 34°

u2
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30.3 Total Internal Reflection 571

When unpolarized light is incident at the polarizing angle, only the component of 
the light’s electric field that’s perpendicular to the plane of Fig. 30.8 gets reflected, and 
the result is polarized light. Polarization using this effect is important in a number of 
 technologies, including lasers. The window through which light emerges from a laser is 
usually cut at the polarizing angle, and as a result most laser light is intrinsically  polarized. 
A similar polarizing phenomenon occurs for reflection from metals and other opaque 
 surfaces, as well as from water. Figure 30.9 shows that polarizing sunglasses can reduce 
glare caused by such reflections.

30.3 total Internal Reflection
Light propagating from a medium with a higher refractive index into one with a lower in-
dex is bent away from the normal, as shown for a glass–air interface in Fig. 30.10. In other 
words, the angle of refraction in this case is larger than the angle of incidence. So at some 
incidence angle, the angle of refraction becomes 90°. Then what?

As Fig. 30.10 shows, light incident at this critical angle or larger cannot escape from 
the glass. Instead, total internal reflection occurs, returning all the light to the medium 
with the larger refractive index. We can find the critical angle by setting u2 = 90° in 
Snell’s law (Equation 30.3). The critical angle uc is then u1, and we have

 sin uc =
n2

n1
  1critical angle2 (30.5)

Figure 30.9 Light reflecting off horizontal 
surfaces is partially polarized for reasons 
similar to those suggested in Fig. 30.8. 
Polarizing sunglasses dramatically reduce the 
glare from such reflections.

unpolarized

polarized

glare

glare reduced

Figure 30.10 Light propagating in glass is refracted away from the normal at the glass–air interface. 
Ray 3, incident at the critical angle uc , just skims along the interface. At larger incidence angles (ray 4),  
the light undergoes total internal reflection. The rightmost beam in the photo (incident from above) 
undergoes two total internal reflections.

1 2 3 4

Source

Glass, n1

Air, n2

uc

Total internal reflection makes uncoated glass an excellent reflector when it’s oriented 
appropriately (Fig. 30.11). Binoculars owe their compact size to glass prisms that reflect 
light internally to provide a longer light path. For an underwater observer, the existence of 
the critical angle affects the view of the outside world, as the next example shows. Finally, 
total internal reflection is the basis of the optical fibers that carry signals over the global 
Internet, as the Application below describes.

Got It? 30.3 The glass prism in Fig. 30.11 has n = 1.5 and is surrounded by air 
1n = 12. What would happen to the incident light ray shown if the prism were immersed 
in water 1n = 1.3332? Figure 30.11 Light undergoes total internal 

reflection in a glass prism.

M30_WOLF4752_03_SE_C30.indd   571 17/06/15   10:43 PM



572 chapter 30 Reflection and Refraction

concEptUAL ExAMpLE 30.1 total Internal Reflection: A Watching Whale

Figure 30.12 The whale sees the entire world above the surface in a cone of 
half-angle uc ; beyond that, it sees reflections of objects below the surface.

uc

uc

uc

Planeloads of whale watchers fly over the ocean. What does a 
 submerged whale see when it looks up at them?

evaluate The whale is underwater, so it’s in a medium with a 
higher refractive index than air. Some of the light reaching the whale 
is from objects above the water surface, like the planes in Fig. 30.12. 
But the whale also sees objects below the surface, like the squid in 
Fig. 30.12, light from which is totally reflected at the water–air inter-
face.

assess The whale sees the entire above-surface world within a cone, 
as Fig. 30.12 shows. If you’ve ever looked upward from underwater, 
you’ve experienced the same phenomenon.

MakIng the ConneCtIon What’s the half-angle of the cone in 
which the whale sees objects above the water surface?

answer The cone’s half-angle is the critical angle uc, as shown in  
Fig. 30.12. For water, Table 30.1 gives n = 1.333, so, by Equation 30.5,  
uc =  sin-1 11/1.3332 = 48.6°.

Refraction and total internal reflection are the basis for optical fibers, which carry 
much of the world’s communications. Optical fibers provide the physical connec-
tivity of the global Internet and handle information ranging from telephone and 
television to light signals within medical, astronomical, and industrial instruments.

A typical fiber consists of a glass core only 8 μm in diameter, surrounded by a 
so-called cladding consisting of glass with a lower refractive index. Total internal 
reflection at the core–cladding interface guides light along the fiber, as shown in 
the figure. The glass used in optical fibers is so clear that a 1-km-thick slab would 
be as transparent as an ordinary window pane. Today’s fibers carry light produced 
by semiconductor lasers at infrared wavelengths of 850 nm, 1350 nm, or 1550 nm.

An optical fiber’s main advantage over copper wire is its huge rate of 
 information flow, called bandwidth. Communicating information—audio, 

video, or digital data—requires a range of frequencies, and the greater the 
rate of information transfer, the wider that range. With its frequency of around 
1014 Hz, light can accommodate a much wider frequency range within a chan-
nel than can radio communication systems operating at frequencies on the  order 
of 1010 Hz. A single optical fiber, for example, can carry tens of thousands of 
simultaneous telephone conversations. Fibers are also lighter and more  rugged 
than copper cables, and 
they’re less vulnerable than 
copper or open-air trans-
mission to illicit tapping. 
And because they’re made 
from insulators, optical fib-
ers are less susceptible to 
electrical noise. The photo 
shows two cables that can 
carry information at the 
same rate. One consists of a 
few optical fibers while the 
other is a thick bundle of 
copper wires.

AppLIcAtIon optical Fibers

30.4 Dispersion
Refraction ultimately involves the interaction of electromagnetic-wave fields with atomic 
electrons. It’s not surprising, therefore, that the electrons’ behavior and consequently also 
the refractive index depend on frequency (or, equivalently, on wavelength or color). The 
result is  dispersion—refraction of different colors through different angles. Figure 30.13 
shows the wavelength dependence of the refractive index for a type of glass engineered to 
exhibit high dispersion. The classic example of dispersion is Newton’s demonstration that 
white light is a mixture of all colors in the visible spectrum (Fig. 30.14). The rainbow is 
a beautiful natural manifestation of dispersion combined with internal reflection, as the 
 Application on the next page describes.

PheT: Bending Light (Prism Break)
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30.4 Dispersion 573

Figure 30.14 Dispersion separates the 
colors in white light, with shorter-
wavelength violet experiencing the 
greatest refraction.

White
light

Red

Violet

Figure 30.13 Index of refraction as a function of 
wavelength for high-dispersion crown glass.

Wavelength (nm)
Violet Red

IRUVR
ef

ra
ct

iv
e 

in
de

x,
 n

1.51

1.52

1.53

1.54

1.55

400 500 600 700 800300

White light strikes the prism in Fig. 30.15 normal to one surface. The 
prism is made of glass whose refractive index is plotted in Fig. 30.13. 
Find the angle between outgoing red and violet light, with wave-
lengths of 700 nm and 400 nm, respectively.

Interpret This is a refraction problem, like those of Section 30.2, 
except that here we’ve got two different refractive indices for two dif-
ferent wavelengths. Since the incident beam is normal to the vertical 
face of the prism, there’s no refraction at the first interface.

Develop To assess the refraction at the second interface, from glass to 
air, we can use Snell’s law, Equation 30.3, just as we did in Section 30.2.  
A look at Fig. 30.13 shows that n400 = 1.538 and n700 = 1.516. 
We’ll have to apply Snell’s law twice, once for each of these refrac-
tive indices. We’ll also need the angle of incidence at the glass–air 
interface, which the geometry of Fig. 30.15 shows is equal to the 40° 
angle at the top of the prism. We’ve labeled both angles a.

evaluate We can get the angles of refraction—the angles that the 
outgoing beams make with the normal to the slanting face of the 
prism—by solving Snell’s law for u2 and using the appropriate refrac-
tive index for n1. We’ll take n2 = 1 for air. So we have

 u400 =  sin- 1 1n400 sin a2 =  sin- 1311.5382 1 sin 40°24 = 81.34°

 u700 =  sin- 1 1n700 sin a2 =  sin- 1311.5162 1 sin 40°24 = 77.02°

The angle between the two outgoing beams is, therefore, 
∆u = u400 - u700 = 4.32°.

assess This is a pretty small angle, despite the fact that both beams 
undergo substantial refraction. Dispersion is generally a small effect, 
which is why it isn’t always obvious. For more insight into geomet-
rical optics, try reworking this example for the case of an isosceles 
prism, with a = 45° (see Question 8). ■

ExAMpLE 30.4  Dispersion: A prism

Figure 30.15 Example 30.4

700 nm
400 nm

a = 40°

a

Rainbows occur when sunlight strikes rain or other airborne water droplets. 
An observer standing between the Sun and the rain then sees a circular arc of 
colored bands. Part (a) of the figure shows that the center of that arc lies on the 
line joining the Sun to the observer’s head. That means each observer sees a 
different rainbow! Furthermore, the rainbow’s arc always subtends an angle of 
about 42°.

Isaac Newton provided the first full explanation of the rainbow, invoking 
both internal reflection and dispersion. Part (b) of the figure shows light pass-
ing through a spherical raindrop. Parallel rays striking the curved drop experi-
ence a range of incidence angles, giving a range of angles f between incident 
and outgoing rays. As the figure shows, however, there’s a maximum angle 
fmax of about 42°, and more light returns at angles close to fmax than at other 

angles. That’s why the rainbow appears as a bright arc at an angle of about 42° 
to the direction of the Sun’s rays. Problems 55 and 56 detail how to find fmax.

The “bunching” of light rays near fmax shows why a bright band appears, 
but why the different colors? The refractive index varies with wavelength, and 
so, therefore, does fmax. Thus each color appears at a slightly different angle. 
For water, the refractive index ranges from nred = 1.330 to nviolet = 1.342. 
Using these values with the results of Problems 55 and 56 yields fred = 42.53° 
and fviolet = 40.78°. Thus the rainbow appears as a band of colors subtending 
an angle of about 1.75°, with red at the top.

You’ll occasionally see a fainter secondary rainbow above the primary arc. 
This results from two internal reflections, which causes the order of colors to 
be reversed. Problem 57 explores the secondary rainbow.

AppLIcAtIon the Rainbow

(continued)
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574 chapter 30 Reflection and Refraction

Dispersion is the basis of spectroscopy, the analysis of light and other electromagnetic 
radiation in terms of its constituent wavelengths. Hot, dense objects emit a  continuous 
range of wavelengths, while diffuse gases emit and absorb radiation at only a few  specific 
wavelengths (Fig. 30.16). Such discrete spectra provide some of the strongest evidence for 
the nature of atoms, and today spectroscopy is a powerful tool throughout the sciences. 
Spectroscopy helps astronomers to determine the composition and motions of distant 
 astrophysical objects, geologists to identify minerals, and chemists to study molecules. 
 Although early spectroscopy used prisms, most modern instruments use instead  diffraction 
gratings, which we’ll describe in Chapter 32.

Dispersion can be a nuisance in optical systems. Glass lenses, for example, focus dif-
ferent colors at different points, resulting in distortion known as chromatic aberration. 
Dispersion in optical fibers—based not on wavelength but on different paths taken by rays 

reflecting at different angles—can degrade digital information. So-called 
single-mode fibers reduce this effect by passing only those rays that have 
a single specific reflection angle. On the other hand, dispersion of radio 
waves provides a crucial correction to the global positioning system (GPS). 
Ionization in the upper atmosphere introduces an uncertain but frequency-
dependent variation in the travel time for radio waves from GPS satellites. 
It’s this travel time that provides GPS location information. Sending waves 
at two different frequencies and comparing their travel times reveals the 
atmospheric conditions, and makes dual-frequency GPS receivers accurate 
to within a few centimeters.

(a) The rainbow is a circular arc at 42° from the line connecting the Sun, the observer, and the center 
of the arc. (b) The rainbow results from total internal reflection in raindrops, concentrating light at 
about 42° deflection. Dispersion separates wavelengths slightly, resulting in the rainbow’s colors.

42°

42°

Center 
of arc

Rain

Arc of
rainbow

From Sun

Observer

fmax ≃ 42°

More outgoing rays
concentrate at
around 42° 
de�ection.

(a) (b)

Got It? 30.4 The painting shown is 
Niagara, by the English-born American  artist 
Harry Fenn. From an optical  standpoint, 
what’s wrong with the painting?

Figure 30.16 The emission spectrum of a hot, diffuse gas—here 
hydrogen—consists of light at discrete wavelengths.

Violet RedIncreasing wavelength
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The big idea here is that light can be considered to travel in straight rays when the objects with which it interacts are much larger than the 
 wavelength. Under these conditions, light rays reflect and refract at interfaces between different materials.

ChaPter 30 Summary
Big Idea

Key concepts and Equations

The angle of incidence and angle of reflection are equal:

u′
1 = u1

Incident ray Re�ected ray

u1 u′1

Snell’s law relates the angle of incidence and angle of refraction:

n1sin u1 = n2sin u2

Incident ray Re�ected ray

Refracted ray

Some
re�ection
occurs.

Angle of
refraction

u1 u′1

u2

n2

n1

Applications

Total internal reflection results when light is incident at greater than the critical angle, uc, on 
an interface with a medium with lower refractive index n2:

sin uc =
n2

n1

n2

n1

ui 7 ucui 6 uc

Light polarized in the plane of the incident and refracted rays undergoes no reflection at an 
interface; this special polarizing angle, up, is given by

tan up =
n2

n1

For an air–glass interface, up ≃  56°.

unpolarized polarized

E
S

E
S

up = 56°

up

up
u2 = 34°

u2Air, n1

Incident

Refracted

Glass, n2

These 
angles
sum to 90°.

Dispersion results from the wavelength dependence of the refractive index and causes different colors to refract at different angles.

A combination of total internal reflection and dispersion in raindrops 
accounts for the rainbow.

fmax ≃ 42°

More outgoing rays
concentrate at
around 42° de�ection.

Total internal reflection guides signals in optical fibers.
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576 chapter 30 Reflection and Refraction

the n = 1.55 plastic that makes up most of the disc. Find the pit 
depth.

17. Light is incident on an air–glass interface, and the refracted light 
in the glass makes a 40° angle with the normal to the interface. 
The glass has refractive index 1.52. Find the incidence angle.

18. A light ray propagates in a transparent material at 15° to the nor-
mal to the surface. It emerges into the surrounding air at 24° to 
the normal. Find the material’s refractive index.

19. Light propagating in the glass 1n = 1.522 wall of an aquarium 
tank strikes the wall’s interior surface with incidence angle 12.4°. 
What’s the angle of refraction in the water?

20. Find the polarizing angle for diamond when light is incident 
from air.

21. Find the refractive index of a material for which the polarizing 
angle in air is 62°.

Section 30.3 Total Internal Reflection
22. Find the critical angle for total internal reflection in (a) ice,  

(b) polystyrene, and (c) rutile, when the surrounding medium is air.
23. A drop of water is trapped in a block of ice. What’s the critical 

angle for total internal reflection at the water–ice interface?
24. What is the critical angle for light propagating in glass with 

n = 1.52 when the glass is immersed in (a) water, (b) benzene, 
and (c) diiodomethane?

25. Total internal reflection occurs at an interface between plastic 
and air at incidence angles greater than 37°. Find the plastic’s 
refractive index.

Section 30.4 Dispersion
26. Blue and red laser beams strike an air–glass interface with inci-

dence angle 50°. If the glass has refractive indices of 1.680 for 
the blue light and 1.621 for the red, what will be the angle be-
tween the two beams in the glass?

27. White l ight propagating 
in air is incident at 45° on 
the equilateral  prism of  
Fig. 30.19. Find the angular 
dispersion g of the outgoing 
beam if the prism has refrac-
tive indices nred = 1.582 and 
nviolet = 1.633.

problems
28. Suppose the 60° angle in Fig. 30.18 is changed to 75°. A ray 

 enters the mirror system parallel to the axis. (a) How many 
 reflections does it make? (b) Through what angle is it turned 
when it exits the system?

29. The refractive index of a human cornea is 1.40. If 550-nm light 
strikes a cornea at incidence angle 25°, find (a) the angle of re-
fraction and (b) the wavelength in the cornea.

30. Two plane mirrors make an angle f. A light ray enters the system 
and is reflected once off each mirror. Show that the ray is turned 
through an angle 360° - 2f.

31. An unlabeled bottle of liquid has spilled, and you’re trying to 
find out whether it’s relatively harmless ethyl alcohol or toxic 
 benzene. You submerge a glass block with n = 1.52 in the 
 liquid, and shine a laser beam so it strikes the submerged glass 
with incidence angle 31.5°. You measure the angle of refraction 
in the glass at 27.9°. Which liquid is it? (See Table 30.1.)

For thought and Discussion
 1. Why is it usually inappropriate to consider low-frequency sound 

waves as traveling in rays? Why is the ray approximation more 
appropriate for high-frequency sound and for light?

 2. Why does a spoon appear bent when it’s in a glass of water?
 3. Why do a diamond and an identically shaped piece of glass spar-

kle differently?
 4. White light goes from air through a glass slab with parallel 

surfaces. Will its colors be dispersed when it emerges from the 
glass?

 5. You send white light 
through two identical 
glass prisms, oriented 
as shown in Fig. 30.17. 
Describe the beam 
that emerges from the 
right-hand prism.

 6. In glass, which end of the visible spectrum has the smallest criti-
cal angle for total internal reflection?

 7. Why can’t you walk to the end of the rainbow?
 8. An attempt to rework Example 30.4 with an isosceles prism 

 results in imaginary numbers for the two angles of refraction. 
What could this mean?

 9. Why are polarizing sunglasses better than glasses that simply 
 reduce the total amount of light?

10. Under what conditions will the polarizing angle be smaller than 
45°?

exercises and Problems

Exercises

Section 30.1 Reflection
11. Through what angle should you rotate a mirror so that a reflected 

ray rotates through 30°?
12. The mirrors in Fig. 30.18 

make a 60° angle. A light 
ray enters parallel to the 
symmetry axis, as shown. 
(a) How many reflections 
does it make? (b) Where 
and in what direction does 
it exit the mirror system?

13. To what angular accuracy 
must two ostensibly per-
pendicular mirrors be aligned so that an incident ray returns 
within 1° of its incident direction?

14. If a light ray enters the mirror system of Fig. 30.18 propagating 
in the plane of the page and parallel to one mirror, through what 
angle will it be turned?

Section 30.2 Refraction
15. In which substance in Table 30.1 does the speed of light have the 

value 2.292*108 m/s?
16. Information in a compact disc is stored in “pits” whose depth 

is essentially one-fourth the wavelength of the laser light used 
to “read” the information. That wavelength is 780 nm in air, but 
the wavelength on which the pit depth is based is measured in 

White light

Figure 30.17 For Thought and Discussion 5

60°

Exercise 12

Exercise 14

Figure 30.18 Exercises 12 and 14 and 
Problem 28

g

45° Red

Violet

Figure 30.19 Exercise 27 (angles of 
dispersed rays aren’t accurate)
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Exercises and Problems 577

44. For the interface between air (refractive index 1) and a material 
with refractive index n, show that the critical angle and the polar-
izing angle are related by sin uc = cot up.

45. A scuba diver sets off a camera flash at depth h in water with 
refractive index n. Show that light emerges from the water’s sur-
face through a circle of diameter 2h/2n2 - 1.

46. Suppose the red and blue beams of Exercise 26 are now propa-
gating in the same direction inside the glass. For what range of 
incidence angles on the glass–air interface will one beam be to-
tally reflected and the other not?

47. In cataract surgery, ophthalmologists replace the eye’s natu-
ral lens with a synthetic intraocular lens, or IOL. A particular 
IOL has refractive index 1.452. Find the angle of refraction for 
a light ray striking this lens with incidence angle 77.0°. The me-
dium before the IOL is the eye’s aqueous humor, a liquid with 
n = 1.337.

48. In a ruby laser, light is produced in a solid rod of ruby, with re-
fractive index 1.77. The light emerges from the end of the rod 
into the surrounding air. At what angle should the rod end be cut 
so the emerging light is fully polarized?

49. Reconsider Example 30.4, now in a glass with n700 = 1.482 and 
n400 = 1.615. Determine what happens to the red and violet light 
with these respective wavelengths, and speculate on what hap-
pens to the entire incident beam of white light.

50. A cylindrical tank 2.4 m deep is full to the brim with water. Sun-
light first hits part of the tank bottom when the rising Sun makes 
a 22° angle with the horizon. Find the tank’s diameter.

51. For what diameter tank in Problem 50 will sunlight strike some 
part of the tank bottom whenever the Sun is above the horizon?

52. Light is incident from air on the flat wall of a polystyrene water 
tank. If the incidence angle is 40°, what is the angle of refraction 
in the water?

53. You’re an optometrist, mounting a projector at the back of your 
4.2-m-long exam room, 2.6 m above the floor. It shines an eye-
test pattern on a white wall opposite the projector. Patients will 
sit with their eyes 3.3 m from the wall and 1.4 m above the floor 
to view the pattern. At what height should you center the pattern 
on the wall?

54. Find an expression for the displacement x in Fig. 30.6, in terms 
of u1, d, and n.

55. Figure 30.23 shows light passing through a spherical raindrop, 
undergoing two refractions and total internal reflection, resulting 
in an angle f between the incident and outgoing rays. Show that 
f = 4 sin - 11sin u/n2 - 2u, where u is the incidence angle.

Incident ray

Exiting ray

180° - f

f

A

B

C

u

Figure 30.23 Problem 55

56. (a) Differentiate the result of Problem 55 to show that the maxi-
mum value of f occurs when the incidence angle u is given by 
cos2u = 1

3 1n2 - 12. (b) Use this 
result and that of Problem 55 to 
find the maximum f in a raindrop 
with n = 1.333. This is the angle at 
which the rainbow appears, as shown 
in the Application on pages 573–574.

57. Figure 30.24 shows the approxi-
mate path of a light ray that under-
goes internal reflection twice in a 

32. A meter stick lies on the 
bottom of the rectangular 
tank in Fig. 30.20, with its 
zero mark at the tank’s left 
edge. You look into the long 
dimension of the tank at a 
45° angle, with your line 
of sight just grazing the top 
edge, as shown. What mark 
on the meter stick do you see when the tank is (a) empty, (b) half 
full of water, and (c) full of water?

33. You look at the center of one face of a solid glass cube of glass, 
on a line of sight making a 55° angle with the normal to the cube 
face. What minimum refractive index of the glass will let you see 
through the cube’s opposite face?

34. At the aquarium where you work, a fish has gone missing in a 
10-m-deep, 11-m-diameter cylindrical tank. You shine a flash-
light in from the top edge of the tank, hoping to see if the missing 
fish is on the bottom. What’s the smallest angle your flashlight 
beam can make with the horizontal if it’s to illuminate the bot-
tom?

35. You’re standing 2.3 m horizontally from the edge of a 4.5-m-deep 
lake, with your eyes 1.7 m above the water’s surface. A diver 
holding a flashlight at the lake bottom shines the light so you 
can see it. If the light in the water makes a 42° angle with the  
vertical, at what horizontal distance is the diver from the edge of 
the lake?

36. You’ve dropped your car 
keys at night off the end 
of a dock into water 1.6 m 
deep. A flashlight held di-
rectly above the dock edge 
and 0.50 m above the wa-
ter illuminates the keys 
when it’s aimed at 40° to 
the vertical, as shown in 
Fig. 30.21. What’s the hori-
zontal distance x from the 
edge of the dock to the keys?

37. Laser eye surgery uses ul-
traviolet light with wave-
length 193 nm. What’s the 
UV light’s wavelength 
within the eye’s lens, 
where n = 1.39?

38. The prism in Fig. 30.22 
has n = 1.52 and a = 60° 
and is  surrounded by air. A 
light beam is incident at 
u1 = 37°. Find the angle d 
through which the beam is 
deflected.

39. Repeat Problem 38 for the 
case  n = 1.75, a = 40°, 
and u1 = 25°.

40. Find the minimum refractive index for the prism in Fig. 30.11 if 
total internal reflection occurs as shown when the prism is sur-
rounded by air.

41. Where and in what direction would the main beam emerge if the 
prism in Fig. 30.11 were made of ice, surrounded by air?

42. Find the speed of light in a material for which the critical angle at 
an interface with air is 61°.

43. The prism of Fig. 30.11 has n = 1.52. When it’s immersed in a liq-
uid, a beam incident as shown in the figure ceases to undergo total re-
flection. What’s the minimum value for the liquid’s refractive index?

40 cm

100 cm

45°

Figure 30.20 Problem 32

h1 = 0.50 m
u1 = 40°

u2

x1

x2

h2 = 1.6 m

x

Figure 30.21 Problem 36

u1
d

a

Figure 30.22 Problems 38 and 39

f

Figure 30.24 Problem 57
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578 chapter 30 Reflection and Refraction

Light path

(a)

(b)

A

A

Ionosphere

Radio-wave
paths

Earth

B

B

C

D

u

Figure 30.25 Passage Problems 63–66. (a) Light path in a mirage. (b) Long- 
distance radio communication via ionospheric refraction (not to scale).

a. point A.
b. point B.
c. point C.
d. point D.

65. Figure 30.25b shows how continuous refraction in the ionosphere 
enables long-distance radio communication. Waves launched at 
angles steeper than u don’t refract enough to return to Earth, so 
they propagate through the ionosphere and on to space. You can 
therefore conclude that
a. all points between A and B receive stronger signals from A 

than point B receives.
b. points between A and B can’t receive signals from A via the 

ionosphere.
c. the refractive index must become infinite at the maximum 

altitude of the radio signal.
66. The refractive index in the ionosphere is strongly dependent on ra-

dio-wave frequency, approaching 1 for high frequencies. Therefore,
a. long-distance communication via the ionosphere is more 

likely at higher frequencies.
b. higher frequencies won’t penetrate as far into the ionosphere.
c. higher frequencies are more appropriate for satellite-based 

communication.

answers to Chapter Questions

Answer to chapter opening Question
The image results from total internal reflection of light striking the 
water surface from below. This is the same process that guides signals 
along the optical fibers that carry data over the Internet.

Answers to Got It? Questions
 30.1   The water surface is uneven, causing different reflection angles, but 

the unevenness isn’t so fine as to result in fully diffuse reflection.
 30.2  n3 7 n1 7 n2

 30.3  It would emerge into the water from the diagonal interface, be-
cause the critical angle now becomes 63°.

 30.4  Rainbows always subtend a half-angle of 42°. The diameter 
of the rainbow, therefore, subtends 84°. Fenn’s entire painting 
covers about three times the diameter of the rainbows shown, or 
some 250°. That’s too much to capture in a single scene, which 
can’t exceed 180°.

spherical water drop. Repeat Problems 55 and 56 for this case to 
find the angle at which the secondary rainbow occurs.

58. Show that a three-dimensional corner reflector (three mutually 
perpendicular mirrors, or a solid cube in which total internal re-
flection occurs) turns an incident light ray through 180°. (Hint: 
Let q

!
= qx in + qy jn + qzkn be a vector in the propagation direc-

tion. How does this vector get changed on reflection by a mirror 
in a plane defined by two of the coordinate axes?)

59. Fermat’s principle states that a light ray’s path is such that the 
time to traverse that path is an extremum (a minimum or a maxi-
mum) when compared with times for nearby paths. Show that 
Fermat’s principle implies Snell’s law by proving that a light ray 
going from point A in one medium to point B in a second me-
dium will take the least time if it obeys Snell’s law.

60. You’re an automotive engineer charged with evaluating safety 
glass, which is made by bonding a layer of flexible plastic be-
tween two layers of glass, thus eliminating dangerous glass frag-
ments during accidents. A new product uses glass with refractive 
index n = 1.55 and plastic with n = 1.48. You’re asked to deter-
mine whether total internal reflection at the glass–plastic inter-
face could cause problems with visibility. What do you conclude, 
and why?

61. A slab of transparent material has thickness d and refractive index 
n that varies across the material: n1x2 = n1 + 1n2 - n121x/d22, 
where x is measured from one face of the slab. A light ray is inci-
dent normally on the slab. Find an expression for the time it takes 
to traverse the slab.

62. For common materials like glass, the wavelength dependence of 
the refractive index at visual wavelengths is given approximately 
by n1l2 = b + c/l2, where b and c are constants. The table be-
low gives values of l and n for the crown glass of Example 30.4. 
Determine a quantity that, when you plot n against it, should give 
a straight line. Make your plot, establish a best-fit line, and use 
the line to determine the constants b and c.

l (nm) 425 475 525 575 625 675

n 1.534 1.528 1.523 1.521 1.518 1.517

Passage Problems
Mirages occur when air’s refractive index varies with position as a 
result of uneven heating. Under such conditions, light undergoes re-
fraction continually and thus follows a curved path. Other examples 
where a varying refractive index is important include the eye’s lens 
and Earth’s ionosphere, an electrically conductive layer in the upper 
atmosphere, where the refractive index for radio waves varies with al-
titude.
63. Figure 30.25a depicts light’s path over a hot road, producing a 

mirage. From the path shown, you can conclude that the air’s 
 refractive index
a. increases from left to right.
b. increases from right to left.
c. increases upward.
d. increases downward.

64. The observer in Fig. 30.25a sees a shimmering mirage that looks 
like water but actually results from sky light following the curved 
path. To the observer, the mirage appears to be at

DATA

CH

CH

CH

M30_WOLF4752_03_SE_C30.indd   578 17/06/15   10:44 PM



29
Maxwell’s Equations 
and Electromagnetic 

Waves

30
Reflection and 

Refraction

32
Interference  

and Diffraction

33
Relativity

579

Images and Optical Instruments

31

What You Know
■ You understand reflection and 

refraction at plane surfaces.

■ You have optical experience with your 
own eyes, and possibly with corrective 
lenses, and perhaps with instruments 
such as microscopes, telescopes, and 
magnifying glasses.

Reflection and refraction alter the direction of light propagation, according to the laws 
developed in Chapter 30. Microscopes, telescopes, cameras, contact lenses, scanners, and 

your own eyes use reflection or refraction to form images that provide visual representations 
of reality. Here we study image formation using geometrical optics—a valid approximation 
provided the objects we’re imaging are much larger than the wavelength of light.

When you view an object through an optical system, light reflects or refracts, so it doesn’t 
propagate in straight paths from the object. As a result you see an image that may differ in 
size, orientation, or apparent position from the actual object. In some cases light actually 
comes from the image to your eyes; the image is then a real image. In other cases light only 
appears to come from the image location; then the image is a virtual image.

What You’re Learning
■ You’ll learn the process of ray tracing, 

and use it to describe both graphically 
and algebraically how plane and 
curved mirrors form images.

■ You’ll learn to describe image 
formation with lenses, using both 
ray tracing diagrams and algebraic 
equations.

■ With both mirrors and lenses, you’ll 
learn to distinguish real images and 
virtual images.

■ You’ll learn to calculate the focal 
lengths of thin lenses.

■ You’ll explore the optics of the human 
eye, including vision correction.

■ You’ll learn about common optical 
instruments, including cameras, 
microscopes, and telescopes.

How You’ll Use It
■ If you go on in any field of science, 

engineering, or medicine, you’ll 
almost certainly use optical 
instruments to explore small or distant 
systems, to diagnose and correct 
vision problems, to image internal 
regions of the human body, or to 
record visual images.

■ If you do photography or 
videography, you’ll be using optical 
instruments—ranging from the simple 
lens system in your smartphone’s 
camera to elaborate telephoto lenses 
for wildlife viewing.

How does laser surgery provide permanent 
 vision correction?
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580 Chapter 31 Images and Optical Instruments

31.1 Images with Mirrors
Plane Mirrors
In Fig. 31.1a we show three light rays that leave the tip of an arrowhead and reflect off a 
plane mirror to reach the observer’s eye. The light looks to the observer like it’s coming 
from a point behind the mirror, so that’s the location of the arrowhead’s image. The  image 
is virtual because no light actually comes from behind the mirror—even though that’s 
where the image is.

Since two lines define a point, we need only two rays to locate the arrowhead in  
Fig. 31.1a. We’ve repeated the image-location procedure in Fig. 31.1b, now using as one 
of the rays the ray that reflects normally. The same procedure locates the bottom of the 
arrow, and we could easily fill in to get the entire arrow; the resulting image is shown in 
Fig. 31.1b.

Because the angles of incidence and reflection are equal, angles OQP and O′QP in 
Fig. 31.1b are equal. The right triangles OPQ and O′PQ share a common side as well, 
so they’re congruent. Thus the distances OP and O′P are equal, so the image is located 
behind the mirror as far as the object is in front of it. Furthermore, rays from the top and 
bottom of the arrow and normal to the mirror are parallel, so the image is the same height 
as the actual arrow.

Images in plane mirrors preserve an object’s length and upright orientation, but 
they reverse the object. When you look in the mirror, you face the mirror. So does your 
 image—meaning the reversal is front to back, not left to right as you might think. This 
front-to-back reversal makes the image of your right hand look like a left hand (Fig. 31.2). 
Mathematically, the mirror reverses the coordinate axis perpendicular to the mirror plane. 
This alters handedness, rotation, and all other phenomena connected with the right-handed 
coordinate systems we’ve been using.

Figure 31.1 Image formation in a plane mirror.

Object Image

Mirror

(a)

Object
O

Image
O′

Mirror

(b)

P

Q

Solid lines show
actual light paths.

These two rays’ apparent intersection 
locates the arrowhead’s image.

Use these rays to
locate the image 
of the arrow’s 
tail.

Dashed lines
show apparent
light paths.

Figure 31.2 The palm of a right hand faces the mirror. 
So does the image’s palm. That makes the image look 
like a left hand, but it’s still the image of a right hand.

Got It? 31.1 You stand in front of a plane mirror whose top is at the same height 
as the top of your head. Approximately how far down must the mirror extend for you to 
see your full image? (a) to your chest; (b) to your waist; (c) to your knees; (d) to the floor

Curved Mirrors
In contrast to plane mirrors, curved mirrors form images that may be upright or inverted, 
virtual or real, large or small. The best curved mirrors are parabolic. That’s because any 
line parallel to the parabola’s axis makes the same angle to the normal of the parabola as 
does a second line drawn to a special point called the focus or focal point (Fig. 31.3). 
Because the angles of incidence and reflection are equal, this means a parabolic mirror 
reflects rays parallel to the mirror axis so they converge at the focus. This effect is used to 
concentrate light to high intensities or, conversely, to create a parallel beam from a point 
source of light at the focus.

Near the apex of the parabolic mirror in Fig. 31.3, you can’t tell whether the shape 
is parabolic or spherical; a sphere closely approximates the parabola. Because a spher-
ical surface is easier to form, many focusing mirrors are, in fact, spherical. The slight 

Figure 31.3 A parabolic mirror reflects rays 
parallel to its axis to a common focus.

Normal These angles
are equal.

Axis
Focal point

F
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31.1 Images with Mirrors 581

 distortion this causes is called spherical aberration; a notable case is the Hubble Space 
Telescope mirror, which was ground to the wrong curve and had substantial aberration 
(Fig. 31.4). Normally spherical aberration is minimized by making the mirror only a tiny 
fraction of the entire sphere. In that case the focal length—the distance from the mirror’s 
apex to its focal point—is much larger than the mirror, so most rays striking the mirror are 
nearly parallel to the mirror axis. It’s only for such paraxial rays that the approximation 
of a parabola by a sphere results in accurate focusing. But for clarity our diagrams will 
often show mirrors with exaggerated curvature, and consequently not all rays will seem 
paraxial.

We can see how spherical mirrors form images by tracing two rays from each of several 
points on the object, as we did for plane mirrors. Some special rays simplify this process; 
their properties all follow from the law of reflection and the properties of a spherical mir-
ror in the paraxial approximation.

Figure 31.4 Incorrect curvature gave the 
Hubble Space Telescope mirror substantial 
spherical aberration. Astronauts later installed 
corrective optics. Images are of the same 
galaxy before and after the repair.

TacTics 31.1 Ray tracing with Mirrors

Figure 31.5 shows four special rays, any two of which suffice to locate an image:
1. Any ray parallel to the mirror axis reflects through the focal point F.
2. Conversely, any ray that passes through F reflects parallel to the axis.
3. Any ray that strikes the center of the mirror reflects symmetrically about the mirror axis.
4.  Any ray through the center of curvature, C, strikes the mirror normal to the mirror surface and thus 

returns on itself.

Figure 31.5 Four special rays for  locating 
images in curved mirrors. Any two suf-
fice to locate the image.

1
2
3

4

C

F

Figure 31.6 shows ray tracings, using our special rays 1 and 2 that go through the focal 
point, to find the image location in three cases. In each case symmetry ensures that the 
bottom of the image arrow is on the axis, so we haven’t bothered to trace it. In Fig. 31.6a 
we see that an object beyond the mirror’s center of curvature, C, forms a smaller, inverted 
image. Light actually emerges from this image, so it’s a real image. If you looked from the 

Figure 31.6 Image formation with a concave spherical mirror, using rays 1 and 2 described in Tactics 31.1. 
O denotes the object and I its image.

These two rays diverge
from the virtual image.

Real, inverted, reduced image Real, inverted, enlarged image Virtual, upright, enlarged image

O

C F

I

(a)

O

C F

I

(b)

O
C

F I

(c)
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582 Chapter 31 Images and Optical Instruments

left toward the mirror in Fig. 31.6a you would actually see the image in space in front of 
the mirror (Fig. 31.7).

As the object moves closer to the mirror, the real image grows; with the object between 
the center of curvature and the focus, the image is larger than the object and farther from 
the mirror (Fig. 31.6b). As the object moves toward the focus, the image grows larger and 
moves rapidly away from the mirror. With the object right at the focus, the rays emerge in 
a parallel beam and there’s no image. Finally, rays from an object closer to the mirror than 
the focus diverge after reflection. To an observer they appear to come from a point behind 
the mirror. Thus there is a virtual image, in this case upright and enlarged (Fig. 31.6c).

Got It? 31.2 Where would you place an object so that its real image is the same 
size as the object, as in Fig. 31.7? (a) at the center of curvature C; (b) at the focal point F; 
(c) between F and the mirror; (d) between F and C; (e) beyond C

Convex Mirrors
A convex mirror reflects on the outside of its spherical curvature, causing light to diverge 
and therefore to form only virtual images (Fig. 31.8). Although the focus has less obvious 
physical significance in this case, its location still controls the geometry of reflected rays. 
As Fig. 31.8 shows, we can still draw a ray parallel to the axis and another ray that would 
go through the focus if the mirror weren’t in its way. The reflected rays appear to diverge 
from a common point behind the mirror, showing a virtual image that’s upright and re-
duced in size. By considering different object positions, you can convince yourself that the 
image in a convex mirror always has these characteristics. Convex mirrors are widely used 
where an image of a broad region needs to be captured in a small space (Fig. 31.9).

Figure 31.7 A bear meets its real image, formed 
by the concave mirror at the rear. Bear and 
image are both in front of the mirror.

Figure 31.8 Image formation with a convex 
mirror. The image is always virtual, upright, 
and reduced in size.

These two rays diverge
from the virtual image

O F

I

Figure 31.9 A convex mirror gives a wide-
angle view.

the Mirror Equation
Drawing ray diagrams gives an intuitive feel for image formation. More precise image 
 locations and sizes follow from the mirror equation, which we now derive. This time 
we’ll find the image using special rays (1) and (3) listed in Tactics 31.1. Figure 31.10a 
shows these two rays, with ray (1) parallel to the mirror axis and ray (3) striking the 
 mirror’s center. The ray that strikes the center of the mirror reflects symmetrically about 
the axis; therefore, the two shaded triangles are similar. Then the magnification M—
the  ratio of image height h′ to object height h—is the same as the ratio of image and 
 object  distances from the mirror. We’ll consider the image height negative if the image is 
 inverted; then from Fig. 31.10a we have

 M =
h′
h

= -
s′
s
  1magnification2 (31.1)

Here object and image are both in front of the mirror, so we take object and image 
 distances s and s′ as positive quantities; the negative sign in Equation 31.1 then shows that 

Figure 31.10 Finding the image I using rays 1 
and 3 of Tactics 31.1. For an inverted image 
the height h’ is negative, so we’ve marked the 
arrow length—a positive quantity—as -h’.

C
h

-h′
I

F

f

s′ - f

s′

h

O

-h′
h

O

I

s

C

(a)

s′

F

(b)

Similar triangles, so h′>h = -s′>s

Similar triangles, so -h′>h = 1s′ - f 2> f
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31.1 Images with Mirrors 583

in this case the image is inverted. Also, for the object location of Fig. 31.10a, it’s clear that 
� M � 6 1,  meaning the image is reduced rather than enlarged.

Figure 31.10b is the same as Fig. 31.10a except that now we show only the ray that 
reflects through the focus. We’ve also labeled the focal length f  and shaded another pair of 
similar triangles. From these you can see that -h′/h = 1s′ - f2 / f. Here we put the minus 
sign on h′ because we’ve defined h′ as negative for the inverted image, but comparing 
similar triangles requires a ratio of positive quantities. Equation 31.1 shows that the ratio 
h′/h is the magnification M = -s′/s. So we have s′/s = 1s′ - f2 / f  or, dividing both 
sides by s′ and doing a little algebra,

 
1
s

+
1

s′
=

1

f
  1mirror equation2 (31.2)

Although we derived the mirror equation using a real image, the equation applies to 
virtual images with the convention that a negative image distance s′ means the image is 
behind the mirror. And we can handle convex mirrors as well by taking the focal length to 
be a negative quantity. Table 31.1 summarizes image formation with mirrors, including 
these sign conventions.

Table 31.1 Image Formation with Mirrors: Sign Conventions

Focal Length, f Object Distance, s image Distance, s′ Type of image ray Diagram

+  
(concave)

+  
(in front of mirror)

s 7 2f

+  
(in front of mirror)

s′ 6 2f

Real, 
inverted, 
reduced

O

C F

I

+  
(concave)

+  
(in front of mirror)

2f 7 s 7 f

+  
(in front of mirror)

s′ 7 2f

Real, 
inverted, 
enlarged

O

C F

I

+  
(concave)

+  
(in front of mirror)

s 6 f

-  
(behind mirror)

Virtual, 
upright, 
enlarged

O
C

F I

-  
(convex)

+  
(in front of mirror)

-  
(behind mirror)

Virtual, 
upright, 
reduced

O F

I

A diagram similar to Fig. 31.10 but using the ray through the center of curvature gives 
another useful fact about curved mirrors: The magnitude of the focal length is half the 
radius:

 � f � =
R

2
 (31.3)

You can prove this in Problem 75.
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584 Chapter 31 Images and Optical Instruments

ExaMPLE 31.1  a Concave Mirror: the Hubble Space telescope

During assembly of the Hubble Space Telescope, one technician stood 
3.85 m in front of the telescope’s concave mirror (Fig. 31.11). Given 
the telescope’s 5.52-m focal length, find (a) the location and (b) the 
magnification of the technician’s image.

inTerpreT This problem is about image formation in a concave mir-
ror. We identify the technician as the object, the 5.52-m focal length as 
f, and the 3.85-m distance as the object distance s.

Develop We’ve sketched the situation in Fig. 31.12. With the object 
closer than the focal length, our sketch resembles Fig. 31.6c, so we 
anticipate an enlarged, virtual image, as shown. For (a), we’ll solve 
the mirror equation 31.2 for the image distance s′ to get the image 

location. Then for (b), we can find the magnification from Equation 
31.1, M = -s′/s.

evaluaTe (a) Solving Equation 31.2 for s′ gives

s′ =
f s

s - f
=

15.52 m213.85 m2
3.85 m - 5.52 m

= -12.7 m

(b) Using this result in Equation 31.1 gives the magnification:

M = -
s′
s

= -
-12.7 m

3.85 m
= 3.30

assess The negative image distance confirms what our sketch antic-
ipated: This is a virtual image, located behind the mirror. The negative 
distance cancels the minus sign in Equation 31.1, giving a positive 
threefold magnification. Thus the image is upright and enlarged, just 
as Fig. 31.11 shows. ■

Figure 31.11 Technicians standing in front of the Hubble Space Telescope mirror.

Figure 31.12 Sketch for Example 31.1, showing two rays that locate the 
virtual image of the technician’s head.

This ray re�ects through
the focus.

The rays seem to meet
here, so this is the 
virtual image.

This ray re�ects
symmetrically.

ExaMPLE 31.2  a Convex Mirror: Jurassic Park

In the film Jurassic Park, horrified passengers watch in a car’s con-
vex side-view mirror as a Tyrannosaurus rex pursues them. Printed 
on the mirror is the warning “OBJECTS IN MIRROR ARE CLOSER 
THAN THEY SEEM.” If the mirror’s curvature radius is 12 m and 
the T. rex is actually 9.0 m from the mirror, by what factor does the 
dinosaur appear reduced in size?

inTerpreT This is about a convex mirror, governed by the same ba-
sic equations as the concave mirror in Example 31.1. We identify the 
12-m length as the curvature radius R and the 9.0-m distance as the 
object distance s.

Develop We’ve sketched the situation in Fig. 31.13. Since this re-
sembles Fig. 31.8, we see that the image will indeed be reduced in 
size. Equation 31.1, M = -s′/s, gives the magnification we want, but 
to use it we need the image distance s′. In Example 31.1 we solved 
Equation 31.2 to get s′ = fs/1s - f2. Although that mirror was con-
cave and this one is convex, Equation 31.2 applies to both mirrors. So 
we can use s′ = fs/1s - f2 in Equation 31.1 to get the magnification:

M = -
s′
s

= -
fs/1s - f2

s
= -

f

s - f

We aren’t given the focal length, but Equation 31.3, � f � = R/2, 
shows that its magnitude is half the 12-m radius. Since this is a 

 convex  mirror, Table 31.1 shows that the focal length is negative, so 
f = -6.0 m.

evaluaTe Using our expression for M gives

M = -
f

s - f
= -

1-6.0 m2
9.0 m - 1-6.0 m2 = 0.40

where the answer comes out positive because f  is negative.

assess Our result shows that T. rex appears in the mirror at only 40% 
of its actual size; in other words, it looks farther away than it really is. ■

Figure 31.13 Sketch for Example 31.2, showing two rays that locate the 
 image of T. rex. Mirror is not to scale.

The image is behind
the mirror.

No light actually comes from it,
so it’s a virtual image.
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31.2 Images with Lenses 585

31.2 Images with Lenses
A lens is a piece of transparent material that uses refraction to form images. Like mirrors, 
lenses can be either concave or convex. But light goes through a lens, while it reflects off 
a mirror, so the roles of concave and convex are reversed. A convex lens focuses  parallel 
rays to a focal point and is therefore a converging lens (Fig. 31.14). As we’ll see, a  convex 
lens can form real and virtual images, depending on the object location. A concave lens, in 
contrast, is a diverging lens; it refracts parallel rays so they appear to diverge from a com-
mon focus. Like a convex mirror, a concave lens forms only virtual images (Fig. 31.15).

Figure 31.14 A convex lens brings parallel light 
rays to a focus at F.

F

f

Figure 31.15 Parallel light passing through a 
concave lens diverges so it looks as though it’s 
coming from a common focus.

- f

F

These rays look like
they’re coming from F.

TacTics 31.2 Ray tracing with Lenses

Figure 31.16 shows two special rays:
1. Any ray parallel to the lens axis refracts through the focal point.
2. Any ray through the center of the lens passes undeflected.

Figure 31.16 Two special rays for locating 
images formed with lenses.

1

2

F F

Parallel ray c cpasses
through
the focus.

Ray through
lens center c

cis unde�ected.

We first explore a thin lens—one whose thickness is small compared with the curva-
ture radii of its two surfaces. Although light refracts as it enters a lens and again as it exits, 
in the thin-lens approximation the two surfaces are so close that it suffices to consider that 
the light bends just once, as it crosses the center plane of the lens. Unlike a mirror, light 
can go either way through a lens; that means the lens has two focal points, one on either 
side. For a thin lens, the focal length proves to be the same in either direction, so it doesn’t 
matter which way we orient the lens. We’ll consider all lenses to be thin unless otherwise 
stated, and later we’ll justify the thin-lens approximation mathematically.

Lens Images by Ray tracing
As with mirrors, any two rays serve to locate the image formed by a lens. For lenses, two 
special rays simplify ray tracing.

PheT: Geometric Optics
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586 Chapter 31 Images and Optical Instruments

Figure 31.17 shows ray tracings for different object placements in relation to a converg-
ing lens. In Fig. 31.17a we see that an object farther out than two focal lengths produces a 
smaller, inverted, real image on the other side of the lens. Since light really emanates from 
this image, you could see it without looking through the lens. As the object moves toward 
the lens, the image moves away and grows. When the object is between one and two focal 
lengths from the lens, the image has moved beyond 2 f  and is enlarged (Fig. 31.17b). The 
image on a movie screen is formed in this way. Moving the object closer than the focal 
point produces an enlarged, virtual image that can be seen only by an observer looking 
through the lens (Fig. 31.17c).

Figure 31.18 shows ray tracings for a diverging lens. Like a convex mirror, this lens 
produces only virtual images that are upright and reduced in size; they’re visible only 
through the lens. The basic geometry of Fig. 31.18 doesn’t change even if the object 
moves within the focal length.

Getting Quantitative: the Lens Equation
Study Fig. 31.19 and you’ll see that the unshaded triangles OAB and IDB are similar. 
Therefore, as for mirrors, the image magnification is

 M =
h′
h

= -
s′
s

 (31.4)

where again a negative height means an inverted image. The shaded triangles in Fig. 31.19 
are also similar, so -h′/1s′ - f2 = h/f. Combining this result with Equation 31.4 and 
 doing some algebra then gives

 
1
s

+
1

s′
=

1

f
  1lens equation2 (31.5)

Figure 31.17 Image formation with a  converging lens, shown for three object locations.

s 7 2 f

f

f

Inverted, 
reduced,
real image

Object 2 f 2 f

(a)

2 f  7 s 7 f

(b)

f

fObject

Inverted, 
enlarged,
real image

2 f 2 f

s 6 f

(c)

Upright, enlarged,
virtual image

f Object f

Figure 31.18 A diverging lens always forms a 
reduced, upright, virtual image, visible only 
through the lens.

F

Object Virtual
image

F
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Table 31.2 Image Formation with Lenses: Sign Conventions

Focal Length, f Object Distance, s image Distance, s′ Type of image ray Diagram

+  
(convex)

+  
s 7 2 f

+  
(opposite side of lens) 

2 f 7 s′ 7 f

Real, 
inverted, 
reduced s 7 2 f

f

f
I

O 2 f 2 f

+  
(convex)

+  
2 f 7 s 7 f

+  
(opposite side of lens) 

s′ 7 2 f

Real, 
inverted, 
enlarged

2 f  7 s 7 f f I
fO2 f 2 f

+  
(convex)

+  
s 6 f

-  
(same side of lens)

Virtual, 
upright, 
enlarged

s 6 f

f OI f

-  
(concave)

+ -  
(same side of lens)

Virtual, 
upright, 
reduced

F
O I

F

Figure 31.20 Image distance versus object 
distance for lenses.
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  C
onverging 1 f 7

 02 

Diverging 1 f 6 02 

C
onverging 1 f 7 02 

Virtual images

Real images

ExaMPLE 31.3  Using the Lens Equation: Fine Print

You’re using a magnifying glass (a converging lens) with 21-cm focal 
length to read a telephone book (Fig. 31.21). How far from the page 
should you hold the lens in order to see the print enlarged three times?

inTerpreT This is a problem involving image formation with 
a converging lens. The object is the phone book, so we identify the 
book-to-lens distance we’re asked for as the object distance s. Since 
this is a converging (i.e., convex) lens, the focal length is positive: 
f = +21 cm. The factor-of-3 magnification we want is the quantity M.

Develop The situation is like Fig. 31.17c, with an enlarged, upright, 
virtual image. We’re given the focal length and magnification, but we 
don’t know either the object distance s, which we’re looking for, or 
the image distance s′. Equation 31.4, M = -s′/s, relates the two, so 
we can first use that equation to eliminate s′ in terms of s and then 
solve the lens Equation 31.5, 1/s + 1/s′ = 1/ f, for s.

evaluaTe With M = 3, Equation 31.4 gives s′ = -3s. Then 
 Equation 31.5 becomes

1
s

-
1

3s
=

2

3s
=

1

f
=

1

21 cm

so s = 122121 cm2/3 = 14 cm.

Figure 31.21 Using a converging lens as a magnifying glass (Example 31.3).

Figure 31.19 Ray diagram for deriving the lens equation. Triangles OAB and IDB are similar,  
as are the shaded triangles.

FA B
F D

O

h

I
fs

s′

-h′

which is identical to Equation 31.2, the mirror equation. Although we derived  Equation 31.5 
for the case of a real image, it holds for virtual images if we consider the image  distance 
negative; in that case the image is on the same side of the lens as is the object. And it holds 
for diverging lenses if we consider the focal length negative. Table 31.2 summarizes image 
formation with lenses, including these sign conventions. Figure 31.20 describes graphically 
the sizes and types of images formed at different object distances.

Video Tutor Demo | Partially Covering 
a Lens

(continued)
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588 Chapter 31 Images and Optical Instruments

Got It? 31.3 You look through a lens at this page and see the words enlarged and 
right-side up. Is the image you observe real or virtual? Is the lens concave or convex?

31.3 Refraction in Lenses: the Details
So far we’ve treated lenses as being arbitrarily thin and neglected details of the refraction 
process. Here we develop a more general description of refraction in lenses, of which our 
thin-lens approximation is a special case.

Refraction at a Curved Surface
Figure 31.22 shows a transparent material with refractive index n2 and a curved surface 
of radius R. Outside the material is a medium with refractive index n1. We’ll now prove 

Figure 31.22 Refraction at an interface with a curved surface. All labeled angles are considered 
small, even though the drawing doesn’t show them as such.

u1

s′

a g

u2
b

s

B

C I

n2n1

O
R

A

(a) (b)

IO

what Fig. 31.22a shows: that rays from a point object O are refracted to a common image 
point I. Our proof is valid only in the paraxial approximation that all rays make small an-
gles with the optic axis. However, as with mirrors, our drawings won’t always show these 
angles as being small.

Figure 31.22b shows a single ray. With all the labeled angles small, we can approxi-
mate sin x ≃ tan x ≃ x, with x in radians. Then Snell’s law, n1 sin u1 = n2 sin u2, becomes 
n1 

u1 = n2 u2. Triangles BCI and OBC give u2 = b - g and u1 = a + b, so Snell’s law 
becomes n11a + b2 = n21b - g2. Furthermore, in the small-angle approximation the 
arc BA is so close to a straight line that we can write a ≃ tan a ≃ BA/s, with s = OA the 
object’s distance from the refracting surface. Similarly, b ≃ BA/R and g ≃ BA/s′. Thus 
our expression of Snell’s law becomes

n1aBA
s

+
BA

R
b = n2 aBA

R
-

BA

s′
b

or, on canceling BA and rearranging,

 
n1

s
+

n2

s′
=

n2 - n1

R
 (31.6)

The angle a doesn’t appear here, showing that this relation between object and image 
distances holds for all rays that satisfy the small-angle approximation. So Fig. 31.22a is 
correct: All such rays do indeed come to a common focus at I.

We derived Equation 31.6 for the case of a real image, but as usual it applies to virtual 
images if we take the image distance as negative. And it applies to concave surfaces if we 
take R to be negative. It even works for flat surfaces, with R = ∞ .

assess Our answer is less than the focal length, as Fig. 31.17c shows 
is required for a virtual image. Figure 31.21 confirms that the  image 
is enlarged, upright, and virtual, and it appears farther away than 

the  object. It’s also on the same side of the lens as the object, which 
 explains the negative image distance s′ =  -42 cm. ■
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31.3 Refraction in Lenses: The Details 589

Lenses, thick and thin
Figure 31.24 shows a lens of thickness t with refractive index n, surrounded by air with 
n = 1. Object O1 lies a distance s1 from the left-hand surface. This surface forms an 
 image I1, which we’ll also call O2 because it acts as an object for the right-hand surface. 
Refraction at that surface forms a second image I2. We want to relate the original object O1 
and the final image I2.

Figure 31.24 Analysis of a thick lens with  different curvature radii. C1 and C2 are the centers 
of curvature of the left and right sides, respectively; t is the lens thickness.

I2

The object

Image formed by 
left surface is the 
object imaged by
right surface.

R2 6 0 since it’s
concave toward O2.

Final image

C1

s′2

nn = 1

C2

O1I1, O2 0R2 0
R10 s′10

s2 = 0 s′1 0 + t = t - s′1   

t
s1

At the left-hand surface, the quantities in Equation 31.6 become

1
s1

+
n

s1
= =

n - 1

R1
  1left@hand surface2

We’ve placed O1 so close that I1 is a virtual image, so s1
=  is negative. Now we set up 

another instance of Equation 31.6, this time for the right-hand surface. Here I1 is the 
 object, whose distance s2 is t - s1

=  because s1
=  is negative. Also at the right-hand  surface, 

s′ = s2
= , n1 = n, and R = R2, where, for the case shown, R2 is negative because the 

 right-hand surface is concave toward the object 1I1, O22 that’s being imaged. So at the 
right-hand surface, Equation 31.6 reads

n

t - s1
= +

1

s2
= =

1 - n

R2
  1right@hand surface2

ExaMPLE 31.4  Refraction at a Curved Surface: a Cylindrical aquarium

An aquarium consists of a thin-walled plastic tube 70.0 cm in diam-
eter. For a cat looking directly into the aquarium, what’s the apparent 
distance to a fish 15.0 cm from the aquarium wall?

inTerpreT We interpret the cylindrical aquarium as a two-dimensional 
version of the spherical surface we analyzed with Fig. 31.22 and Equa-
tion 31.6. The plastic tube is thin, so we can neglect refraction within the 
plastic and consider that we have just a cylinder of water. The object is 
the fish, and since it’s inside the water, the cylindrical edge of the aquar-
ium is concave toward the object. Then the curvature radius is negative; 
we’re given the diameter as 70.0 cm, so R = -35.0 cm. With the object 
in the water, n1 = 1.333 from Table 30.1 and n2 = 1 for air. The 15-cm 
distance from the edge to the fish is the object distance s.

Develop Figure 31.23 shows the physical situation and a ray 
diagram viewed from above. Our plan is to solve Equation 31.6, 
n1/s + n2/s′ = 1n2 - n12/R, for s′ and evaluate using R = -35.0 cm, 
n1 = 1.333, n2 = 1, and s = 15.0 cm.

evaluaTe Solving, we have

s′ = n2 a
n2 - n1

R
-

n1

s
b

-1

= -12.6 cm

assess Make sense? The fish is actually 15 cm from the edge, but 
refraction makes the image distance s′ shorter. The same effect  occurs 
when you look down into a swimming pool or lake: Objects on the 
bottom look closer, and you can find out how much by applying 
Equation 31.6 with R = ∞  (see Exercise 28). ■

Figure 31.23 (a) A cylindrical aquarium. (b) Top view, showing the forma-
tion of a virtual image of a fish that’s actually 15 cm from the edge.

(a) (b)

35 cm

15 cm

12.6 cm

Center
Fish

Virtual
image
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590 Chapter 31 Images and Optical Instruments

Lens aberrations
Lenses exhibit several optical defects. We described spherical aberration in mirrors; this 
same defect occurs with spherical lenses (Fig. 31.26a). Our lens analysis required that all 
rays make small angles with the lens axis; if not, then they don’t share a common focus, 
causing spherical aberration. Small angles occur naturally with distant objects, but not 
with objects close to the lens. Using only the central portion of the lens can eliminate 
those rays with larger angles (Fig. 31.26b), leading to sharper focus. That’s why a camera 
focuses over a wider range when it’s “stopped down,” with an opaque iris covering the 
outer part of the lens. The trade-off is that less light is available.

We mentioned chromatic aberration in Chapter 30; it occurs because the refractive 
index varies with wavelength, causing different colors to focus at different points. High-
quality optical systems minimize this effect by using composite lenses of materials with 
different refractive indices. Astigmatism occurs when a lens has different curvature radii 
in different directions. This is a common defect in the human eye, corrected with glasses 
or contact lenses that have compensating asymmetric curvature.

Figure 31.25 Common lens types.

Plano-
convex

Double
convex

Convex
meniscus

Plano-
concave

Double
concave

Concave
meniscus

ExaMPLE 31.5  the Lensmaker’s Formula: a Plano-Convex Lens

Find an expression for the focal length of the plano-convex lens in 
Fig. 31.25, given refractive index n and radius R for the one curved 
surface.

inTerpreT This is a thin lens, such as we just analyzed in deriving 
the lensmaker’s formula. With an object at the left of the lens, we 
identify R1 = R and R2 = ∞  for the flat surface.

Develop The lensmaker’s formula, Equation 31.7, relates the focal 
length, the lens surface radii, and the refractive index. Our plan is to 
solve for f.

evaluaTe With R1 = R and R2 = ∞ , Equation 31.7 gives

f = c 1n - 12a 1

R
-

1

∞
b d

-1

=
R

n - 1

assess Make sense? The smaller R, the more curved the lens and the 
more it bends light; the result is a shorter focal length. The higher n, the 
greater the refraction, and with n in the denominator, the result is again a 
shorter focal length. We asserted earlier that a thin lens works the same ei-
ther way. You can see that explicitly here by putting the object beyond the 
flat side; then R1 = ∞  and R2 = -R, but the result for f  is unchanged. ■

Got It? 31.4 A thin lens has focal length +50 cm. Which of the following must be 
true of this lens? (a) it’s either double convex or plano-convex; (b) it’s a convex meniscus 
lens; (c) it’s a concave lens; (d) it’s thicker in the center than at the edges; (e) it’s thinner in 
the center than at the edges

Figure 31.26 (a) Spherical aberration. (b) Using 
only the central portion of the lens minimizes 
aberration, but at the expense of a dimmer 
image.

Rays don’t meet at
a common point,
blurring the image.

Covering the outer
part of the lens c

cimproves the focus.

O

(a)

I

O

(b)

I

Now we’ll let the lens become arbitrarily thin, so t S 0. Then we add the two equa-
tions; the intermediate-image term n/s1

=  cancels, leaving only the first object distance and 
final image distance. So we drop the subscripts 1 and 2, and the result is

1
s

+
1

s′
= 1n - 12a 1

R1
-

1

R2
b

The left-hand side here is identical to the left-hand side of Equation 31.5, and Equation 
31.5’s right-hand side is 1/f. Equating the two right-hand sides results in the lensmaker’s 
formula, which gives the focal length:

 
1

f
= 1n - 12a 1

R1
-

1

R2
b  1lensmaker>s formula2 (31.7)

Again, the radii here can be positive or negative; in Fig. 31.24 R1 is positive because the 
left-hand surface is convex toward the object, while R2 is negative because the right-hand 
surface is concave toward its object, the intermediate image I1. Although we derived Equa-
tion 31.7 for the case of a virtual intermediate image, the lensmaker’s formula is a general 
result for the focal length of a thin lens.

Lenses come in a variety of shapes (Fig. 31.25). Those that are thicker in the center are 
converging lenses, for which Equation 31.7 gives a positive focal length. Those that are 
thinner in the center are diverging lenses, with negative f. These behaviors reverse if the 
medium surrounding the lens has a higher refractive index (see Problem 74).
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Figure 31.28 (a) A nearsighted eye focuses light 
from distant objects in front of the retina. (b) A 
diverging lens corrects the problem, creating a 
closer virtual image that the eye can focus.

(a)

(b)

I

(a)

(b)

I

Figure 31.29 (a) A farsighted eye can’t focus 
light from nearby objects. (b) A converging 
lens produces a more distant image that the 
eye can focus.

31.4 optical Instruments
Numerous optical instruments use lenses, mirrors, or both to form images. All but the 
simplest have more than one optical element, but the principles we’ve developed here still 
apply. We analyze such instruments by tracing light through the sequence of optical ele-
ments, using the image formed by one element as the object for the next.

the Eye
Our eyes are complex optical systems with several refracting surfaces and mecha-
nisms to vary the focal length and amount of light admitted (Fig. 31.27). Light enters 
through the cornea and traverses a liquid called the aqueous humor before passing 
through the lens. It then traverses the vitreous humor, a liquid in the main body of 
the roughly 2.3-cm- diameter eyeball. Finally it strikes the retina, where special cells 
called rods and cones produce electrochemical signals that carry visual information 
to the brain.

A properly functioning eye produces well-focused real images on the retina, with the 
cornea providing most of the refractive focusing. Muscles adjust the lens, changing its fo-
cal length to compensate for different object distances. Other muscles adjust the iris, resiz-
ing the pupil opening to adjust for different light levels.

In nearsighted (myopic) people, the image forms in front of the retina, causing distant 
objects to appear blurred (Fig. 31.28a). Diverging corrective lenses produce closer inter-
mediate images that the myopic eye can then focus (Fig. 31.28b). In farsighted (hyper-
opic) people, the image of nearby objects would form behind the retina, and converging 
corrective lenses are used (Fig. 31.29). Even normal eyes can’t focus much closer than the 
so-called near point at about 25 cm. This distance greatly increases with age, a condition 
called presbyopia.

Prescriptions for corrective lenses specify the corrective power, P, in diopters, which 
is the inverse of the focal length in meters. Thus a 1-diopter lens has f = 1 m, while a 
2- diopter lens has f = 0.5 m and is more powerful in that it refracts light more sharply. 
Like f  itself, the sign of a lens’s corrective power is positive or negative depending on 
whether the lens is converging or diverging.

It doesn’t matter whether a corrective lens is several centimeters from the eye, as with 
glasses, or right on the cornea, as with contact lenses. Contact lenses can be thin because, 
as Equation 31.7 shows, it’s the curvature radii and not the thickness that determine the 
focal length. A more radical approach to vision correction is laser surgery, described in the 
Application on the next page.

Figure 31.27 The human eye.
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aPPLICatIon Laser Vision Correction

The cornea provides most of the eye’s refractive power, with the adjustable 
lens compensating for different object distances. The popular LASIK proce-
dure corrects vision by reshaping the cornea. In LASIK, the surgeon begins 
by  mechanically cutting a flap of the outermost corneal layer. Then a precision 

laser beam breaks molecular bonds in the corneal tissue, vaporizing the mate-
rial and reshaping the cornea according to a prescription customized for the 
individual eye. With a nearsighted eye, the laser thins the central cornea, mak-
ing it less sharply curved and thus reducing its refractive power. This has the 
same effect as the corrective lens in Fig. 31.28b. It’s harder, but still possible, 
to correct farsightedness with LASIK. This involves thinning a ring-shaped re-
gion around the central cornea, making the cornea more steeply curved and 
thus increasing its refractive power. The corrective lens in Fig. 31.29b accom-
plishes the same thing. The corneal reshaping doesn’t have to be symmetric, so 
LASIK can also correct an asymmetric cornea that causes astigmatism. What 
it can’t do is restore the ability to focus both near and far, since that’s handled 
by the lens, which stiffens with age. So older LASIK patients still need reading 
glasses. It’s possible to correct one eye for near vision and another for distance, 
but then the patient loses some of the depth perception that comes with binocu-
lar vision.

The laser used in vision correction is a precisely controllable excimer laser, 
which produces intense bursts of ultraviolet light. Each pulse removes only 
0.25 μm of tissue—one four-thousandth of a millimeter. The laser is so precise 
that it can cut notches in a human hair! The surgeon determines the necessary 
corneal adjustments and feeds the information to a computer that controls the 
laser. Thanks to the laser’s precision, most patients achieve nearly complete 
vision correction.

ConCEPtUaL ExaMPLE 31.1 Contact Lens Mix-Up

You and your roommate have gotten your boxes of disposable contact 
lenses mixed up. One box is marked “-1.75 diopter,” the other “+2.5 
diopter.” You’re farsighted and your roommate is nearsighted. Which 
lenses are yours?

evaluaTe Figure 31.29 shows that you need a converging lens to 
correct your farsightedness. From Table 31.2’s sign conventions, 
that means a positive focal length and therefore a positive corrective 
power P = 1/ f. So yours are the +2.5-diopter lenses.

assess Your lenses don’t actually look like the lens in Fig. 31.29b. 
Since your cornea is curved, they’re more like the convex meniscus 
lens of Fig. 31.25. The important point is that they’re thicker in the 
middle, which makes them converging lenses.

Making The connecTion What’s the focal length of your contact 
lenses?

evaluaTe The diopter measure is the inverse of the focal length in 
meters, so, conversely, f = 1/P = 11/2.52 m = 40 cm.

ExaMPLE 31.6  the Power of Lenses: Lost Your Glasses!

You’re on vacation and have lost your reading glasses; without them, 
your eyes can’t focus closer than 70 cm. Fortunately, you can buy 
nonprescription reading glasses at the pharmacy, where they come in 
0.25-diopter increments. Which glasses should you buy so you can 
focus at the standard 25-cm near point?

inTerpreT Your eyes can’t focus closer than 70 cm, so this problem 
is asking for the power of a lens that will make an object at 25 cm 
appear as if it’s at 70 cm. In other words, when the object distance s 
is 25 cm, the image distance s′ should be -70 cm. We put the minus 
sign here because, as Fig. 31.29b shows, the image is on the same side 
of the lens as the object, so this is a virtual image.

Develop Equation 31.5, 1/s + 1/s′ = 1/f, relates the inverse of 
the focal length to the object and image distances. But with the focal 
length in meters, 1/f  is just the power, P, in diopters. So we can get 
the required power directly from Equation 31.5.

evaluaTe Applying Equation 31.5 gives

P =
1

f
=

1
s

+
1

s′
=

1

0.25 m
+

1

-0.70 m
= 2.57 diopters

assess The closest available power is 2.5 diopters, so that’s what 
you should buy. ■

Cameras
A camera is much like the eye, except that an electronic detector or film replaces the light-
sensitive retina. Where the eye changes the lens shape to accommodate different object 
distances, a camera moves its rigid lens to change the image distance. Simple “point and 
shoot” cameras use infrared beams to determine the object distance, and then automati-
cally adjust the lens position for optimum focus. The camera also adjusts the lens aperture 
and exposure time for ambient light conditions. Zoom lenses have moveable elements that 
alter the focal length for wide-angle to telephoto views.

M31_WOLF4752_03_SE_C31.indd   592 17/06/15   9:00 PM
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Magnifiers and Microscopes
Examining very small objects requires bringing them closer than the 25-cm near point 
below which the human eye can’t focus. We therefore use lenses to put enlarged images at 
greater distances, where we can focus. What matters is not the actual image size, but how 
much bigger an object looks to us—and that depends on how much of our field of view 
it occupies. Angular magnification, m, is the ratio of the angle an object subtends when 
seen through a lens to the angle subtended when it’s at the 25-cm near point and viewed 
with the naked eye. Figure 31.30a shows that the latter angle, measured in radians, is 
approximately a = h /25 cm, where h is the object height. We get the most comfortable 
viewing with the eye close to the lens and the object just inside the focal length, forming 
a large and distant virtual image. With this geometry, Fig. 31.30b shows that the image 
angle is very nearly h/f. Then the angular magnification is

 m =
b

a
=

h/f

h/25 cm
=

25 cm

f
  1simple magnifier2 (31.8)

Single lenses produce angular magnifications up to about four before aberrations 
 compromise image quality. Greater magnification requires more than one lens. In a 
 compound microscope, an objective lens of short focal length forms a magnified real im-
age. This image is viewed through a second lens, the eyepiece, used as a simple magnifier 
(Fig. 31.31). The object being viewed is positioned just beyond the focus of the objective 
lens, and its image falls just inside the focal length of the eyepiece. If both focal lengths 
are small compared with the distance between the lenses, then the object distance for the 
objective lens is approximately the objective focal length fo, and the resulting image dis-
tance is approximately the lens spacing L. The real image formed by the objective lens is 
larger than the object by the ratio of the image and object distances, or Mo = -L / fo. The 
eyepiece makes the real image look larger still, by a factor of its angular magnification 
m = 25 cm/fe. So the overall magnification of the microscope is

 M = Mome = -
L

fo
 a25 cm

fe
b  (compound microscope) (31.9)

where, as usual, the minus sign signifies an inverted image.
Optical microscopes work well as long as the approximation of geometrical optics 

holds—that is, when the object is much larger than the wavelength of light. Viewing smaller 
objects requires shorter wavelengths than those of visible light. In the electron microscope, 
those “waves” are electrons, whose wavelike nature we’ll examine in Chapter 34.

Figure 31.31 Image formation in a compound microscope. Figure is not to 
scale; L should be much greater than either focal length, and image I1 should 
be very near the eyepiece’s focus, resulting in greater magnification.

Image from
objective

Viewed
image

I2

Object

Eyepiece
Objective

fe

L

fo

I1

Figure 31.30 Calculating the angular 
 magnification m = b/a.

a is small,
so a ≃ h>25 cm.

b ≃ h>f

h

25 cm

(a)

h
I O

s ∼ f

s′ 77 f

(b)

a

b

R2 6 0 since it's
concave toward O2.

telescopes
A telescope collects light from distant objects, either forming an image or supplying light 
to instruments for analysis. Modern astronomical instruments are invariably reflectors, 
whose main light-gathering element is a mirror. Small handheld telescopes, binoculars, 
and telephoto lenses are refractors, which use lenses to gather light.

A simple refractor consists of an objective lens that images distant objects at es-
sentially its focal point, followed by an eyepiece to view this image (Fig. 31.32). The 
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Figure 31.32 Image formation in a refracting telescope. A distant object is imaged first at the 
focus of the objective lens (image I1). An eyepiece with its focus at nearly the same point 
then gives an enlarged virtual image 1I22. The angles a and b are given by a ≃ h1/fo and 
b ≃ h1/fe, leading to Equation 31.10.

a
a b

To distant object

Viewed image

Image formed
by objective

I2

EyepieceObjective

I1

fo fefe

h2

h1

Figure 31.34 Reflecting telescopes. (a) A detec-
tor at the prime focus gives the best image 
quality. (b) The Cassegrain design is widely 
used in large telescopes. (c) The Newtonian 
design is used primarily in small telescopes.

Hole

(b)

(a)

(c)

Spectrograph
or other

instrument

Secondary
mirror

Primary mirror

Detector

Secondary
mirror

Eyepiece lens

 focal points of objective and eyepiece are nearly coincident, so the real image at the 
objective’s focus is then seen through the eyepiece as a greatly enlarged, virtual image.  
The  angular  magnification is the ratio of the angle b subtended by the final image to the 
angle a  subtended by the actual object; Fig. 31.32 shows that this ratio is

 m =
b

a
=

fo
fe
  1refracting telescope2 (31.10)

Since a real image is inverted and a virtual image is upright, a two-lens refracting tele-
scope gives an inverted image. This is fine for astronomical work, but telescopes designed 
for terrestrial use have an extra lens, a diverging eyepiece, or a set of reflecting prisms to 
produce an upright image.

Reflecting telescopes offer many advantages over refractors. Telescope mirrors have 
reflective coatings on their front surfaces, eliminating chromatic aberration because light 
doesn’t pass through glass. Reflectors can be much larger since mirrors are supported 
across their entire back surfaces—unlike lenses, which must be supported at the edges. 
Whereas the largest refracting telescope ever built has a 1-m-diameter lens, today’s largest 
reflectors boast diameters on the order of 10 m. Still larger telescopes are in the works, 
including the 24-m Giant Magellan Telescope, to be built in Chile, and the Thirty Meter 
Telescope (TMT), slated for construction atop Hawaii’s Mauna Kea (Fig. 31.33). Ten-
meter and larger class telescopes incorporate segmented mirrors whose shape can be ad-
justed under computer control for optimum focusing. With so-called adaptive optics, such 
systems may adjust rapidly enough to compensate for the atmospheric turbulence that has 
traditionally limited the resolution of ground-based telescopes.

The simplest reflecting telescope is a curved mirror with a detector at its focus. Superb 
image quality results, in principle limited only by wave effects we’ll discuss in the next 
chapter. More often the telescope is used as a “light bucket,” collecting light from distant 
sources too small to image even with today’s large optical telescopes. Then a secondary 
mirror sends light to a focus at a point that’s convenient for telescope-mounted instru-
mentation. Optical fibers may also be used to bring light collected by the primary mirror 
to fixed instruments. Figure 31.34 shows three common designs for reflecting telescopes.

Magnification is not a particularly important quantity in astronomical telescopes, which 
are used more for spectral and other analysis than for direct imaging. More important is 
the light-gathering power of the instrument, which is determined simply by the area of its 
objective lens or primary mirror. Each of the two 10-m Keck Telescopes, for instance, has 
100 times the light-gathering power of the 1-m Yerkes refractor and more than 17 times 
the power of the 2.4-m Hubble Space Telescope. The Thirty Meter Telescope will further 
expand that light-gathering by nearly tenfold.

Got It? 31.5 If you look backward through a refracting telescope like that shown 
in Fig. 31.32, looking into the objective and with a tiny object very near the eyepiece, will 
the instrument function as a microscope? Explain.

Figure 31.33 Artist’s conception of the Thirty 
Meter Telescope, whose mirror consists of 
492 individual segments. The TMT should be 
 operational by 2020.
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The big idea here is how reflection and refraction form images. Images are real or virtual depending on whether or not light actually comes from 
the image location.

Chapter 31 Summary
Big Idea

Key Concepts and Equations

A curved mirror or lens has a focal point, F, at which parallel light rays converge:

F

 

F

The same equation describes image formation with mirrors and lenses:

1
s

+
1

s′
=

1

f

The table summarizes the sign conventions for each term.

Value Symbol Condition Sign

Object distance s Object on same side as incoming light rays +
Object on opposite side from incoming light rays -

Image distance s′ Image on same side as outgoing light rays +
Image on opposite side from outgoing light rays -

Focal length f Focus on same side as outgoing light rays +
Focus on opposite side from outgoing light rays -

Image formation with mirrors and lenses, shown by ray tracing:

-h′
h

O

I

s

C

s′

F

 

F
F

O

h

I
fs

s′

-h′

The lensmaker’s formula gives the focal length f of a thin lens:

1

f
= 1n - 12a 1

R1
-

1

R2
b

 

Curvature
radius R2
1+ or -2

Curvature
radius R1
1+ or -2 n

applications

Compound microscope

Image from
objective

Viewed
image

I2

Object

Eyepiece
Objective

fe
L

fo
I1

Magnification: M = -
L

fo
a25 cm

fe
b

Refracting telescope

aa b

Viewed
image

Image formed
by objective

I2

EyepieceObjective

I1

fo fefe

h2

h1

To distant object

Angular magnification: m =
fo
fe
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21. By what factor is the image magnified for an object 1.5 focal 
lengths from a converging lens? Is the image upright or inverted?

22. A lens with 50-cm focal length produces a real image the same 
size as the object. How far from the lens are image and object?

23. By holding a magnifying glass 25 cm from your desk lamp, you 
can focus an image of the lamp’s bulb on a wall 1.6 m from the 
lamp. What’s the focal length of your magnifying glass?

24. A real image is four times as far from a lens as is the object. 
What’s the object distance, measured in focal lengths?

25. A magnifying glass enlarges print by 50% when it’s 9.0 cm from 
a page. What’s its focal length?

Section 31.3 Refraction in Lenses: The Details
26. You’re writing specifications for a new line of magnifying glasses 

that have double-convex lenses with equal 32-cm curvature radii, 
made from glass with n = 1.52. What do you list for the focal 
length?

27. You’re standing in a wading pool and your feet appear to be 
30 cm below the surface. How deep is the pool?

28. The bottom of a swimming pool looks to be 1.5 m below the sur-
face. Find the pool’s actual depth.

29. A tiny insect is trapped 1.0 mm from the center of a spherical 
dewdrop 4.0 mm in diameter. As you look straight into the drop, 
what’s the insect’s apparent distance from the drop’s surface?

30. You’re underwater, looking through a spherical air bubble  
(Fig. 31.35). What’s its actual diameter if it appears, along your 
line of sight, to be 1.5 cm in diameter?

1.5 cm

Figure 31.35 Exercise 32

Section 31.4 Optical Instruments
31. You have to hold a book 55 cm from your eyes for the print to be 

in focus. What power lens would correct your farsightedness?
32. What focal length should you specify if you want a magnifying 

glass with angular magnification 3.2?
33. You’re an optometrist helping a nearsighted patient who claims 

he can’t see clearly beyond 80 cm. Prescribe a lens that will put 
the images of distant objects at 80 cm, giving your patient clear 
vision at all distances beyond the normal near point.

34. A particular eye has a focal length of 2.0 cm instead of the  
2.2 cm that would put a sharply focused image on the retina.  
(a) Is this eye nearsighted or farsighted? (b) What corrective lens 
is needed?

35. A compound microscope has objective and eyepiece focal 
lengths of 6.1 mm and 1.7 cm, respectively. If the lenses are  
8.3 cm apart, what is the instrument’s magnification?

Problems
36. (a) Find the focal length of a concave mirror if an object placed 

38.4 cm in front of the mirror has a real image 55.7 cm from the 
mirror. (b) Where and what type will the image be if the object is 
moved to a point 16.0 cm from the mirror?

For thought and Discussion
 1. How can you see a virtual image, when it’s not “really there”?
 2. Under what circumstances will the image in a concave mirror be 

the same size as the object?
 3. If you’re handed a converging lens, what can you do to estimate 

its focal length quickly?
 4. A diverging lens always makes a reduced image. Could you use 

such a lens to start a fire by focusing sunlight? Explain.
 5. Is there any limit to the temperature you can achieve by focusing 

sunlight? (Hint: Think about the second law of thermodynamics.)
 6. Can a concave mirror make a reduced real image? A reduced vir-

tual image? An enlarged real image? An enlarged virtual image? 
Specify conditions for each possible image.

 7. If you placed a screen at the location of a virtual image, would 
the image appear on the screen? Why or why not?

 8. If you look into the bowl of a metal spoon, you see yourself up-
side down. Flip the spoon so you’re looking at the back side, and 
now you’re right-side up. Explain.

 9. Is the image on a movie screen real or virtual? How do you 
know?

 10. Does a fish in a spherical bowl appear larger or smaller than it 
actually is?

11. A block of ice contains a hollow, air-filled space in the shape of a 
double-convex lens. Describe the optical behavior of this space.

12. The refractive index of the human cornea is about 1.4. If you can 
see clearly in air, why can’t you see clearly underwater? Why do 
goggles help?

13. Do you want a long or short focal length for a telescope’s objec-
tive lens? What about a microscope’s?

14. Give at least three reasons why reflecting telescopes are superior 
to refractors.

exercises and problems

Exercises
Section 31.1 Images with Mirrors
15. A shoe store uses small floor-level mirrors to let customers view 

prospective purchases. At what angle should such a mirror be in-
clined so that a person standing 50 cm from the mirror with eyes 
140 cm off the floor can see her feet?

16. A candle is on the axis of a 15-cm-focal-length concave mirror, 
36 cm from the mirror. (a) Where is its image? (b) How do the 
image and object sizes compare? (c) Is the image real or virtual?

17. An object is five focal lengths from a concave mirror. (a) How do 
the object and image heights compare? (b) Is the image upright 
or inverted?

18. A virtual image is located 40 cm behind a concave mirror with 
focal length 18 cm. (a) Where is the object? (b) By how much is 
the image magnified?

19. (a) Where on the axis of a concave mirror would you place an 
object to get a half-size image? (b) Where will the image be 
 located? (c) Will the image be real or virtual?

Section 31.2 Images with Lenses
20. A lightbulb is 56 cm from a convex lens. Its image appears on a 

screen 31 cm from the lens, on the other side. Find (a) the lens’s 
focal length and (b) how much the image is enlarged or reduced.

BIO

BIO

BIO

M31_WOLF4752_03_SE_C31.indd   596 17/06/15   9:00 PM



Exercises and Problems 597

57. Two specks of dirt are trapped in a crystal ball, one at the center 
and the other halfway to the surface. If you peer into the ball on a 
line joining the two specks, the outer one appears to be only one-
third of the way to the other. Find the refractive index of the ball.

58. A contact lens is in the shape of a convex meniscus (see  
Fig. 31.25). The inner surface is curved to fit the eye, with cur-
vature radius 7.80 mm. The lens is made from plastic with refrac-
tive index n = 1.56. If it has a 44.4-cm focal length, what’s the 
curvature radius of its outer surface?

59. For what refractive index would the focal length of a plano- 
convex lens be equal to the curvature radius of its one curved 
surface?

60. An object is 28 cm from a double-convex lens with n = 1.5 and 
curvature radii 35 cm and 55 cm. Where is the image, and what 
type is it?

61. You’re an optician who’s been asked to design a new replacement 
lens for cataract patients. The lens must be 5.5 mm in diameter, 
with focal length 17 mm, and it can’t be thicker than 0.8 mm. 
For the lens material, you have a choice of plastic with refrac-
tive index 1.49 or more expensive silicone with n = 1.58. Which 
 material do you choose, and why?

62. A double-convex lens with equal 28.5-cm curvature radii is 
made from glass with refractive indices nred = 1.512 and 
nviolet = 1.547. If a point source of white light is located on the 
lens axis at 75.0 cm from the lens, over what distance will its 
 visible image be smeared?

63. An object placed 17.5 cm from a convex lens of glass with 
n = 1.524 forms a virtual image twice the object’s size. If the 
lens is replaced with an identically shaped one made of diamond, 
(a) what type of image will appear and (b) what will be its mag-
nification?

64. You’re taking a photography class, working with a camera whose 
zoom lens covers the focal-length range 38 mm–110 mm. Your 
instructor asks you to compare the sizes of the images of a distant 
object when photographed at the two zoom extremes. Your an-
swer?

65. A camera can normally focus as close as 60 cm, but it has provi-
sions for mounting additional lenses just in front of the main lens 
to provide close-up capability. What type and power of auxiliary 
lens will allow the camera to focus as close as 20 cm?

66. A 300-power compound microscope has a 4.5-mm-focal-length 
objective lens. If the distance from objective to eyepiece is 10 cm, 
what should be the focal length of the eyepiece?

67. To the unaided eye, Jupiter has an angular diameter of  
50  arcseconds. What will its angular size be when viewed 
through a 1-m-focal-length refracting telescope with a 40-mm-
focal-length eyepiece?

68. A Cassegrain telescope like that shown in Fig. 31.34b has 1.0-m 
focal length, and the convex secondary mirror is located 0.85 m 
from the primary. What should be the focal length of the second-
ary in order to put the final image 0.12 m behind the front surface 
of the primary mirror?

69. You stand with your nose 6.0 cm from the surface of a reflect-
ing ball, and your nose’s image appears three-quarters full size. 
What’s the ball’s diameter?

70. A contact lens prescription calls for +2.25-diopter lenses with 
inner curvature radius 8.6 mm to fit the patient’s cornea. (a) If the 
lenses are plastic with n = 1.56, what should be the outer curva-
ture radius? (b) With these lenses, the patient comfortably reads 
a newspaper 30 cm from her eyes. Where’s the image as viewed 
through the lenses?

71. Show that placing a 1-diopter lens in front of a 2-diopter lens 
gives the equivalent of a single 3-diopter lens (i.e., the powers of 
closely spaced lenses add).

37. A 12-mm-high object is 10 cm from a concave mirror with  focal 
length 17 cm. (a) Where is the image, (b) how high is it, and  
(c) what type is it?

38. Repeat Problem 37 for a convex mirror, assuming all numbers 
stay the same.

39. An object’s image in a 27-cm-focal-length concave mirror is 
 upright and magnified by a factor of 3. Where is the object?

40. You’re asked to design a concave mirror that will produce a 
 virtual image, enlarged 1.8 times, of an object 22 cm from the 
mirror. What do you specify for the mirror’s curvature radius?

41. Viewed from Earth, the Moon subtends an angle of 0.52° in the 
sky. What will be the physical size of the Moon’s image formed 
by either of the twin Keck telescopes, with 10-m-diameter 
 mirrors and 17.5-m focal length?

42. At what two distances could you place an object from a 
45- cm-focal-length concave mirror to get an image 1.5 times the 
object’s size?

43. LCD projectors commonly used for computer and video projec-
tion create an image on a small LCD display (see Application on 
page 369). The display is mounted before a lens and illuminated 
from behind. In a projector using a 7.50-cm-focal-length convex 
lens, where should the LCD display be located so the projected 
image is focused on a screen 6.30 m from the lens?

44. An object 15 cm from a concave mirror has a virtual image mag-
nified 2.5 times. What’s the mirror’s focal length?

45. How far from a page should you hold a lens with 32-cm focal 
length in order to see the print magnified 1.6 times?

46. A converging lens has focal length 4.0 cm. A 1.0-cm-high ar-
row is located 7.0 cm from the lens with its lowest point 5.0 mm 
above the lens axis. Make a full-scale ray-tracing diagram to  
locate both ends of the image. Confirm using the lens equation.

47. A lens has focal length f = 35 cm. Find the type and height of 
the image produced when a 2.2-cm-high object is placed at dis-
tances (a) f + 10 cm and (b) f - 10 cm.

48. How far apart are the object and image produced by a converging 
lens with 35-cm focal length when the object is (a) 40 cm and  
(b) 30 cm from the lens?

49. A candle and a screen are 70 cm apart. Find two points between 
candle and screen where you could put a convex lens with 17-cm 
focal length to give a sharp image of the candle on the screen.

50. The cornea of the human eye has refractive index 1.38, while the 
eye’s lens has a graduated index in the range 1.38 to 1.40; use 
1.39 for this problem. For the aqueous humor between cornea 
and lens, n = 1.34. Find the angle through which light is de-
flected at the first surface of (a) the cornea and (b) the lens, if it’s 
incident at 20° to the normal at each surface. Your result shows 
that the cornea is the dominant refractive element in the eye.

51. How far from a 25-cm-focal-length lens should you place an ob-
ject to get an upright image magnified 1.8 times?

52. An object and its lens-produced real image are 2.4 m apart. If the 
lens has 55-cm focal length, what are the possible values for the 
object distance and magnification?

53. An object is 68 cm from a plano-convex lens whose curved side 
has curvature radius 26 cm. The refractive index of the lens is 
1.62. Where is the image, and what type is it?

54. Use Equation 31.6 to show that an object at the center of a glass 
sphere will appear to be its actual distance—one radius—from 
the edge. Draw a ray diagram showing why this makes sense.

55. Rework Example 31.4 for a fish 15.0 cm from the far wall of the tank.
56. Consider the inverse of Example 31.4: You’re inside a 70.0-cm-

diameter hollow tube containing air, and the tip of your nose is 
15.0 cm from the tube’s wall. The tube is immersed in water, and 
a fish looks in. To the fish, what’s the apparent distance from 
your nose to the tube wall?
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a lens admits depends on its area A, but the inverse-square law shows 
that the light intensity at the camera’s imaging sensor is proportional 
to A/f 2. Most cameras have an adjustable iris that obscures part of 
the lens to change the f-ratio in response to available light. Point-
and-shoot cameras adjust the f-ratio automatically, but serious pho-
tographers use their camera’s manual f-ratio adjustment (Fig. 31.37). 
Stopping down is the photographer’s term for reducing the lens area 
using the adjustable iris.

Figure 31.37 A 35-mm camera lens (Passage Problems 81–84). The numbers 
from 22 to 2.8 at the bottom are values for the f-ratio, f/d. Turning the ring 
with these numbers adjusts the iris that covers the outer part of the lens, 
thus changing the f-ratio.

81. Zooming your camera’s lens for telephoto shots increases the 
 focal length. With no change in the lens area, this will
a. increase the f-ratio and increase the lens speed.
b. decrease the f-ratio and decrease the lens speed.
c. increase the f-ratio and decrease the lens speed.
d. not change the f-ratio or the lens speed.

82. Increasing the f-ratio from 2.8 to 5.6
a. decreases the light admitted by a factor of 2.
b. decreases the light admitted by a factor of 4.
c. increases the light admitted by a factor of 2.
d. increases the light admitted by a factor of 4.

83. You’re given two lenses with different diameters. Knowing noth-
ing else, you can conclude that
a. the larger lens is faster.
b. the smaller lens has the shorter focal length.
c. the smaller lens suffers less spherical aberration.
d. none of the above

84. If a lens suffers from spherical aberration, stopping down will
a. worsen the focus.
b. improve the focus.
c. not affect the focus.

answers to Chapter Questions

answer to Chapter opening Question
High-intensity laser light reshapes the cornea, so that refracted light 
converges to produce sharp images.

answers to Got It? Questions
 31.1  (b)
 31.2  (a)
 31.3  Virtual image; convex lens
 31.4  (d)
 31.5  No; the positions of the lenses in relation to their focal points 

aren’t correct for a microscope. You won’t be able to image 
a small object placed very near the eyepiece. If you look at a 
more distant object, though, you’ll see it reduced in size.

72. Derive an expression for the thickness t of a plano-convex lens 
with diameter d, focal length f, and refractive index n.

73. Show that identical objects placed equal distances on either side 
of the focal point of a concave mirror or converging lens produce 
images of equal size. Are the images of the same type?

74. Generalize the derivation of the lensmaker’s formula  
(Equation 31.7) to show that a lens of refractive index nlens in an 
external medium with index next has focal length given by

  
1

f
= anlens

next
- 1ba 1

R1
-

1

R2
b

75. Draw a diagram like Fig. 31.10, but showing a ray from the ar-
rowhead through the center of curvature. Using the fact that this 
ray reflects back on itself, draw similar triangles with object and 
image as their vertical sides, and show that the center of curva-
ture is twice as far from the mirror as the focal point—that is, 
R = 2f, with R the curvature radius.

76. Galileo’s first telescope used the arrangement shown in  
Fig. 31.36, with a double-concave eyepiece slightly before the 
focus of the objective lens. Use ray tracing to show that this de-
sign gives an upright image, which makes the Galilean telescope 
useful in terrestrial observing.

fo

Figure 31.36 A Galilean telescope (Problem 76)

77. The maximum magnification of a simple magnifier occurs with 
the image at the 25-cm near point. Show that the angular magni-
fication is m = 1 + 125 cm/f2, where f is the focal length.

78. Chromatic aberration results from variation of the refractive in-
dex with wavelength. Starting with the lensmaker’s formula, find 
an expression for the fractional change df /f  in the focal length of 
a thin lens in terms of the change dn in refractive index.

79. For visible wavelengths, the refractive index of the polycarbon-
ate plastic widely used in eyeglasses is given approximately by 
n(l) = b + c/l2, where b = 1.55 and c = 11,500 nm2. (a) Find 
an expression for the change in refractive index dn corresponding 
to a small wavelength change dl. (b) Use the results of part (a) 
and of Problem 78 to determine the variation df in focal length 
for a +2.25-diopter polycarbonate lens, over a wavelength range 
of 10.0 nm centered on 589 nm.

80. The table below shows measurements of magnification versus 
object distance for a lens. Determine a quantity that, when you 
plot object distance against it, should give a straight line. Make 
your plot, establish a best-fit line, and use your line to find the 
focal length of the lens.

Object distance, s (cm) 10.1 29.2 51.6 78.3 98.9

Magnification, M 1.31 4.77 -4.38 -1.27 -0.724

Passage Problems
The speed of a camera lens measures its ability to photograph in dim 
light. Speed is characterized by f-ratio, also called the f-number, de-
fined as the ratio of focal length f to lens diameter d. Thus an f/2.8 
lens, for example, has diameter d = f /2.8. The actual amount of light 

CH

CH

DATA

CH
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32

What You Know
■ You understand the behavior of 

waves, especially wave interference.

■ You know about electromagnetic 
waves and how they involve electric 
and magnetic fields.

■ You know that light consists of 
electromagnetic waves.

The preceding chapters described the behavior of light using geometrical optics—
an approximation that’s valid when we’re dealing with length scales much larger 

than the wavelength of light, so we can ignore light’s wave nature. We now turn to 
 physical optics, which treats optical phenomena for which the wave nature of light 
plays an  essential role. Two related phenomena, interference and diffraction, are central 
in  physical optics.

32.1 Coherence and Interference
In Chapter 14 we showed how wave displacements add to produce constructive 
 interference or destructive interference. Electromagnetic waves, including light, 
are no exception: Since electric and magnetic fields obey the superposition princi-
ple, the net fields at any point are the vector sums of individual wave fields. That 
summation may increase (constructive interference) or decrease (destructive inter-
ference) the net field.

What You’re Learning
■ You’ll see how coherent light waves 

that travel on different paths undergo 
interference when they recombine.

■ You’ll learn to describe quantitatively 
the interference resulting from light 
passing through two slits.

■ You’ll extend your understanding of 
two-slit interference to systems with 
multiple slits.

■ You’ll learn the principles involved 
in grating spectroscopy and X-ray 
diffraction.

■ You’ll learn how interferometry 
enables exquisitely precise distance 
measurements.

■ You’ll learn about diffraction and how 
it puts fundamental limits on our 
ability to form perfect optical images.

How You’ll Use It
■ The knowledge you gain from 

Chapter 32 applies to the optical 
systems you’ll encounter in your 
professional and personal life.

■ Waves and wave interference will 
be important again in your study of 
quantum physics in Part 6, and the 
quantum nature of matter will help 
you understand how scientists use 
alternatives to visible light in imaging 
small systems.

Photo of the Khalifa Sports City in Qatar, 
taken by the GeoEye-1 satellite from 
423  miles up. What’s the fundamental 
limitation on our ability to image fine 
details in satellite photos?
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600 Chapter 32 Interference and Diffraction

Coherence
Any two or more waves will interfere at points where they overlap, but a steady interfer-
ence pattern results only when the waves maintain the same frequency and phase rela-
tionship—in which case the light is said to be coherent. Light emerging from different 
sources, different parts of the same source, or at different times is unlikely to be coherent. 
Sending such light through two or more holes or slits, however, produces two versions 
of each individual wave, and those two can then interfere as they meet beyond the slits. 
That’s how Thomas Young produced coherent light in his 1801 experiment that demon-
strated the wave nature of light.

Today most interference experiments are done with lasers, and the intrinsic coherence of 
laser light is often cited as a reason. As Fig. 32.1 suggests, laser light does indeed maintain 
coherence longer than light from common sources such as lightbulbs or the Sun. But even 
with lasers, a steady interference pattern generally requires splitting the laser beam with 
a system of slits or other devices that produce two versions of the same light wave. You 
can see why by considering the coherence length—the distance over which light main-
tains its phase and frequency. For ordinary light sources, as Fig. 32.1a suggests, the coher-
ence length is very short—it’s on the order of 1 μm for sunlight. Laser light, in contrast, 
exhibits substantial coherence lengths—tens of centimeters for everyday lasers, and many 
 kilometers with special designs. But given that the speed of light is 300 Mm/s, those lengths 
imply that even laser light retains its coherence for only a tiny fraction of a second. So laser-
based interference experiments, like those using ordinary light sources, require that the light 
beam be split into two or more parts that are later recombined. What makes lasers particu-
larly useful in interference experiments—and indeed throughout optics—is that their light 
is very nearly monochromatic, meaning it consists of a very narrow band of wavelengths.

Destructive and Constructive Interference
Consider light waves that originate together at a single source, travel two different paths, 
and then rejoin. Suppose one wave’s path is exactly half a wavelength longer than the 
other. Then, when the waves recombine, they’ll be out of phase by half a wavelength 
(Fig. 32.2a) and thus their superposition has smaller amplitude (zero, if the two interfering 
waves have exactly the same amplitude). If, on the other hand, the path lengths don’t dif-
fer, or they differ by a full wavelength, then the two waves recombine in phase (Fig. 32.2b) 
and their superposition has larger amplitude. These two cases correspond, respectively, 
to destructive interference and constructive interference. It doesn’t matter whether path 
lengths for the waves in Fig. 32.2a differ by half a wavelength, or 11

2 wavelengths, or 21
2 

wavelengths; as long as the difference is an odd multiple of a half-wavelength, the waves 
recombine out of phase and destructive interference results. Thus:

(b)

(a)

Only a few cycles

Many cycles

Laser

Figure 32.1 (a) Lightbulbs emit incoherent light 
consisting of short wavetrains with random 
phases. (b) Laser light consists of much longer 
wavetrains, making it more coherent.

Figure 32.2 Two waves that start out in phase 
but travel different paths before rejoining.

l

2

(a) (b)

l

Crest meets trough:
waves cancel.

Crest meets crest:
waves reinforce.

A full-wavelength path difference 
results in constructive interference.

A half-wavelength path difference
results in destructive interference.

Destructive interference results when light paths differ by an odd-integer multiple of 
a half-wavelength.

Constructive interference results when light paths differ by an integer multiple of the 
wavelength.

Similarly, it doesn’t matter whether the path lengths in Fig. 32.2b are the same, or differ by 
1, 2, 3, or any other integer number of wavelengths. Thus:
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32.2 Double-Slit Interference 601

GoT IT? 32.1 Laser light is split into two beams, one of which is sent on a path that 
takes it through a slab of glass, where light’s speed is about two-thirds of what it is in air. 
The other beam travels an identical-length path, entirely in air. Which of the following de-
scribes the interference that occurs when the beams are recombined? (a) It’s constructive; 
(b) it’s destructive; (c) it could be constructive, destructive, or in between, depending on 
the thickness of the glass slab; (d) there is no interference.

32.2 Double-Slit Interference
In Chapter 14 we looked briefly at interference patterns produced by a pair of coher-
ent sources. Such a pair can be made by passing light through two narrow slits. In 1801, 
Thomas Young used this approach in a historic experiment that confirmed the wave nature 
of light. Young first admitted sunlight to his laboratory through a hole small enough to 
ensure coherence of the incoming light. The light then passed through a pair of narrow, 
closely spaced slits, after which it illuminated a screen. Each slit acts as a source of cylin-
drical wavefronts that interfere in the region between slits and screen (Fig. 32.3a). Con-
structive and destructive interference produce interference fringes—alternating bright 
and dark bands (Fig. 32.3b).

Bright fringes represent constructive interference, and therefore they occur where 
the difference in the path length for light traveling from the two slits is a multiple of the  

1.6-μm spacing

0.83-μm 
minimum

1
2

1
4

Protective coating

Pit Pit

Metal information layer

1.2 mm

Laser light

Transparent
plastic

l

l

AppLICATIon More CD Music

Example 30.3, “Refraction: CD Music,” showed how refraction helps focus 
the laser beam that reads information from a compact disc. Interference, too, 
plays a crucial role in reading CDs and other optical discs, including DVD and 
Blu-ray.

Information on an optical disc is stored digitally in a sequence of pits 
stamped into a reflective metallic information layer, as shown in the photo. 
The pits’ depth is very nearly one-quarter wavelength of the laser light used to 
read the disc. From the transparent underside of the disc, each pit appears as 

an elevated bump. Since the bumps stick down one-quarter wavelength, light 
reflecting off a bump follows a round-trip path that’s shorter by half a wave-
length than that of light reflecting off the undisturbed information layer (see 
the figure below). The laser beam is wider than the pit, so the reflected beam 
includes light both from the undisturbed disc and from the bump. The two in-
terfere destructively, making the reflected beam less intense when a bump is 
present. As the disc spins, the result is a pattern of fluctuating light intensity 
conveying the information associated with the pattern of pits. A photodetector 
then converts that pattern to electrical signals that ultimately drive loudspeak-
ers, headphones, or a video display.

You’ll see later in the chapter how principles of physical optics determine 
how much information can be stored on an optical disc.

There’s one caveat to our statements: The path difference can’t be greater than the co-
herence length; otherwise, the waves won’t be coherent when they recombine. Laser light 
has the advantage here because of its greater coherence length.

Light paths don’t have to differ by half or full multiples of the wavelength. In interme-
diate cases, interfering waves superpose to make a composite wave whose amplitude may 
be enhanced or diminished, depending on the relative phase.

PheT: Wave Interference: Light
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602 Chapter 32 Interference and Diffraction

wavelength. When the distance L from slits to screen is much greater than the slit spacing 
d, Fig. 32.4 shows that the path difference to a point on the screen is d sin u, where u is the 
angular position of a point on the screen measured from an axis perpendicular to slits and 
screen. So our criterion for constructive interference—that this difference be an integer 
number of wavelengths—becomes

 d sin u = ml  1bright fringes, m = 0, 1, 2, . . .2 (32.1a)

The integer m is the order of the fringe, with the central bright fringe being the zeroth-
order fringe and with higher-order fringes on either side.

Waves interfere destructively when their path lengths differ by an odd-integer multiple 
of a half-wavelength:

 d sin u = 1m + 1
22l  1dark fringes, m = 0, 1, 2, . . .2 (32.1b)

where m is any integer.
In a typical double-slit experiment, L may be on the order of 1m, d a fraction of 1mm, 

and l the sub@μm wavelength of visible light. Then we have the additional condition 
that l V  d. This makes the fringes very closely spaced on the screen, so the angle u in  
Fig. 32.4 is small even for large orders m. Then sin u ≃  tan u = y/L, and a fringe’s position 
y on the screen, measured from the central maximum, becomes

 ybright = m  

lL

d
  and  ydark = 1m + 1

22lL

d
  afringe position,

l V  d
b  (32.2a, b)

GoT IT? 32.2 If you increase the slit separation in a two-slit system, do the interfer-
ence fringes become (a) closer together or (b) farther apart?

Figure 32.3 Double-slit interference results when light from a single source passes through closely 
spaced slits.

Photo of an
actual interference
pattern shows
alternating bright
and dark fringes.

Where lines of constructive
interference intersect the 
screen, bright fringes appear.

Along these lines crests meet crests 
and troughs meet troughs. Thus the
waves interfere constructively.

Cylindrical wavefronts
spread from each slit.

Plane waves impinge
on barrier with two slits.

Dark

Dark

Bright

Dark

Bright

Bright

(a) (b)

Figure 32.4 Geometry for finding locations of 
the interference fringes. In the blowup you can 
see that for L W  d, the paths to P are nearly 
parallel and differ by d sin u.

u

u
d

To P

d sin
u

d

Slits

P

L

y
r1

r2

Screen
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32.2 Double-Slit Interference 603

Intensity in the Interference pattern
We located the maxima and minima in two-slit interference using geometrical arguments 
alone. To find the actual intensity we need to superpose the interfering waves. You might 
think we could do that by adding the intensities of the two waves. But no! It’s the electric 
and magnetic fields of the wave that obey the superposition principle, not the wave inten-
sity. Intensity is proportional to the square of either field (recall Equation 29.20); if we 
added intensities we could never get the cancellation that occurs in destructive  interference.

Consider again a point P in the interference pattern (Fig. 32.5). In the approximation 
d V  L, the difference in path lengths is so small that we can neglect any difference in the 
amplitudes of the two waves resulting from the falloff in intensity with distance. However, 
the difference in phase is crucial; it’s what causes the interference. So we consider waves 
whose electric fields at P vary sinusoidally in time, with equal amplitude Ep but an explicit 
phase difference f:

E1 = Ep sin vt  and  E2 = Ep sin1vt + f2
We aren’t bothering with vectors because the two waves are polarized in the same  direction 
and therefore their fields add algebraically. Then the net electric field at P is

E = E1 + E2 = Ep3sin vt +  sin1vt + f24
Appendix A gives the trig identity sin a + sin b = 2 sin31a + b2/24  cos31a - b2/24 , 
which, with a = vt and b = vt + f, gives

 E = 2Ep sinavt +
f

2
b  cosaf

2
b  

where we also used cos1-x2 =  cos x. Thus, the electric field at P oscillates with the wave 
frequency v, and its amplitude is 2Ep cos1f/22. Since the phase difference f depends on 
the difference in path lengths from the two slits, this amplitude varies across the screen, 
giving the interference pattern.

We’ve seen that the path-length difference is d sin u, with d the slit spacing and u the 
angle to P; under our approximation d V  L, u is small and sin u ≃  tan u = y/L, where y is 
the position of P as shown in Fig. 32.5. Then the path difference becomes yd /L. Now, that 
all-important phase difference f is whatever fraction of a full cycle 12p radians2 this path 
difference yd/L is of the wavelength l; that is,

f = 2pa yd

lL
b

Then the amplitude 2Ep cos1f/22 becomes 2Ep cos1pyd/lL2. The average intensity fol-
lows from Equation 29.20b:

 S =
32Ep cos1pyd/lL242

2m0c
= 4S0 cos2apd

lL
 yb  (32.3)

Figure 32.5 Waves from the slits arrive at  
P displaced by the path-length difference  
d sin  u. For L W  d, sin u ≃  tan u = y/L.

d

P

L

y

d sin
uu

EvaluatE Solving, we have

l =
ybright 

d

mL
=

10.038 m210.075 * 10-3 m2
13211.5 m2 = 633 nm

assEss This is indeed much less than the slit spacing of 0.075 mm or 
75,000 nm. Our 633-nm result is in fact the wavelength of the red light 
from widely used helium–neon lasers. ■

Two slits 0.075 mm apart are located 1.5 m from a screen. Laser light 
shining through the slits produces an interference pattern whose third-
order bright fringe is 3.8 cm from the screen center. Find the light’s 
wavelength.

IntErprEt The concept behind this problem is two-slit interference. 
The phrase “third order” tells us we’re dealing with the m = 3 bright 
fringe located at ybright = 3.8 cm.

DEvElop Our plan is to use Equation 32.2a, ybright = m1lL /d2, and 
solve for l. Since that equation requires l V  d, we’ll then check to 
see whether our answer is consistent with this condition.

ExAMpLE 32.1 Measuring Wavelength: Laser Light
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604 Chapter 32 Interference and Diffraction

where S0 = Ep
2/2m0c is the average intensity of either wave alone. Now, cos2 has its maxi-

mum value, 1, when its argument is a multiple of p. Thus Equation 32.3 gives maxi-
mum intensity when yd/lL is an integer m, or when y = mlL /d. This is just the condition 
32.2a, showing that our intensity calculation is fully consistent with the simpler geometri-
cal analysis. But the intensity calculation tells more: It gives not only the fringe positions, 
but also the intensity variation in between.

32.3  Multiple-Slit Interference  
and Diffraction Gratings

Systems with multiple slits play a crucial role in optical instrumentation and in the analy-
sis of materials. As we’ll see, gratings with several thousand slits per centimeter make pos-
sible high-resolution spectroscopic analysis. At a much smaller scale the regularly spaced 
rows of atoms in a crystal act much like a multiple-slit system for X rays, and the resulting 
X-ray patterns reveal the crystal structure.

Figure 32.6 shows waves from three evenly spaced slits interfering at a screen. Maxi-
mum intensity requires that all three waves be in phase or, equivalently, travel paths dif-
fering by an integer number of wavelengths. Our criterion for the maximum in a two-slit 
pattern, d sin u = ml, ensures that waves from two adjacent slits will add constructively. 
Since the slits are evenly spaced with distance d between each pair, waves coming through 
a third slit will be in phase with the other two if this criterion is met. So the criterion for a 
maximum in an N-slit system is still Equation 32.1a:

 d sin u = ml  1maxima in multiple@slit interference, m = 0, 1, 2, . . .2 (32.1a)

With more than two waves, however, the criterion for destructive interference is more 
complicated. Somehow all the waves need to sum to zero. Figure 32.7 shows that this 
happens for three waves when each is out of phase with the others by one-third of a cycle. 
Thus, the path-length difference d sin u must be either 1m + 1

32l or 1m + 2
32l, where m 

is an integer. The case 1m + 3
32l is excluded because then the path lengths differ by a 

full wavelength, giving constructive interference and thus a maximum in the interference 
 pattern. More generally we can write

 d sin u =
m

N
 l (32.4)

for destructive interference in an N-slit system, where m is an integer but not an integer 
multiple of N.

Figure 32.8 shows interference patterns and intensity plots from some multiple-slit 
systems. Note that the bright, or primary, maxima are separated by several minima and 
fainter, or secondary, maxima. Why this complex pattern? Our analysis of the three-
slit system shows two minima between every pair of primary maxima; for example, we 
considered the minima at d sin u = 1m + 1

32l and d sin u = 1m + 2
32l, which lie be-

tween the maxima at d sin u = ml and d sin u = 1m + 12l. More generally, Equation 
32.4 shows that there are N - 1 minima between each pair of primary maxima given by  
Equation 32.1a. The secondary maxima that lie between these minima result from inter-
ference that is neither fully destructive nor fully constructive. The figure shows that the 
primary maxima become brighter and narrower as the number of slits increases, while  
the secondary maxima become relatively less bright. With a large number N of slits, then, 
we should expect a pattern of bright but narrow primary maxima, with broad, essentially 
dark regions in between.

Diffraction Gratings
A set of many closely spaced slits is called a diffraction grating and proves very useful 
in the spectroscopic analysis of light. Diffraction gratings are commonly several cen-
timeters across and have several thousand slits—usually called lines—per cm. Gratings 

Figure 32.6 Waves from three evenly spaced 
slits interfere constructively when they reach 
the screen in phase.

Slits Screen

Sum = 0

1 cycle
2p radians

Figure 32.7 Waves from three slits must be out 
of phase by one-third of a cycle in order to 
interfere destructively.

Figure 32.8 Interference patterns for multiple-slit 
systems with the same slit spacing. The bright 
fringes stay in the same place but become 
 narrower and brighter as the number of slits  
increases. As the graphs show, the peak inten-
sity scales as the square of the number of slits.

Primary
maximum

Secondary
maximum

2 slit

3 slit

4 slit

5 slit
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32.3 Multiple-Slit Interference and Diffraction Gratings 605

like the slit systems we’ve been discussing are transmission gratings, since light passes 
through the slits. Reflection gratings produce similar interference effects by reflecting 
incident light.

We’ve seen that the maxima of the multiple-slit interference pattern are given by the 
same criterion, d sin u = ml, that applies to a two-slit system. For m = 0 this equation 
implies that all wavelengths peak together at the central maximum, but for larger values of 
m the angular position of the maximum depends on wavelength. Thus, a diffraction grating 
can be used in place of a prism to disperse light into its component wavelengths, and the 
integer m is therefore called the order of the dispersion. Figure 32.9 shows a spectrometer 
that works on this principle. Because the maxima in N-slit interference are very sharp for 
large N (recall Fig. 32.8), a grating with many slits diffracts individual wavelengths to very 
precise locations.

Screen

Second-order
spectrum

First-order
spectrum

Grating

Entrance
slitLight

source

Figure 32.9 Essential elements of a grating 
spectrometer. An electronic detector normally 
replaces the screen.

angular positions for the two wavelengths, and finally take their 
 difference to get the angular separation.

EvaluatE With 6000 slits/cm, the spacing is d = 1/6000 cm = 
1.667 μm. Applying Equation 32.1a with m = 1 gives

ua =  sin-1al
d
b =  sin-1a0.6563 μm

1.667 μm
b = 23.2°

A similar calculation gives ub = 17.0°. Thus the angular separation 
is 6.2°.

assEss Our 6.2° result is certainly adequate to distinguish clearly 
these two wavelengths. For greater angular separation, or to sepa-
rate closer wavelengths, we could look at the higher-order dispersion 
(see Exercise 20). ■

Light from glowing hydrogen contains many discrete spectral lines, 
of which two are Ha (hydrogen-alpha) and Hb (hydrogen-beta), with 
wavelengths of 656.3 nm and 486.1 nm, respectively. Find the first-
order angular separation between these wavelengths in a spectrometer 
that uses a grating with 6000 slits per cm.

IntErprEt The concept behind the grating spectrometer is multiple- 
slit interference, so our job is to find the angles to which the grating 
sends the given wavelengths. “First-order” means we have m = 1.

DEvElop Equation 32.1a, d sin u = ml, gives the location of the in-
terference maxima as a function of wavelength l, order m, and slit 
spacing d. We’re given m and two values for l, but we don’t know d.  
However, we’re told that there are 6000 slits per cm, so we can find d.  
Our plan is first to calculate d, then use Equation 32.1a to find the 

ExAMpLE 32.2 Finding the Separation: A Grating Spectrometer

Resolving power
The detailed shapes and wavelengths of spectral lines contain a wealth of informa-
tion about the systems in which light originates. Studying these details requires a high 
dispersion in order to separate nearby spectral lines or to analyze the intensity-versus- 
wavelength profile of a single line. Suppose we pass light containing two spectral lines of 
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606 Chapter 32 Interference and Diffraction

nearly equal wavelengths l and l′ through a grating. Figure 32.10 shows that we’ll just 
be able to distinguish them if the peak of one line corresponds to the first minimum of the 
other; any closer and the lines blur together and form a single peak. Suppose wavelength l  
has its mth-order maximum at angular position u, so d sin umax = ml. We can write this 
as d sin umax = 1mN>N2l, with N the number of slits in the grating. Equation 32.4 then 
shows that we get an adjacent minimum if we add 1 to the numerator mN. Thus the adja-
cent minimum satisfies

d sin umin =
mN + 1

N
l

Our criterion that the two wavelengths l and l′ be distinguishable is that the maxi-
mum for l′ fall at the location of this minimum for l. But the maximum for l′ satisfies 
d sin umax

= = ml′ = 1mN>N2l′, so for umax
= = umin we must have 1mN + 12l = mNl′. 

Expressing this in terms of the wavelength difference ∆l = l′ - l leads to

 
l

∆l
= mN  1resolving power2 (32.5)

The quantity l/∆l is the grating’s resolving power, a measure of its ability to distinguish 
closely spaced wavelengths. The higher the resolving power, the smaller the wavelength 
difference ∆l that we can distinguish. Equation 32.5 shows that the resolving power in-
creases with the number of lines, N, on the grating and also with the order, m, of the spec-
trum we observe.

The lines are just
distinguishable
if the maximum
of one falls on
the �rst minimum
of the other.

What’s actually observed
is the sum of the intensities.

Angular position

In
te

ns
ity

Figure 32.10 Intensity versus angular position 
for spectral lines with slightly different wave-
lengths, as dispersed with a grating.
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Figure 32.11 (a) X rays reflecting off the planes 
of atoms in a crystal. (b) Constructive interfer-
ence enhances the outgoing beam when the 
extra distance 2d sin u is an integer multiple of 
the X-ray wavelength.

DEvElop Equation 32.5, l/∆l = mN, determines the resolving 
power. We can solve for m to get the order: m = l /1N ∆l2. We’re 
given the two wavelengths, so we can readily find ∆l.

EvaluatE We have ∆l = 656.329 nm - 656.272 nm = 0.057 nm. 
Then

m =
l

N ∆l
=

656.272 nm

15000210.057 nm2 = 2.3

assEss Since the order m must be an integer, we’ll have to use the 
third-order spectrum. ■

A double-star system consists of a massive star essentially at rest, with 
a smaller companion in circular orbit. It’s far too distant for the pair 
to appear as anything but a single point even to the largest telescopes. 
Yet astronomers can “see” the companion star through the Doppler 
shift in wavelengths of its spectral lines. The Ha spectral line from 
the stationary massive star is at l = 656.272 nm; for the companion 
when it’s moving away from Earth, the Ha line Doppler-shifts to 
656.329 nm (corresponding to a speed of about 26 km/s). If a spec-
trometer has 5000 lines, what order spectrum will resolve the Ha lines 
from the two stars?

IntErprEt The concept here is resolution of distinct spectral lines 
using a grating spectrometer.

ExAMpLE 32.3  Resolving power: “Seeing” a Double Star

x-Ray Diffraction
The wavelengths of X rays, on the order of 0.1 nm, are far too short for diffraction with 
gratings produced mechanically or photographically. Instead, X-ray diffraction occurs 
when X rays interact with the regularly spaced atoms in a crystal. At the microscopic level, 
reflection of an electromagnetic wave occurs when the wave’s electric field sets electrons 
oscillating. The electrons re-radiate, producing the reflected beam. With X rays reflect-
ing from a crystal, the regular atomic spacing results in interference that enhances the 
reflected radiation at certain angles. Figure 32.11a shows an X-ray beam interacting with 
the atoms in a crystal. In Fig. 32.11b we see that waves reflecting at one layer of atoms 
travel a distance 2d sin u farther than those reflecting at the layer above, where u is the 
angle between the incident beam and the atomic planes. Constructive interference occurs 
when this difference is an integer number of wavelengths:

 2d sin u = ml  1Bragg condition, m = 1, 2, 3, . . .2 (32.6)

M32_WOLF4752_03_SE_C32.indd   606 17/06/15   9:07 PM



32.4 Interferometry 607

This Bragg condition lets us use a crystal with known spacing as a diffraction grating for 
X rays. More important is the converse: Much of what we know about crystal structure 
comes from probing crystals with X rays and using the resulting patterns to deduce posi-
tions of their atoms. X-ray diffraction measurements by British scientist Rosalind Franklin 
in 1952 were crucial in establishing the structure of DNA. Today, geologists and materials 
scientists use X-ray diffraction routinely in studying the structure of rocks, metals, and 
other substances. Molecular biologists and pharmaceutical manufacturers use X-ray dif-
fraction to analyze biomolecules and as an aid in designing new drugs. There’s even an 
X-ray diffraction instrument on Mars, used by the Curiosity rover to analyze Martian soils 
and determine mineral abundances.

other Gratings
Anything with regularly spaced structures can act as a diffraction grating for waves of suit-
able wavelength. The rainbow of colors you see on the underside of a CD or DVD  results 
because adjacent pits of CD tracks (shown in the Application earlier in this chapter) act as 
a diffraction grating. Ocean waves can act as a diffraction grating for radio waves; ocean-
ographers exploit such diffraction in radar surveys that yield the wavelength and ampli-
tude of the ocean waves. Finally, sound waves in a solid set up refractive index variations 
that act as  diffraction gratings for light; the Application describes some everyday uses of 
this phenomenon.

GoT IT? 32.3 If you increase the number of slits in a grating while keeping the 
spacing the same, does each of the following (a) increase, (b) decrease, or (c) remain un-
changed? (1) The spacing between intensity maxima in the interference pattern, (2) the 
intensity of the maxima, and (3) the width of the maxima.

AppLICATIon  Laser printers, DVDs, and AoMs

Last time you used a laser printer, made a PowerPoint presentation, or burned 
a DVD, chances are that an acousto-optic modulator (AOM) played a role. 
As the figure shows, these devices use a loudspeaker-like transducer to beam 
sound waves into a transparent crystal. The regular spacing of the acoustic 
wavefronts constitutes a diffraction grating, and laser light entering the crys-
tal is diffracted at an angle determined by the wavefront spacing—that is, by 
the acoustic wavelength. Varying the acoustic frequency alters the acoustic 
wavelength, which, in turn, changes the diffraction angle of the light. Thus 
the AOM may be used to “steer” a laser beam to different locations. Varying 
the acoustic amplitude alters the amplitude of the diffracted beam; this allows 
the AOM to modulate the light beam’s intensity or to switch it on and off alto-
gether. AOMs are commonly used in laser printers, laser-based projection sys-
tems, and DVD burners for either steering or modulating a laser beam, or both. 
AOMs also find applications in optical communications systems, in switching 
high-power lasers, in trapping and manipulating biomolecules and other small 
particles, and in a host of other technologies.

32.4 Interferometry
Passing light through multiple slits isn’t the only way to produce interference. So will 
any process that separates light into several beams, sends them on different paths, 
and then rejoins them. Such processes are the basis of interferometry, an exquisitely 
sensitive technique for measuring small displacements, time intervals, and other 
quantities.

Diffracted 
light

Acoustic
wavefronts

Transducer

AC voltage

Incident
light

Transparent crystal

uu
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Thin Films
Light passing through thin, transparent films is partially reflected at both the front 
and back surfaces, and the resulting beams recombine to produce interference. In  
Section 14.6 we saw how waves on a string reflect where one string joins another with 
different properties; in particular, the reflected wave is inverted if the second string 
has greater mass per unit length. Light behaves analogously: It’s reflected with a 180° 
phase change at the interface between a material with lower refractive index and one 
with higher refractive index. But it reflects without a phase change at an interface from 
higher to lower refractive index. For a thin film with refractive index n higher than its 
surroundings, Fig. 32.12 shows that there’s a 180° phase change at the first interface 
and no change at the second.

If the film in Fig. 32.12 has thickness d, there’s also a phase change due to the ad-
ditional path length for beam 2. We’ll consider the case of normal incidence, although 
for clarity the figure shows slightly oblique incidence. With normal incidence, the extra 
length is twice the film thickness, or 2d. Because reflected beam 1 forms with a 180° 
phase change but beam 2 has no phase change, it takes another 180° phase shift—half 
a wavelength path difference—to put beams 1 and 2 back in phase to give construc-
tive interference. That occurs if beam 2’s extra path length 2d is half a wavelength, or 
11

2 wavelengths, or any  odd-integer multiple of one-half wavelength: 2d = 1m + 1
22ln, 

where m = 0, 1, 2, 3, . . . , and where the subscript n indicates that this is the wavelength 
as measured in the material. In Chapter 30 we found that the wavelength in a material 
with refractive index n is reduced by a factor 1/n from its value in air or vacuum; thus 
ln = l/n, and our condition for constructive interference becomes

 2nd = 1m + 1
22l  1constructive interference, thin film2 (32.7)

Interference in thin layers is the basis of some very sensitive optical techniques. The 
shape of a lens, for example, can be measured to within a fraction of a wavelength of light 
using interference in a thin “film” consisting of the air between the lens and a flat glass 
plate (Fig. 32.13).

Figure 32.13 (a) A portion of a lens sitting on a flat glass plate. (b) Newton’s rings arise from the difference in 
path lengths between rays like 1 and 2 and provide precise information about the lens shape.

12

(a) (b)

Figure 32.12 Reflection and refraction at a thin 
film of transparent material, showing a 180° 
phase change at the first interface and none at 
the second.

Thin �lm

d

180° phase change

No phase change

n 7 1

n = 1 n 7 1

n = 1

1

2

Incident beam

n = 1n 7 1

�lmair

�lm air

ConCEpTUAL ExAMpLE 32.1 Interference: A Soap Film

Figure 32.14 shows a soap film in a circular ring with different colored 
bands that run horizontally across the film. Why do these bands occur?

EvaluatE The bands must be the result of interference, as described 
in Fig. 32.12. But why are they different colors? The soap film is 

 vertical and consists mostly of water, so gravity makes it thicker at the 
bottom. Therefore, the wavelengths that undergo constructive inter-
ference vary with vertical position on the film. There are many bands, 
with colors repeating, because there are multiple orders of interfer-
ence, with different values of m.
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Beams travel
separate paths c

cthen recombine
and interfere c

cproducing a
fringe pattern.

Mirror

Mirror

Observer

Beam
splitter

Light
source

Figure 32.15 Schematic diagram of a Michelson 
interferometer, with a photo of the interfer-
ence fringes.

In analyzing thin films, we’ve considered only the first reflection at each interface. 
Actually, multiple reflections occur within the film, producing ever-weaker rays. A fuller 
treatment involving Maxwell’s equations shows that when a film of refractive index n2 is 
sandwiched between materials with indices n1 and n3, complete cancellation of reflected 
rays in the incident medium occurs if the thickness is right and if n2 = 2n1n3. This is 
the basis of the antireflection coatings, mentioned in Chapter 30, which ensure maximum 
light transfer in camera lenses, solar photovoltaic cells, and other applications.

GoT IT? 32.4 If you photographed the soap film in Fig. 32.14 with a camera 
that’s sensitive to both visible and infrared light, would the dark region at the top appear  
(a) smaller or (b) larger?

The Michelson Interferometer
Several optical instruments use interference for precise measurement. Among the simplest 
and most important is the Michelson interferometer, invented by the American physicist 
Albert Michelson and used in the 1880s in a groundbreaking experiment that paved the 
way for the theory of relativity. We discuss this experiment in the next chapter; here we 
describe the interferometer, which is still used for precision measurements.

Figure 32.15 shows the basic Michelson interferometer. The key idea is that light from 
a monochromatic source is split into two beams by a half-silvered mirror called a beam 
splitter. The beam splitter is set at a 45° angle, so the reflected and transmitted beams 
travel perpendicular paths. Each then reflects off a flat mirror and returns to the beam 
splitter. The beam splitter again transmits and reflects half the light incident on it, with the 
result that some light from the originally separated beams is recombined. The recombined 
beams interfere, and the interference pattern is observed with a viewing lens; an example 
of the resulting pattern is shown at the bottom of Fig. 32.15.

If the path lengths for the two beams were exactly the same, they would recombine in 
phase and interfere constructively. In reality, the path lengths are never exactly the same, 
the mirrors are never exactly perpendicular, and the beams aren’t perfectly parallel. But 
that’s no problem: What happens is that different parts of the beams recombine with dif-
ferent phase differences, and the result is a pattern of light and dark interference fringes, as 
shown in Fig. 32.15. The distance between successive fringes corresponds to a path-length 
difference of one full wavelength.

Now suppose one mirror moves slightly. The path-length differences change and there-
fore the interference pattern shifts. A mere quarter-wavelength mirror movement adds an 

assEss The dark region at the top confirms our explanation: Here 
the film is so thin that no visible wavelength undergoes construc-
tive interference, so it appears dark. The film is probably about to 
break!

MakIng thE ConnECtIon A 20-cm-high soap film is 1 μm thick 
at the bottom, tapering to near zero thickness at the top. If it’s illumi-
nated with 650-nm laser light, how many bright bands appear?

EvaluatE Equation 32.7 gives the condition for constructive 
 interference; the number of bands will be the number of interference 
orders m possible in this film. Solving for m at the bottom of the film 
gives m = 2nl/d - 1/2 = 3.6, with n = 1.333 for water. Since m 
must be an integer, there’s no bright band right at the bottom. The 
m = 3 band is higher up, and above it are the m = 2, m = 1, and 
m = 0 bands, for a total of four bright bands.

Figure 32.14 Interference in a soap film illuminated with white light.
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610 Chapter 32 Interference and Diffraction

extra half-wavelength to the round-trip path. That results in a 180° phase shift, moving 
dark fringes to where light ones were. Shifts a fraction of this amount are readily detected, 
allowing the measurement of mirror displacements to within a small fraction of a wave-
length. A similar shift occurs if a transparent material is placed in one path, retarding the 
beam because of its refractive index. This provides accurate measures of the refractive 
indices of gases, which are so close to 1 that less-sensitive techniques don’t work.

The largest Michelson interferometers ever built are twin instruments with 4-km arms 
(Fig. 32.16). These comprise LIGO, the Laser Interferometer Gravitational Wave Observa-
tory. LIGO is designed to detect mirror displacements on the order of 10-18 m resulting 
from gravitational waves—“ripples” in the structure of space and time caused by distant 
cosmic events. LIGO will eventually be dwarfed by a space-based interferometer with 
arms 5 million km long!

Figure 32.16 The LIGO instrument at Hanford, 
Washington, is an interferometer with 4-km 
arms. The light undergoes multiple reflections, 
giving an effective arm length of 300 km.

Interferometer
arms

IntErprEt The concept here is interferometry—inferring dis-
tance from observations of light interference, in this case with the 
Michelson configuration of Fig. 32.15. The distortions of the in-
terference fringes shown in Fig. 32.17 result because some of the 
light travels a little farther—namely, into the bottom of a pit and 
back out.

DEvElop The full fringe spacing corresponds to a path difference of 
one wavelength, and Fig. 32.17 shows that the fringe distortion due 
to the pit gives a shift about one-fifth of the distance between fringes. 
We need to use this information to find the extra distance traveled by 
light reflecting from the bottom of the pit, and from that the pit depth. 
We’re given the wavelength, so we can estimate the round trip, into 
and out of the pit, as approximately 0.2l. The pit depth will be half 
this quantity.

EvaluatE The extra path length for the light reflecting off the pit is 
0.2l, so the pit depth is about 0.1l. With l = 633 nm, the pit depth 
is about 63 nm.

assEss Try measuring that with a meter stick! Interferometry pro-
vides an exquisitely sensitive measurement of small distances. ■

A sandstorm has pitted the aluminum mirrors of a desert solar-energy 
installation, and engineers want to know the depths of the pits. They 
construct a Michelson interferometer with a sample from one of the 
pitted mirrors in place of one flat mirror. With 633-nm laser light, 
the interference pattern in Fig. 32.17 results. What is the approximate 
depth of the pit?

ExAMpLE 32.4   An Interferometric Measurement: Sandstorm!

Figure 32.17 Fringe pattern resulting from a pitted mirror.

cso this distance
corresponds to ∼0.2l.

This distance corresponds
to a path-length difference l c

32.5 Huygens’ principle and Diffraction
The interference we’ve been studying in this chapter isn’t the only optical phenomenon 
where the wave nature of light is important. There’s also diffraction—the bending of light 
or other waves as they pass by objects. Interference and diffraction are closely related, and 
the double- and multiple-slit interference we’ve studied actually involves diffraction as 
well—hence the term diffraction grating.

Diffraction, like other optical phenomena, is ultimately governed by Maxwell’s equa-
tions. But we can understand diffraction more readily using Huygens’ principle, articu-
lated in 1678 by the Dutch scientist Christian Huygens, who was the first to suggest that 
light might be a wave. Huygens’ principle states:

All points on a wavefront act as point sources of spherically propagating wavelets that 
travel at the speed of light appropriate to the medium. At a short time ∆t later, the new 
wavefront is the unique surface tangent to all the forward-propagating wavelets.

Figure 32.18 shows how Huygens’ principle accounts for the propagation of plane and 
spherical waves.

Figure 32.18 Application of Huygens’ principle 
to (a) plane and (b) spherical waves. In each 
case, the wavefront acts like a set of point 
sources emitting circular waves that expand to 
produce a new wavefront.

Wavefront
at time ∆t
later

Original wavefront

(a) (b)

c∆t

c∆t
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32.5 Huygens’ Principle and Diffraction 611

Diffraction
Figure 32.19 shows plane waves incident on an opaque barrier containing a hole. Since 
the waves are blocked by the barrier, Huygens’ wavelets produced near each barrier edge 
cause the wavefronts to bend at the barrier. When the width of the hole is much greater 
than the wavelength, as in Fig. 32.19a, this diffraction is of little consequence, and the 
waves effectively propagate straight through the hole in a beam defined by the hole size. 
But when the hole size and wavelength are comparable, wavefronts emerging from the 
hole spread in a broad pattern (Fig. 32.19b). Thus diffraction, although it always occurs, 
is significant only on length scales comparable to or smaller than the wavelength. That’s 
why we could ignore diffraction and assume that light always travels in straight lines 
when we considered optical systems with dimensions much larger than the wavelength 
of light.

Diffraction ultimately limits our ability to image small objects and to focus light pre-
cisely. The chapter opening photo and its associated question are one example. Next, we’ll 
show the reason for this fundamental limitation on optical systems by examining the be-
havior of light as it passes through a single slit. The result will help you understand optical 
challenges ranging from telescopic imaging of distant astrophysical objects to the devel-
opment of Blu-ray discs.

Single-Slit Diffraction
In treating double-slit and multiple-slit interference, we assumed that plane waves pass-
ing through a slit emerged with circular wavefronts. According to Fig. 32.19b, that’s 
true only if the slit width is small compared with the wavelength, so the slit can be 
treated as a single, localized source of new waves. When the slit width isn’t small,  
Huygens’ principle implies that we have to consider each point in the slit as a separate 
source—and then we can expect interference from waves originating at different points 
in the same slit. Thus a single wide slit is really like a multiple-slit system with infi-
nitely many slits!

Figure 32.20a shows light incident on a slit of width a. Each point in the slit acts as a 
source of spherical wavelets propagating in all directions to the right of the slit. We focus 
on a particular direction described by the angle u, and we’ll look at interference of light 
from the five points shown. Figure 32.20b concentrates on the points from which rays 1, 
2, and 3 originate and shows that the path lengths for rays 1 and 3 differ by 12 a sin u. These 
two beams will interfere destructively if this distance is half the wavelength—that is, if 
1
2 a sin u = 1

2 l or a sin u = l. But if rays 1 and 3 interfere destructively, so do rays 3 and 
5, which have the same geometry, and so do rays 2 and 4, for the same reason. In fact, a 
ray leaving any point in the lower half of the slit will interfere destructively with the point 
 located a distance a/2 above it. Therefore, an observer viewing the slit system at the angle u  
satisfying a sin u = l will see no light.

Similarly, the sources for rays 1 and 2 are a/4 apart and will therefore interfere destruc-
tively if 14 a sin u = 1

2 l, or a sin u = 2l. But then so will rays 2 and 3, and rays 3 and 4; in 
fact, any ray from a point in the lower three-quarters of the slit will interfere destructively 
with a ray from the point a/4 above it, and therefore, an observer looking at an angle u 
satisfying a sin u = 2l will see no light.

We could equally well have divided the slit into six sections with seven evenly 
spaced points; we would then have found destructive interference if 1

6 a sin u = 1
2 l, or 

a sin u = 3l. We could continue this process for any number of points in the slit, and 
therefore, we conclude that destructive interference occurs for all angles u satisfying

 a sin u = ml  1destructive interference, single@slit diffraction2 (32.8)

with m any nonzero integer and a the slit width. Note that the case m = 0 is excluded; 
it produces not destructive interference but a central maximum in which all waves are in 
phase.

(a)

Barrier

(b)

Barrier

Figure 32.19 Plane waves incident on an 
opaque barrier with a hole. Diffraction is negli-
gible for a hole large compared with the wave-
length (a), but pronounced for a small hole (b).

Figure 32.20 Each point in a slit acts as a source 
of Huygens’ wavelets, which interfere in the 
region to the right of the slit.
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✓TIp Interference and Diffraction

Equation 32.8 for the minima of a single-slit diffraction pattern looks just like Equation 
32.1a for the maxima of a multiple-slit interference pattern, except that the slit width 
a replaces the slit spacing d. Why does the same equation give the minima in one case 
and the maxima in another? Because we’re dealing with two distinct but related phe-
nomena. In the multiple-slit case, each slit was so narrow that it could be considered a 
single source, neglecting the interference of waves originating within the same slit. In 
the single-slit case, the diffraction pattern occurs precisely because of the interference 
of waves from different points within the same slit.

Intensity in Single-Slit Diffraction
Geometry gave us the positions of the maxima in single-slit diffraction, just as it did for 
multiple-slit interference. But to get the intensity across the diffraction pattern, we’d 
have to superpose electric fields of the interfering waves, as we did in deriving Equation 
32.3 for two-slit interference. But now we’ve got infinitely many fields to sum, corre-
sponding to waves from every part of the slit. It’s possible to do this using a calculus-like 
graphical technique involving the phasor concept introduced in Chapter 28. We won’t go 
through the derivation; however, we’ll motivate the result by noting that the diffraction 
pattern at any point occurs because of phase differences among waves originating at dif-
ferent parts of the slit. It’s not surprising, therefore, that a key factor is the phase differ-
ence between waves from opposite ends of the slit. Applying the analysis of Fig. 32.20 
to the entire slit width a gives a path-length difference a sin u for these waves. As usual, 
this path difference is to the wavelength as the phase difference f is to a full cycle, 2p 
radians. Thus

 f =
2p

l
 a sin u (32.9)

is the phase difference between rays from the ends of the slit to a point at angular  position 
u. The phasor-summing process relates the amplitude of the net electric field to this 
phase difference f and shows that the field is proportional to sin1f/22/1f/22. Used in  
Equation 29.20 to get the intensity from the electric field, this result gives the intensity as 
a function of angle in single-slit diffraction:

 S = S0 c
sin1f/22

f/2
d

2

 (32.10)

Here S0 is the average intensity at the central maximum of the pattern 1u = f = 02, and 
f is given by Equation 32.9. At u = f = 0, Equation 32.10 appears to be indeterminate, 
but using the limit sin x/x S 1 as x S 0 shows that the result is indeed S0. Problem 68 
 explores another approach to Equation 32.10.

Figure 32.21 plots Equation 32.10 for three values of the slit width a in relation to 
the wavelength l. For wide slits—a large compared with l—the central peak is narrow 
and the secondary peaks are much lower and also half as wide as the central peak. Here 
diffraction is negligible, and the beam essentially propagates through the slit in the ray 
approximation of geometrical optics. But as the slit narrows, the diffracted beam spreads 
until, with a = l, it covers an angular width of some 120°.

The intensity given by Equation 32.10 will be zero when the numerator on the right-hand 
side is zero—that is, when the argument of the sine function is an integer multiple of p.  
That occurs when f/2 = 1pa/l2 sin u = mp, or when a sin u = ml. Thus, we recover 
our result of Equation 32.8 for the angular positions where destructive interference gives 
zero intensity.

Multiple Slits and other Diffracting Systems
In treating multiple-slit systems in Section 32.2, we assumed the slits were so narrow 
compared with the wavelength that the central diffraction peak spread into the entire space 
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Figure 32.21 Intensity in single-slit diffraction, 
as a function of the angle u from the 
 centerline, for three values of slit width a.
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32.6 The Diffraction Limit 613

beyond the slit system. When the slit width isn’t negligible, each slit produces a single-
slit diffraction pattern. The result is a pattern that combines single-slit diffraction with 
multiple-slit interference (Fig. 32.22).

Diffraction occurs any time light passes a sharp, opaque edge like the edges of the 
slits we’ve been considering. Close examination of the shadow produced by a sharp 
edge shows parallel fringes resulting from interference of the diffracting wavefronts 
(Fig. 32.23a). More complex diffraction patterns result from objects of different shape 
(Fig. 32.23b). Such diffraction limits our ability to form sharp optical images, as we 
show in the next section.

GoT IT? 32.5 A classmate down the hall is playing obnoxiously loud music, and 
you both have your doors open. Why are you most annoyed by the music’s thumping bass?

32.6 The Diffraction Limit
Diffraction imposes a fundamental limit on the ability of optical systems—telescopes, 
microscopes, cameras, and even eyes—to distinguish closely spaced objects. Consider 
two point sources of light illuminating a slit. The sources are so far from the slit that 
waves reaching the slit are essentially plane waves, but the different source positions 
mean the waves reach the slit at different angles. We assume the sources are incoherent, 
so they don’t produce a regular interference pattern. Then light diffracting at the slit pro-
duces two single-slit diffraction patterns, one for each source. Because the sources are at 
different angular positions, the central maxima of these patterns don’t coincide, as shown 
in Fig. 32.24.

If the angular separation between the sources is great enough, then the central maxima 
of the two diffraction patterns will be entirely distinct. In that case we can clearly dis-
tinguish the two sources (Fig. 32.24a). But as the sources get closer, the central maxima 
begin to overlap (Fig. 32.24b). They remain distinguishable as long as the total intensity 
pattern shows two peaks. Since the sources are incoherent, the total intensity is just the 
sum of the individual intensities. Figure 32.25 shows how that sum loses its two-peak 
structure as the diffraction patterns merge. In general, two peaks are barely distinguishable 
if the central maximum of one coincides with the first minimum of the other. This condi-
tion is called the Rayleigh criterion, and when it’s met the two sources are just barely 
resolved.

Optical systems are analogous to the single slit we’ve just considered. Every system 
has an aperture of finite size through which light enters. That aperture may be an actual 
slit or hole, like the diaphragm that stops down a camera lens, or it may be the full size 
of a microscope lens or a telescope mirror. So all optical systems ultimately suffer loss 
of resolution if two sources—or two parts of the same object—have too small an angu-
lar separation. Thus, diffraction fundamentally limits our ability to probe the structure of 

Figure 32.23 Diffraction patterns from light 
passing sharp edges. (a) Straight edge of an 
opaque barrier. (b) Circular aperture with 
crosshairs.

(a)

(b)

cbut for
small u they
overlap.

For large u
the peaks 
are distinct c

u u

u u

(a)

(b)

1

2

2

1

Figure 32.24 Two distant light sources at dif-
ferent angular positions produce diffraction 
patterns whose central peaks have the same 
angular separation u as the sources.

Maxima of single-slit diffraction

Figure 32.22 When the slit width is not negligible, a double-slit 
system produces the regular variations of double-slit interference 
within a single-slit diffraction pattern.
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614 Chapter 32 Interference and Diffraction

 objects that are either very small or very distant. Figure 32.26 shows the loss of resolution 
as diffraction patterns overlap.

(a)

(b)

(c)

Fully resolved

Barely resolved
(Rayleigh criterion)

Unresolved

Figure 32.25 Since the two sources are incoher-
ent, the total intensity is just the sum (gray curve) 
of the intensities of the two diffraction patterns.

Resolved
Barely
resolved

Not
resolved

Figure 32.26 Diffraction patterns produced by a pair of point sources. The angular 
separation of the sources decreases until they can’t be resolved.

Figure 32.24 shows that the angular separation between the diffraction peaks is equal to 
the angular separation between the sources themselves. Then the Rayleigh criterion is just 
met if the angular separation between the two sources is equal to the angular separation 
between a central peak and the first minimum. We found earlier that the first minimum in 
single-slit diffraction occurs at the angular position given by sin u = l /a, with a the slit 
width and with u measured from the central peak. In most optical systems the wavelength 
is much less than the size of any apertures, so we can use the small-angle approximation 
sin u≃u. Then the Rayleigh criterion—the condition that two sources be just  resolvable—
for single-slit diffraction becomes

 umin =
l

a
  1Rayleigh criterion, slit2 (32.11a)

Most optical systems have circular apertures rather than slits. The diffraction pattern 
from such an aperture is a series of concentric rings (Fig. 32.27). Mathematical analysis 
shows that the angular position of the first ring and therefore the minimum resolvable 
source separation for a circular aperture is

 umin =
1.22l

D
  1Rayleigh criterion, circular aperture2 (32.11b)

with D the aperture diameter.
Equations 32.11 show that increasing the aperture size allows smaller angular differ-

ences to be resolved. In optical instrument design, that means larger mirrors or lenses. An 
alternative is to decrease the wavelength, which may or may not be an option depending 
on the source. In high-quality optical systems, diffraction is often the limiting factor pre-
venting perfectly sharp image formation; such systems are said to be diffraction limited. 
For example, the diffraction limit sets a minimum size for objects resolvable with optical 
microscopes; that’s why electron microscopes—with shorter effective wavelength—are 
used to image smaller biological structures. Large ground-based telescopes are an excep-
tion to the diffraction limit; their image quality is limited by atmospheric turbulence, 
 although this can be reduced with adaptive optics. From their vantage points above Earth’s 
atmosphere, space telescopes such as Hubble are truly diffraction limited. And although 
they look down through the atmosphere, Earth-imaging satellites are generally diffraction 
limited as well because the turbulent lower atmosphere is far from the satellites’ optical 
systems and close to what they’re imaging, namely, the ground. This greatly reduces at-
mospheric distortion.

Astronomers circumvent the diffraction limit by combining data from several tel-
escopes to produce, in effect, a single instrument with aperture equal to the telescope 
separation. Radio astronomers achieve exquisite resolution by combining telescopes on 
different continents; for optical astronomy the technique is limited to smaller separations. 
You can explore astronomical interferometry further in the Passage Problems.

Figure 32.27 3-D plot of intensity versus posi-
tion in circular diffraction. The right-most 
image in Fig. 32.26 shows the corresponding 
diffraction pattern.
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32.6 The Diffraction Limit 615

GoT IT? 32.6 You’re a biologist trying to resolve details of structures within a cell, 
but they look fuzzy even at the highest power of your microscope. Which of the follow-
ing might help: (a) substituting an eyepiece with shorter focal length, as suggested by  
Equation 31.10; (b) putting a red filter over the white light source used to illuminate the 
microscope slide; or (c) putting a blue filter over the white light source?

red light, DVDs can use smaller pit size and spacing because of the lower dif-
fraction limit. That, coupled with a two-layer structure and more sophisticated 
data-compression schemes, gives standard DVDs a capacity of about 4.7 GB—
enough for 2 or more hours of video, depending on quality.

Despite their large capacity, DVDs aren’t adequate for today’s high- 
definition TV (HDTV). But improvements in laser technology give us a 405-nm  
violet laser that enables high-definition video discs. Again, the shorter wave-
length and hence lower diffraction limit, along with other improvements,  
allow much more information to fit on a disc. The resulting Blu-ray technology 
stores 25 GB on a single-layer disc. That corresponds to 4.5 hours of high- 
definition video, or 12 hours of standard video. The figure compares CDs, 
DVDs, and Blu-ray discs.

AppLICATIon Movies on Disc: CD to DVD to Blu-ray

The Application earlier in this chapter described how a CD encodes informa-
tion in pits 1.6 μm apart and as short as 0.83 μm. CDs are read with 780-nm 
infrared laser light. The pit size and spacing have to be large enough that dif-
fraction effects at the laser’s wavelength don’t cause the CD player’s optical 
system to confuse adjacent pits. The result is a maximum capacity of about 
650 MB (megabytes; 1 byte is 8 binary bits, with a bit the fundamental piece 
of binary information represented by a digital 1 or 0). This translates into  
74 minutes of audio.

CDs were developed in the 1980s, when inexpensive semiconductor 
 lasers were available only in the infrared. By the 1990s inexpensive visible-
light  lasers became available, and that enabled the development of DVDs (for 
 “digital video disc” or “digital versatile disc”). Read with 635-nm or 650-nm 

EvaluatE If we consider the opposite ends of the asteroid to be like 
the two peaks in Fig. 32.24, then the angular size for small u is just 
l/L, where L is the distance to the asteroid. Then Equation 32.11b 
 becomes

l

L
=

1.22l

D
or l = 1.22lL /D = 5.6 km using the numbers given.

assEss An object this size poses a grave danger, being comparable 
to the asteroid whose impact caused the extinction of the dinosaurs. If 
astronomers see only a fuzzy blur, then they’ll have to wait until the 
asteroid is closer to resolve its physical size and assess the danger. ■

An asteroid 20*106 km away appears on a collision course with Earth. 
What’s the minimum size for the asteroid that could be resolved with 
the 2.4-m-diameter diffraction-limited Hubble Space Telescope, using 
550-nm reflected sunlight?

IntErprEt This is a problem about the diffraction limit with a cir-
cular aperture. We’re after the minimum physical size for the asteroid 
at a given distance. We identify D = 2.4 m as the aperture size and 
l = 550 nm as the wavelength of the light.

DEvElop Equation 32.11b, umin = 1.22l/D, determines the dif-
fraction limit, expressed as the minimum angular size that can be re-
solved. So our plan is to express the unknown physical size l in terms 
of angular size u and then apply Equation 32.11b.

ExAMpLE 32.5  The Diffraction Limit: Asteroid Alert

M32_WOLF4752_03_SE_C32.indd   615 17/06/15   9:08 PM



Chapter 32 Summary
Big Idea

Key Concepts and Equations

Constructive interference occurs when two waves combine  
in phase:

Destructive interference occurs when two waves combine 180° out 
of phase:

When light of wavelength l passes through two or more narrow slits, the resulting interference 
shows maxima when

d sin u = ml

where m is an integer called the order. With multiple slits the maxima become stronger and nar-
rower, but their position doesn’t change.

2 slit 5 slit

The diffraction limit is a fundamental restriction on our ability to im-
age small or distant objects. For a circular aperture of diameter D, the 
Rayleigh criterion gives the minimum angular separation that can be 
resolved with light of wavelength l:

umin =
1.22l

D

Resolved
Barely
resolved

Not
resolved

The big idea here is that—despite our use of the geometrical-optics approximation in the preceding chapters—light is indeed a wave and therefore 
exhibits the two related phenomena of interference and diffraction. These wave effects are important whenever light or any other wave interacts 
with objects whose size is comparable to or smaller than the wavelength.

A diffraction grating consists of multiple 
slits or lines that result in constructive in-
terference at different positions for different 
wavelengths. Diffraction gratings are used in 
spectrometers to disperse individual wave-
lengths. A grating’s resolving power, the ra-
tio of wavelength to the minimum resolvable 
difference in wavelengths, is given by

l

∆l
= mN

where N is the number of lines in the grating 
and m is the order of the dispersion.

Diffraction occurs because, according to Huygens’ principle, each 
point on a wavefront acts as a source of spherical waves, causing light 
to bend as it encounters sharp edges. Waves from different parts of a 
wavefront interfere to produce diffraction patterns.

m = 0
bright

d

m = 1
bright

m = 1
bright

u

l

Applications

X-ray diffraction uses regularly positioned 
atoms as a grating, and is a powerful tech-
nique for analyzing crystal and molecular 
structure. Maximum intensity occurs when

2d sin u = ml

d

d

Re�ected
beam

Incident
X-ray beam

u

The Michelson interferometer splits light 
into two beams that travel on perpendicular 
paths. They recombine, and the resulting in-
terference allows precision measurements.

Mirror

Interference
pattern

Mirror

Beam
splitter

Light
source
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Exercises and Problems 617

For homework assigned on MasteringPhysics, go to www.masteringphysics.com

BIO Biology and/or medicine-related problems DATA Data problems ENV Environmental problems CH Challenge problems Comp Computer problems

For thought and Discussion
 1. A prism bends blue light more than red. Is the same true of a dif-

fraction grating?
 2. Why does an oil slick show colored bands?
 3. Why does a soap bubble turn colorless just before it dries up and 

pops?
 4. Why don’t you see interference effects between the front and 

back of your eyeglasses?
 5. You can hear around corners, but you can’t see around corners. 

Why?
 6. In deriving the intensity in double-slit interference, why can’t 

you simply add the intensities from the two slits?
 7. The primary maxima in multiple-slit interference are in the same 

angular positions as those in double-slit interference. Why, then, 
do diffraction gratings have thousands of slits instead of just 
two?

 8. When the Moon passes in front of a star, the starlight intensity 
fluctuates before going to zero instead of dropping abruptly. Ex-
plain.

 9. Sketch roughly the diffraction pattern you would expect for light 
passing through a square hole a few wavelengths wide.

exercises and problems
Exercises
Section 32.2 Double-Slit Interference
10. A double-slit system is used to measure the wavelength of light. 

The system has slit spacing d = 15 μm and slit-to-screen dis-
tance L = 2.2 m. If the m = 1 maximum in the interference pat-
tern occurs 7.1 cm from screen center, what’s the wavelength?

11. A double-slit experiment with d = 0.025 mm and L = 75 cm 
uses 550-nm light. Find the spacing between adjacent bright 
fringes.

12. A double-slit experiment has slit spacing 0.12 mm. (a) What 
should be the slit-to-screen distance L if the bright fringes are to 
be 5.0 mm apart when the slits are illuminated with 633-nm laser 
light? (b) What will be the fringe spacing with 480-nm light?

13. The interference pattern from two slits separated by 0.37 mm has 
bright fringes with angular spacing 0.065°. Find the light’s wave-
length.

14. The 546-nm green line of gaseous mercury falls on a double-slit 
apparatus. If the fifth dark fringe is at 0.113° from the centerline, 
what’s the slit separation?

Section 32.3 Multiple-Slit Interference  
and Diffraction Gratings
15. In a five-slit system, how many minima lie between the zeroth-

order and first-order maxima?
16. In a three-slit system, the first minimum occurs at angular posi-

tion 5°. Where is the next maximum?
17. A five-slit system with 7.5@μm slit spacing is illuminated with 

633-nm light. Find the angular positions of (a) the first two max-
ima and (b) the third and sixth minima.

18. Green light at 520 nm is diffracted by a grating with 3000 lines/cm.  
Through what angle is the light diffracted in (a) first and (b) fifth 
order?

19. Light is incident normally on a grating with 10,000 lines/cm. 
Find the maximum order in which (a) 450-nm and (b) 650-nm 
light will be visible.

20. Find the second-order angular separation of the two wavelengths 
in Example 32.2.

Section 32.4 Interferometry
21. Find the minimum thickness of a soap film 1n = 1.3332 in 

which 550-nm light will undergo constructive interference.
22. Light of unknown wavelength shines on a precisely machined 

glass wedge with refractive index 1.52. The closest point to the 
apex of the wedge where reflection is enhanced occurs where the 
wedge is 98 nm thick. Find the wavelength.

23. Monochromatic light shines on a glass wedge with refractive 
index 1.65, and enhanced reflection occurs where the wedge is 
450 nm thick. Find all possible values for the wavelength in the 
visible range.

24. White light shines on a 75.0-nm-thick sliver of fluorite 1n = 1.432. 
What wavelength is most strongly reflected?

25. For the soap film described in Conceptual Example 32.1’s 
 “Making the Connection,” what portion of the film will appear 
dark when it’s illuminated with white light?

Section 32.5 Huygens’ Principle and Diffraction
26. For what ratio of slit width to wavelength will the first minima of 

a single-slit diffraction pattern occur at {90°?
27. Light with wavelength 633 nm is incident on a 2.50@μm@wide 

slit. Find the angular width of the central peak in the diffrac-
tion pattern, taken as the angular separation between the first 
minima.

28. You’re inside a metal building that blocks radio waves, but you’re 
trying to make a call with your cell phone, which broadcasts at a 
frequency of 950 MHz. Down the hall from you is a narrow win-
dow measuring 35 cm wide. What’s the horizontal angular width 
of the beam (i.e., the angle between the first minima) from your 
phone as it emerges from the window?

29. Find the intensity as a fraction of the central peak intensity for 
the second secondary maximum in single-slit diffraction, assum-
ing the peak lies midway between the second and third minima.

Section 32.6 The Diffraction Limit
30. Find the minimum angular separation resolvable with 633-nm 

 laser light passing through a circular aperture of diameter 2.1 cm.
31. Find the minimum telescope aperture that could resolve an object 

with angular diameter 0.35 arcsecond, observed at 520-nm wave-
length. (Note: 1 arcsec = 1/3600°.)

32. What’s the longest wavelength of light you could use to resolve 
a structure with angular diameter 0.44 mrad, using a microscope 
with a 1.2-mm-diameter objective lens?

33. In bright light, the human eye’s pupil diameter is about 2 mm. If 
diffraction were the limiting factor, what’s the eye’s minimum 
angular resolution under these conditions, assuming 550-nm 
light?

problems
34. Find the angular position of the second-order bright fringe in a 

double- slit system whose slit spacing is 1.5 μm for (a) red light at  
640 nm, (b) yellow light at 580 nm, and (c) violet light at 410 nm.

BIO
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618 Chapter 32 Interference and Diffraction

51. Two perfectly flat glass plates 
are separated at one end by a 
sheet of paper 0.065 mm thick. 
550-nm light illuminates the 
plates from above, as shown in 
Fig. 32.28. How many bright 
bands appear to an observer 
looking down on the plates?

52. An air  wedge like that of 
Fig. 32.28 shows N bright bands 
when illuminated from above. Find an expression for the number 
of bands if the air is replaced by a liquid of refractive index n dif-
ferent from that of the glass.

53. A Michelson interferometer uses light from glowing hydrogen 
at 486.1 nm. As you move one mirror, 530 bright fringes pass a 
fixed point in the viewer. How far did the mirror move?

54. Find the wavelength of light used in a Michelson interferometer 
if 550 bright fringes go by a fixed point when the mirror moves 
0.150 mm.

55. One arm of a Michelson interferometer is 42.5 cm long and is en-
closed in a box that can be evacuated. The box initially contains 
air, which is gradually pumped out. In the process, 388 bright 
fringes pass a point in the viewer. If the interferometer uses light 
with wavelength 641.6 nm, what’s the air’s refractive index?

56. Your stereo is in a dead spot caused by direct reception from 
an FM radio station at 89.5 MHz interfering with the signal re-
flecting off a wall behind you. How much farther from the wall 
should you move so that the interference is fully constructive?

57. A proposed “star wars” antimissile laser is to focus infrared light 
with 2.8@μm wavelength to a 50-cm-diameter spot on a  missile 
2500 km distant. Find the minimum diameter for a concave 
 mirror that can achieve this spot size, given the diffraction limit. 
(Your answer suggests one of many technical difficulties faced by 
antimissile defense systems.)

58. Suppose one of the 10-m-diameter Keck Telescopes in Hawaii 
is trained on San Francisco, 3400 km away. Assuming 550-nm 
light, and ignoring atmospheric distortion, would it be possible 
to read (a) newspaper headlines or (b) a billboard sign at this dis-
tance? (c) Repeat for the case of the Keck optical interferometer, 
formed from the two 10-m Keck Telescopes and several smaller 
ones, with a 50-m effective aperture.

59. A camera has an f /1.4 lens, meaning the ratio of focal length 
to lens diameter is 1.4. Find the smallest spot diameter (i.e., the 
diameter of the first diffraction minimum) to which this lens can 
focus parallel light with 580-nm wavelength.

60. The CIA wants your help identifying individual terrorists in a 
photo of a training camp taken from a spy satellite at 100-km al-
titude. You ask for details of the optical system used, but they’re 
classified. However, they do tell you that the optics are diffraction 
limited and can resolve facial features as small as 5 cm. Assum-
ing a typical optical wavelength of 550 nm, what do you conclude 
about the size of the mirror or lens in the satellite camera?

61. While driving at night, your eyes’ irises dilate to 3.1-mm diam-
eter. If your vision were diffraction limited, what would be the 
greatest distance at which you could see as distinct the two head-
lights of an oncoming car, spaced 1.5 m apart? Take l = 550 nm.

62. Under the best conditions, atmospheric turbulence limits ground-
based telescopes’ resolution to about 1 arcsecond (1/3600 of a 
degree). For what apertures is this limitation more severe than 
that of diffraction at 550 nm? (Your answer shows why large 
ground-based telescopes don’t generally produce better images 
than small ones, although they do gather more light.)

BIO

35. A double-slit experiment has slit spacing 0.035 mm, slit-to-
screen distance 1.5 m, and wavelength 490 nm. What’s the phase 
difference between two waves arriving at a point 0.56 cm from 
the center line of the screen?

36. For a double-slit system with slit spacing 0.0525 mm and wave-
length 633 nm, at what angular position is the path difference a 
quarter wavelength?

37. A screen 1.0 m wide is 2.0 m from a pair of slits illuminated by 
633-nm laser light, with the screen’s center on the centerline of 
the slits. Find the highest-order bright fringe that will appear on 
the screen if the slit spacing is (a) 0.10 mm and (b) 10 μm.

38. A tube of glowing gas emits light at 550 nm and 400 nm. In a 
double-slit apparatus, what’s the lowest-order 550-nm bright 
fringe that will fall on a 400-nm dark fringe, and what are the 
fringes’ corresponding orders?

39. On the screen of a multiple-slit system, the interference pattern 
shows bright maxima separated by 0.86° and seven minima between 
each bright maximum. (a) How many slits are there? (b) What’s the 
slit separation if the incident light has wavelength 656.3 nm?

40. You’re designing a spectrometer whose specifications call for a 
minimum of 5° separation between the red hydrogen@a line at 
656 nm and the yellow sodium line at 589 nm when the two are 
observed in third order with a grating spectrometer. Available 
gratings have 2500 lines/cm, 3500 lines/cm, or 4500 lines/cm. 
What’s the coarsest grating you can use?

41. For visible light with wavelengths from 400 nm to 700 nm, show 
that the first-order spectrum is the only one that doesn’t overlap 
with the next higher order.

42. Find the total number of lines in a 2.5-cm-wide diffraction grat-
ing whose third-order spectrum puts the 656-nm hydrogen@a 
spectral line 37° from the central maximum.

43. What order is necessary to resolve 647.98-nm and 648.07-nm 
spectral lines using a 4500-line grating?

44. A thin film of toluene 1n = 1.492 floats on water. Find the mini-
mum film thickness if the most strongly reflected light has wave-
length 460 nm.

45. NASA asks you to assess the feasibility of a single-mirror space-
based optical telescope that could resolve an Earth-size planet 
5 light-years away. What do you conclude?

46. In the second-order spectrum from a diffraction grating, yellow 
light at 588 nm overlaps violet light (wavelength range 390 nm–
450 nm) diffracted in a different order. What’s the exact wave-
length of the violet light, and what’s the order of its diffraction?

47. X-ray diffraction in potassium chloride (KCl) results in a first- 
order maximum when 97-pm-wavelength X rays graze the crys-
tal plane at 8.5°. Find the spacing between crystal planes.

48. As a soap bubble with n = 1.333 evaporates and thins, reflected 
colors gradually disappear. What are (a) the bubble thickness just 
as the last vestige of color vanishes and (b) the last color seen?

49. An oil film with refractive index 1.25 floats on water. The film 
thickness varies from 0.80 μm to 2.1 μm. If 630-nm light is inci-
dent normally on the film, at how many locations will it undergo 
enhanced reflection?

50. The table below lists the angular positions of the bright fringes that 
result when monochromatic laser light shines through a diffraction 
grating, as a function of order m. The spacing between lines of the 
grating is d = 3.2 μm. Determine a quantity that, when plotted 
against m, should give a straight line. Plot the data, determine a 
best-fit line, and use the result to find the wavelength of the light.

Order, m 0 1 2 3 4 5

Angular position 0.0° 9.2° 22° 30° 48° 64°

DATA

Figure 32.28 Problems 51, 52,  
and 64

Incident light

Paper
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Answers to Chapter Questions 619

63. You’re a biologist studying rhinoviruses, which cause the com-
mon cold. These are among the smallest viruses, some 50 nm 
in diameter, and you can’t image them with your optical micro-
scope using visible light (average wavelength about 560 nm). A 
sales rep tries to sell you an expensive microscope using 280-nm  
ultraviolet light, saying it will resolve structures half the size 
that’s resolvable with your current microscope. Is the rep cor-
rect? Will the new microscope resolve your rhinoviruses?

64. An air wedge like that of Fig. 32.28 displays 10,003 bright bands 
when illuminated from above. If the region between the plates is 
then evacuated, the number of bands drops to 10,000. Find the 
refractive index of the air.

65. A thin-walled glass tube of length L containing a gas of unknown 
refractive index is placed in one arm of a Michelson interferom-
eter using light of wavelength l. The tube is then evacuated. Dur-
ing the process, m bright fringes pass a fixed point in the viewer. 
Find an expression for the refractive index of the gas.

66. Light is incident on a diffraction grating at angle a to the normal. 
Show that the condition for maximum light intensity becomes 
d1sin u{sin a2 = ml.

67. An arrangement known 
a s  L l o y d ’s  m i r r o r  
(Fig. 32.29) allows inter-
ference between direct 
and reflected beams from 
the same source. Find an 
expression for the sepa-
ration of bright fringes 
on the screen, given the 
distances d and D and the 
light’s wavelength l.

68. The intensity of the single-slit diffraction pattern can be calculated 
by summing the amplitudes of infinitely many field amplitudes 
corresponding to waves from every infinitesimal part of the slit. 
(a) Referring to Fig. 32.20, show that the field from an element 
of slit width dy, a distance y from the bottom edge of the slit, is 
dE = 1Ep dy/a2 sin1vt + f1y22, where f1y2 = 12py/l2 sin u.  
(b) Integrate dE over the entire slit from y = 0 to y = a,  
and use trig identities from Appendix A, to find the total ampli-
tude and from there show that the average intensity is given by  
Equation 32.10.

69. You’re on an international panel charged with allocating “real 
estate” for communications satellites in geostationary orbit. The 
panel needs to know how many satellites could fit in geostationary 
orbit without receivers on the ground picking up multiple signals. 
Assume all satellites broadcast at 12 GHz and that receiver dishes 
are 45 cm in diameter. Begin by calculating the angular size of 
the beam associated with such a receiver dish, defined as the full 
width of its central diffraction peak. Use your result to find the 
number of satellites allowed in geostationary orbit if each receiver 
dish is to “see” just one satellite. (Hint: Consult Example 8.3.)

70. You’re investigating an oil spill for your state environmental 
 protection agency. There’s a thin film of oil on water, and you 
know its refractive index is noil = 1.38. You shine white light 
vertically on the oil, and use a spectrometer to determine that the 
most strongly reflected wavelength is 580 nm. Assuming first- 
order thin-film interference, what do you report for the thickness 
of the oil slick?

Passage Problems
Even the nearest stars are so distant that a single diffraction-
limited telescope capable of imaging Earth-size planets orbiting 

BIO

CH

ENV

them would be hopelessly large 
(see Problem 45). Astronomers 
get around this limitation using 
interferometry to combine data 
from several telescopes, pro-
ducing an instrument that acts 
like a single telescope with ap-
erture equal to the distance be-
tween the individual telescopes 
(Fig.  32.30). The technologi-
cal challenge is to combine the 
signals with their relative phase 
intact; for this reason, interfer-
ometry has been used successfully for decades in radio astronomy 
but only recently with optical telescopes.
71. If the separation of two telescopes comprising an interferome-

ter is doubled, the angular separation between two sources just 
barely resolvable by the interferometer will
a. not change.
b. decrease by a factor of 1/12.
c. halve.
d. double.

72. If the separation of two telescopes comprising an interferometer 
is doubled, the instrument’s light-collecting power will
a. not change.
b. increase by a factor of 12.
c. double.
d. quadruple.

73. If a point source is located directly above a two-telescope inter-
ferometer, on the perpendicular bisector of the line joining the 
telescopes (source 1 in Fig. 32.30), electromagnetic waves reach-
ing the two will be
a. in phase.
b. out of phase by 45°.
c. out of phase by 90°.
d. you can’t tell without further information

74. If a point source is located on a line at 45° to the line joining the 
two telescopes (source 2 in Fig. 32.30), electromagnetic waves 
reaching the two will be
a. in phase.
b. out of phase by 45°.
c. out of phase by 90°.
d. you can’t tell without further information

answers to Chapter Questions

Answer to Chapter opening Question
The phenomenon of diffraction ultimately limits our ability to form  
images with any optical systems, including spy satellites and other 
 telescopes, as well as microscopes.

Answers to GoT IT? Questions
 32.1  (a)
 32.2  (a)
 32.3  (1) (c); (2) (a); (3) (b)
 32.4  (b)
 32.5  The lower frequency sound waves have longer wavelengths, 

and therefore they diffract more at both doors. So the bass gets 
into your room, but the higher frequencies don’t.

 32.6  (c)

Figure 32.29 Lloyd’s mirror (Problem 67)

d

Source

Mirror

Screen

D

Figure 32.30 A two-dish interfer-
ometer used for radio astronomy 
(Passage Problems 71–74). 
Dashed lines show directions to 
sources in Problems 73 and 74.

To source 1

To source 2

45°90°
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part Five Summary Optics

Optics is the study of light and its behavior. Geometrical optics is 
an approximation that holds when the objects with which light inter-
acts are much larger than its wavelength. In this case, light generally 

travels in straight lines called rays. Physical optics, in contrast, treats 
light explicitly as a wave. Physical optics explains a host of phenom-
ena that ultimately involve the interference of light waves.

When light rays are incident on an 
interface between two materials, they 
generally undergo reflection and, for 
transparent materials, refraction. The 
angles of incidence and reflection are 
equal. Snell’s law relates the angles of 
incidence and refraction:

Incident ray

Medium 2

Re�ected ray

Refracted ray

Medium 1
u1 u′1

u2

Reflection: u1
= = u1

Refraction (Snell’s law): 
n1 sin u1 = n2 sin u2

The index of refraction n relates 
light’s speed in a medium to its speed 
c in vacuum:

n =
c
n

Lenses and curved mirrors use refraction and reflection, respectively, to form images.

Object
Image

C F

 

f

fObject

Image

2 f 2 f

In both cases the object distance s, image distance s′, and focal length f  are related by 
1
s

+
1

s′
=

1

f
.

With real images, shown in both figures above, light actually comes from the image. With virtual 
images, shown in both figures below, light only appears to come from the image:

Image
f
Object f     

F
Object Image

F

The wave nature of light becomes important when light interacts with objects comparable in size to its 
wavelength, or when light travels different paths and recombines to produce interference.

A system consisting of 
two narrow slits pro-
duces a pattern of inter-
ference fringes resulting 
from alternating regions 
of constructive and de-
structive interference:

 d sin u = ml       1bright fringes2
 d sin u = 1m + 1

22l  1dark fringes2
With multiple slits the bright fringes become narrower and brighter:

2 slit 5 slit

A multiple-slit system constitutes a diffraction grating and is used to 
separate different wavelengths in spectroscopy.

Huygens’ principle explains the propa-
gation of waves by stating that each part 
of a wavefront acts as a source of circu-
lar waves that spread out and interfere to 
propagate the wave. When light passes 
through small apertures or by sharp edges, Huygens’ principle shows 
that the light diffracts, bending and producing interference fringes as 
waves from different points interfere.

Diffraction fundamentally limits our ability to resolve small objects or 
to see closely spaced but distant objects as separate.

u u u u1

2 2

1

 

Resolved
Barely
resolved

Not
resolved

For a circular aperture of diameter d (such as a telescope with d being 
its mirror diameter), the diffraction limit gives the smallest angular 
separation that can be resolved at a given wavelength l:

umin =
1.22l

d

part Five Challenge problem

A double-slit system consists of two slits each of width a, with separation d between the slit centers 1d 7 a2. Light of intensity S0 and wavelength 
l is incident on the system, perpendicular to the plane containing the slits. Find an expression for the outgoing intensity as a function of angular 
position u, taking into account both the slit width and the separation. Plot your result for the case d = 4a, and compare with Fig. 32.22.

Destructive interference 
occurs when waves are out of 
step by an odd-integer multi-
ple of a half-wavelength.

Constructive interference 
occurs when waves are out of 
step by an integer multiple of 
the wavelength.

l

2 l

Photo showing
alternating 
bright and
dark fringes.Dark

Dark
Bright

Dark
Bright

Bright
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Modern Physics

Part Six Overview

The world’s smallest electrical wire, a 
carbon nanotube, is only 10 atoms across. 
In this image made with an atomic force 
microscope, the nanotube wire runs across 
a backdrop of platinum electrodes. Our 
understanding of physics at the atomic 
and molecular level lets us construct an 
increasing variety of practical nanoscale 
devices.

w  hat are the fundamental particles of matter? What holds them together to 
make protons, neutrons, nuclei, atoms, molecules, and solids? Is nature funda-

mentally predictable, or does uncertainty rule in the microscopic world? At the other 
extreme, how big is the universe? How did it begin, and how will it end? All these are 
questions for relativity and quantum physics—collectively called “modern physics” be-
cause they were developed after the turn of the 20th century. In Part 6, we give a brief 
account of Einstein’s theory of relativity, followed by a glimpse at quantum physics and 
its applications. We end with an overview of the latest developments in fundamental 
physics, from the nature of elementary particles to surprising new findings about the 
origin and composition of the universe.
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How You’ll Use It
■ With your understanding of relativity 

and its implications for space and 
time, you’ll gain a richer appreciation 
of the universe you inhabit.

■ If you go into in a field like high-
energy particle physics, you’ll need 
special relativity in your everyday 
work.

■ If you study high-energy astrophysics 
or cosmology, you’ll find general 
relativity at the basis of your work.

■ If you go into medicine and order PET 
scans for your patients, you’ll be using 
relativistic physics.

■ Whenever you use your smartphone’s 
location services, or navigate with 
GPS, relativity plays a behind-the-
scenes role.

What You’re Learning
■ You’ll see how 19th-century 

understandings of physics led to 
quandaries that Einstein resolved with 
his theory of relativity.

■ You’ll learn the principle of special 
relativity and how it underlies all of 
special relativity’s startling implications.

■ You’ll see how measures of space, time, 
and  the simultaneity and even order 
of events depend on one’s reference 
frame.

■ You’ll learn about the Lorentz 
transformations and will use them to 
find space and time coordinates of 
events in different reference frames.

■ You’ll learn to discredit the common 
misconception that Einstein’s work 
implies that “everything is relative.”

■ You’ll understand the relation 
between mass, energy, and 
momentum in relativity.

■ You’ll see how relativity connects 
electricity and magnetism.

■ You’ll have a brief, qualitative 
introduction to general relativity.

What You Know
■ You have an intuitive feel for space 

and time.

■ You understand concepts of motion in 
Newtonian physics, especially velocity.

■ You know about relative motion and 
frames of reference.

■ You understand the concept of inertial 
reference frames.

■ You know that velocities add in a 
straightforward manner in the context 
of Newtonian physics.

Relativity

Behind Einstein’s theories is a profoundly simple 
principle that can be stated in a single sentence. 
What is it?

Maxwell’s electromagnetic theory was a crowning achievement of 19th-century physics, 
providing an understanding of the nature of light and enabling a host of practical tech-

nologies. At the same time, Maxwell’s electromagnetism led to baffling questions and contra-
dictions that shook the roots of physical understanding and even of common sense.

The theory of relativity resolved these contradictions. It radically altered our fundamental 
understanding of the physical world, and its influence spilled over into all areas of  human 
thought. Relativity stands as a monument to human intellect and imagination, and it  reveals a 
universe far richer than earlier physicists could conceive of. We’ll approach relativity  historically, 
building on your understanding of electromagnetism. That way you’ll get a sense of the ques-
tions that electromagnetism posed to 19th-century physicists and of how  Einstein’s answer to 
these questions was at once profoundly bold and sweepingly simple.
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33.2 Matter, Motion, and the Ether 623

33.1 Speed c Relative to What?
Maxwell’s equations show that electromagnetic waves in vacuum propagate with speed c. 
Speed c relative to what? In Chapter 14 we found the speed of waves on a string; the speed 
in that case was relative to the string. Similarly, the 340@m/s speed of sound in air is rela-
tive to the air. If you move through the air, the speed of sound relative to you won’t be the 
same. In these and other cases of mechanical waves, the wave speed is the speed relative to 
the medium in which the wave is a disturbance.

The Ether Concept
What about light? Nineteenth-century physicists, their worldview built on the highly suc-
cessful mechanical paradigm of Newtonian physics, supposed that light waves were like 
mechanical waves and required a medium. They postulated a tenuous substance called 
the ether that permeated the entire universe, allowing light from distant stars to reach us. 
Electric and magnetic fields were stresses in the ether, and electromagnetic waves were 
propagating disturbances moving through the ether at speed c.

The ether had to have some unusual properties. It must offer no resistance to material 
bodies, or the planets would lose energy and spiral into the Sun. It must be very stiff, to ac-
count for the high speed of light. And it had to be more jelly-like than fluid, because fluids 
can’t support transverse waves, and, as you saw in Chapter 29, electromagnetic waves are 
transverse. These properties make ether a rather improbable substance, but to 19th-century 
physicists the ether was essential in understanding electromagnetic waves.

The speed of light c follows from Maxwell’s equations. But in the 19th-century view, 
light has speed c only for an observer at rest with respect to the ether. Therefore,  Maxwell’s 
equations could be correct only in the ether frame of reference. This put electromagnetism 
in a rather different position from mechanics. In mechanics, the concept of absolute mo-
tion is meaningless. You can eat your dinner, toss a ball, or do any mechanical experiment 
as well on an airplane moving steadily at 1000 km/h as you can when the plane is at rest on 
the ground. This is the principle of Galilean relativity, which states that the laws of me-
chanics are valid in all inertial reference frames—that is, frames of reference in uniform 
motion (Section 4.2). But the laws of electromagnetism seemed valid only in the ether’s 
reference frame because only in this frame was the prediction of electromagnetic waves 
moving at speed c correct.

So for 19th-century physicists, the laws for one branch of physics (mechanics) seemed 
to work in all inertial frames, while those of another branch (electromagnetism) could 
not. Despite this dichotomy, physicists had great faith in mechanical models and in the 
ether concept, for without the ether the question “speed c relative to what?” seemed im-
possible to answer. Thus the late 19th century saw a flurry of experiments to detect the 
ether.  Ultimately they failed, paving the way for the new worldview of relativity that, in 
 Einstein’s own words, “arose from necessity, from serious and deep contradictions in the 
old theory from which there seemed no escape.”

33.2 Matter, Motion, and the Ether
It was natural for 19th-century physicists to ask about Earth’s motion relative to the ether. 
If Earth is moving through the ether, then the speed of light should be different in different 
directions. On the other hand, Earth might be at rest relative to the ether. Because other 
planets, stars, and galaxies move with respect to Earth, it’s hard to imagine that the ether is 
everywhere fixed with respect to Earth alone: This violates the Copernican view that Earth 
doesn’t occupy a privileged spot in the universe. But maybe Earth drags with it the ether 
in its immediate vicinity. If this “ether drag” occurs, then the speed of light must be inde-
pendent of direction, but if there’s no ether drag, then the speed of light measured on Earth 
must depend on direction. Through observation and experiment, 19th-century physicists 
sought to resolve the question of Earth’s motion through the ether.
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624 Chapter 33 Relativity

Aberration of Starlight
Imagine standing in a rainstorm with rain falling vertically. To keep dry, you hold your 
umbrella with its shaft straight up, as shown in Fig. 33.1a. But if you run, as in Fig. 33.1b, 
you’ll keep driest if you tilt your umbrella forward. Why? Because the direction of rainfall 
relative to you is at an angle, as shown in Fig. 33.1c. This assumes you don’t drag with 
you a large volume of air. If such an “air drag” occurred, raindrops entering the region 
around you would be accelerated quickly in the horizontal direction by the air moving 
with you, so they would now fall vertically relative to you, as in Fig. 33.1d. No matter 
which way you ran, as long as you dragged air with you, you would point your umbrella 
vertically upward to stay dry.

This umbrella example is analogous to the observation of light from stars, with the rain 
being starlight and the umbrella a telescope. If Earth doesn’t drag ether, then the direc-
tion from which starlight comes will depend on Earth’s motion relative to the ether. But if 
“ether drag” occurs in analogy with Fig. 33.1d, then light from a particular star will always 
come from the same direction.

In fact we do observe a tiny change in the direction of starlight. As Earth swings around 
in its orbit, we must first point a telescope one way to see a particular star. Then, six 
months later, Earth’s orbital motion is in exactly the opposite direction, and we must point 
the telescope in a slightly different direction. This phenomenon is called aberration of 
starlight and shows that Earth does not drag the ether.

The Michelson–Morley Experiment
If we reject the pre-Copernican notion that Earth alone is at rest relative to the ether, then 
aberration of starlight forces us to conclude that Earth moves through the ether. Furthermore, 
the relative velocity of the motion must change throughout the year as Earth orbits the Sun.

In 1881–1887, American scientists Albert A. Michelson and Edward W. Morley at-
tempted to determine Earth’s velocity relative to the ether. They used Michelson’s in-
terferometer (Fig. 33.2), whose operation we described in Chapter 32. Recall that the 
interferometer produces a pattern of interference fringes that shifts if the round-trip 
travel time for light on one of its two perpendicular arms changes. The interference pat-
tern reflects, among other things, possible differences in travel times that arise from dif-
ferences in the speed of light in different directions—differences that should result from 
Earth’s motion through the ether. Rotating the apparatus through 90° would interchange 
the directions of the arms and should therefore shift the interference pattern.

Now suppose Earth moves at speed v relative to the ether. Then to an observer on 
Earth, there’s an “ether wind” blowing past Earth. Suppose the Michelson–Morley ap-
paratus is oriented with one light path parallel to the wind and the other perpendicular. 
Consider a light beam moving the distance L at right angles to the wind. The beam must 
be aimed slightly upwind so that it will actually move perpendicular to the wind. The 

Figure 33.1 A rain/umbrella analogy for 
aberration of starlight.
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With “air drag”
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Figure 33.2 Simplified diagram of the Michelson– 
Morley experiment. Ether wind should result in a 
longer travel time for light on the horizontal arm.
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33.3 Special Relativity 625

light moves in this direction at speed c relative to the ether, but the ether wind sweeps 
it back so its path in the Michelson–Morley apparatus is at right angles to the wind. 
From Fig. 33.3, we see that its speed relative to the apparatus is u = 2c2 - v2, so the 
round-trip travel time is

 tperpendicular =
2L
u

=
2L2c2 - v2

 (33.1)

Light sent a distance L “upstream”—against the ether wind—travels at speed c relative to 
the ether but at speed c - v relative to Earth. It therefore takes time tupstream = L/1c - v2. 
Returning, the light moves at c + v relative to Earth, so tdownstream = L/1c + v2. The 
round-trip time parallel to the ether wind is then

 tparallel =
L

c - v
+

L

c + v
=

2cL

c2 - v2 (33.2)

The two round-trip travel times differ, with the trip parallel to the ether wind always tak-
ing longer (see Exercises 13, 14, and 27). Light on the parallel trip slows when it moves 
against the ether wind, then speeds up when it moves with the wind. But slowing always 
dominates because the light spends more time moving against the wind than with it.

The Michelson–Morley experiment of 1887 was sensitive enough to detect differ-
ences in the speed of light an order of magnitude smaller than Earth’s orbital speed. 
The experiment was repeated with the apparatus oriented in different directions, and 
at different times throughout the year, and the same simple but striking result always 
emerged: There was never any difference in the travel times for the two light beams. In 
terms of the ether concept, the Michelson–Morley experiment showed that Earth does 
not move relative to the ether.

GoT IT? 33.1 Which sentence best describes the Michelson–Morley experiment? 
(a) The M–M experiment attempted to detect differences in the speed of light propagating 
in different directions relative to the ether wind. (b) The M–M experiment measured val-
ues for the speed of light in two mutually perpendicular directions. (c) The M–M experi-
ment confirmed the aberration of starlight.

A Contradiction in Physics
Aberration of starlight shows that Earth doesn’t drag ether with it. Earth must therefore 
move relative to the ether. But the Michelson–Morley experiment shows that it doesn’t. 
This contradiction is a deep one, rooted in the fundamental laws of electromagnetism and 
in the analogy between mechanical waves and electromagnetic waves. The contradiction 
arises directly in trying to answer the simple question: With respect to what does light 
move at speed c?

Physicists at the end of the 19th century made ingenious attempts to resolve the di-
lemma of light and the ether, but their explanations either were inconsistent with experi-
ment or lacked sound conceptual bases.

33.3 Special Relativity
In 1905, at the age of 26, Albert Einstein (Fig. 33.4) presented his special theory of 
 relativity, which resolved the dilemma but altered the very foundation of  physical 
thought. Einstein declared simply that the ether is a fiction. But then with respect to 
what does light move at speed c? With respect, Einstein declared, to anyone who cares to  
observe it. This statement is at once simple, radical, and conservative. Simple, because its 
meaning is clear and obvious. Anyone who measures the speed of light in vacuum will get 
the value c = 3.0 * 108 m/s. Radical, because it alters our commonsense notions of space 
and time. Conservative, because it asserts for electromagnetism what had long been true in 

Figure 33.3 Vector diagram for light moving at 
right angles to an ether wind.
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u
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Figure 33.4 In 1905, when he formulated 
special relativity, Einstein was a 26-year-old 
father.
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626 Chapter 33 Relativity

mechanics: that the laws of physics don’t depend on the motion of the observer. Einstein 
summarized his new ideas in the principle of relativity, which is expressed in this simple 
sentence:

The laws of physics are the same in all inertial reference frames.

Recall that inertial frames are unaccelerated—that is, frames in which the laws of 
 mechanics were already valid. Einstein’s statement encompasses all laws of physics, 
including mechanics and electromagnetism. The prediction that electromagnetic waves 
move at speed c must, then, be a universal prediction that holds in all inertial reference 
frames. The special theory of relativity is special because it’s valid only for the special 
case of inertial frames. Later we’ll discuss the general theory of relativity, which  removes 
this restriction.

Einstein’s relativity explains the result of the Michelson–Morley experiment: No mat-
ter what Earth’s speed is relative to anything, an observer on Earth should measure the 
same speed for light in all directions. But at the same time, relativity flagrantly violates 
our commonsense notions of space and time. We’ll see just how in Sections 33.4–33.6.

33.4 Space and Time in Relativity
A pedestrian stands by the roadside as a car drives by (Fig. 33.5). Driver and pedestrian 
each measure the speed of light from a blinking traffic signal. The theory of relativity says 
they’ll both get the same value, c = 3.0 * 108 m/s, even though the car is moving toward 
the light source. How is that possible? Consider how each observer might make the meas-
urement. Each has a meter stick and an accurate stopwatch. Suppose a light flash passes 
the front end of each meter stick just as they coincide. Each observer measures the time 
for the flash to traverse the 1-m stick and calculates speed = distance/time. They get the 
same answer—even though common sense suggests that the light should pass the far end 
of the “moving” meter stick sooner.

How can this be? Maybe the car’s motion affects the driver’s stopwatch, making it inac-
curate. But no; this suggestion violates relativity’s assertion that all uniformly moving ref-
erence frames are equally good vantage points for doing physics. There can’t be anything 
special about the “moving” reference frame; in fact, it’s meaningless to talk about the car 
as “moving” and the pedestrian “at rest.” This is the point of relativity: The concept of 
absolute motion is meaningless.

The only way out, consistent with relativity, is to let go of absolute space and time. Our 
two observers’ instruments are measuring different quantities that depend on their refer-
ence frame—namely, the distance and travel time for the light flash. Those quantities dif-
fer in just the right way to make the speed of light come out the same for both observers. 
This is certainly not what common sense tells us about space and time. But in relativity it’s 
the laws of physics, not measures of space and time, that must be the same for all. Keep in 
mind the principle of relativity, and you’ll see how the rest of special relativity’s remark-
able consequences follow.

Time Dilation
Figure 33.6a shows a “light box,” consisting of a box of length L with a light source at 
one end and a mirror at the other. A light flash leaves the source, reflects off the mirror, 
and returns to the source. We want the time between two events: the emission of the flash 
and its return to the source. An event is an occurrence specified by giving its position and 
its time.

For concreteness, we’ll imagine that the light box is in a spaceship moving past Earth at 
a uniform velocity. But don’t think there’s something special about space or spaceships. The 
whole point of relativity is that all inertial frames are equivalent places for doing  physics, 

Figure 33.5 Both driver and pedestrian meas-
ure the same speed c for light, even though 
they’re in relative motion.

Light pulse

v
u

A standing pedestrian
measures the speed
of light as c.

Although the car moves toward
the light source at speed v,
the driver also measures the
speed of light as c.
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33.4 Space and Time in Relativity 627

and our spaceship is just one inertial reference frame. We’ll call that frame S′. There’s also 
an accurate clock, C, in the spaceship, and C reads zero just as the light flash is  emitted.

In Fig. 33.6a we consider the light-box experiment viewed in the spaceship’s reference 
frame. Since the light box is at rest in this frame, the light travels a round-trip distance 2L 
from source to mirror and back, giving a round-trip travel time of ∆t′ = 2L/c. This is the 
time read on the spaceship’s clock C.

Now consider the situation as viewed in Earth’s reference frame, which we’ll call S. 
In this frame, spaceship and light clock are moving to the right with speed v, as shown 
in Fig. 33.6b. Suppose there are two clocks in Earth’s frame, positioned so the light box 
passes clock C1 just as the flash is emitted, and passes C2 just as the flash returns to the 
source. The clocks are synchronized, and C1 reads zero just as the light flash is emitted. 
We want to know C2>s reading at the instant the light box passes it and the flash returns to 
its source; that will be the time, ∆t, between the flash emission and return as measured in 
Earth’s frame S.

Figure 33.6b shows that the box moves to the right a distance n ∆t in the time between 
emission and return of the light flash. Meanwhile the light takes a diagonal path up to the 
mirror of the moving box and then back down. The path length is twice the diagonal from 
source to mirror or, by the Pythagorean theorem, 21L2 + 1v  ∆t/222. The time for light to 
go this distance is the distance divided by the speed of light, or ∆t = 21L2 + 1v  ∆t/222/c. 
We explicitly used relativity here, assuming the speed of light remained c in Earth’s frame. 
If we didn’t believe relativity, we would have vectorially added light’s velocity c

u
 and the 

box’s velocity v
!
. But that would make the spaceship’s frame the only one in which the 

speed of light was c—in violation of the relativity principle.
The unknown ∆t appears on both sides of our expression; multiplying through by c and 

squaring gives

c21∆t22 = 4L2 + v21∆t22

We then solve for 1∆t22 to get

1∆t22 =
4L2

c2 - v2 =
4L2

c2 a 1

1 - v2/c2 b

Taking the square root of both sides, and noting that 2L/c is just the time ∆t′ measured in 
the frame S′ at rest with respect to the box, we have ∆t = ∆t′/11 - v2/c2 or

 ∆t′ = ∆t21 - n2/c2  1time dilation2 (33.3)

Equation 33.3 describes the phenomenon of time dilation, in which the time between 
two events is shortest in a frame of reference in which the two events occur at the same 
place. In our example, the events are the emission and return of the light flash, and they 

v
u

The light
path is
longer in
frame S.

The light
path is 2L
in box’s
rest frame
S′.

Mirror

Light
source

C

(a)

LL

C1 C2

(b)

v∆t

Figure 33.6 A “light box” to explore time dilation shown (a) in a reference frame S’ at 
rest with respect to the box and (b) in a frame S where the box is moving to the right.
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628 Chapter 33 Relativity

occur at the same place in the spaceship frame S′—namely, at the bottom of the box. 
They don’t occur at the same place in the Earth frame S because the box moves relative to 
Earth, so the bottom of the box isn’t at the same place when the light flash returns as it was 
when the flash was emitted. Thus ∆t′—the time interval measured in the spaceship frame 
S′, where the events occur at the same place—is shorter than ∆t, as you can see from 
 Equation 33.3 and as illustrated in Fig. 33.7.

The shorter time ∆t′ measured by a single clock present at two events is called a proper 
time. Here “proper” doesn’t mean “correct” or “right”—that would violate relativity, since 
a time measurement in any inertial frame has equal claim to being valid. Rather, “proper” 
is used in the sense of “proprietary” in that proper time is the time that belongs to this one 
particular clock. In Earth frame S there’s no single clock present at both the emission and 
return of the light flash, so the time measurement in this frame doesn’t “belong” to any 
one clock.

Time dilation is sometimes characterized by saying “moving clocks run slow,” but 
this statement violates the spirit of relativity because it suggests that some frames 
are “really” moving and others aren’t. The whole point of relativity is that all iner-
tial frames are equally good for describing physical reality, so none can claim to be 
“at rest” while others are “moving.” What the statement “moving clocks run slow” 
is trying to convey is what we’ve just seen: The time interval between two events 
is shortest in a reference frame where the two occur at the same place. There’s no 
significance whatever to our putting the light box in a “moving” spaceship and com-
paring ship time with Earth time. We could equally well have put the light box and 
its clock on Earth, and two separate clocks in the ship. Then Earth with its light box 
would be moving past the ship at speed v—so the Earth clock would measure the 
time ∆t′ in Equation 33.3, and the two clocks in the ship frame would measure the 
longer time ∆t. (That may sound like a contradiction, but it can’t be because there’s 
nothing special about any inertial frame, including Earth’s. We’ll return to this point 
shortly.)

We used a light box to illustrate time dilation. But time dilation isn’t something that 
happens only when we use light to determine time intervals. It’s something that happens 
to time itself. Take away the light box in Fig. 33.6, and the clocks will show the same dis-
crepancy. Don’t look for a physical mechanism that slows things down. All manifestations 
of time—the oscillations of the quartz crystal in a digital watch, the swing of a pendulum 
clock, the period of vibration of atoms in an atomic clock, biological rhythms, and human 
lifetimes—are affected in the same way.

v
u

C

C2C1

C

Figure 33.7 Clock C moves between clocks C1 
and C2, which are at rest relative to each other 
and synchronized in their rest frame. C meas-
ures a shorter elapsed time.

EvaluatE With v = 0.95c, v/c = 0.95 and the quantity v2/c2 in 
Equation 33.3 becomes 0.952. Then

∆t′ = ∆t21 - v2/c2 = 125 y221 - 0.952 = 7.8 y

assEss This time is considerably shorter than 25 years, confirming 
our statement that the time between events is shortest as measured 
in a reference frame where the events occur at the same place. We’ll 
soon explore what happens if the ship turns around and returns  
to Earth. ■

A spaceship leaves Earth on a one-way star trip that earthbound 
observers judge will take 25 years. If the ship travels at 0.95c rela-
tive to Earth, how long will the trip take as judged by observers in 
the ship?

IntErprEt This is a problem about time dilation. Since the events of 
departure from Earth and arrival at the star occur at the same place in 
the ship’s reference frame, we identify the ship time as the proper time 
∆t′ and the Earth time as ∆t in our discussion of time dilation.

DEvElop Equation 33.3, ∆t′ = ∆t21 - v2/c2, relates the two 
times. We’re given the Earth time ∆t, so we can use this equation to 
find ∆t′.

ExAMPLE 33.1  Calculating Time Dilation: Star Trek

You don’t notice time dilation in everyday life because the factor v2/c2 is so small 
for even your fastest motion relative to Earth. Even in a jet airplane, the time difference 
amounts to a few milliseconds per century. This illustrates the important point that any 
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33.4 Space and Time in Relativity 629

The Twin Paradox
Time dilation lets us travel into the future! The so-called twin paradox shows how. One 
twin boards a spaceship for a journey to a distant star; the other stays on Earth. There are 
clocks at both Earth and star, like clocks C1 and C2 in Fig. 33.7. There’s a clock on the 
spaceship, like C in Fig. 33.7. Ship clock and Earth clock read the same time as the ship 
departs (Fig. 33.8a), but when it arrives at the star, time dilation means the ship clock 
reads less time than the star clock (Fig. 33.8b). Now the ship turns around and returns 
home. Again, the situation is just like Fig. 33.7 or our light box of Fig. 33.6, so less time 
elapses on the ship (Fig. 33.8c). The traveling twin arrives home younger than her earth-
bound brother! Depending on how far and how fast she goes, that age difference can be 
arbitrarily large. But this is a one-way trip to the future. If the traveling twin doesn’t like 
what she finds in the future, there’s no going back.

IntErprEt This problem involves time dilation, here applied to the 
two separate legs of the round-trip journey. We identify the ship clock 
as C in Fig. 33.7, and the ship time as ∆t′.

Earth and a star are 20 light years (ly) apart, measured in a frame 
at rest with respect to Earth and star. Twin A boards a spaceship, 
travels at 0.80c to the star, and then returns immediately to Earth at 
0.80c. Determine the round-trip travel times in Earth and ship refer-
ence frames.

ExAMPLE 33.2 Time Dilation: The Twin Paradox

results from relativity should agree with commonsense Newtonian physics when relative 
velocities are small compared with the speed of light. Since your intuition and common 
sense are built on experience at low relative velocities, it’s not surprising that effects at 
high relative velocities seem counter to your common sense.

Using a detector that records only those muons moving at about 0.994c at 
the mountaintop altitude, the experiment shows that an average of about 560 
muons with this speed are incident on the mountaintop each hour. If the moun-
tain weren’t there, the muons would travel from the mountaintop altitude to sea 
level in a time given by

∆t =
2000 m

10.994213.0 * 108 m/s2 = 6.7 μs

The muon’s decay rate is such that one should expect only about 25 of the 
original 560 muons to remain after a 6.7@μs interval, so that’s approximately 
the number we might expect to detect each hour at sea level. However, that 
6.7@μs interval is measured in Earth’s reference frame—not the muons’. In the 
muons’ frame, time dilation should reduce that interval to

∆t′ = 16.7 μs221 - 0.9942 = 0.73 μs

The muons’ decay is determined by their measure of time, and their decay rate 
is such that we should expect 414 muons to survive for 0.73 μs.

So what happens? Observers count just over 400 muons per hour at sea 
level. This is no subtle effect. The difference between 25 and 414 is dramatic. 
At 0.994c, the nonrelativistic description is hopelessly inadequate, and time 
dilation is obvious.

APPLICATIon Mountains and Muons

Time dilation is obvious in experiments with subatomic particles  moving, 
relative to us, at speeds near c. In a classic experiment, the “clocks” are the 
lifetimes of particles called muons, which are created by the interaction of 
cosmic rays with Earth’s upper atmosphere and subsequently decay. The 
 experiment consists in counting the number of muons incident each hour on 
the top of Mt. Washington in New Hampshire, about 2000 m above sea level.  
The  measurement is then repeated at sea level. The figure shows the situation 
in Earth’s reference frame.

Lines represent
paths of muons.

The lines stop where muons decay.

v = 0.994c

Sea level

2000 m

(continued )
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630 Chapter 33 Relativity

Here’s the seeming paradox: From the ship’s viewpoint, it looks like Earth recedes, 
turns around, and returns. So why isn’t the Earth twin younger? The answer lies in 
what’s special about special relativity—namely, it applies only to reference frames in 
uniform motion. The traveling twin accelerates when turning around, so briefly she’s in a 
noninertial reference frame. Although relativity precludes us from saying that one twin 
is moving and the other is not, we can say that one twin’s motion changes and the other’s 
doesn’t. This is obvious to the traveling twin, who experiences forces associated with 
the turnaround. The earthbound twin, in contrast, doesn’t feel anything unusual when 
the ship turns around. During the journey the ship occupies two different inertial frames, 
separated by the turnaround acceleration, while Earth remains in a single inertial frame. 
It’s that asymmetry that resolves the paradox. The traveling twin really is younger!

What if the traveling twin didn’t turn around? Then the situation would be symmetric, and 
each could argue that the other’s clocks “run slow.” But unless they get together again at the 
same place, there’s no unambiguous way to compare their clock readings or ages. And they 
can’t get together without at least one of them accelerating. As we’ll soon see, clocks that 
are synchronized in one reference frame aren’t synchronized in another—and that takes the 
seeming contradiction out of two observers each finding that the other’s clocks “run slow.”

GoT IT? 33.2 Triplets A and B board spaceships and head away from Earth in 
 opposite directions, each traveling the same distance at the same speed before returning 
to Earth. Triplet C remains on Earth. Which expression describes the triplets’ relative 
ages once they’re reunited on Earth? (a) A 6 B 6 C; (b) A = B 7 C; (c) A = B 6 C;  
(d) A = B = C

DEvElop Earth–star time for the one-way journey follows from 
distance = speed * time, so that’s how we’ll find ∆t. Then we can 
apply Equation 33.3, ∆t′ = ∆t21 - v2/c2, to get the ship time ∆t′. 
We’ll double both to get the round-trip times.

EvaluatE At 0.80c, the time to go 20 ly is ∆t = 120 ly2/10.80 ly/y2 =  
25 y. Equation 33.3 then gives

∆t′ = 125 y221 - 0.802 = 15 y

Doubling these values gives round-trip times of 50 years and 30 years 
for the Earth and ship, respectively.

assEss The traveling twin returns younger, by 20 years! We’ve 
marked the various times on the clocks in Fig. 33.8.

✓TIP Years, Light Years, and the Speed of Light

A light year (ly) is the distance light travels in one year. By 
 definition, therefore, the speed of light is 1 ly/y. It’s often easiest 
in relativity to work in units where the speed of light is 1, whether 
those units be light years and years, light seconds and seconds, or 
whatever.

 ■
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Earth Star
(a)

Earth Star
(b)

Earth Star
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(c)

20 ly 

20 ly 

Figure 33.8 The twin’s journey, 
drawn from the viewpoint 
of the Earth–star reference 
frame. Clock readings are 
in years, corresponding to 
Example 33.2.
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Length Contraction
In Example 33.2 the 20-ly distance, 25-y time, and 0.8c speed are related through the 
expression ∆x = v ∆t, where ∆x and ∆t are measured in the Earth frame. But rela-
tivity tells us that this relation must hold in all inertial reference frames, so it’s also 
valid in the spaceship frame except during the turnaround. From the ship’s viewpoint, 
Earth and star are moving at v = 0.80c, and it takes ∆t′ = 15 y for the Earth–star sys-
tem to pass the ship. Then ∆x′ = v ∆t′ = 10.80 ly/y2115 y2 = 12 ly is the Earth–star 
 distance as measured in the ship frame. Thus measures of space as well as time depend 
on one’s reference frame. Equation 33.3 gives ∆t′ = ∆t11 - v2/c2, so we can write 
generally that

 ∆x′ = v ∆t′ = v ∆t21 - v2/c2

or

  ∆x′ = ∆x21 - v2/c2  (length contraction) (33.4)

for the distance between two objects measured in a reference frame in which they move 
with speed v. Here ∆x is the distance in a reference frame at rest with respect to the two 
objects. Since 21 - v2/c2 is less than 1 for v 7  0, Equation 33.4 shows that ∆x 7  ∆x′. 
Therefore, the distance is greatest in this so-called rest frame. The two points in ques-
tion could be the ends of a single object, in which case ∆x is the object’s length. This 
phenomenon of length contraction is also called Lorentz– Fitzgerald  contraction, 
after Dutch physicist H. A. Lorentz and Irish physicist George F.  Fitzgerald, who in-
dependently proposed it as an ad hoc way of explaining the Michelson– Morley experi-
ment. Only with Einstein’s work did the contraction acquire a solid conceptual basis.

Length contraction shows that an object is longest in its own rest frame and is shorter 
to observers for whom it’s moving. As with time dilation, don’t go looking for a physi-
cal mechanism that squashes “moving” objects. That presupposes an absolute space with 
respect to which contraction occurs. Rather, it’s space itself that’s different for different 
observers. Accepting relativity means giving up notions of absolute space and time; length 
contraction and time dilation are necessary consequences.

EvaluatE The electrons’ speed is so close to c that it suffices to 
calculate the travel time with v = c. (a) We have ∆t = ∆x/c =
13.2 km2/13.0 * 108 m/s2 = 11 μs. (b) Equation 33.3 gives ∆t′=
∆t21 - v2/c2; with v/c = 0.9999995, the square root works out 
to be 10-3, so ∆t′ = 11 ns. (c) Equation 33.4 shows that the length 
shrinks by the same factor, to 3.2 m.

assEss In this case of extremely relativistic speed, the relativistic 
factor 21 - v2/c2 is tiny, and the effects of time dilation and length 
contraction are dramatic. Note that we could approximate v as c in 
finding ∆t, but not in working with the relativistic factor, where even 
the slightest difference from c is crucial. As a check on our answer, 
note that ∆x′ = v ∆t′, as required by the principle of relativity. ■

At the Stanford Linear Accelerator Center (SLAC; see Fig. 33.9), sub-
atomic particles are accelerated to high energies over a straight path 
whose length, in Earth’s reference frame, is 3.2 km. For an electron 
traveling at 0.9999995c, how long does the trip take as measured (a) 
in Earth’s frame and (b) in the electrons’ frame? (c) What’s the length 
of the linear accelerator in the electrons’ frame?

IntErprEt We’re being asked about time dilation and length 
contraction. The Earth frame here is like the Earth frame of  
Example 33.2, with the ends of the accelerator replacing Earth and star, 
and ∆x = 3.2 km in place of the 20-ly Earth–star separation. In (a) 
we’re therefore being asked for ∆t, in (b) for ∆t′, and in (c) for ∆x′.

DEvElop As always ∆x = v ∆t relates distance, time, and speed in a 
single reference frame. We’re given ∆x and v, so we’ll first solve for 
∆t. Then we can use Equation 33.3, ∆t′ = ∆t21 - v2/c2, for ∆t′, 
and Equation 33.4, ∆x′ = ∆x21 - v2/c2, for ∆x′.

ExAMPLE 33.3 Length Contraction and Time Dilation: SLAC

Figure 33.9 The Stanford Linear Accelerator is 
3.2 km (2 miles) long. But to electrons moving 
through it at 0.9999995c, it’s only 3.2 m long. 
Photo shows the accelerator passing under 
Interstate Highway 280 west of Palo Alto, 
California.

Equations 33.3 and 33.4 show that relativistic effects are significant only at high rel-
ative speeds, with v2/c2 comparable to 1. You’ve no experience of such speeds in your 
 everyday life, so relativity seems counterintuitive. Had you grown up moving relative to 
your surroundings at speeds approaching c, the relativity of space and time would be as  
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632 Chapter 33 Relativity

obvious as your commonsense notions seem now. For physicists working with high- 
energy particles or studying distant, rapidly moving galaxies, relativistic effects are obvi-
ous  features of physical reality.

33.5 Simultaneity Is Relative
One remarkable consequence of relativity is that simultaneity of events and sometimes 
even their time order depend on one’s reference frame. Here we explore how this comes 
about.

Figure 33.10a shows two identical rods approaching each other in a reference frame S 
where they have the same speed v. Figure 33.10b shows that the right end of rod A passes 
the right end of rod B at the same instant that the left ends pass. Call the passing of the two 
right ends event E1 and the passing of the left ends E2. Events E1 and E2 are simultaneous, 
meaning they occur at the same time in S.

Now consider a reference frame S′ in which rod A is at rest and is therefore longer 
than it was in frame S. Rod B, meanwhile, is moving toward rod A with a greater speed 
relative to S′ than it had relative to S. Therefore, it’s shorter than it was in S. Figure 33.11 
shows that, as a result of their different lengths, the right ends of the two rods coincide 
before the left ends; in other words, event E1 precedes E2. Now look at the situation 
from a reference frame in which rod B is at rest, and you’ll see that E2 precedes E1 
(Fig. 33.12). So events that are simultaneous in one reference frame aren’t simultaneous 
in another frame.

Figure 33.10 (a) In frame S, rods A and B have 
the same speed v and both are contracted by 
the same amount. (b) Their ends coincide at 
the same time.

B

A

v

v

(a)

B

A

v

(b)

v

Figure 33.11 The passing rods viewed in a 
 reference frame S′ at rest with respect to rod A.

B

A

7 v

(a)

B

A

7 v

(b)

E1 occurs
�rst.

E2 occurs
later.

Figure 33.12 The passing rods viewed in a 
reference frame at rest with respect to rod B.

E1 occurs
later.

E2 occurs
�rst.

B

A 7 v

(a)

B

A 7 v

(b)

Isn’t this just an illusion resulting from apparent length differences due to the rods’ 
motion? Isn’t the picture in frame S (Fig. 33.10) the “real” one? No! Relativity assures 
us that all inertial reference frames are equally valid for describing physical reality. The 
length differences and changes in the ordering of events aren’t “apparent” and they aren’t 
“illusions.” They result from valid descriptions in different reference frames, and each has 
equal claim to reality. If you insist that one frame—say S—has more validity, then you’re 
clinging to the 19th-century notion that there’s one favored reference frame in which alone 
the laws of physics are valid.

But how can observers disagree about the order of events? After all, if one event causes 
another, we expect cause always to precede effect. But, as you’ll soon see, the only events 
whose time order is different for different observers are those that are so far apart in space, 
and so close in time, that not even a light signal from one event could reach the location of 
the other event before it happened. There’s no way for such events to influence each other, 
so they can’t be causally related.
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GoT IT? 33.3 A comet plunges into the planet Jupiter. At the instant this happens, 
your physics class on Earth begins; in other words, the comet collision is simultaneous 
with your class beginning. A friend traveling from Earth toward Jupiter in a high-speed 
spaceship would say that (a) the comet collision occurs before your class begins; (b) the 
comet collision occurs after your class begins; (c) the comet collision and the beginning of 
your class are simultaneous.

33.6 The Lorentz Transformations
Events are determined by where (three spatial coordinates) and when (time) they occur. 
Our work with time dilation, length contraction, and the ordering of events suggests that 
these coordinates depend on one’s frame of reference. Here we develop general expres-
sions, called the Lorentz transformations, that relate the time and space coordinates of 
events in different reference frames.

Consider coordinate axes in a reference frame S and in another frame S′ moving in 
the x-direction with speed v relative to S. The origins of the two systems coincide at 
time t = t′ = 0. Given an event with coordinates x, y, z, t in S, what are its coordinates 
x′, y′, z′, t′ in S′? Were it not for relativity, we’d expect y, z, and t to remain unchanged, 
while the relative motion along x means a given x in S would correspond to x′ = x - vt 
in S′ (Fig. 33.14).

Relativity should alter the transformations for both time and the spatial coordinate, x, 
along the direction of relative motion. However, our results must reduce to the nonrelativ-
istic results x′ = x - vt and t′ = t in the limit v V  c. A simple form with this property is 
x′ = g1x - vt2, where g is a factor, still to be determined, that reduces to 1 as v S 0. We 
could also transform the other way; the only difference is that the x-axis is moving in the 

ConCEPTUAL ExAMPLE 33.1  “Running Slow”: A Contradiction?

25 years at that event. So, from the ship’s viewpoint, Earth and star 
clocks are out of sync by 16 years. Figure 33.13 shows the situation 
from the ship’s frame. Compare with Figs. 33.8a and b: Each observer 
thinks the other’s clocks “run slow,” yet there’s no contradiction!

This example shows a situation in which the space and time coor-
dinates of an event (here the ship’s arrival at the star) are different in 
the two reference frames considered. In Section 33.6, you’ll see how 
the Lorentz transformations describe quantitatively the relationship 
between event coordinates in different reference frames.

MakIng thE ConnECtIon For the star trek of Example 33.1, how 
do Earth and the star clock readings differ as judged in the spaceship’s 
reference frame?

EvaluatE The ship sees Earth–star clocks “running slow” by the 
factor 21 - 0.952 = 0.312. Given the 7.8-year time for the trip on 
the ship clock, observers on the ship judge that the elapsed time in 
the Earth–star frame is only 17.8 years210.3122 = 2.4 years. But we 
know the star clock reads 25 years when the ship arrives, so the Earth 
clock is behind by 25 years - 2.4 years = 22.6 years as judged in the 
ship’s reference frame.

In Example 33.2, the outbound trip from Earth to star took 25 years 
in the Earth–star reference frame but only 15 years in the spaceship’s 
frame. Thus, observers in the Earth–star frame can say that clocks on 
the ship “run slow.” What do passengers on the ship say about clocks 
in the Earth–star frame?

EvaluatE During the outbound trip, the spaceship is in a perfectly 
good inertial reference frame. So the laws of physics are the same 
for the ship’s passengers as they are for earthbound observers, and 
they can make exactly the same argument: They see Earth and star 
moving, and they conclude that clocks in the Earth–star frame must 
“run slow.”

Were you inclined to give the seemingly more logical answer that, 
since the ship clocks “run slow,” the Earth–star clocks “run fast”? If 
so, you haven’t applied the principle of relativity: The laws of phys-
ics are the same in all inertial reference frames. There’s nothing spe-
cial about the spaceship’s frame that would make it see Earth’s clocks 
“running fast” when observers on Earth, in an exactly analogous situ-
ation, see the ship’s clocks “running slow.”

assEss How is this not a contradiction? The answer lies in the 
relativity of simultaneity. Earth and star clocks are synchronized 
in the Earth–star frame, but not in the ship’s frame. From the 
ship’s viewpoint, Earth–star clocks are “running slow” by the fac-
tor 21 - v2/c2 = 0.6 that we found in Example 33.2. So the  
15-year trip time in the ship frame takes, from the ship’s perspective, 
only (0.6)(15 years) = 9 years on the Earth–star clocks. The Earth 
clock read zero when the ship left Earth, so in the ship frame it reads  
9 years when the ship reaches the star. Yet the star clock reads  

v
u

v
u

Earth Star

09 25

15

12 ly 

Figure 33.13 The situation in the ship’s 
frame. Note that Earth, star, and the 
distance between them are contracted, 
while the ship appears longer than in 
Fig. 33.8.

Figure 33.14 Nonrelativistic picture of two 
 coordinate axes in relative motion, shown at 
time t = 2 s. In general, x′ = x - vt.

v = 1 m>s
-2 -1 0 1 2 3 4 5 6

-1 0 1 2 3 4 5 6 7

x

x′

At t = 2 s, the x′-axis has moved 2 m
to the right, so x′ is 2 m less than x.
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negative direction relative to x′. Therefore, we should have a similar form, with the sign 
of v reversed: x = g1x′ + vt′2. Now suppose a light flash goes off just as the origins of 
the two coordinate systems coincide. The coordinates of this event, E1, are x = 0, t = 0 
in S, and x′ = 0, t′ = 0 in S′. At some later time t, an observer at position x in S observes 
the light flash; call this event E2. Since light travels with speed c, x = ct. In frame S′, E2 
has coordinates x′, t′. But relativity requires that light travel with speed c in all inertial 
reference frames, so we must have x′ = ct′. Putting these expressions for x and x′ in 
our proposed transformation equations gives ct′ = gt1c - v2 and ct = gt′1c + v2. Mul-
tiplying these two equations yields c2 = g21c - v21c + v2 = g21c2 - v22. Therefore, 
g = 1/21 - v2/c2. Taking v S 0 in this expression shows that g S 1 in the nonrelativ-
istic limit, as required. So we have our transformation equations for x.

What about y, z, and t? The y- and z-axes are perpendicular to the direction of motion, 
so there’s no length contraction and therefore y′ = y and z′ = z. The fact of time dilation 
makes clear that measures of time differ in different reference frames, so it’s not surpris-
ing that t′≠  t. You can derive the transformation equations for t from those for x (see 
 Problem 44). The results, along with the equations we found for x, y, and z, are summarized in  
Table 33.1.

Table 33.1 The Lorentz Transformations

S to S′ S′ to S
y′ = y y = y′
z′ = z z = z′
x′ = g1x - vt2 x = g1x′ + vt′2 where g =

121 - v2/c2
t′ = g1t - vx/c22 t = g1t′ + vx′/c22

Figure 33.15 The relativistic factor g differs 
significantly from 1 only as relative speeds 
 approach c.
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problEM-solvIng stratEgy 33.1 Lorentz Transformations

InTERPRET Make sure the problem involves space and time coordinates of events as measured 
in two different frames of reference. Identify the frames, which generally are those of specific 
objects introduced in the problem statement. Identify also the events and the particular coordi-
nates you’re interested in.

DEvELoP Establish coordinate systems in the two reference frames, arbitrarily designated S 
and S′. Choosing the direction of relative motion along the x-axis will let you use the Lorentz 
transformations as they appear in Table 33.1. Remember that time is also a coordinate, and 
take the two coordinate systems to coincide at time t = t′ = 0. You’ll make the math simpler 
by choosing the origin in space and time to occur at one of the events in the problem. Then 
determine any other event coordinates that are implicit in the problem statement.

EvALUATE Apply the appropriate Lorentz transformations from Table 33.1 to calculate the 
unknown coordinates.

ASSESS Ask whether your results make sense. If your calculated order of events differs in 
different frames, be sure you’re dealing with events that are far enough apart in space and close 
enough in time that they can’t be causally related.

The relativistic factor g = 1/21 - v2/c2 appears throughout special relativity; in fact, 
you’ve already encountered it (or, rather, its inverse) in Equations 33.3 and 33.4, the ex-
pressions for time dilation and length contraction. Figure 33.15 shows that g increases 
very slowly as the relative speed v increases; even at v = 1

2c, g is only 1.15. That slow 
increase occurs because g depends not on v in comparison with c but on the square of v 
relative to c2. If v is much less than c, then v2/c2 is truly tiny. But at high relative speeds, g 
shoots up rapidly, asymptotically approaching infinity as v S c. That’s why we don’t no-
tice relativistic effects except at high relative speeds. But they’re there, and sensitive meas-
urements can distinguish relativistic from Newtonian predictions even at relatively low 
speeds. The Michelson–Morley experiment is an example; it used Earth’s orbital speed, 
only about 0.0001c, and therefore needed the exquisite sensitivity of an interference-based 
technique.
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Relativistic velocity Addition
If you’re in an airplane going 1000 km/h relative to the ground and you walk toward the front 
of the plane at 5 km/h, common sense suggests that you move at 1005 km/h relative to the 
ground. But measures of time and distance vary among frames of reference in relative motion. 
For this reason the velocity of an object with respect to one frame doesn’t simply add to the 
relative velocity between frames to give the object’s velocity with  respect to another frame. In 
the airplane your speed with respect to the ground is actually a little less than 1005 km/h as 
you stroll down the aisle, although the difference is insignificant at such a low speed.

The correct expression for relativistic velocity addition follows from the Lorentz 
transformations. Consider a reference frame S and another frame S′ moving in the positive 
x-direction with speed v relative to S. Let their origins coincide at time t = t′ = 0, so the 
Lorentz transformations of Table 33.1 apply.

Suppose an object moves with velocity u′ along the x′-axis in S′. We seek the velocity 
u of the object relative to the frame S. (We’re using u and u′ for the object because we’ve 
already used v for the relative velocity of the reference frames.)

In either frame, velocity is the ratio of change in position to change in time, or 
u = ∆x/∆t. Designating the beginning of the interval ∆t by the subscript 1 and the end by 
2, we can use the Lorentz transformations to write

∆x = x2 - x1 = g31x2
= - x1

=2 + v1t2
= - t1

=24 = g1∆x′ + v ∆t′2
and

∆t = t2 - t1 = g31t2
= - t1

=2 + v1x2
= - x1

=2/c24 = g1∆t′ + v ∆x′/c22
Forming the ratio of these quantities, we have

∆x

∆t
=

∆x′ + v ∆t′
∆t′ + v ∆x′/c2 =

1∆x′/∆t′2 + v

1 + v1∆x′/∆t′2/c2

EvaluatE We first evaluate the factor g,  finding that g =
1/21 - 0.82 = 5/3. Then we apply the transformation equation for 
t′ to get the time of the Andromeda supernova in the spacecraft’s ref-
erence frame:

tA
= = gatA -

vxA

c2 b = a5

3
ba0 -

10.8 ly/y212 Mly2
11 ly/y22 b = -2.7 My

assEss Since the Milky Way supernova goes off at tMW
= = 0, our 

negative answer means the Andromeda event occurs 2.7 million years 
earlier in the spacecraft’s reference frame. Again, there’s no problem 
with causality; since the distant events are simultaneous in some frame 
(the galaxy frame), they can’t possibly be cause and effect. You can 
easily show that a spacecraft observer going the other way would judge 
the Andromeda supernova to occur 2.7 My later. Problems 39–42  
explore a similar situation, including cases where two events occur far 
enough apart in time that they could be causally related. ■

Our Milky Way and the Andromeda Galaxy are approximately at 
rest with respect to each other and are 2 million light years (Mly) 
apart. Supernova explosions occur simultaneously in both galax-
ies, as judged in the galaxies’ reference frame. A spacecraft is 
traveling at 0.8c from the Milky Way toward Andromeda. Find the 
time  between the supernova events as measured in the spacecraft’s 
 reference frame.

IntErprEt We’re given two distant events—both supernova explo-
sions—that are simultaneous in a particular reference frame. We’re 
asked to find the time between them in a different reference frame. 
So this problem is about using the Lorentz transformations for time 
coordinates.

DEvElop Following our strategy, we establish coordinate system S,  
the galaxy reference frame. We take the origin at the Milky Way, 
with the x-axis extending through Andromeda (here we’re treating the 
galaxies as points). We take t = 0 to be the time of the supernova 
explosions, which are simultaneous in S. Then the coordinates of the 
two supernovas in S are xMW = 0, tMW = 0 and xA = 2 Mly, tA = 0. 
Here the subscripts designate not just the galaxies but the specific 
events of the supernova explosions. We show the situation at time 
t = 0 in Fig. 33.16. The other reference frame is that of the spaceship, 
which we designate S′; it’s moving at speed v = 0.8c along the x-axis 
relative to frame S. Taking the two coordinate systems to coincide at 
time t = 0 gives tMW

= = 0, and we’re in the situation we used to  derive 
the Lorentz transformations of Table 33.1. So our plan is to apply the 
transformation equation that gives t′, namely, t′ = g1t - vx/c22.

ExAMPLE 33.4 Galactic Fireworks: Using the Lorentz Transformations

Figure 33.16 Our sketch for Example 33.4, drawn in frame S at time 
t = 0, when observers in S judge both supernova explosions to 
occur. This picture does not apply in frame S′!
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636 Chapter 33 Relativity

But ∆x′/∆t′ is the velocity u′ of the object in frame S′, and ∆x/∆t is the velocity u, so

 u =
u′ + v

1 + u′v/c2  1relativistic velocity addition2 (33.5a)

The numerator of this expression is just what we would expect from common sense. But 
this simple sum of two velocities is altered by the second term in the denominator, which 
is significant only when both the object’s velocity u′ and the relative velocity v are com-
parable with c. Solving Equation 33.5a for u′ in terms of u, v, and c gives the inverse 
transformation:

 u′ =
u - v

1 - uv/c2  1relativistic velocity addition2 (33.5b)

IntErprEt The naïve answer, 1.6c, isn’t consistent with relativity. 
Instead, this is a problem involving relativistic velocity addition. We 
identify the Earth frame of reference as S′ and ship B’s frame as S. 
Ship A is moving at u′ = 0.8c relative to the Earth frame S′, and we 
want to know its speed u relative to ship B’s frame S. Ship B is also 
moving toward Earth at 0.8c, or, equivalently, Earth is moving toward 
ship B at this speed, so we identify v = 0.8c as the relative velocity 
between frames.

DEvElop With all  terms identified, our plan is to apply 
 Equation 33.5a to find the velocity u of ship A relative to ship B.

EvaluatE u =
u′ + v

1 + u′v/c2
=

0.80c + 0.80c

1 + 10.80c210.80c2/c2
=

1.6c

1.64
= 0.98c

assEss The relative speed is less than the 1.6c we get from a naïve 
addition and also less than the speed of light. This result is quite gen-
eral: Equations 33.5 imply that as long as an object moves with speed 
u 6  c relative to some frame, then its speed relative to any other frame 
is less than c. And if you set u = c to describe a light beam, you’ll 
find that Equations 33.5 give u′ = c as well— reaffirming the rela-
tivistic point that the speed of light is the same in all inertial reference 
frames. ■

Two spacecraft approach Earth from opposite directions, each moving 
at 0.80c relative to Earth, as shown in Fig. 33.17a. How fast do the 
spacecraft move relative to each other?

ExAMPLE 33.5 Relativistic velocity Addition: Collision Course

Figure 33.17 Sketch for Example 33.5 (a) in Earth’s frame S′ and (b) in 
 spacecraft B’s frame S.

(a)

(b)

GoT IT? 33.4 You’re driving down the highway, and your speedometer reads ex-
actly 30 km/h. A car passes you, going in the same direction at exactly 20 km/h relative 
to you. Does its speedometer—which measures the car’s speed relative to the road—read  
(a) more or (b) less than 50 km/h?

Is Everything Relative?
You already know the answer: The laws of physics aren’t relative—that’s the  fundamental 
principle of relativity. Neither is the speed of light, whose existence and value fol-
low from laws of physics—specifically, Maxwell’s equations. And there are a host of 
other  relativistic invariants, independent of reference frame. One such invariant is the 
 spacetime interval, a kind of four-dimensional “distance” between two events in space 
and time. The spacetime interval is given by an expression that looks like a modified 
 Pythagorean theorem:

 1∆s22 = c21∆t22 - 31∆x22 + 1∆y22 + 1∆z224  (33.6)
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33.7 Energy and Momentum in Relativity 637

where the ∆ quantities are the differences between the time and space coordinates of the 
events. The invariance of ∆s follows directly from the Lorentz transformations, as you can 
show in Problem 63.

The spacetime interval describes a relation between two events that’s independent 
of reference frame. The invariance of the spacetime interval suggests that something 
absolute underlies the shifting sands of relativistic space and time. That something is 
 spacetime—a four-dimensional framework linking space and time into a single contin-
uum. The spacetime interval is the magnitude of a four-dimensional vector—a  4-vector—
whose  components involve the three spatial distances ∆x, ∆y, ∆z and the time ∆t between 
two events. The individual space and time components differ in different reference 
frames, but they always conspire to give the same invariant interval. This is analogous to 
the vectors of ordinary two- and three-dimensional space, where the vector components 
depend on your choice of coordinate system. But the actual vector  quantity—for exam-
ple, a force—has a reality independent of your coordinate choices, and its magnitude 
doesn’t depend on the coordinate system (Fig. 33.18). This analogy isn’t perfect because 
of the negative sign in Equation 33.6’s expression for the spacetime interval. That sign 
reflects the fact that the underlying geometry of spacetime isn’t the Euclidean geometry 
you learned in high school.

Other 4-vectors play a role in more advanced treatments of relativity. These include a 
four-dimensional electric-current density, whose components involve charge density and 
the three components of ordinary current density; a four-dimensional wave vector that 
links frequency and wavelength and whose invariant magnitude yields the Doppler effect 
in its correct relativistic form; and a 4-potential that yields both the electric and magnetic 
fields. A particularly important example is the energy–momentum 4-vector. Its invariant 
magnitude is famously related to mass, as you’ll see in the next section.

33.7 Energy and Momentum in Relativity
Conservation of momentum and conservation of energy are cornerstones of Newtonian 
mechanics, where they hold in any inertial reference frame. But momentum and energy 
are functions of velocity, and we’ve just seen that relativity alters the Newtonian picture of 
how velocities transform from one reference frame to another. How, then, can momentum 
and energy be conserved in all reference frames?

Momentum
In Newtonian mechanics the momentum of a particle with mass m and velocity u

!
 is mu

!
. 

(Here we use u
!
 for particle velocities, reserving v

!
 for the relative velocity between refer-

ence frames.) But if a system’s momentum—the sum of its individual particles’ momenta 
mu

!
—is conserved in one frame of reference, then relativistic velocity addition suggests 

that it won’t be conserved in another. But conservation of momentum is a fundamental 
law, one that transcends Newtonian physics. So momentum is conserved in relativity (and, 
indeed, in quantum physics as well). The problem here lies not with momentum conserva-
tion but with the Newtonian expression for momentum. The expression mu

!
 is actually an 

approximation valid only for speeds u much less than c. The measure of momentum valid 
at any speed is

 p
!

=
mu

!21 - u2/c2
= gmu

!
  1relativistic momentum2 (33.7)

where g is the relativistic factor that we introduced with the Lorentz transformations. The 
momentum in Equation 33.7 is conserved in all reference frames, and at low velocities it 
reduces to the Newtonian expression p

!
= mu

!
.

As u S c, the factor g grows arbitrarily large, and so does the relativistic momen-
tum (Fig. 33.19). Since force is the rate of change of momentum, that means a very large 
force is required to produce even the slightest change in the velocity of a rapidly mov-
ing particle. This helps answer a common question about relativity: Why is it impossible 

Figure 33.19 The ratio of relativistic momen-
tum to Newtonian momentum mu. The curve 
follows Equation 33.7; crosses and circles mark 
experimental data. Compare with Figure 33.15.
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Figure 33.18 Although the x- and y- components 
of an ordinary vector  depend on the choice  
of coordinate system, the magnitude of the 
vector does not.
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638 Chapter 33 Relativity

to  accelerate an object to the speed of light? One answer is that the object’s momentum 
would approach infinity, and no matter how close to c it was moving, it would still require 
infinite force to give it the last bit of speed.

Energy and Mass
The most widely known result of relativity is the equation E = mc2. Here we develop a 
general expression for relativistic energy and show just what E = mc2 means. In the pro-
cess you’ll gain new insights into energy, momentum, and mass.

In Chapter 6 we derived the work–energy theorem, and thus developed the concept of 
kinetic energy, by calculating the work needed to accelerate a mass m from rest to some 
final speed. We did that by integrating force over distance, using Newton’s law F = dp/dt 
to write force in terms of momentum. We’ll do the same thing here, now using our relativ-
istic expression for momentum. So we have

dp

dt
=

d

dt
 c mu21 - u2/c2

d =
m1du/dt2

11 - u2/c223/2

Then the kinetic energy gained as a particle accelerates from rest in our reference frame to 
a final speed u is

K = L
dp

dt
 dx = L

dp

dt
 u dt = L

m1du/dt2
11 - u2/c223/2 u dt = L

u

0

mu

11 - u2/c223/2 du

where we used u = dx/dt to replace dx with u dt. The integral is readily evaluated using 
the fact that u du = 1

2 d1u22, giving

 K =
mc221 - u2/c2

- mc2 = gmc2 - mc2 (33.8)

for a particle’s kinetic energy in a reference frame where the particle has speed u. Once 
again, g here is the relativistic factor 1/21 - u2/c2.

For speeds low compared with c, Equation 33.8 reduces to the Newtonian K = 1
2 mu2, 

as you can show in Problem 61. But Equation 33.8 suggests, more generally, that  kinetic 
energy is the difference of two energies—the velocity-dependent quantity gmc2 and the 
term mc2 that depends only on mass, not velocity. Pursuing this interpretation, we identify 
gmc2 as the particle’s total energy and mc2 as its rest energy. Rearranging  Equation 33.8 
lets us write the total energy as the sum of the kinetic energy and the rest energy: 
E = K + mc2 or, more simply

 E = gmc2 =
mc221 - u2/c2

  1total energy2 (33.9)

What does all this mean? Put u = 0 in Equation 33.9 and you get E = mc2— showing 
that the total energy of a stationary particle isn’t zero but is directly proportional to its 
mass. Thus that particle has energy simply by virtue of having mass or, as Einstein first 
recognized, mass and energy are equivalent. The proportionality between mass and  energy 
is a whopping big c2—about 9 * 1016 J/kg in SI units.

Although we developed Equation 33.9 by considering kinetic energy, the mass– energy 
equivalence E = mc2 is universal. Energy, like mass, exhibits inertia. A hot object is 
slightly harder to accelerate than an otherwise identical cold one because of the inertia 
of its thermal energy. A stretched spring is more massive than an otherwise identical un-
stretched one because of its extra potential energy. When a system loses energy, it loses 
mass as well.

To the public, E = mc2 is synonymous with nuclear energy. The equation does de-
scribe mass changes in nuclear reactions, but it applies equally well to chemical reactions 
and all other energy conversions. Weigh a nuclear power plant and weigh it again a month 
later, and you’ll find it weighs slightly less. Weigh a coal-burning power plant and all the 

APPLICATIon Relativity in the  
PET SCAnS Hospital

Positron emission tomography (PET) is a medical 
imaging technology based on electron– positron an-
nihilation (see Example 33.6 on the next page for 
more on positrons and electron–positron annihila-
tion). To produce a PET scan, a patient is adminis-
tered a positron-emitting radioisotope. The isotopes 
used are short-lived, so there’s no lingering ra-
dioactivity; common  isotopes include oxygen-15  
(2 minutes), carbon-11 (20 minutes), and nitro-
gen-13 (10 minutes). (You’ll learn more about 
radioisotopes and their half-lives in Chapter 38.) 
These substances are combined chemically to re-
place ordinary  oxygen, carbon, or nitrogen in such 
materials as water (H2O), carbon dioxide (CO2), 
ammonia (NH3), or more complex biomolecules 
such as glucose. Given their short lives, the radioi-
sotopes must be produced on site, using a  cyclotron 
(see Chapter 26’s Application on page 473).

Each radioactive nucleus decays by emitting 
a positron. In body tissue, the positron very soon 
meets an ordinary electron and the pair annihi-
late. Positron and electron have the same mass m, 
and the rest mass of both particles is converted 
completely to energy according to E = mc2. 
In order to conserve momentum, this energy 
emerges in the form of two 511-keV gamma rays 
moving in opposite directions. The PET scanning 
technology uses multiple gamma-ray detectors 
arrayed around the patient. Electronic circuitry 
identifies pairs of gamma rays emitted simulta-
neously. Each pair determines a line, connecting 
two detectors, on which the emission took place; 
examining multiple pairs determines the point 
where the emission occurred. Since each positron 
travels a negligible distance before encountering 
an electron, the gamma-ray emission region is 
where the radioisotopes are located. By choos-
ing radioactively “tagged” substances that con-
centrate in specific tissues, clinicians can image 
particular physiological processes. The image 
shows two pet scans of a human brain, with the 
different patterns corresponding to active word 
recognition.
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33.7 Energy and Momentum in Relativity 639

coal and oxygen that go into it for a month, then weigh all the carbon dioxide and other 
combustion products, and you’ll find a difference. If both plants produce the same amount 
of energy, the mass difference is the same for both. The distinction lies in the amount 
of mass released as energy in individual reactions. Fission of a single uranium nucleus 
involves about 50 million times as much energy, and therefore mass, as the reaction of a 
carbon atom with oxygen to make carbon dioxide. That’s why a coal-burning power plant 
consumes many hundred-car trainloads of coal each week, while a nuclear plant needs 
only a few truckloads of uranium every year or so. Incidentally, neither process converts 
very much of the fuel mass to energy; if we could convert all the mass in a given object to 
energy, ordinary matter would be an almost limitless source of energy. Such conversion is 
in fact possible, but only in the annihilation of matter and antimatter.

need the electron mass m, which is given inside the front cover of this 
book.

EvaluatE We have E = mc2 = 19.11 * 10-31 kg213.00 * 108 m/s22=  
82.0 fJ.

assEss High-energy physicists usually work in electronvolts, and 
our 82-fJ answer is equivalent to 511 keV. Detection of 511-keV 
gamma rays from laboratory or astrophysical sources is a sure sign of 
electron–positron annihilation. The Application on the preceding page 
shows how the medical technique PET (positron emission tomogra-
phy) uses these annihilation gamma rays to image processes occurring 
inside the body. ■

A positron is an antimatter particle with the same mass as the electron 
but the opposite electric charge. When an electron and positron meet, 
they annihilate and produce a pair of identical gamma rays (bundles of 
electromagnetic energy). Find the energy of each gamma ray.

IntErprEt This is a problem about mass–energy equivalence— 
in this case all the mass of the electron–positron pair changing to 
gamma-ray energy. We’ll assume the pair has negligible kinetic 
 energy K, so the total energy available is just their rest energy.

DEvElop With K = 0, Equation 33.9 reduces to E = mc2. Since 
there are two particles, each of mass m, and two identical gamma rays, 
each gets energy mc2. So our plan is to evaluate this quantity. We’ll 

ExAMPLE 33.6 Mass–Energy Equivalence: Annihilation

EvaluatE (a) We have

K = E - mc2 = 2.50 MeV - 0.511 MeV = 1.99 MeV

(b) Since E = gmc2, g = E/mc2 = 2.50 MeV/0.511 MeV = 4.89. 
But g = 1/21 - u2/c2, which we solve to get

u = c21 - 1/g2 = 2.94 * 108 m/s

assEss Our answer for kinetic energy is considerably greater than 
the electron’s rest energy, and our speed u is close to c, both confirm-
ing that this is a relativistic electron. ■

An electron has total energy 2.50 MeV. Find (a) its kinetic energy and 
(b) its speed.

IntErprEt Here we’re given the electron’s total energy and asked 
how much of that is the kinetic energy associated with its speed, 
which we’re also asked for.

DEvElop Equation 33.9 gives total energy, which is the sum of ki-
netic energy K and rest energy mc2. So our plan is to subtract the rest 
energy to find the kinetic energy. Equation 33.9 also expresses the to-
tal energy as gmc2, so we can find g = 1/21 - u2/c2 and then solve 
for the speed u. We don’t need to calculate mc2 because we found it in 
Example 33.6: For the electron, mc2 = 511 keV or 0.511 MeV.

ExAMPLE 33.7 Total Energy: A Relativistic Electron

Given the fame of E = mc2, it’s easy to overlook the fact that the rest energy mc2 is 
generally only part of a particle’s total energy. For a particle moving at velocity u that’s 
small compared with c, the total energy is only slightly greater than mc2; the extra is very 
nearly the Newtonian kinetic energy, 1

2 mu2. (Here “at rest” and “moving” are, as always, 
relative to some inertial reference frame.) But when a particle moves with nearly the speed 
of light, the relativistic factor g = 1/21 - u2/c2 becomes much greater than 1, and the 
total energy gmc2 is many times the rest energy. Such a particle is termed relativistic.

GoT IT? 33.5 The rest energy of a proton is 938 MeV. Without doing any calcula-
tions, quickly estimate the speed of a proton with total energy 1 TeV 11012 eV2.
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The Energy–Momentum Relation
In Newtonian physics the equations p = mu and K = 1

2 mu2 yield p2 = 2K/m.  Similarly, 
Problem 62 shows that in relativity we can combine the equations p = gmu and 
E = gmc2 to get

 E2 = p2c2 + 1mc222  1energy9momentum relation2 (33.10)

which involves E rather than K because in relativity the energy includes both kinetic and 
rest energies. For a particle at rest, p = 0 and Equation 33.10 shows that the total energy 
is just the rest energy. For highly relativistic particles, the rest energy is negligible and 
the total energy becomes very nearly E = pc. Some “particles”—like the photons that, in 
quantum physics, are “bundles” of electromagnetic energy—have no mass. These particles 
exist only in motion at the speed of light, and for them Equation 33.10 gives the exact rela-
tion E = pc.

Rearranging Equation 33.10 gives 1mc222 = E2 - p2c2. This should remind you 
of Equation 33.6 for the spacetime interval, whose square is the difference between the 
squares of the time component c ∆t and the spatial separation 21∆x22 + 1∆y22 + 1∆z22. 
Similarly, our rearranged Equation 33.10 gives the square of the rest energy mc2 as the 
difference between the squares of the total energy and the magnitude of the momentum 
multiplied by c. You can therefore think of energy and momentum as the time and space 
components of a 4-vector. Your frame of reference determines how this energy– momentum 
4-vector breaks out into time and space components—that is, into energy and momentum. 
In a particle’s rest frame, for example, p = 0 and the vector has only a time component 
equal to the rest energy. But no matter what frame you’re in, the magnitude of the 4-vector 
is the same, and it’s equal to the rest energy mc2. Therefore, mass—the rest energy divided 
by the constant c2—is a relativistic invariant.

33.8 Electromagnetism and Relativity
Historically, relativity arose from deep questions about the propagation of electromagnetic 
waves. We’ve seen that relativity alters concepts, such as space, time, energy, and mo-
mentum, that are fundamental to Newtonian physics. For that reason, Newtonian physics 
becomes an approximation valid at low speeds. But relativity is built on the premise that 
Maxwell’s equations of electromagnetism are correct in all reference frames—including 
the prediction of electromagnetic waves propagating at speed c. Indeed, Einstein’s 1905 
paper wasn’t titled “The Theory of Relativity,” but “On the Electrodynamics of Moving 
Bodies”—showing how intimately related are electromagnetism and relativity. Maxwell’s 
equations are relativistically correct and require no modification.

Although electric and magnetic fields in any frame of reference obey the same Maxwell 
equations, the fields themselves aren’t invariant. Sit in the rest frame of a point charge, and 
you see a spherically symmetric point-charge field. Move relative to the charge, and you 
see a magnetic field as well, associated with the moving charge. The electric field you see 
is altered; it’s no longer spherically symmetric. So electric and magnetic fields aren’t ab-
solutes; what one observer sees as a purely electric field another may see as a mix of elec-
tric and magnetic fields, and vice versa. You can think of the electric and magnetic fields 
as components of a more fundamental electromagnetic field; how that field breaks out into 
electric and magnetic fields depends on your frame of reference. Although the fields are 
different in different reference frames, there’s an important electromagnetic quantity that’s 
invariant—namely, electric charge.

We’ll illustrate the deep relationship that relativity imposes on electricity and mag-
netism by considering the force on a positively charged particle moving relative to a 
 current-carrying wire. For simplicity, assume the wire contains equal line-charge densities 
of positive and negative charge, moving in opposite directions with the same speed v relative 
to the wire (Fig. 33.20a). The resulting current produces a magnetic field that encircles the 
wire, and the charged particle moving to the right with velocity u

u
 as shown in Fig. 33.20a  

Figure 33.20 The force on a charged particle is 
magnetic or electric, depending on the refer-
ence frame.
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experiences a magnetic force F
S

B = qu
!
 *  B

S
 toward the wire. Because the positive and 

 negative line-charge densities are equal, the wire is neutral, so there’s no electric force.
Now look at the situation in the particle’s reference frame. The positive charges in the 

wire have a lower speed relative to the particle than the negative charges, so in the parti-
cle’s frame the distances between negative charges are contracted more than the distances 
between positive charges, as shown in Fig. 33.20b. But charge is invariant, so that means 
the charge per unit length is greater for the negative charges. In the frame of the charged 
particle, the wire carries a net negative charge! That results in an electric field pointing to-
ward the wire, and therefore the charged particle experiences an electric force F

S
E = qE

S
 

toward the wire. There’s still a magnetic field as well, but since the particle is at rest in its 
own frame, the magnetic force qu

!
 *  B

S
 is zero.

We’ve given two quite different descriptions of the force on the charged particle. 
In the wire’s reference frame, there’s a purely magnetic force that we could determine 
 knowing the magnetic force qu

!
 *  B

S
 and how magnetic fields arise from currents. In con-

trast, describing the force in the particle’s reference frame requires no knowledge of mag-
netism whatever. We need to know only the electric force qE

S
 and how electric fields 

arise from charges. This illustrates a profound point: Electricity and magnetism aren’t in-
dependent phenomena that happen to be related. Rather, they’re two aspects of a single 
 phenomenon—electromagnetism. Given the relativity principle, it’s impossible to have 
electricity without magnetism, or vice versa. Relativity provides the complete unification 
of electromagnetism that we’ve hinted at throughout our study of these phenomena. You 
can explore this unification further in Problem 74.

33.9 General Relativity
The special theory of relativity is restricted to reference frames in uniform motion. Fol-
lowing special relativity, Einstein attempted to formulate a theory that would encompass 
observers in accelerated motion. But he recognized that it’s impossible to distinguish the 
effects of uniform acceleration from those of a uniform gravitational field (Fig. 33.21). 
Consequently, Einstein’s 1916 general theory of relativity became a theory of gravity. 
General relativity describes gravity as the geometrical curvature of four-dimensional spa-
cetime. In this description, matter and energy curve spacetime in their vicinity, and objects 
moving through the curved spacetime follow the straightest possible paths—which aren’t 
the straight lines of Euclidean geometry. Figure 33.22 shows a two-dimensional analogy 
for particles in curved spacetime.

Figure 33.21 It’s impossible to distinguish the 
effects of uniform gravitation from accelera-
tion, which is why general relativity is about 
gravity.

Rocket
accelerates
in interstellar
space; no
gravity, but
ball
accelerates
relative to
rocket.

Rocket at
rest on
Earth; ball
accelerates
downward.

Earth

9.8 m>s29.8 m>s2

Figure 33.22 A two-dimensional analog of curved spacetime in general relativity.

A massive object curves
spacetime c

cparticles respond by moving
in the straightest possible paths
in curved spacetime.
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General relativity also predicts the existence of gravitational waves—literally, ripples 
in the fabric of spacetime that propagate at the speed of light. These waves are produced 
by rapid motions of large masses such as collapsed stars in close orbits, or the merger of 
two neutron stars or black holes. Elaborate efforts are underway to detect gravitational 
waves, but so far we’ve only seen them indirectly, through changes in the orbits of binary 
neutron stars as they lose energy by radiating gravitational waves. And in 2014, cosmolo-
gists reported tantalizing hints of gravitational waves from the earliest instants of the 
universe.

General relativity’s predictions differ substantially from those of Newton’s theory of 
gravity only in regions of very strong gravitational fields—far stronger than those found 
anywhere in our solar system. For that reason general relativity has become a cornerstone 
of modern astrophysics, describing the physics of such bizarre objects as neutron stars, 
black holes, and so-called gravitational lenses that can produce multiple images of as-
trophysical objects (Fig. 33.23). General relativity also addresses cosmological questions 
of the origin and ultimate fate of the universe, as you’ll see in Chapter 39. But we’re not 
without terrestrial uses for general relativity; the Global Positioning System (GPS) would 
be off by several kilometers if the effects of general relativity on the GPS satellites’ clocks 
weren’t taken into account.

Figure 33.23 The “Einstein Cross” comprises 
four images of the same quasar, formed as 
light follows different paths in the curved 
spacetime surrounding a massive galaxy 
(visible at center).
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ChaPter 33 SuMMary
Big Idea

Key Concepts and Equations

Among the laws of physics are 
Maxwell’s equations, with their pre-
diction of electromagnetic waves 
(e.g., light) propagating at the speed 
of light c. Therefore, the speed of 
light is the same in all inertial refer-
ence frames.

v
u

Light pulse

Invariance of c leads to time dilation and length contraction:

L

∆t′ = ∆t 1 - v2>c2

∆t

In C’s frame,
distance is

C

v

C2C1

C

L′ = L   1 - v2>c2

2
2

Additionally, events simultaneous in one reference frame may not be simultaneous in another frame.

Time dilation and length contraction are specific instances of the 
Lorentz transformations of space and time coordinates of events 
observed in different reference frames. The transformations here 
apply to relative motion in the x-direction.

Energy, momentum, and mass are closely related in relativity:

Momentum: p
!

=
mu

!21 - u2/c2
= gmu

!

21pc22 + 1mc222mc221 - u2>c2

Kinetic energy Rest energy

Energy: E =  = gmc2 = K + mc2 = 

The big idea here is a simple one: The laws of physics are the same for all observers and don’t depend on one’s state of motion. That’s the princi-
ple of relativity. Special relativity is restricted to inertial reference frames; general relativity removes that restriction and in so doing becomes a 
theory of gravity. Both relativity theories radically alter our commonsense notions of space and time. In relativity, measures of space and time—but 
not the laws of physics—depend on one’s reference frame.

The Michelson–Morley experiment of 
1887 failed to detect any motion of Earth 
relative to the ether, the medium in which 
19th-century physicists believed light propa-
gated with speed c. This result helped pave 
the way for relativity, with no ether and with 
c the same in all inertial reference frames.

Underlying the changing measures of space and time is four- 
dimensional spacetime, in which exist 4-vectors whose magnitude 
is independent of reference frame.

Invariant spacetime interval:

1∆s22 = c21∆t22 - 31∆x22 + 1∆y22 + 1∆z224
Invariant particle mass:

1mc222 = E2 - p2c2

Applications

Relativity shows that velocities don’t simply 
add; rather,

u =
u′ + v

1 + u′v/c2

where u′ is an object’s velocity relative to a 
reference frame S′, u its velocity relative to 
frame S, and v the relative velocity between 
S and S′.

Einstein’s equation E = mc2 describes a 
universal interchangeability between mat-
ter and energy; contrary to common opin-
ion, it isn’t just about nuclear energy.

S to S′ S′ to S

y′ = y y = y′

where g =
121 - v2/c2

z′ = z z = z′
x′ = g1x - vt2 x = g1x′ + vt′2
t′ = g1t - vx/c22 t = g1t′ + vx′/c22
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For homework assigned on MasteringPhysics, go to www.masteringphysics.com

BIO Biology and/or medicine-related problems DATA Data problems ENV Environmental problems CH Challenge problems

18. An extraterrestrial spacecraft whizzes through the solar system at 
0.80c. How long does it take to go the 8.3 light-minute-distance 
from Earth to Sun (a) according to an observer on Earth and  
(b) according to an alien aboard the ship?

19. How fast would you have to move relative to a meter stick for it 
to be 99 cm long in your reference frame?

20. A hospital’s linear accelerator produces electron beams for can-
cer treatment. The accelerator is 1.6 m long and the electrons 
reach a speed of 0.98c. How long is the accelerator in the elec-
trons’ reference frame?

Section 33.7 Energy and Momentum in Relativity
21. By what factor does an object’s momentum change if you double 

its speed when its original speed is (a) 25 m/s and (b) 100 Mm/s?
22. At what speed will the momentum of a proton (mass 1 u) equal 

that of an alpha particle (mass 4 u) moving at 0.5c?
23. At what speed will the Newtonian expression for momentum be 

in error by 1%?
24. A particle is moving at 0.90c. If its speed increases by 10%, by 

what factor does its momentum increase?
25. Find (a) the total energy and (b) the kinetic energy of an electron 

moving at 0.97c.
26. At what speed will the relativistic and Newtonian expressions for 

kinetic energy differ by 10%?

Problems
27. Show that the time of Equation 33.2 is longer than that of 

 Equation 33.1 when 0 6  v 6  c.
28. You’re designing a Michelson interferometer in which a speed-

of-light difference of 100 m/s in two perpendicular directions is 
supposed to shift the interference pattern so a bright fringe of 
550-nm light ends up where the adjacent dark fringe would be in 
the absence of a speed difference. How long should you make the 
interferometer’s arms?

29. Earth and Sun are 8.3 light minutes apart, as measured in their 
rest frame. (a) What’s the speed of a spacecraft that makes the 
trip in 5.0 min according to its on-board clocks? (b) What’s 
the trip time as measured by clocks in the Earth–Sun reference 
frame?

30. You’re the communications officer on a fast spaceship that takes 
50 years in ship time to reach the Andromeda Galaxy, 2 million 
light years from Earth in the common rest frame of Earth and 
 Andromeda. As soon as you reach Andromeda, your captain 
 orders you to send a radio message to Earth announcing your 
arrival; he claims the message will reach Earth about a century 
after you left. You claim it will be much later when the message 
arrives. Who’s right?

31. You wish to travel to a star N light years from Earth. How fast 
must you go if the one-way journey is to occupy N years of your 
life?

32. The nearest star beyond our solar system is about 4 light years 
away. If a spaceship can get to the star in 5 years, as measured 
on Earth, (a) how long would the ship’s pilot judge the journey to 
take? (b) How far from Earth would the pilot find the star to be?

33. Twins A and B live on Earth. On their 20th birthday, twin B 
climbs into a spaceship and makes a round-trip journey at 0.95c 
to a star 30 light years distant, as measured in the Earth–star ref-
erence frame. What are their ages when twin B returns to Earth?

BIO

For thought and Discussion
 1. Why was the Michelson–Morley experiment a more sensitive test 

of motion through the ether than independent measurements of 
the speed of light in two perpendicular directions?

 2. Why was it necessary to repeat the Michelson–Morley experi-
ment throughout the year?

 3. What’s special about the special theory of relativity?
 4. Does relativity require that the speed of sound be the same for all 

observers? Why or why not?
 5. Time dilation is sometimes described by saying that “moving 

clocks run slow.” In what sense is this true? In what sense does 
the statement violate the spirit of relativity?

 6. If you’re in a spaceship moving at 0.95c relative to Earth, do you 
perceive time to be passing more slowly than it would on Earth? 
Think! Is your answer consistent with the relativity principle?

 7. The Andromeda Galaxy is 2 million light years from the Milky 
Way. Although nothing can go faster than light, it would still 
be possible to travel to Andromeda in much less than 2 million 
years. How?

 8. Is matter converted to energy in a nuclear reactor? In a burning 
candle? In your body?

 9. If you took your pulse while traveling in a high-speed spacecraft, 
would it be faster than, slower than, or the same as on Earth?

 10. The rest energy of an electron is 511 keV. What’s the approxi-
mate speed of an electron whose total energy is 1 GeV? (Note: 
No calculations needed!)

 11. An atom in an excited state emits a burst of light. What happens 
to the atom’s mass?

 12. The quantity E
S # B

S
 is invariant. What does this say about how 

different observers will measure the angle between E
S

 and B
S

 in 
a light wave?

exercises and Problems
Exercises
Section 33.2 Matter, Motion, and the Ether
13. An airplane makes a round trip between two points 1800 km 

apart, flying with airspeed 800 km/h. What’s the round trip fly-
ing time (a) if there’s no wind, (b) with wind at 130 km/h per-
pendicular to a line joining the two points, and (c) with wind at  
130 km/h along a line joining the two points?

14. Consider a Michelson–Morley experiment with 11-m light 
paths perpendicular and parallel to the ether wind. What would 
be the difference in light travel times on the two paths if Earth 
moved relative to the ether at (a) its orbital speed (Appendix E);  
(b) 0.01c; (c) 0.5c; and (d) 0.99c?

Section 33.4 Space and Time in Relativity
15. Two stars are 50 ly apart, measured in their common rest frame. How 

far apart are they to a spaceship moving between them at 0.75c?
16. How long would it take a spacecraft traveling at 0.65c to get from 

Earth to Pluto according to clocks (a) on Earth and (b) on the space-
craft? Assume Earth and Pluto are on the same side of the Sun.

17. A spaceship passes by you at half the speed of light, and you 
 determine that it’s 35 m long. Find its length as measured in its 
rest frame.

For homework assigned on MasteringPhysics, go to www.masteringphysics.com

BIO Biology and/or medicine-related problems DATA Data problems ENV Environmental problems CH Challenge problems Comp Computer problems
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Exercises and Problems 645

47. How fast would you have to go to reach a star 240 light years 
away in an 85-year human lifetime?

48. An advanced civilization has developed a spaceship that goes, 
with respect to the galaxy, only 50 km/s slower than light.  
(a) According to the ship’s crew, how long does it take to cross 
the galaxy’s 100,000-ly diameter? (b) What’s the galactic diam-
eter measured in the ship’s reference frame?

49. A spaceship travels at 0.80c from Earth to a star 10 light years 
distant, as measured in the Earth–star reference frame. Let event 
A be the ship’s departure from Earth and event B its arrival at 
the star. (a) Find the distance and time between the two events 
in the Earth–star frame. (b) Repeat for the ship’s frame. (Hint: 
The distance in the ship frame is the distance an observer has 
to move with respect to that frame to be at both events—not the 
same as the Lorentz-contracted distance between Earth and star.) 
(c) Compute the square of the spacetime interval in both frames 
to show explicitly that it’s invariant.

50. Use Equation 33.6 to calculate the square of the spacetime inter-
val between the events (a) of Problem 39 and (b) of Problem 40. 
Comment on the signs of your answers in relation to the possibil-
ity of a causal relationship between the events.

51. A light beam is emitted at event A and arrives at event B. Show 
that the spacetime interval between the two events is zero.

52. Compare the momentum changes needed to boost a spacecraft 
(a) from 0.10c to 0.20c and (b) from 0.80c to 0.90c.

53. Event A occurs at x = 0 and t = 0 in reference frame S. Event B 
occurs at x = 3.8 light years and t = 1.6 years in S. Find (a) the 
distance and (b) the time between A and B in a frame moving at 
0.80c along the x-axis of S.

54. When a particle’s speed doubles, its momentum increases by a 
factor of 3. What was its original speed?

55. Find (a) the speed and (b) the momentum of a proton with kinetic 
energy 500 MeV.

56. The Large Hadron Collider accelerates protons to energies of  
14 TeV. (a) Compare that proton energy with the kinetic energy 
of a 25-mg bug crawling at 2.0 mm/s. (b) Compare the proton 
momentum with that of the same bug.

57. A large city consumes electrical energy at the rate of 1 GW. If 
you converted all the rest mass in a 1-g raisin to electrical energy, 
for how long could it power the city?

58. In a nuclear-fusion reaction, two deuterium nuclei combine to 
make a helium nucleus plus a neutron, releasing 3.3 MeV of en-
ergy in the process. By how much do the combined masses of the 
helium nucleus and the neutron differ from the combined masses 
of the original deuterium nuclei?

59. Find the kinetic energy of an electron moving at (a) 0.0010c,  
(b) 0.60c, and (c) 0.99c. Use suitable approximations where 
possible.

60. Find the speed of an electron with kinetic energy (a) 100 eV,  
(b) 100 keV, (c) 1 MeV, and (d) 1 GeV. Use suitable approxima-
tions where possible.

61. Use the binomial approximation (Appendix A) to show that 
Equation 33.8 reduces to the Newtonian expression for kinetic 
energy in the limit u V  c.

62. Show that Equation 33.10 follows from the expressions for rela-
tivistic momentum and total energy.

63. Show from the Lorentz transformations that the spacetime inter-
val of Equation 33.6 has the same value in all reference frames.

64. How fast would you have to travel to reach the Crab Nebula, 
6500 light years from Earth, in 15 years? Give your answer to 
seven significant figures.

65. At what speed are a particle’s kinetic and rest energies equal?

CH

CH

CH

CH

34. Radioactive oxygen-15 decays at such a rate that half the atoms 
in a given sample decay every 2 min. If a tube containing 1000 
O-15 atoms is moved at 0.80c relative to Earth for 6.67 min ac-
cording to clocks on Earth, how many atoms will be left at the 
end of that time?

35. Two distant galaxies are receding from Earth at 0.75c in opposite 
directions. How fast does an observer in one galaxy measure the 
other to be moving?

36. Two spaceships are racing. The “slower” one passes Earth at 
0.70c, and the “faster” one moves at 0.40c relative to the slower 
one. What’s the faster ship’s speed relative to Earth?

37. Use relativistic velocity addition to show that if an object moves 
at speed v 6  c relative to some inertial reference frame, then its 
speed relative to any other inertial frame must also be less than c.

38. Earth and Sun are 8.33 light minutes apart. Event A occurs on 
Earth at time t = 0 and event B on the Sun at t = 2.45 min, as 
measured in the Earth–Sun frame. Find the time order and time dif-
ference between A and B for observers (a) moving on a line from 
Earth to Sun at 0.750c, (b) moving on a line from Sun to Earth at 
0.750c, and (c) moving on a line from Earth to Sun at 0.294c.

39. You’re writing a galactic history involving two civilizations 
that evolve on opposite sides of a 1.0 * 105-ly-diameter galaxy. 
In the galaxy’s reference frame, civilization B launched its first 
spacecraft 45,000 years after civilization A. You and your read-
ers, from a more advanced civilization, are traveling through the 
galaxy at 0.99c on a line from A to B. Which civilization do you 
record as having first achieved interstellar travel, and how much 
in advance of the other?

40. Repeat Problem 39, now assuming that civilization B lags A by 
1.2 million years in the galaxy’s reference frame.

41. Could there be observers who would judge the two events in 
Problem 39 to be simultaneous? If so, how fast and in what direc-
tion must these observers be moving?

42. Could there be observers who would judge the two events in 
Problem 40 to be simultaneous? If so, how fast and in what direc-
tion must these observers be moving?

43. The Curiosity rover touched down on Mars when Earth and Mars 
were 14 light-minutes apart. At the instant of touchdown, clocks 
at Mission Control in Pasadena, California, read 10:31 pm. As 
judged by observers on a spacecraft heading along the Earth–
Mars line at 0.35c, did touchdown occur before or after the time 
the clocks in Pasadena read 10:31 pm, and by how much?

44. Derive the Lorentz transformations for time from the transforma-
tions for space.

45. In the light box of Fig. 33.6, let event A be the emission of the 
light flash and event B its return to the source. Assign suitable 
space and time coordinates to these events in the frame in which 
the box moves with speed v. Apply the Lorentz transformations 
to show that the time between the two events in the box frame is 
given by Equation 33.3.

46. You’re a consultant for the director of a sci-fi movie. The film 
starts with two spaceships, each measuring 25 m long in its rest 
frame, approaching Earth in opposite directions with speeds 
shown in Fig. 33.24. The director wants to know how long to 
make ship B for scenes shot (a) in Earth’s reference frame and 
(b) in ship A’s frame. Your answers?

BA

v = 0.65c v = 0.50c

Figure 33.24 Problem 46; the drawing is in Earth’s reference frame
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at how electric and magnetic fields transform, and demonstrates 
one instance of the fact that E

S # B
S

 and E2 - c2B2 are always 
invariant.

75. The table below lists the total energy and corresponding mo-
mentum for a particle. They’re measured in MeV and MeV/c, 
respectively—commonly used units in particle physics. Deter-
mine suitable functions of these quantities to plot such that the 
resulting plot should be a straight line. Plot your data, determine 
a best-fit line, and use it to find (a) the value of c and (b) the par-
ticle’s mass. You may need to convert to SI before plotting. Can 
you identify the particle?

Total energy, E (MeV) 0.511 1.01 1.51 2.51 3.51 4.51 5.51

Momentum, p (MeV/c) 0 0.872 1.41 2.46 3.45 4.61 5.49

Passage Problems
You’ve been named captain of NASA’s first interstellar mission since 
the Voyager robotic spacecraft. You board your spaceship, accelerate 
quickly to 0.8c, and cruise at constant speed toward Proxima Centauri, 
the closest star to our Sun. Proxima Centauri is 4 light-years distant as 
measured in the two stars’ common rest frame. On the way, you con-
duct various medical experiments to determine the effects of a long 
space voyage on the human body.

76. Taking your pulse, you find
a. it’s significantly slower than when you’re on Earth.
b. it’s the same as when you’re on Earth.
c. it’s significantly faster than when you’re on Earth.

77. How much do you age during your interstellar journey?
a. 3 years
b. just under 4 years
c. just over 4 years
d. 5 years

78. Back on Earth, Mission Control judges that your shipboard clocks 
run slow. What do you judge about clocks at Mission Control?
a. They run fast.
b. They keep time at the same rate as your clocks.
c. They run slow.
d. You can’t tell anything about their clocks.

79. In your spaceship’s reference frame, the distance from the Sun to 
Proxima Centauri is
a. 2.4 light years.
b. just under 4 light years.
c. 4 light years.
d. 5 light years.

Answers to Chapter Questions

Answer to Chapter Opening Question
The laws of physics are the same for all observers, regardless of their 
state of motion.

Answers to GOt it? Questions
  33.1 (a)
  33.2 (c)
  33.3 (b)
  33.4 (b) but only by an insignificant amount given the low relative 

speed
  33.5 less than but very nearly c

DATA

66. The highest-energy cosmic rays ever detected are protons with 
energies on the order of 300 EeV. (a) What’s Earth’s radius as 
measured in the reference frame of such a proton as it approaches 
Earth? (b) Compare the high-energy proton’s total energy with 
that of a 143-g baseball moving at 100 km/h. (c) Compare the 
proton’s momentum with that of the same baseball.

67. When an object’s speed increases by 5%, its momentum in-
creases by a factor of 5. What was its original speed?

68. Use the Lorentz transformations to show that if two events are 
separated in space and time so that a light signal leaving one 
event cannot reach the other, then there is an observer for whom 
the two events are simultaneous. Show that the converse is also 
true: If a light signal can get from one event to the other, then no 
observer will find them simultaneous.

69. A source emitting light with frequency f moves toward you at 
speed u. By considering both time dilation and the effect of 
wavefronts “piling up” as shown in Fig. 14.33, show that you 
measure a Doppler-shifted frequency given by

f ′ = fAc + u

c - u

Use the binomial approximation (Appendix A) to show that 
this result can be written in the form of Equation 14.15 when 
u V c.

70. Equation 33.5a transforms the velocity u
!
 of an object moving in 

the x-direction—the same direction as the relative velocity v
!
 of 

the two reference frames. Now suppose the object’s velocity also 
has a component uy perpendicular to the two frames’ relative ve-
locity v

!
. Find the transformation from u′y to uy.

71. Consider a relativistic particle of mass m moving along a straight 
line. Use Equation 33.7 to find an expression for the force on 
the particle, defined as F = dp/dt, in terms of its acceleration 
a = du/dt.

72. Find the speed of a particle whose relativistic kinetic energy is 
50% greater than the Newtonian value calculated for the same 
speed.

73. It’s the 24th century, and you’re a curator at the Starfleet 
 Museum of Ancient Technology. Archaeologists have unearthed 
a “TV tube,” an ancient device for displaying moving images. 
Your job is to get it working. One reference says the device ac-
celerated electrons, which then bombarded a screen to produce 
images; to the electrons, the tube was 57 cm long. You measure 
the tube and find it’s 60 cm long. To get it working, you need to 
know the electrons’ speed and the potential difference needed 
to accelerate them. The electron’s rest energy is 511 keV. Your 
answers?

74. Consider a line of positive charge with line charge density 
l as measured in a frame S at rest with respect to the charges.  
(a) Show that the electric field a distance r from this charged line 
has magnitude E = l/2pP0r, and that there’s no magnetic field 
(no relativity needed here). Now consider the situation in a frame 
S′ moving at speed v parallel to the line of charge. (b) Show that 
the charge density measured in S′ is given by l′ = gl, where 
g = 1/21 - v2/c2. (c) Use the result of (b) to find the electric 
field in S′. Since the charge is moving with respect to S′, there’s 
a current in S′. (d) Find an expression for this current and (e) for 
the magnetic field it produces. Determine the values of the quan-
tities (f) E

S # B
S

 and (g) E2 - c2B2 in both reference frames, and 
show that these quantities are invariant. Your result gives a hint 
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Particles and Waves

What You Know
■ You understand concepts of energy 

and angular momentum.

■ You’ve seen energy calculations for 
circular orbits with gravity.

■ You’ve worked with the Stefan–
Boltzmann law for the energy radiated 
by a hot object.

■ You know that, according to Maxwell’s 
equations, accelerated charge is the 
source of electromagnetic radiation, 
including light.

■ You have a solid understanding of 
Newtonian physics and how it can be 
used make deterministic predictions 
of future motion.

Newtonian mechanics and Maxwell’s electromagnetism constitute the core of classical 
physics, providing a deep understanding of physical reality. Although these theories 

were firmly established by the middle of the 19th century, they remain central to the work of 
many contemporary scientists and engineers.

Nevertheless, at the end of the 19th century a few seemingly minor phenomena defied 
classical explanation. Most physicists felt that it was only a matter of time before these, too, 
came under the classical umbrella. But that was not to be. We’ve seen how questions about 
light led to a radical restructuring of our concepts of space and time. Other questions, es-
pecially those concerning matter at the atomic scale, brought about an even more radical 
transformation of physical thought.

This chapter explores some phenomena that led to quantum physics and recounts early 
 attempts to explain them. The next chapter gives a fuller account of quantum theory, and 
subsequent chapters explore its application to atoms, molecules, nuclei, and quantum-based 
technologies.

What You’re Learning
■ You’ll see how blackbody radiation, 

the photoelectric effect, the Compton 
effect, and atomic spectra all contradict 
the predictions of classical physics.

■ You’ll learn how the quantization 
hypotheses of Planck, Einstein, and Bohr 
overcame these classical contradictions.

■ You’ll see how Planck’s constant sets 
the scale at which quantum effects 
become noticeable.

■ You’ll use the quantization condition 
E = hf  to determine photon energies.

■ You’ll learn to calculate photon 
energies and wavelengths associated 
with electron transitions in Bohr’s 
atomic model.

■ You’ll learn about the wave–particle 
duality and how to calculate the 
wavelengths of matter particles.

■ You’ll learn the uncertainty principle 
and Bohr’s complementarity principle, 
and how they’re at the basis of our 
understanding of quantum physics.

How You’ll Use It
■ Chapter 34 presents an overview of 

early quantum ideas. In Chapter 35 
you’ll see a more focused and 
quantitative development of quantum 
physics.

■ Subsequent chapters will apply 
quantum ideas to atoms, molecules, 
solids, and atomic nuclei.

Ridges and valleys represent bright and dark 
fringes in the interference pattern produced by 
two beams of ultracold sodium atoms. What does 
this picture tell us about the nature of matter?
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648 Chapter 34 Particles and Waves

34.1 Toward Quantum Theory
Are matter and energy continuously divisible? The essential difference between classi-
cal and quantum physics is that the former answers this question “in general, yes,” while 
the latter says definitively “no.” Most physical quantities are quantized, coming in only 
 certain discrete values.

The idea that physical quantities might come in discrete “chunks” is not new. Some 
2400 years ago, the Greek philosopher Democritus proposed that all matter consists of 
indivisible atoms. By the start of the 20th century, a more scientifically grounded atomic 
theory was widely accepted. J. J. Thomson’s discovery of the electron in 1897 showed that 
atoms might be divisible after all, but at the same time it revealed a finer division of matter 
into discrete “chunks.” Robert A. Millikan’s 1909 oil-drop experiment showed that electric 
charge is similarly quantized. Discovery of the proton and later the neutron further solidi-
fied the notion that matter comprises fundamental building blocks with definite values for 
their physical properties.

Quantization of matter into particles with discrete properties is not incompatible 
with classical physics as long as those particles behave according to classical laws—in 
 particular, that they move continuously through space and can have any amount of energy. 
Add electromagnetism to the picture and the classical viewpoint requires that the electric 
and magnetic fields be continuous, exerting forces on charged particles and changing, in a 
gradual and continuous way, the particles’ energies.

The startling fact of quantum physics is that this classical behavior does not occur at the 
atomic scale; instead, energy itself is often quantized. Reconciling the implications of that 
fact with our commonsense notions of matter and motion has proved impossible; instead, 
the quantum world speaks a different language, one in which deeply ingrained ideas about 
causality and the solid reality of matter seem no longer to apply. Here we look at three dis-
tinct phenomena that force us to accept the idea that energy can be quantized.

34.2 Blackbody Radiation
Heat an object hot enough and it glows, emitting electromagnetic radiation in the form 
of light. As we saw in Section 16.3, the total power radiated is proportional to the fourth 
power of the temperature. There’s also a change in wavelength with increasing tempera-
ture: The first visible glow is a dull red, changing with higher temperatures to orange and 
then yellow colors corresponding to ever-shorter wavelengths.

A perfect absorber of electromagnetic radiation is called a blackbody because 
it  absorbs all light and thus appears black. A perfect absorber is also a perfect emitter, 
and when a blackbody is heated it emits electromagnetic radiation in a broad range of 
wavelengths; this is blackbody radiation. Many objects—such as the Sun or an electric-
stove burner—behave approximately like blackbodies. An excellent approximation to a 
blackbody is a hollow piece of any material with a small hole. As Fig. 34.1 shows, any 
 radiation entering the hole undergoes multiple reflections and is eventually absorbed. The 
hole, therefore, is a nearly perfect absorber, so when the material is heated, the radiation 
 emerging is blackbody radiation.

Experimental study of blackbody radiation shows three characteristic features:

 1. The radiation covers a continuous range of wavelengths, with the total power 
 radiated at all wavelengths combined given by the Stefan–Boltzmann law that we 
introduced in Chapter 16:

 Pblackbody = sAT4 (34.1)

 where A is the area of the radiating surface, T is its absolute (kelvin) temperature, 
and s = 5.67 *  10-8 W/1m2 #  K42 is the Stefan–Boltzmann constant.

 2. The radiation peaks at a wavelength that’s inversely proportional to the temperature; 
this is known as Wien’s law.

 3. The distribution of wavelengths depends only on temperature, not on the material of 
which the blackbody is made.

Figure 34.1 A cavity with a small hole absorbs 
nearly all incident radiation and hence is a 
near-perfect blackbody.

Incoming radiation c

cis eventually all absorbed.

PheT: Blackbody Spectrum
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34.2 Blackbody Radiation 649

A blackbody’s radiance measures the radiated power as a function of wavelength. Be-
cause the blackbody emits a continuous spectrum, we have to express radiance as power 
per unit spectral interval. If we choose intervals in wavelength, then the relation implied in 
feature 2 above gives a peak radiance at wavelength lpeak such that

 lpeakT = 2.898 mm #  K  1Wien>s law2 (34.2a)

We emphasize, however, that the choice of fixed wavelength intervals is arbitrary. If we 
had chosen fixed frequency intervals, then the constant in Equation 34.2a would be differ-
ent, and a plot of radiance versus wavelength would peak at a different wavelength (see 
Problem 78). So lpeak in Equation 34.2a is not some absolute measure of the wavelength 
at which the blackbody emits the “most” radiation, but rather the wavelength of the maxi-
mum radiation if you choose to keep track of power in intervals of fixed wavelength. A 
more physically based quantity is the median wavelength, below and above which half the 
power is radiated; it’s given by

 lmedianT = 4.11 mm #  K (34.2b)

Whatever measure one chooses, though, the important point is that the peak wavelength 
is inversely proportional to temperature. In our subsequent discussion, we’ll adopt a defi-
nition of radiance as the power emitted per unit area per unit wavelength interval; then 
 Equation 34.2a describes the peak wavelength. Figure 34.2 plots this measure of black-
body radiance at three temperatures.

Microscopically, blackbody radiation is associated with the thermal motions of atoms 
and molecules, so it’s not surprising that the radiation increases with temperature. In the 
late 1800s, physicists tried to apply the laws of electromagnetism and statistical mechan-
ics to explain the experimental observations of blackbody radiation. They met with some 
success in describing such aspects as the T4 dependence of the total energy radiated, and 
the shifting of the radiation distribution toward shorter wavelengths with increasing tem-
perature, but they could not reproduce the actual observed distribution at all wavelengths.

In 1900, the German physicist Max Planck formulated an equation that fit the observed 
radiance curves for blackbody radiation at all wavelengths:

 R1l, T2 =
2phc2

l51ehc/lkT - 12 (34.3)

Two familiar quantities here are Boltzmann’s constant k = 1.38 *10-23 J/K, introduced in 
Chapter 17, and the speed of light c. A new quantity is the constant h, whose value Planck 
chose in order to make the equation fit experimental data.

Planck first presented his law as a purely empirical equation describing blackbody 
 experiments. Later he showed that his equation had a remarkable physical interpretation:
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Figure 34.2 Blackbody radiance—energy per 
unit wavelength interval—as a function of 
wavelength.

The energy of a vibrating molecule is quantized, meaning it can have only certain 
discrete values. Specifically, if f  is the vibration frequency, then the energy must be 
an integer multiple of the quantity hf:

 E = nhf,  n = 0, 1, 2, 3, . . . (34.4)

where h is the constant Planck introduced in Equation 34.3. Today we know h as one of the 
fundamental constants of nature and call it Planck’s constant. Its value is approximately 
6.63 * 10-34 J #  s, and it’s because h is so small that quantum phenomena are usually obvi-
ous only in the atomic and molecular realm. Planck’s quantization of the energy of vibrat-
ing molecules implies further that a molecule can absorb or emit energy only in discrete 
“bundles” of size hf, and that in doing so it jumps abruptly from one of its allowed energy 
levels to another (Fig. 34.3). (Later developments showed that Planck was correct about the 
size of the energy jumps but that the factor n in Equation 34.4 should actually be n + 1

2.)
Planck himself was very conservative and reluctant to accept or elaborate on his 

 theory’s evident disagreement with classical physics; nevertheless, his revolutionary work 
won Planck the 1918 Nobel Prize. Other physicists subsequently emphasized the contrast 

To ∞

E
ne

rg
y

E
ne

rg
y

6hf

5hf

7hf

4hf

3hf

2hf

hf

0
(a) (b)

To ∞

Figure 34.3 (a) In classical physics, a vibrating 
molecule can have any energy. (b) Allowed 
 energies in Planck’s theory are integer mul-
tiples of hf. Energy-level diagrams like this 
are used frequently in quantum physics, and 
usually the horizontal axis has no physical 
significance.
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650 Chapter 34 Particles and Waves

between Planck’s work and the classical treatment of blackbody radiation. That earlier 
treatment, based on the assumption that energy is shared equally among all possible vibra-
tional modes, had led to the Rayleigh–Jeans law for the radiance of a blackbody:

 R1l, T2 =
2pckT

l4  (34.5)

Not only did the Rayleigh–Jeans law contradict experimental measurements, but it also 
led to the absurd conclusion that every object, at every nonzero temperature, should emit 
electromagnetic energy at an infinite rate, with that energy concentrated at the shortest 
wavelengths (Fig. 34.4). Since the shortest wavelength electromagnetic radiation known 
at the time was ultraviolet light, this phenomenon was called the ultraviolet  catastrophe. 
In Planck’s equation, the exponential term in the denominator grows rapidly with 
 decreasing wavelength, diminishing the radiance and averting the ultraviolet catastrophe. 
 Problems 72, 76, and 79 show that Planck’s law reduces to the Rayleigh–Jeans law for 
longer wavelengths, and that it also leads to Wien’s law and the Stefan–Boltzmann law.

To ∞: the
ultraviolet catastrophe

Planck theory

Classical theory

R
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10 2 3 4

Wavelength, l (μm)

Figure 34.4 Radiance versus wavelength for 
blackbody radiation at 6000 K, showing also 
the incorrect classical prediction.

EvaluatE (a) Equation 34.2a gives l = 2.898 mm #  K/2900 K =
1.0 μm. (b) To compare radiances, we form a ratio of the right-hand 
sides of Equation 34.3 evaluated at the wavelengths l2 = 550 nm and 
l1 = 1.0 μm or 1000 nm. The numerators cancel, giving

R1l2, T2
R1l1, T2 =

l1
51ehc/l1kT - 12

l2
51ehc/l2kT - 12 = 0.34

assEss Our 1.0@μm answer for (a) lies in the infrared, suggesting 
that incandescent lightbulbs aren’t very efficient at producing visible 
light; that’s the reason they’re being phased out. Our answer to (b) 
confirms this point, showing there’s much less radiance in the visible 
than at the infrared peak. And remember that we’ve defined radiance 
as power per unit area per unit wavelength interval. If we adopt the 
more physical median wavelength given by lmedianT = 4.11 mm #  K, 
we find lmedian = 1.4 μm, well into the infrared. Since half the radia-
tion occurs at wavelengths longer than this median, the bulb emits far 
more than half its energy as invisible infrared. ■

A typical incandescent lightbulb’s filament temperature is about 
2900 K. (a) Find the wavelength of peak radiance, and (b) compare the 
radiance at 550 nm—the approximate center of the visible spectrum—
with the peak radiance.

IntErprEt This problem involves radiation from an object at a 
known temperature, and we identify the filament as a blackbody. 
We’re asked for both the peak wavelength and a comparison of radi-
ances at two different wavelengths. We’re implicitly adopting our def-
inition of radiance as power emitted per unit area per unit wavelength, 
and our answers will reflect this choice.

DEvElop Equation 34.2a gives the peak wavelength, and Equa-
tion 34.3 gives the radiance as a function of wavelength. So our 
plan for (a) is to solve Equation 34.2a, lpeakT = 2.898 mm #  K, for 
T = 2900 K. For (b) we’ll form a ratio of radiances from Equation 34.3,  
using the result of (a) and the given 550-nm visible wavelength.

ExampLE 34.1 Blackbody Radiation: Lightbulb Efficiency

GoT IT? 34.1 Two identical blackbodies, A and B, are heated until A’s temperature is 
twice B’s. Compare (1) their total radiated power and (2) their wavelengths of peak  radiance.

34.3 photons
Planck showed that vibrating molecules could exchange energy with electromag-
netic radiation only in quantized bundles of size hf. Is the radiation’s energy similarly 
 quantized?

The photoelectric Effect
In 1887 Heinrich Hertz observed that metals emit electrons when struck by light. Ob-
servations of this photoelectric effect continued with experiments involving metal 
electrodes in evacuated glass containers (Fig. 34.5). Illuminating one electrode causes 
it to emit electrons. Making the second electrode positive attracts the electrons, and 
the resulting current measures the rate at which electrons are ejected. Make the second 
electrode sufficiently negative, on the other hand, and the electron energy isn’t great 

Figure 34.5 Apparatus for studying the 
photoelectric effect.
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enough to overcome the repulsive potential; then the current ceases. This  so-called 
stopping potential provides a measure of the ejected electrons’ maximum kinetic 
 energy Kmax = eVs.

Classical physics suggests that the photoelectric effect should occur because an elec-
tron experiences a force in the oscillating electric field of a light wave. As the electron 
absorbs energy from the wave, the amplitude of its motion should grow until eventually 
it has enough energy to escape from the metal. Because the energy in a wave is spread 
throughout the entire wave, it might take a while for a single tiny electron to absorb 
enough energy. Increasing the light intensity should increase the electric field, resulting 
in the electron being ejected sooner and with more energy. Changing the wave frequency 
should have little effect.

The photoelectric effect does occur, but not in the way classical physics suggests. 
 Figure 34.6 shows results from a photoelectric experiment, in the form of current versus 
voltage as read by the meters in Fig. 34.5. These results, along with observations made 
by varying the frequency of the incident light, show three major disagreements with the 
 classical prediction:

 1. Current begins immediately, showing that electrons are ejected immediately, even 
in dim light.

 2. The maximum electron energy, as measured by the stopping potential Vs, is inde-
pendent of the light intensity.

 3. Below a certain cutoff frequency no electrons are emitted, no matter how intense 
the light. Above the cutoff frequency electrons are emitted with a maximum energy 
that increases in proportion to the light-wave frequency.

In 1905, the same year he formulated the special theory of relativity, Albert Einstein 
proposed an explanation for the photoelectric effect. Einstein suggested that an electro-
magnetic wave’s energy is concentrated in “bundles” called quanta or photons. Einstein 
applied to these photons the same energy-quantization condition that Planck had already 
proposed for molecular vibrations: that photons in light with frequency f  have energy hf, 
where again h is Planck’s constant:

 E = hf  1photon energy2 (34.6)

The more intense the light, the more photons—but the energy of each photon is unrelated 
to the light intensity.

Einstein’s idea explains all three nonclassical aspects of the photoelectric effect. Each 
material has a minimum energy—called the work function, f:required to eject an elec-
tron. (Table 34.1 lists work functions for selected elements.) Since the energy in a photon 
of light with frequency f  is hf, the photons in low-frequency light have less energy than 
the work function and are therefore unable to eject electrons—no matter how many pho-
tons there are. At the cutoff frequency, the photon energy equals the work function, and the 
photons have just enough energy to eject electrons. As the frequency increases still further, 
the electrons emerge with maximum kinetic energy K equal to the difference between the 
photon energy and the work function:

 Kmax = hf - f (34.7)

Thus, the electrons’ maximum kinetic energy depends only on the photon energy—that is, 
on the light frequency but not on its intensity (Fig. 34.7). Finally, the immediate ejection 
of electrons follows because an individual photon delivers its entire bundle of energy to 
an electron all at once. Einstein received the 1921 Nobel Prize primarily for his explana-
tion of the photoelectric effect rather than for his more controversial relativity theories. In 
1914 Millikan, who had earlier demonstrated the quantization of electric charge, carried 
out meticulous photoelectric experiments that confirmed Einstein’s hypothesis and helped 
earn Millikan the 1923 Nobel Prize.

Figure 34.6 Current versus voltage for the 
photoelectric experiment of Fig. 34.5, shown 
for two light intensities at the same frequency.

Current High intensity

Low intensity

Vs Voltage

The stopping potential
Vs indicates the maximum
electron energy, which is
independent of intensity.

Table 34.1 Work Functions

element (Symbol) F (eV)

Silver (Ag) 4.26

Aluminum (Al) 4.28

Cesium (Cs) 2.14

Copper (Cu) 4.65

Potassium (K) 2.30

Sodium (Na) 2.75

Nickel (Ni) 5.15

Silicon (Si) 4.85

VisibleIR Ultraviolet
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Figure 34.7 Results of a photoelectric experi-
ment, showing stopping potential as a func-
tion of light frequency and wavelength. The 
stopping potential in volts is a direct measure 
of the electron energy in electronvolts.

PheT: Photoelectric Effect
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652 Chapter 34 Particles and Waves

GoT IT? 34.2 If you replot Fig. 34.7 for a material with a different work function, 
(1) will the slope of the line change? (2) Will the point at which it intersects the horizontal 
axis change?

Today, the photoelectric effect is used in extremely sensitive light detectors called 
photomultipliers. In these devices, one photon dislodges a single electron, which in 
turn liberates multiple electrons from an electrode called a dynode; a chain of dynodes 
then results in a cascade of as many as a billion electrons for each incident photon 
(Fig. 34.8).

3rd dynode

2nd dynode

1st dynode Photocathode

Electrons

Transparent
window

Incident
photon

Figure 34.8 A photomultiplier produces a large 
pulse of electrons from a single incident photon.

and f = c/l, Equation 34.7 gives Kmax = hc/l - f = 0.96 eV Here 
we converted the SI value of hc/l to electronvolts  before subtracting f.

assEss Make sense? The work function we’ve chosen is just 
 under the 2.16-eV photon energy at 575 nm, so electrons ejected 
with  photons of this wavelength have negligible kinetic energy. The 
 400-nm minimum visible wavelength corresponds to roughly 50% 
higher frequency and therefore energy, or roughly 3 eV. It takes about 
2 eV to overcome the work function, leaving about 1 eV of electron 
kinetic energy.

✓TIp Working with Electronvolts

Recall that 1 electronvolt (eV) is the energy gained by an electron 
across a 1-V potential. So electronvolts are a unit of energy, but not 
the standard SI unit, which is the joule. We computed an energy 
E = hc/l in SI units and then converted to electronvolts using 
the factor 1 eV = 1.6 *10-19 J. In general it’s safest to work in SI 
units and then convert to eV as needed.

 ■

(a) Choose a suitable material from Table 34.1 for the light-sensitive 
surface in a photomultiplier that will respond to visible light at wave-
lengths of 575 nm and shorter. (b) Find the maximum kinetic energy 
of electrons ejected with the shortest-wavelength visible light, around 
400 nm.

IntErprEt This problem is about the photoelectric effect. In  
(a) we’re asked for a material in which 575-nm light can eject elec-
trons. That means the work function can be no greater than the energy 
of a 575-nm photon. In (b) we need to find the excess electron energy, 
over the work function, for 400-nm light.

DEvElop Equation 34.6, E = hf, relates the quantized energy of a 
photon to its frequency. Since fl = c, we can rewrite Equation 34.6 as 
E = hc/l. We’ll use this to find the photon energy, and then we’ll con-
sult Table 34.1 for an appropriate material. Finally, we can use f = c/l 
in Equation 34.7, Kmax = hf - f, to get the maximum kinetic energy 
of electrons when l = 400 nm.

EvaluatE (a) At 575 nm, E = hc/l = 3.46 *10-19 J, or 2.16 eV, 
where 1 eV = 1.6 *10-19 J. This energy must be enough for the elec-
tron to overcome the work function; the only material in  Table 34.1 for 
which this is possible is cesium, with f = 2.14 eV. (b) At l = 400 nm 

ExampLE 34.2 The photoelectric Effect: Designing a photomultiplier

Waves or particles?
In positing the existence of photons, Einstein gave the first inklings of the wave–particle 
duality—the seemingly dual nature of light, which acts in some situations like a wave 
and in others, as in the photoelectric effect, more like a localized particle. We now turn to 
another phenomenon that demonstrates light’s particle-like aspect. Later we’ll see how the 
wave–particle duality encompasses not only light but matter as well.

The Compton Effect
In 1923 the American physicist Arthur Holly Compton, at Washington University in  
St. Louis, did an experiment that dramatically confirmed the particle-like aspect of electro-
magnetic radiation. Although Compton’s work came much later in the history of quantum 
theory than Einstein’s, we include it here because it so strongly corroborates Einstein’s 
photon hypothesis.

Compton was studying the interaction of X rays with electrons. Classically, an elec-
tron subject to an electromagnetic wave should undergo oscillatory motion, driven by the 
wave’s oscillating electric field. Since accelerated charge is the source of electromagnetic 
waves, the electron should itself produce electromagnetic waves of the same frequency as 
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Figure 34.9 Classical and quantum descriptions of the interaction between electromagnetic waves 
and free electrons.

the incident waves (Fig. 34.9a). As we saw in Section 29.7, the electron should radiate in 
all directions, with maximum radiation perpendicular to its oscillatory motion.

Compton and his coworkers measured the intensity of scattered X rays as a function 
of wavelength for different scattering angles. Remarkably, they found the greatest con-
centration of scattered X rays at a wavelength longer than that of the incident radiation 
(Fig. 34.10). They interpreted their results as implying that particle-like photons had col-
lided with electrons, losing energy to the electrons and therefore, since E = hf, emerging 
with lower frequency and correspondingly longer wavelength (Fig. 34.9b).

We can understand this Compton effect by treating the interaction as an elastic colli-
sion between the incident photon and a stationary electron. The photon moves at c, so it’s 
necessary to use relativistic expressions for energy and momentum. You can work out the 
details in Problem 77; the result gives the Compton shift: ∆l = l - l0—that is, the 
change from the photon’s original wavelength l0:

 ∆l =
h

mc
 11 -  cos u2  1Compton shift2 (34.8)

Figure 34.10 shows that this equation is in excellent agreement with experimental data.
The term h/mc in Equation 34.8 is the Compton wavelength of the electron and gives the 

wavelength shift for a photon scattering at u = 90°. Its value is lC = h/mc = 0.00243 nm, 
or 2.43 pm. Equation 34.8 shows that the largest wavelength shift will be 2lC, occurring 
at u = 180°. For the shift to be noticeable it should be a significant fraction of the in-
cident wavelength, which therefore can’t be too many times the Compton wavelength.  
For X rays, l is in the range from approximately 10 pm to 10 nm, and therefore, detection 
of the Compton shift in X rays is already difficult. It would be totally impossible with  
visible light.

Today, Compton scattering with gamma rays is a widely used technique for studying 
the structure of matter. For example, abnormalities in human bone can be detected through 
Compton scattering of gamma rays emitted by a radioactive source embedded in bone. 
And the inverse Compton effect—the scattering of a rapidly moving electron off a pho-
ton—is a common process in high-energy astrophysical systems and is used in the labora-
tory to produce beams of gamma radiation.

The wavelength shift in Compton scattering admits no classical explanation. Coming 
after a decade of experimental and theoretical work that pointed increasingly to quantiza-
tion as the essence of the atomic world, Compton’s experimental results were for many 
physicists the convincing evidence for the reality of quanta.

GoT IT? 34.3 Will the Compton wavelength shift be (a) greater or (b) less for pho-
tons of a given wavelength scattering off protons rather than electrons?

Figure 34.10 Compton’s results for scattering of 
X rays with l = 71 pm. Right-hand peak shows 
the wavelength shift of the Compton effect. 
The unshifted left-hand peak is from photons 
scattering off tightly bound atomic electrons, 
which don’t absorb significant  energy. Solid 
curves are theoretical predictions.
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34.4 atomic Spectra and the Bohr atom
In Chapter 29 we found that accelerated charges are the source of electromagnetic radia-
tion. By 1900 it was known that atoms contain negative electrons as well as regions of 
positive charge; by 1911 experiments by Ernest Rutherford and his colleague Hans Geiger 
and student Ernest Marsden had localized the positive charge in the tiny but relatively 
massive nucleus. According to classical physics, electrons should orbit the nucleus under 
the influence of the electric force, radiating electromagnetic wave energy as they acceler-
ate in their orbits. In fact, a classical calculation shows that atomic electrons will quickly 
radiate away all their energy and spiral into the nucleus. Thus, the very existence of atoms 
is at odds with classical physics.

The Hydrogen Spectrum
A more subtle problem involving atoms dates to 1804, when William Wollaston noticed 
lines between some of the colors dispersed by a prism. Ten years later, the German op-
tician Josef von Fraunhofer dispersed the solar spectrum sufficiently that he could see 
hundreds of narrow, dark lines against the otherwise continuous spectrum. Studies of light 
emitted by diffuse gases excited by electric discharges show similar spectral lines, these 
bright against an otherwise dark background (recall Fig. 30.16). Such emission spectra 
result when atoms emit light of discrete frequencies. Absorption spectra, in contrast, 
arise when atoms in a diffuse gas absorb discrete frequencies of light from a continuous 
source. We emphasize the word “diffuse”: Discrete spectra generally arise only when a 
gas is sufficiently diffuse that light from one atom stands a strong chance of escaping the 
gas before it interacts with other atoms. In dense gases, multiple interactions result in the 
continuous spectrum of blackbody radiation.

Every element produces its own unique spectral lines, so analysis of spectra, even from 
the remote reaches of the cosmos, allows us to identify and characterize the material emit-
ting the light. Spectral analysis led to the discovery of helium in the Sun’s atmosphere 
before that element had been identified on Earth—hence the name, from the Greek word 
helios for Sun. Measuring the Doppler shift of spectral lines lets us “see” stars orbiting 
black holes in distant galaxies, and also gives direct evidence for the expansion of the uni-
verse. Back on Earth, the technique of atomic absorption spectroscopy uses spectral lines 
to determine the elemental composition of substances, helping identify pollutants or trace 
the flow of elements in biological samples.

In 1884, a Swiss schoolteacher named Johann Balmer realized that the wavelengths of the 
first four lines in the visible spectrum of hydrogen (see Fig. 30.16) were related by the equation

1

l
= RH a 1

22 -
1

n2 b

where n = 3, 4, 5, 6, . . . and RH is the Rydberg constant for hydrogen, with the ap-
proximate value 1.0968 *107 m-1. Other series of lines in the hydrogen spectrum were 
soon found, and Balmer’s equation was generalized to

 
1

l
= RHa 1

n2
2 -

1

n1
2 b  (34.9)

where n1 = n2 + 1, n2 + 2, . . . . The Balmer series of lines has n2 = 2; the Lyman 
 series, in the ultraviolet, has n2 = 1; and the infrared Paschen series has n2 = 3. There 
are in fact infinitely many such series, corresponding to n2 = 1, 2, 3, . . . .

But why should atoms emit discrete spectral lines? And why should the hydrogen lines 
form patterns with the simple regularity of Equation 34.9?

The Bohr atom
In 1913, the great Danish physicist Niels Bohr proposed an atomic theory that accounted 
for the spectral lines of hydrogen. In the Bohr atom the electron moves in a circular 
orbit about the nucleus, held by the electric force. Classically, any orbital radius and 

PheT: Neon Lights & Other Discharge Lamps
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correspondingly any energy and angular momentum should be possible. But Bohr quan-
tized the atom, stating that the only possible orbits were those with angular momentum 
an integer multiple of Planck’s constant divided by 2p. Angular momentum quantization 
implies energy quantization, which, as we’ll show, leads to Equation 34.9 for the hydrogen 
spectral lines.

Bohr asserted that an electron in an allowed orbit does not radiate energy, in contradic-
tion to the predictions of classical electromagnetism. But an electron can jump from one 
orbit to another, emitting or absorbing a photon whose energy is equal to the energy differ-
ence between the two orbital levels. We can therefore find the expected photon energies—
and the corresponding wavelengths—if we know the allowed energy levels.

To find the quantized atomic energy levels in Bohr’s model, consider a hydrogen atom 
consisting of a fixed proton and an electron in circular orbit. Treating the proton as fixed 
is a good approximation because its mass is nearly 2000 times the electron’s. We consider 
only electron speeds much less than that of light, which is an excellent approximation in 
hydrogen.

In Example 11.1 we found that the angular momentum of a particle with mass m and 
speed v, moving in a circular path of radius r, is mvr. Thus, Bohr’s quantization condition 
reads

 mvr = nU  1quantization, Bohr atom2 (34.10)

where n = 1, 2, 3, . . . and where we define U K h/2p (read “h bar”). We need to relate 
the electron’s angular momentum to its energy so we can find out what Equation 34.10 
implies about energy quantization.

You studied circular orbits for the inverse-square force of gravity in Chapter 8, where you 
saw that kinetic and potential energies in a circular orbit are related by K = -  12 U, with the 
zero of potential energy taken at infinity. The total energy K + U is therefore 12 U. These  
results hold for any 1/r2 force, including the electric force. In the electric case the poten-
tial energy U is the point-charge potential of the proton, ke/r, multiplied by the electron 
charge, -e. Then the total energy is E = 1

2 U = -ke2/2r. The minus sign means the elec-
tron is bound to the proton, in that it would take energy to separate them. Solving this 
equation for r then gives

 r = -
ke2

2E
 (34.11)

Since the kinetic energy is K = -1
2 U = -E, we also have 12 mv2 = -E or v = 1-2E/m.  Using 

our expressions for r and v in the quantization condition 34.10 gives m1-2E/m 1-ke2/2E2 = nU.  
Solving for the energy E, we find

E = -
k2e4m

2U2n2

It’s convenient to define the Bohr radius, a0, as

a0 =
U2

mke2 = 0.0529 nm

With this definition the energy becomes

 E = -
ke2

2a0
 a 1

n2 b  1energy levels, Bohr atom2 (34.12a)

Equation 34.12a gives us the allowed energy levels under Bohr’s quantization condition. 
Evaluating this expression for the case n = 1 gives E1 = -2.18 *10-19 J = -13.6 eV; 
it’s then convenient to write Equation 39.12a numerically in the form

 E = -
13.6 eV

n2  (34.12b)

where in both forms n = 1, 2, 3, . . . . The lowest energy state, n = 1, is called the ground 
state; the others are excited states.
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656 Chapter 34 Particles and Waves

Now we have the allowed energy levels. What about spectra? When an electron jumps 
between energy levels, it emits or absorbs a photon whose energy hf  is equal to the energy 
difference between the levels. So imagine an electron going from a higher level n1 to a 
lower level n2. The energy difference, according to Equation 34.12a, is

∆E = -
ke2

2a0
 a 1

n1
2 -

1

n2
2 b =

ke2

2a0
 a 1

n2
2 -

1

n1
2 b

and this is equal to the energy of the emitted photon. But the photon energy is 
∆E = hf = hc/l, and therefore 1/l = ∆E/hc or, using our expression for ∆E,

1

l
=

ke2

2a0hc
 a 1

n2
2 -

1

n1
2 b

This looks just like Equation 34.9 for the hydrogen spectral lines, except that 
ke2/2a0hc  replaces the Rydberg constant RH. Evaluating this quantity gives 
R∞ = ke2/2a0hc = 1.0974 *107 m-1, which is very close to the experimentally observed 
Rydberg constant for hydrogen. The small discrepancy results from our approximation that 
the proton is stationary. That approximation is equivalent to assuming an infinite proton 
mass; hence the subscript ∞ on this theoretically calculated Rydberg constant.

Bohr’s theory of quantized angular momentum thus accounts brilliantly for the  observed 
spectrum of hydrogen. We can understand the origin of the various spectral line series us-
ing Fig. 34.11, an energy-level diagram for the Bohr model of hydrogen. Allowed energy 
levels are shown as horizontal lines, and various possible transitions among levels as verti-
cal arrows. Transitions with a common final state are grouped, and each group represents a 
different series of spectral lines.

Knowing the energy levels of Equation 34.12, we can also find the radii of the allowed 
electron orbits, as given by Equation 34.11:

 r = -
ke2

2E
= ake2

2
ba2a0n

2

ke2 b = n2a0 (34.13)
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Figure 34.11 Energy-level diagram for the 
Bohr model of the hydrogen atom, showing 
transitions responsible for the first three series 
of  spectral lines. Each series arises from jumps 
to a common final state.
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34.5 Matter Waves 657

Thus, the lowest energy orbit has a radius of one Bohr radius, with higher-energy orbits 
growing rapidly with increasing n. A hydrogen atom in its ground state—n = 1— has a 
diameter of two Bohr radii, or about 0.1 nm. As we’ll see in Chapter 35, the Bohr model’s  
precise electron orbits aren’t compatible with the fully developed theory of quantum 
 mechanics; nevertheless, Equation 34.13 does give the approximate size of atoms.

Equation 34.12 shows, and Fig. 34.11 suggests, that there are infinitely many elec-
tron energy levels between the ground state at -13.6 eV and zero energy. It’s possible to 
give an atomic electron enough energy to bring it above the E = 0 level, but then it’s no 
longer bound to the proton. Removing an electron is ionization, and Equation 34.12b and 
Fig. 34.11 show that it takes 13.6 eV to ionize a hydrogen atom in its ground state. This 
quantity is the ionization energy.

GoT IT? 34.4 Figure 34.11 shows some of the transitions available to the electron 
in the Bohr model of hydrogen, but not all of them. The figure suggests that the shortest 
possible wavelength emitted in any electron transition in hydrogen is (a) arbitrarily small, 
(b) between 95 nm and 1282 nm, or (c) a little shorter than 95 nm.

Limitations of the Bohr model
Bohr’s theory proved astoundingly successful in explaining the hydrogen spectrum. It also 
explains the spectra of hydrogen-like ions—atoms with all but one of their electrons re-
moved—with the appropriate change in the value of the nuclear charge. And it has some 
success in predicting the spectra of atoms such as lithium and sodium that have a single 
valence electron beyond a group of more tightly bound electrons. But it can’t account for 
the spectra of more complicated atoms, even two-electron helium. And with hydrogen, 
there are subtle spectral details that the Bohr model doesn’t address. Furthermore, like 
Planck’s original quantum hypothesis, Bohr’s quantization of atomic energy levels lacked 
a convincing theoretical basis. You’ll see in the next chapter how the much more compre-
hensive theory of quantum mechanics overcomes these limitations.

34.5 matter Waves
In classical physics, light is purely a wave phenomenon. Einstein’s photons gave light a 
particle-like quality as well. In 1923, 10 years after Bohr’s atomic theory, a French prince 
named Louis de Broglie (pronounced “de Broy”) set forth a remarkable hypothesis in his 
doctoral thesis. If light has both wave-like and particle-like properties, he reasoned, why 
shouldn’t matter also exhibit both properties?

EvaluatE (a) The diameter is twice the radius, so Equation 34.13 
gives d = 122127322a0 = 7.9 μm. (b) Inverting Equation 34.9 to get 
the wavelength gives

l = cRH a 1

2722 -
1

2732 b d
-1

= 92 cm

with RH = 1.097 *107 m-1.

assEss Our atomic diameter is some 75,000 times that of ground-
state hydrogen and about the size of a red blood cell! A wavelength 
of 92 cm corresponds to a frequency f = c/l of about 300 MHz, 
which happens to lie in a gap between VHF TV channel 13 and UHF 
channel 14. ■

Hydrogen atoms are normally in their ground state, with diameter ap-
proximately 0.1 nm. But in the diffuse gas of interstellar space, atoms 
exist in highly excited states with sizes approaching a fraction of a 
millimeter. Such Rydberg atoms can also be produced temporarily 
in the lab. Transitions among Rydberg states result in photons at radio 
wavelengths. One of the longest wavelengths observed corresponds to 
a transition from n = 273 to n = 272. (a) What’s the diameter of a 
hydrogen atom in the n = 273 state? (b) At what wavelength should a 
radio telescope be set to observe this transition?

IntErprEt This is a problem about electron transitions in hydrogen 
atoms, albeit of unusual size. The Bohr model applies.

DEvElop We’ll use Equation 34.13, r = n2a0, to find the atomic  
diameter, with n = 273. Equation 34.9, 1/l = RH 11/n2

2 - 1/n1
22, 

will give the transition wavelength with n1 = 273 and n2 = 272.

ExampLE 34.3 The Bohr model: Big atoms
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658 Chapter 34 Particles and Waves

We saw in Chapter 29 that light with energy E also carries momentum p = E/c. Com-
bined with Equation 34.6, that means a photon of light with frequency f  has momentum 
p = hf/c. Since fl = c, the photon’s momentum and wavelength are therefore related by

 l =
h
p
  1de Broglie wavelength2 (34.14)

De Broglie proposed that this same relation should hold for particles of matter; at 
 nonrelativistic speed, for example, an electron should have associated with it a de Broglie 
wavelength given by h/mv.

De Broglie used his matter-wave hypothesis to explain why atomic electron orbits are 
quantized. He proposed that Bohr’s allowed orbits were those in which standing waves 
could exist (Fig. 34.12), in much the same way that a violin string can support only  certain 
frequencies of standing waves. Suppose that n full wavelengths of a de Broglie electron 
wave fit around the circumference of the electron’s circular orbit. Then we must have 
nl = n1h/p2 = n1h/mv2 = 2pr, with r the orbit radius. Multiplying both sides by mv/2p 
then gives mvr = nh/2p = nU, which is Bohr’s quantization condition. Thus, de Broglie’s 
hypothesis provides a natural explanation for the quantization of atomic energy levels.

Figure 34.12 The allowed electron orbits in the 
Bohr atom are those that can fit an integral 
number of de Broglie wavelengths around the 
circular Bohr orbit.

Not
allowed

Allowed:
n = 3 orbit

CoNCEpTUaL ExampLE 34.1  The de Broglie Wavelength: Large and Small

If matter has wave properties, why don’t we observe baseballs, cars, 
and people undergoing quantum interference?

EvaluatE Planck’s constant h is tiny, and the masses of mac-
roscopic objects are large. That makes the de Broglie wavelength 
(Equation 34.14) of macroscopic objects minuscule if they have any 
velocity whatsoever. Since wave behavior is evident only when waves 
interact with systems comparable in size to the wavelength, the wave 
aspect of macroscopic objects isn’t evident. Even with subatomic 
 particles, wave behavior isn’t obvious at high velocities (i.e., high 
 values of  momentum p in the denominator of Equation 34.14). In the 
atom, though, it’s a different story, as Making the Connection shows.

assEss Couldn’t we make a macroscopic object’s wavelength large 
by making its momentum mv small? Yes—but at normal  temperatures, 

thermal agitation always means a significant random  velocity. Only 
at very low temperatures can macroscopic systems exhibit  quantum 
 interference.

MakIng thE ConnECtIon Find the de Broglie wavelength of  
(a) a 150-g baseball pitched at 45 m/s and (b) an electron moving at  
1 Mm/s. Compare your results with the sizes of home plate and an 
atom, respectively.

EvaluatE Given mass and speed, Equation 34.14 becomes 
l = h/mv. This gives lbaseball ≃  10-34 m, unimaginably smaller than 
home plate. But lelectron ≃  0.7 nm, several times the size of an atom. 
Therefore, wave effects dominate this electron’s interactions with 
 atoms.

appLICaTIoN The Electron microscope

In Chapter 32 we found that light can’t sharply image objects whose size is 
on the order of the wavelength or smaller—a factor that limits the resolving 
power of conventional microscopes. But Equation 34.14 shows that we can 
control the wavelength of electrons by adjusting their speed—and therefore we 
can achieve electron wavelengths much shorter than that of light. The electron 
microscope exploits this effect, providing resolutions down to about 1 nm and 
magnifications of 106.

Electron microscopes accelerate electron beams to energies of 50–100 keV,  
with corresponding wavelengths of about 0.005 nm. Magnetic fields act as 
 focusing lenses, forming an image of whatever object is placed in the beam 
path. An electronic detector reads the image, which is then displayed on a 
screen.

Electron microscopes are indispensable tools in biology, chemistry, 
and materials science. A related device, the scanning electron microscope, 
 produces dramatic three-dimensional images at magnifications of 10-105, as 
shown in the photo of an ant carrying a microelectronic chip.
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34.6 The Uncertainty Principle 659

Electron Diffraction and matter-Wave Interference
In 1927, the American physicists Clinton Davisson and Lester Germer gave a convinc-
ing verification of de Broglie’s matter-wave hypothesis. Davisson and Germer were 
 studying the interaction of an electron beam with a nickel crystal, and they noticed regular 
 intensity peaks reminiscent of X-ray diffraction. Shortly afterward, the Scottish physicist 
George Thomson observed electron diffraction directly, further evidence of the electron’s 
wave nature (Fig. 34.13). Thomson was the son of J. J. Thomson, who had discovered  
the  electron as a particle in 1897. Together their work captured the electron’s wave– 
particle duality. Today, experiments with entire atoms and even larger clusters of matter 
exhibit wave interference—as shown in this chapter’s opening photo.

34.6 The Uncertainty principle
In classical physics it’s possible, in principle, to know the exact position and velocity of a 
particle and therefore to predict with certainty its future behavior. But not so in  quantum 
physics! In 1927, the German physicist Werner Heisenberg presented his uncertainty 
principle, which states that some pairs of quantities cannot be measured simultaneously 
with arbitrary precision. Position and momentum constitute one such pair; if we measure a 
particle’s position to within an uncertainty ∆x, then we can’t simultaneously determine its 
momentum to an accuracy better than ∆p, where

 ∆x ∆p Ú U  1uncertainty principle2 (34.15)

Why this limitation? The fundamental reason is quantization. To measure some property of 
a system requires interacting with the system—for example, shining light on it. Interaction in-
volves energy, and the interaction energy disturbs the system slightly. As a result, values inferred 
from the measurement are no longer quite right. In classical physics the energy can be arbitrar-
ily small, resulting in a negligible disturbance. But in quantum theory the minimum energy is a 
single quantum, like a photon of light, and thus the disturbance can’t be arbitrarily small.

So why not use lower-frequency light, whose photon energy hf  is lower? Because 
lower frequency means longer wavelength and, as we found in Chapter 32, diffraction 
effects limit resolution at longer wavelengths. Heisenberg summarized this dilemma 
with the “thought experiment” illustrated in Fig. 34.14, which uses a single photon to 
observe an electron. A short-wavelength photon allows precise localization of the electron  
(Fig. 34.14a). But short wavelength means high frequency and thus high photon energy. 
The high-energy photon imparts considerable momentum to the electron, and thus the very 
act that fixes the electron’s position degrades our knowledge of its momentum. We can 
 decrease this disturbance with a lower-energy, longer-wavelength photon (Fig. 34.14b). 
But now diffraction precludes precisely determining the electron’s position. So we can 
measure the electron’s position accurately, at the expense of not knowing its momentum. 
Or we can measure its momentum accurately, but then we can’t know its position. With 
a photon of intermediate wavelength we could measure both quantities, but neither pre-
cisely. The uncertainty principle, Equation 34.15, quantifies this trade-off.

The uncertainty principle is intimately connected with de Broglie’s wave hypothesis. Suppose 
we pass an electron beam through a slit, as shown in Fig. 34.15 (next page). Then we know the 
electrons’ vertical position to within the slit width. If the slit is much wider than the electrons’ 
de Broglie wavelength, there’s minimal diffraction. The electrons follow straight lines and we’re 
quite sure of their vertical momentum, in this case zero (Fig. 34.15a). But with a wide slit we 
don’t know much about the electrons’ vertical position. Making the slit smaller gives a more pre-
cise position, but then diffraction spreads the beam, increasing the uncertainty in the electrons’ 
vertical momentum (Fig. 34.15b). So the wave nature of matter ultimately imposes a trade-off: 
The more we know of a particle’s position, the less we know of its momentum, and vice versa.

GoT IT? 34.5 De Broglie’s matter-wave hypothesis explains the quantization of 
electron orbits in the Bohr atom most fundamentally in terms of (a) angular momentum, 
(b) wavelength, or (c) energy. 

Figure 34.13 Diffraction produced by  passing 
an electron beam through a circular  aperture 
shows that electrons have a wave-like 
 character.

Figure 34.14 Heisenberg’s “quantum 
 microscope” thought experiment.
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PheT: Quantum Wave Interference
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It sounds like the uncertainty principle only limits our knowledge. But in fact it proves 
useful in estimating the size and energies of atomic-scale systems, as the next example shows.

Figure 34.15 The wave nature of matter is intimately related to the uncertainty principle, as shown here for 
beams of electrons passing through wide and narrow slits. In (b), diffraction introduces the uncertainty in 
vertical momentum.

Narrow slit

Wide slit

Small uncertainty
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Large uncertainty
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(a)

(b)
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momentumSmall
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(a)

(b)

A beam of aluminum atoms is used to dope a semiconductor chip to 
set its electrical properties. If the atoms’ velocity is known to within 
0.2 m/s, how accurately can they be positioned?

IntErprEt This is a question about simultaneously knowing the at-
oms’ position and velocity—paired quantities governed by the uncer-
tainty principle.

DEvElop We’re given the velocity uncertainty ∆v, from which we’ll 
find the momentum uncertainty ∆p = m ∆v. Then we can use the 
uncertainty principle, Equation 34.15, ∆x ∆p Ú U, to find the uncer-
tainty ∆x in position. To find the mass, we’ll need aluminum’s atomic 
weight from Appendix D, along with Appendix C’s conversion from 
unified mass units (u) to kilograms.

EvaluatE We have

 ∆p = m ∆v = 126.98 u211.66 *10-27 kg/u210.20 m/s2
 = 9 *10-27 kg #  m/s

Then Equation 34.15 gives the position uncertainty:

∆x =
U

∆p
= 12 nm

where, again, U = h/2p.

assEss Our 12-nm answer is about 100 atomic diameters and shows 
that the uncertainty principle constrains our ability to fabricate very 
small microelectronic structures. ■

ExampLE 34.4  The Uncertainty principle: microelectronics

Use the uncertainty principle to estimate the minimum energy pos-
sible for (a) an electron confined to a region of atomic dimensions, 
about 0.1 nm, and (b) a proton confined to a region of nuclear dimen-
sions, about 1 fm.

IntErprEt We’re given the uncertainty in position; that’s the width 
of the region in which the particles are confined. The particles can’t 
be at rest, or we’d know that their momentum was exactly zero—in 
violation of the uncertainty principle. So they must have a minimum 
momentum and therefore energy. We’re asked to find that energy.

DEvElop We need to find the minimum momentum consist-
ent with the uncertainty principle, and from it the energy. Suppose 
a particle has momentum of magnitude p, but we don’t know its di-
rection. It could be going one way, with momentum p, or the other 
way, with momentum -p. Then the momentum itself is uncertain by 
∆p = p - 1-p2 = 2p. The uncertainty principle says ∆p Ú U /∆x, 
so there’s a minimum magnitude for the momentum given by 
p Ú U/2 ∆x. Using p = mv and K = 1

2  mv2 gives K = p2/2m, and 

therefore the uncertainty principle requires

K Ú
1

2m
  a U

2 ∆x
b

2

EvaluatE Evaluating this constraint for an electron with 
∆x = 0.1 nm and for a proton with ∆x = 1 fm gives minimum ener-
gies of about 1 eV and 5 MeV, respectively.

assEss Energies in electronvolts are typical of atomic-scale systems, 
as we saw in Fig. 34.11. Our result shows that nuclear energies are 
some 5 million times greater—indicating the dramatic difference be-
tween chemical and nuclear energy sources. We’ll have more to say 
about that difference in Chapter 38. ■

ExampLE 34.5  The Uncertainty principle: Estimating atomic and Nuclear Energies

660 Chapter 34 Particles and Waves
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34.7 Complementarity 661

Energy–Time Uncertainty
A second pair of variables that defy simultaneous measurement are the energy of a system 
and the time it remains at that energy. The energy uncertainty ∆E is related to the time ∆t 
through the inequality

 ∆E ∆t Ú U (34.16)

One effect of energy–time uncertainty is to render atomic and nuclear energy levels inex-
act and therefore to broaden spectral lines. If an atom were forever in a fixed energy state, 
we could take infinitely long to measure its energy and therefore make ∆E arbitrarily 
small. But excited states of atoms have characteristic lifetimes (typically ∼10-8 s), which 
limit the measurement time and therefore set a minimum uncertainty in the energy level. 
Problem 70 and Passage Problems 84–87 explore energy–time uncertainty, as does the 
Application on this page.

GoT IT? 34.6 An object is moving in one dimension. If you know that its momen-
tum has magnitude p, but you don’t know which direction it’s going in, then the uncer-
tainty in its momentum is (a) 0, (b) p, or (c) 2p.

observers, Uncertainty, and Causality
The uncertainty principle moves the observer from a passive onlooker to an active par-
ticipant in physical events. To observe is necessarily to disturb, and quantum theory is 
therefore concerned with the role of the observer and the process of measurement. The 
uncertainty principle is fundamentally a statement about what can and cannot be learned 
through measurement.

Position and momentum cannot be measured simultaneously with perfect accuracy. 
Surely, though, a particle has well-defined values of both, even though we can’t know 
them? The answer seems to be no. The standard interpretation of quantum mechanics sug-
gests that it makes no sense to talk about what can’t be measured, and recent experiments 
have ruled out “hidden variables” that might be active at a lower level to guide the parti-
cle in a deterministic path. Its wave aspect makes a particle a “fuzzy” thing, and it really 
makes no sense to think of it as a tiny ball with definite momentum and position. For that 
reason it also makes no sense to think of the particle’s future as being fully determined in 
the sense that Newton’s laws determine the future path of, say, a baseball. We’re left with 
uncertainty—or indeterminacy, as Heisenberg’s word also translates—as a fundamental 
fact of our universe.

34.7 Complementarity
One of the most disturbing aspects of quantum theory is the wave–particle duality—the 
seeming contradiction that matter and light have both wave-like and particle-like proper-
ties. If this bothers you, you’re in good company: Heisenberg himself expressed frustra-
tion in trying to understand the quantum world:

I remember discussions with Bohr which went through many hours till very late at night 
and ended almost in despair; and when at the end of the discussion I went alone for a walk 
in the neighboring park I repeated to myself again and again the question: Can nature 
 possibly be as absurd as it seems to us in these atomic experiments?*

Bohr dealt with the wave–particle duality through his principle of complementarity. 
The wave and particle pictures, he said, are complementary aspects of the same  reality. 
If we do an experiment to measure a wave-like property—for example, the diffraction of 
electrons—then we find wave properties but not particle properties. If we do an  experiment 

*Werner Heisenberg, Physics and Philosophy: The Revolution in Modern Science (New York: 
Harper & Brothers, 1962).

appLICaTIoN  Femtosecond 
photography 
of Chemical 
Reactions

Chemists and biochemists studying chemical 
reactions in detail need to image events that 
take place in times measured in femtoseconds 
(1 fs = 10- 15 s). For this, they use ultrashort 
laser pulses that can “freeze” the action of 
 electrons participating in chemical reactions. 
 Because the temporal duration of the laser pulses 
is so short, energy–time uncertainty requires that 
the photons in the laser beam have  considerable 
uncertainty in their energies. Since photon 
 energy is E = hf = hc  /l, that translates into a 
broad spectrum of wavelengths—an advantage 
for the femtosecond laser technique because 
it allows a single laser pulse to probe multiple 
energy transitions in the molecule under study. 
The photo shows a femtosecond laser system 
constructed on an optical bench.
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662 Chapter 34 Particles and Waves

to measure a particle-like property—for example, localizing an electron—then we won’t 
find wave properties. The two measurements require different experiments, and we can’t 
perform both simultaneously on the same entity. So we’ll never catch wave and particle in 
an outright contradiction, and the answer to the question “Which is it, wave or particle?” 
has to be that it’s both, and which you find depends on what experiment you choose to 
perform.

Bohr articulated a second principle that helps reconcile the seeming contradiction 
 between classical and quantum physics. His correspondence principle states that the 
 predictions of classical and quantum physics should agree in situations where the size 
of individual quanta is negligible. Taking h S 0 in Planck’s law, for example, gives the 
 classical Rayleigh–Jeans law (see Problem 72). Or, for large n, the energies of adjacent 
atomic states in the Bohr model become so close that the levels appear essentially as a 
continuum of allowed energies—as expected in classical physics. Or consider a 1000-W 
radio beam; the photon energy hf  is so low that the beam contains an enormous number 
of photons per unit beam length, and we can consider the energy distributed essentially 
continuously over the beam. But in a 1000-W X-ray beam, the photon energy is much 
higher and the number of photons correspondingly fewer; it’s therefore difficult to avoid 
the fundamental fact of energy quantization. Visible light lies somewhere in between; we 
can often treat its energy as being continuously distributed, except when it interacts with 
systems as small as individual atoms.
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The big ideas here are at the heart of quantum physics—a radically different view of reality at the atomic scale. Quantization means that some 
physical quantities—often including energy—come only in discrete values. Another fundamental aspect of quantum reality is wave–particle 
duality, wherein light and matter exhibit both wave-like and particle-like aspects. Bohr’s complementarity principle precludes these ever being 
in direct conflict. Finally, quantization and wave–particle duality lead to the uncertainty principle, which states that it’s impossible to measure 
simultaneously and with arbitrary precision a particle’s position and momentum.

Chapter 34 Summary
Big Ideas

Key Concepts and Equations

Planck’s constant,

h = 6.63 *10-34 J #  s
sets the fundamental scale of 
quantization.

It’s also expressed as “h bar”:

U = h/2p

The energy of electromagnetic radiation 
with frequency f  is quantized in photons 
with energy

E = hf

Electron energies in the Bohr model of hydrogen are 
quantized according to

E = -
ke2

2a0
  a 1

n2 b  ≃  -
13.6 eV

n2

where n is an integer and a0 = 0.0529 nm is the Bohr radius.

The de Broglie wavelength of a particle with momentum p is

l =
h

p

The uncertainty principle relates uncertainties in position and momentum:

∆x ∆p Ú U

applications

A correct description of blackbody radiation requires Planck’s quan-
tization hypothesis. The peak radiance—energy radiated per unit 
wavelength interval—from a blackbody at temperature T occurs at a 
wavelength given by lT = 2.898 mm #  K.

Classical prediction:
ultraviolet catastrophe

R
ad

ia
nc

e

Wavelength (μm)

T2

T1 7 T2

The photoelectric effect involves the ejection of electrons from a 
metal surface illuminated with electromagnetic waves. Explanation 
of the effect led Einstein to propose photons as the quanta of electro-
magnetic-wave energy.

Electrode Evacuated
tube

Light

Surface ejecting
photoelectrons

The Compton effect shows that photons interact with free 
electrons exactly like colliding particles, losing energy and 
emerging with longer wavelength.
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Quantization of atomic energy levels 
leads  directly to atomic spectra. In the 
Bohr model of  hydrogen, the spectral 
line produced in a transition from the 
n1 to the n2 energy level is given by
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664 Chapter 34 Particles and Waves

For homework assigned on MasteringPhysics, go to www.masteringphysics.com

BIO Biology and/or medicine-related problems DATA Data problems ENV Environmental problems CH Challenge problems

22. A microwave oven uses electromagnetic radiation at 2.4 GHz.  
(a) What’s the energy of each microwave photon? (b) At what 
rate does a 900-W oven produce photons?

23. A red laser at 650 nm and a blue laser at 450 nm emit photons at 
the same rate. How do their total power outputs compare?

24. Find the maximum work function, in eV, for a surface to emit 
electrons when illuminated with 945-nm infrared light.

Section 34.4 Atomic Spectra and the Bohr Atom
25. Calculate the wavelengths of the first three lines in the Lyman 

series for hydrogen.
26. Which spectral line of the hydrogen Paschen series 1n2 = 32 has 

wavelength 1282 nm?
27. What’s the maximum wavelength of light that can ionize 

 hydrogen in its ground state? In what spectral region is this?
28. At what energy level does the Bohr hydrogen atom have diameter 

5.18 nm?

Section 34.5 Matter Waves
29. Find the de Broglie wavelength of (a) Earth, orbiting the Sun at 

30 km/s, and (b) an electron moving at 10 km/s.
30. How slowly must an electron be moving for its de Broglie 

 wavelength to be 1 mm?
31. A proton and electron have the same de Broglie wavelength. 

How do their speeds compare, assuming v V c for both?
32. Find the de Broglie wavelength of electrons with kinetic energies 

(a) 10 eV, (b) 1.0 keV, and (c) 10 keV.

Section 34.6 The Uncertainty Principle
33. A proton is confined to a space 1 fm wide (about the size of an 

atomic nucleus). What’s the minimum uncertainty in its velocity?
34. Is it possible to determine an electron’s velocity accurate to 

{1 m/s while simultaneously finding its position to within 
{1 μm? What about a proton?

35. A proton has velocity v = 11500 {  0.252 m/s. What’s the 
 uncertainty in its position?

36. An electron is moving in the +x-direction with speed measured at 
50 Mm/s, accurate to {10,. What’s the minimum uncertainty 
in its position?

37. Find the minimum energy for a neutron in a uranium nucleus 
whose diameter is 15 fm.

problems
38. Find the power per unit area emitted by a 3000-K incandescent 

lamp filament in the wavelength interval from 500 nm to 502 nm.
39. Treating the Sun as a 5800-K blackbody, compare its UV radiance 

at 200 nm with its visible radiance at its 500-nm peak wavelength.
40. For a 2.0-kK blackbody, by what percentage is the Rayleigh–

Jeans law in error at wavelengths of (a) 1.0 mm, (b) 10 μm, and 
(c) 1.0 μm?

41. The radiance of a blackbody peaks at 558 nm. (a) What’s its 
temperature? (b) How does its radiance at 382 nm (violet light) 
 compare with that at 694 nm (red light)?

42. (a) Find the Compton wavelength for a proton. (b) Find the en-
ergy in electronvolts of a gamma ray whose wavelength equals 
the proton’s Compton wavelength.

43. Find the rate of photon production by (a) a radio antenna broad-
casting 1.0 kW at 89.5 MHz, (b) a laser producing 1.0 mW of 

For thought and Discussion
 1. Why does classical physics predict that atoms should collapse?
 2. Looking at the night sky, you see one star that appears red, 

 another yellow, and another blue. Compare their temperatures.
 3. Imagine an atom that, unlike hydrogen, had only three energy 

levels. If these levels were evenly spaced, how many spectral 
lines would result? How would their wavelengths compare?

 4. What colors of visible light have the highest-energy photons?
 5. Why is the immediate ejection of electrons in the photoelectric 

effect surprising from a classical viewpoint?
 6. Suppose the Compton effect were significant at radio 

 wavelengths. What problems might this present for radio and TV 
broadcasting?

 7. How are the uncertainty principle and wave–particle duality 
 related?

 8. How many spectral lines are in the entire Balmer series?
 9. Why are the lines of the Lyman series in the ultraviolet while 

some Balmer lines are in the visible?
10. Why does the photoelectric effect suggest that light has 

 particle-like properties?
11. Energy–time uncertainty limits the precision with which we can 

know the mass of unstable particles (those that decay after a 
 finite time). Why?

12. If you measure a particle’s position with perfect accuracy, what 
do you know about its momentum?

13. How might our everyday experience be different if Planck’s 
 constant had the value 1 J #  s?

14. Why are the energies given by Equations 34.12 negative?

exercises and problems
Exercises

Section 34.2 Blackbody Radiation
15. If you double a blackbody’s temperature, by what factor does its 

radiated power increase?
16. The surface temperature of the star Rigel is 104 K. Find (a) the 

power radiated per square meter of its surface, (b) its lpeak, and 
(c) its lmedian.

17. Find lpeak and lmedian for Earth, considered a 288-K blackbody.
18. Spacecraft instruments measure the radiation from an asteroid, 

and the data show that the power per unit wavelength peaks at 
40 μm. Assuming the asteroid is a blackbody, find its surface 
temperature.

19. The Sun approximates a blackbody at 5800 K. (a) Find the 
 wavelength of peak radiance on the per-unit-wavelength  basis 
implicit in Equation 34.2a. (b) Find the median wavelength, 
 below which half the radiation is emitted (Equation 34.2b). 
 Identify the spectral region of each.

Section 34.3 Photons
20. Find the energy in electronvolts of (a) a 1.0-MHz radio photon, 

(b) a 5.0 *  1014@Hz optical photon, and (c) a 3.0 *1018@Hz X-ray 
photon.

21. The human eye is sensitive to wavelengths from about 400 nm to 
700 nm. What’s the corresponding range of photon energies?BIO
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Exercises and Problems 665

63. How much energy does it take to ionize a hydrogen atom in its 
first excited state?

64. Ultraviolet light with wavelength 75 nm shines on hydrogen at-
oms in their ground states, ionizing some of the atoms. What’s 
the energy of the electrons freed in this process?

65. Helium with one of its two electrons removed acts very much 
like hydrogen, and the Bohr model successfully describes it. Find 
(a) the radius of the ground-state electron orbit and (b) the pho-
ton energy emitted in a transition from the n = 2 to the n = 1 
state in this singly ionized helium.

66. Through what potential difference should you accelerate an elec-
tron from rest so its de Broglie wavelength will be the size of a 
hydrogen atom, about 0.1 nm?

67. Find the minimum electron speed that would make an electron 
microscope superior to an optical microscope using 450-nm 
light.

68. You’re a cell biologist who wants to image microtubules that 
form the “skeletons” of living cells. The microtubules are 25 nm 
in diameter, and, as Chapter 32 shows, you need to image with 
waves whose wavelength is at least this small. You can use either 
an inexpensive electron microscope that accelerates electrons to 
kinetic energies of 40 keV, or a more expensive unit that produces 
100-keV electrons. Will the less expensive microscope work?

69. An electron is trapped in a “quantum well” 23 nm wide. Find its 
minimum possible speed.

70. Typically, an atom remains in an excited state for about 10-8 s 
before it drops to a lower state, emitting a photon in the process. 
What’s the uncertainty in the energy of this transition?

71. An electron is moving at 106 m/s and you wish to measure its 
energy to an accuracy of {0.01,. What’s the minimum time 
necessary for this measurement?

72. Use the series expansion for ex (Appendix A) to show that 
Planck’s law (Equation 34.3) reduces to the Rayleigh–Jeans law 
(Equation 34.5) when l W  hc/kT.

73. A photon’s wavelength is equal to the Compton wavelength of a 
particle with mass m. Show that the photon’s energy is equal to 
the particle’s rest energy.

74. Show that the frequency range of the hydrogen spectral 
line series involving transitions ending at the nth level is 
∆f = cRH/1n + 122.

75. A photon undergoes a 90° Compton scattering off a station-
ary electron, and the electron emerges with total energy gmec

2, 
where g is the relativistic factor introduced in Chapter 33. Find 
an expression for the initial photon energy.

76. Show that Wien’s law (Equation 34.2a) follows from Planck’s 
law (Equation 34.3). (Hint: Differentiate Planck’s law with re-
spect to wavelength.)

77. Consider an elastic collision between a photon with ini-
tial wavelength l0 moving in the x-direction and a station-
ary electron, as depicted in Fig. 34.9b. Use relativistic 
expressions for energy and momentum from Chapter 33 to show 
that conservation of energy and momentum yield the equations 
hc/l0 + mc2 = hc/l + gmc2, h/l0 = 1h/l2 cos u + gmu cos f, 
and 0 = 1h/l2 sin u - gmu sin f, where l is the post-collision 
photon wavelength and the angles u and f are as shown in Fig. 
34.9b. Solve these equations to find the Compton shift (Equation 
34.8).

78. What would the constant in Equation 34.2a be if blackbody ra-
diance were defined for fixed intervals of frequency rather than 
wavelength? (Hint: Use l = c/f  to express the radiance as 
R1f, T2, then differentiate to find the maximum, and solve the re-
sulting relation numerically. Express your answer in a form like 
Equations 34.2a and b.)

BIO

CH

CH
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633-nm light, and (c) an X-ray machine producing 0.10-nm  
X rays with total power 2.5 kW.

44. Electrons in a photoelectric experiment emerge from an alu-
minum surface with maximum kinetic energy 1.3 eV. Find the 
wavelength of the illuminating radiation.

45. (a) Find the cutoff frequency for the photoelectric effect in cop-
per. (b) Find the maximum energy of the ejected electrons if the 
copper is illuminated with light of frequency 1.8 *1015 Hz.

46. The stopping potential in a photoelectric experiment is 1.8 V 
when the illuminating radiation has wavelength 365 nm. Deter-
mine (a) the work function of the emitting surface and (b) the 
stopping potential for 280-nm radiation.

47. Chlorophyll is a photosynthetic molecule common in green 
plants. On a per-unit-wavelength basis, its ability to absorb vis-
ible light has two peaks, at 430 nm and 662 nm. (a) Find the cor-
responding photon energies. (b) Use these peak wavelengths to 
explain why plants are green.

48. Find the initial wavelength of a photon that loses half its energy 
when it Compton-scatters from an electron and emerges at 90° to 
its initial direction.

49. When light shines on potassium, the photoelectrons’ maximum 
speed is 4.2 *105 m/s. Find the light’s wavelength.

50. The maximum electron energy in a photoelectric experiment 
is 2.8 eV. When the wavelength of the illuminating radiation is 
increased by 50%, the maximum energy drops to 1.1 eV. Find  
(a) the work function of the emitting surface and (b) the original 
wavelength.

51. A 150-pm X-ray photon Compton-scatters off an electron and 
emerges at 135° to its original direction. Find (a) the wavelength 
of the scattered photon and (b) the electron’s kinetic energy.

52. Find the kinetic energy of an initially stationary electron after a 
0.10-nm X-ray photon scatters from it at 90°.

53. A photocathode ejects electrons with maximum energy 0.85 eV 
when illuminated with 430-nm blue light. Will it eject electrons 
when illuminated with 633-nm red light? If so, what will be the 
maximum electron energy?

54. A cosmic-ray particle interacts with an energy-measuring device 
for a mere 12 zs. What’s the minimum uncertainty in the meas-
ured energy? Express your answer in joules and in eV.

55. An electron is known to be somewhere inside a carbon nanotube 
that’s 370 nm long and 1.2 nm in diameter. Find the minimum un-
certainties in the components of its velocity (a) along the tube 
and (b) perpendicular to the tube’s long dimension.

56. Find the de Broglie wavelength of an electron that’s been accel-
erated from rest through a 4.5-kV potential difference.

57. An experimental transistor uses a single electron trapped in a 
channel 6.6 nm wide. What’s the minimum kinetic energy this 
electron could have, consistent with the uncertainty principle? 
Give your answer in joules and in eV.

58. (a) Find the highest possible energy for a photon emitted as the 
electron jumps between two adjacent energy levels in the Bohr 
hydrogen atom. (b) Which energy levels are involved?

59. Find (a) the wavelength and (b) the energy in electronvolts of the 
photon emitted when a Rydberg hydrogen atom drops from the 
n = 180 level to the n = 179 level.

60. The wavelengths of a spectral line series tend to a limit as 
n1 S ∞ . Evaluate the series limit for (a) the Lyman series and 
(b) the Balmer series in hydrogen.

61. A Rydberg hydrogen atom makes a downward transition to the 
n = 225 state, emitting a 9.32@μeV photon. What was the origi-
nal state?

62. A hydrogen atom is in its ground state when its electron absorbs 
a 48-eV photon. What’s the energy of the resulting free electron?

BIO
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84. Which of the curves in Fig. 34.16 represents the particle with the 
shortest lifetime?
a. A
b. B
c. C
d. You can’t tell from the graph.

85. An energy uncertainty of 1 MeV corresponds to a particle 
 lifetime closest to
a. 10-34 s.
b. 10-21 s.
c. 10-9 s.
d. 1 μs.

86. The converse approach is used for particles with longer lifetimes: 
Direct measurement of the lifetime yields, through energy–time 
uncertainty, a range of expected values for particle energies or 
masses. The longer the lifetime,
a. the wider the mass range and the narrower the energy range.
b. the wider the mass and energy ranges.
c. the narrower the mass range and the wider the energy range.
d. the narrower the mass and energy ranges.

87. For a particle with lifetime 10-7 s, the corresponding mass range 
is closest to
a. 10-44 u.
b. 10-27 u.
c. 10-17 u.
d. 1 u.

answers to Chapter Questions

answer to Chapter opening Question
That matter, like light, behaves as waves under some circumstances.

answers to GoT IT? Questions
 34.1  (1) A’s power is 16 times greater; (2) A’s peak wavelength is 

half that of B
 34.2  (1) No; slope remains h/e; (2) yes; the horizontal intercept is 

the cutoff frequency, which depends on the work function of 
the material

 34.3  (b) much less because the proton is ~2000 times more massive 
than the electron

 34.4  (c)
 34.5  (a)
 34.6  (c)

79. Integrate Equation 34.3 over all wavelengths to get the total 
power radiated per unit area. Show that your result is equivalent 
to Equation 34.1, with the Stefan–Boltzmann constant given by 
s = 2p5k4/15c2h3. (Hint: Use hc/lkT  as the integration vari-
able.)

80. Perform a numerical integration of Equation 34.3 to the wavelength 
given by Equation 34.2b. Divide by the result of  Problem 79, and 
thus verify that Equation 34.2b gives the wavelength above and 
below which a blackbody radiates half its energy.

81. Use the momentum conservation equations given in 
 Problem  77 and Equation 34.8 for the Compton shift to 
show that the electron’s recoil angle in Fig. 34.9b is given by  
tan f = sin u/[11 + lC/l0)(1 -  cos u2].

82. Show that in the Bohr model, the frequency of a photon emitted 
in a transition between levels n + 1 and n, in the limit of large n, 
is equal to the electron’s orbital frequency. (This is an example of 
Bohr’s correspondence principle.)

83. The table below lists the stopping potential as a function of wave-
length in a photoelectric effect experiment. Determine quantities 
to plot that should yield a straight line. Make your plot, establish 
a best-fit line, and use your line to determine (a) an experimental 
value for Planck’s constant and (b) the work function of the ma-
terial comprising the photocathode. (c) Use Table 34.1 to identify 
the material.

Wavelength, 
l (nm) 225 275 325 375 425 475 525

Stopping 
 potential, V (V) 3.25 2.17 1.52 0.962 0.646 0.312 0.065

Passage Problems
Particle physicists use the energy–time uncertainty relation to estimate 
the lifetimes of unstable particles produced in high-energy particle 
accelerators (Chapter 39). Some particles have lifetimes of 10-24 s 
and shorter—impossible to measure directly. However, physicists can 
measure particle masses, and they do so for many instances of the 
same particle to get a distribution of masses. By Einstein’s E = mc2, 
that corresponds to a distribution of energies (Fig. 34.16). Measuring 
the distribution’s width at half its peak (see Fig. 34.16) gives an es-
timate of the energy uncertainty, and the corresponding ∆t from in-
equality 34.16 provides the particle’s lifetime.

Width at half the
maximum value
provides a measure
of the uncertainty
∆E.
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Measured energy E = mc2
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Figure 34.16 Mass distributions for high-energy particles (Passage Problems 
84–87). The vertical axis gives the number of measurements that yield a 
given value on the horizontal axis

CH

comp

CH

DATA

666 Chapter 34 Particles and Waves

M34_WOLF4752_03_SE_C34.indd   666 18/06/15   1:24 PM



37
Molecules and 
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Atomic Physics

33
Relativity

34
Particles and Waves

Quantum Mechanics

35

What You Know
■ You’ve some basic ideas of 

quantum physics—quantization, 
the uncertainty principle, the 
correspondence principle—but at this 
point they’ve got no firm basis.

■ You understand Newtonian 
mechanics and can express the 
relationship between kinetic energy 
and momentum.

■ You know about potential energy and 
potential-energy curves.

The ideas developed in the preceding chapter are at the core of the old quantum  theory. 
The old quantum theory introduced the basic concepts of quantum physics and was 

 successful in explaining a number of quantum phenomena—for example, blackbody radia-
tion, the photoelectric effect, and the hydrogen spectrum. On the other hand, it couldn’t 
treat even the simplest multielectron atoms, and it left some subtle spectral features unex-
plained. Furthermore, the old quantum theory was a hodgepodge of separate but loosely 

What You’re Learning
■ You’ll learn to describe quantitatively the 

relationship between wave and particle 
descriptions of quantum systems.

■ You’ll learn how the Schrödinger 
equation describes the quantum-
mechanical wave function.

■ You’ll see how the wave function is 
usually interpreted, and you’ll come to 
appreciate why there’s still controversy 
about the philosophical interpretation of 
quantum physics and its wave function.

■ You’ll learn to solve the Schrödinger 
equation for one-dimensional square-
well potentials.

■ You’ll explore solutions to the 
Schrödinger equation for the 
quantum harmonic oscillator.

■ You’ll see how quantum tunneling allows 
particles to penetrate into regions that 
classical energy conservation forbids 
them from entering.

■ You’ll understand quantum degeneracy 
and other complexities that arise in 
two- and three-dimensional quantum 
systems.

■ You’ll see that special relativity 
provides the theoretical pass for 
antimatter and spin.

How You’ll Use It
■ Quantum mechanics, based on the 

Schrödinger equation, provides 
the basis for understanding atomic 
structure—as you’ll see in Chapter 36.

■ Quantum mechanics will provide 
a firm theoretical basis for your 
understanding of the periodic table 
of the elements and thus for all of 
chemistry.

■ Applied to many-particle systems in 
Chapter 37, quantum mechanics will 
explain the behavior of molecules and 
solids.

This scanning-tunneling microscope image shows a “quantum corral” of 48 iron atoms on a copper 
surface. What unusual quantum phenomenon enables this type of microscopy?

667
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668 Chapter 35 Quantum Mechanics

related ideas, each developed to explain a particular phenomenon; it lacked coherence and 
clear guiding principles.

Is there a more coherent theory that predicts the behavior of systems at the atomic and 
subatomic scales, and that offers a satisfying description of how such systems really work? The 
answer is at once an emphatic yes and a disappointing no. Yes, because quantum mechanics, 
developed in the 1920s, predicts with remarkable precision the observed properties of atomic 
systems,  including their energies, the wavelengths of spectral lines, and the lifetimes of excited 
atoms. No, because quantum mechanics doesn’t give a satisfying visual picture of the atomic and 
subatomic worlds. The uncertainty principle and wave–particle duality are essential aspects of 
quantum mechanics. Any picture we formulate of electrons or photons whizzing around like 
 miniature balls with precise positions and momenta is inappropriate. But quantum mechanics  
does provide a self-consistent description that lets us explore and predict the behavior of 
 atoms, the organization of chemical elements, the physics of semiconductors and supercon-
ductors, the extraordinary behavior of matter at low temperature, the formation of white dwarf  
stars, the  operation of lasers, and a host of other phenomena for which classical physics is at 
best  inaccurate and at worst totally inadequate. In this chapter you’ll explore the mathematical 
structure and  physical interpretation of quantum mechanics. In Chapters 36 and 37 you’ll apply 
quantum mechanics first to the atom and then to more complex systems that involve quantum-
mechanical interactions among many atoms.

35.1 Particles, Waves, and Probability
Photons and Light Waves
In Maxwell’s electromagnetic theory, we had a seemingly complete description of light as 
an electromagnetic wave. Now we find, through the photoelectric and Compton effects, 
that light sometimes manifests itself as particles. What’s the connection between wave and 
particle descriptions?

In a photoelectric experiment, the rate at which electrons are ejected depends on the 
light’s intensity. Since an electron is ejected when it absorbs a photon, we conclude that 
the number of photons in the incident light is proportional to light intensity. Now, the 
intensity of an electromagnetic wave depends on the square of the electric or magnetic 
field (Equations 29.20b, c). The fields, in turn, obey Maxwell’s equations, so one aspect 
of a photoelectric experiment—namely, the rate of electron ejection—relates to Maxwell’s 
description of light as an electromagnetic wave.

We can quantify the relation between waves and photons, but only in a statistical sense. 
The ejection of individual electrons in a photoelectric experiment is quite random. The un-
certainty principle prevents us from following a photon trajectory and predicting when and 
where an electron will be ejected. All we can say is that electrons are more likely to be 
ejected where the wave intensity is greater. Specifically, the probability that an electron will 
be ejected is directly proportional to the intensity of the incident electromagnetic waves—
that is, to the square of the wave fields. More generally, the probability of finding a photon 
in a beam of electromagnetic waves is directly proportional to the wave intensity (Fig. 35.1).

In this quantum-mechanical description, the fields still evolve according to Maxwell’s 
equations. For example, the fields of an electromagnetic wave undergoing double-slit in-
terference develop regions of maximum and minimum wave intensity—the bright and 
dark bands of the interference pattern. But the wave fields determine only the probability 
that individual photons will be detected in the interference pattern. That’s why a very short 
exposure or a low-intensity beam results not in a weak version of the interference pattern 
but in a seemingly arbitrary pattern. Only with large numbers of photons does the statisti-
cal pattern emerge (Fig. 35.2).

In quantum mechanics, then, the relation between the wave and particle aspects of light 
is this: As long as we don’t try to detect the light, it propagates as a wave governed by 
Maxwell’s equations. But when we detect the light, we do so through interactions involv-
ing individual photons. Those interactions are random events whose probability depends 
on the wave intensity—that is, on the square of the wave fields.

Figure 35.1 The probability of finding a photon 
is directly proportional to the intensity of 
the electromagnetic wave. The figure is only 
 suggestive because we can’t depict photons 
as localized particles.

chigh probability
of �nding a photon

High amplitude c
Light wave

Photon beam
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35.2 The Schrödinger Equation 669

Electrons and Matter Waves
In Chapter 34 we introduced de Broglie’s remarkable hypothesis that matter, as well as 
light, exhibits both wave and particle properties. The wave–particle duality puts matter 
and light on essentially the same footing, and the statistical interpretation is the same for 
each. Figure 35.3 shows a beam of particles and its associated de Broglie matter wave. 
Just as the probability of finding a photon is proportional to the wave intensity—that is, 
the square of the electromagnetic-field amplitude—so the probability of finding a particle 
is directly proportional to the square of the matter-wave amplitude. And as with light, the 
particle nature of matter manifests itself only when we try to detect a particle; leave it 
alone, and the particle’s behavior is governed by its wave nature.

Maxwell’s equations determine the behavior of light waves, but what equation de-
scribes matter waves? In 1926 the Austrian physicist Erwin Schrödinger answered this 
question with his Schrödinger wave equation. In the same year, Schrödinger showed 
that his wave theory was equivalent to a matrix-based theory that Heisenberg, Max Born, 
and Pascual Jordan had formulated in 1925. Heisenberg received the 1932 Nobel Prize in 
physics, and Schrödinger shared the 1933 Nobel Prize with Paul Dirac for their contribu-
tions to quantum theory.

GoT IT? 35.1 Focusing a particular laser beam results in a 10-fold increase in the 
electric field of the associated light wave. The probability of finding a photon at a point in 
the focused beam is increased by (a) a factor of 10, (b) a factor of 110, (c) a factor of 2, 
or (d) a factor of 100.

35.2 The Schrödinger Equation
The Schrödinger equation describes matter waves in terms of a wave function, c (Greek 
psi), which depends on both space and time. The solution of differential equations in two 
variables is beyond the mathematical level of this text, so here we’ll consider only spatial 
variations, and for now we’ll further restrict ourselves to one dimension.

We can understand the Schrödinger equation by considering a sinusoidal wave of the 
form c1x2 = A sin kx, where, as usual in describing waves, k = 2p/l, with l the wave-
length. Differentiating this expression twice gives

d2c 1x2
dx2 = -Ak2 sin kx = -k2c 1x2

But k = 2p/l and, for matter waves, de Broglie’s hypothesis gives l = h/p, with h 
Planck’s constant and p the particle’s momentum. Thus we can write k in terms of momen-
tum as k = 2pp/h = p/U. Now in classical physics a particle of mass m has kinetic energy 
K and momentum p related by K = p2/2m. Furthermore, kinetic energy is the difference 
between the total energy E and the potential energy U; thus E - U = p2/2m. Putting this 
all together, we can write the quantity k2 in our differentiated wave expression as

k2 =
p2

U2 =
2m1E - U2

U2

Figure 35.2 Development of a two-slit interference pattern from random photon events:  
(a)  approximately 50 photons, (b) 250 photons, (c) 1000 photons, (d) 10,000 photons.

(a) (b) (c) (d)

Figure 35.3 A beam of particles and its 
 associated matter wave.

High amplitude c
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670 Chapter 35 Quantum Mechanics

Make this substitution in our expression above for d2c/dx2 and do a little algebra; the 
 result is

 -
U2

2m
 
d2c1x2

dx2 + U1x2c1x2 = E c1x2  a time@independent
Schro

$
dinger equationb  (35.1)

This is the time-independent Schrödinger equation, giving the spatial variation of matter 
waves in one dimension. A solution of the full time-dependent equation consists of a solu-
tion to Equation 35.1 multiplied by a sinusoidal oscillation with frequency f = E/h, where 
E is the particle energy. We developed the time-independent Schrödinger  equation by merg-
ing de Broglie’s matter-wave hypothesis l = h/p with the Newtonian  relation K = p2/2m; 
for that reason, we expect the equation to hold only for nonrelativistic  particles.

The Schrödinger equation provides a description of physical reality in remarkable 
agreement with experiments. As we’ll see, Schrödinger’s equation goes a long way toward 
explaining the structure of atoms, their chemical properties, and indeed the entire science 
of chemistry. Furthermore, the Schrödinger description obeys the correspondence princi-
ple, agreeing with Newtonian mechanics for macroscopic systems where quantum effects 
are small.

The Meaning of C
What’s the meaning of the wave function c? That’s a deep question that physicists and 
philosophers continue to debate. In the standard interpretation, c is not an observable 
quantity. It manifests itself only in the statistical distributions of particle detections. More 
specifically, the probability per unit volume—also called the probability density—
that we’ll find a particle is given by c2. For a particle confined to one dimension, the 
 probability density becomes the probability per unit length, and we interpret c to mean 
that the probability P1x2 of finding the particle in a small interval dx at position x is

 P1x2 = c21x2 dx  1probability and the wave function2 (35.2)

We can interpret Equation 35.2 in two ways. At face value, it gives the probability that 
a single experiment, with a detector at position x set up to find particles in an interval 
of width dx, will detect the particle (Fig. 35.4). Or, if we do many such experiments, the 
equation gives the fraction of the experiments in which we’ll find a particle in our detector.

But what is c? How can it be unobservable yet govern the behavior of matter? There 
can’t be a direct causal link between the wave function and individual particles, since c 
determines only the probability that a particle will behave in a certain way. Think about 
this! In quantum mechanics the outcome of an experiment isn’t fully determined. The 

Figure 35.4 The meaning of the probability density c21x2. (a) A wave function and (b) its square, which gives 
the probability density.
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Schrödinger equation describes only the probability of a given outcome. The quantum 
world is so different, according to the standard interpretation, that our macroscopic lan-
guage, concepts, and pictorial models are simply inadequate. In particular, macroscopic 
causality gives way to microscopic indeterminacy in which quantum events are truly 
 random; physical laws govern only the statistical pattern of events.

Are you bothered by the strange implications of quantum mechanics, with its 
 description of a universe governed ultimately by probability? If so, you’re in good 
 company.  Einstein himself never accepted the idea of a probabilistic universe, asserting, 
in a  common  paraphrase, that “God does not play dice.” Einstein and Bohr frequently 
debated, and in a widely cited 1935 paper, Einstein and his colleagues Boris Podolsky 
and Nathan Rosen argued that quantum mechanics could not be a complete theory but re-
quired an  underlying, deterministic physics governing so-called hidden variables,  hidden 
from us by the uncertainty principle. But experiments done since the 1980s place  severe 
constraints on such hidden-variable theories. Nevertheless, fascinating discussions on the 
interpretation of quantum mechanics continue to this day. Here, however, we’ll take a 
more practical route, turning to the Schrödinger equation to see how it’s used in  analyzing 
quantum-mechanical systems.

GoT IT? 35.2 In Fig. 35.4b, are the probabilities of finding a particle in small 
 regions of width dx given by (a) the areas of the shaded rectangles, (b) the values of c2 in 
each region, or (c) the value of c in each region?

Normalization and other Constraints on the Wave Function
In one dimension, the quantity c2dx represents the probability of finding the particle in 
the interval dx. But the particle must be somewhere. Therefore, if we sum the probabilities 
of finding the particle in all such intervals dx, the result must be 1; there must be a 100% 
chance that we’ll find the particle somewhere. Since the probability density may vary with 
position, that sum becomes an integral:

 L
+ ∞

-∞
c2dx = 1  1normalization condition2 (35.3)

Once we have a solution c1x2 to the Schrödinger equation 35.1, this normalization con-
dition sets the overall amplitude of the function c.

The Schrödinger equation contains the second derivative of c. In order that this term be 
well defined, both c itself and its first derivative must be continuous. (An exception to the 
continuity condition on dc/dx—possible only in unrealistic example situations— occurs if 
the potential energy U becomes infinite.)

35.3 Particles and Potentials
The Infinite Square Well
We first solve the Schrödinger equation for a particularly simple system—a particle 
trapped in one dimension between two perfectly rigid walls. Although unrealistic in some 
respects, this system nevertheless is a surprisingly good approximation to some real quan-
tum systems, including electronic devices and simple nuclei. More important, its analysis 
illustrates the general procedure for applying the Schrödinger equation and shows how 
energy quantization emerges from Schrödinger’s theory.

In classical physics, a particle trapped between rigid walls moves back and forth with 
constant speed. In the absence of friction or other losses, the particle’s energy remains 
constant at its initial value. And in classical physics, that value can be anything.

We can describe the particle’s situation using its potential-energy curve. Since the par-
ticle experiences no forces while it’s between the walls, its potential energy U is constant 

PheT: Quantum Bound State: One Well
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672 Chapter 35 Quantum Mechanics

in this region, and we can fix the arbitrary zero of potential energy by setting U = 0. If the 
walls are perfectly rigid, then the particle can’t penetrate them, no matter what its energy. 
This means that the potential energy becomes abruptly infinite at the walls. Then the poten-
tial-energy curve for our particle looks like Fig. 35.5; you can see from the figure why this 
curve is called an infinite square well. In this case the well extends from x = 0 to x = L.

We now consider the quantum-mechanical description of a particle in the infinite 
square well. The particle has a wave function whose time-independent part is given by the 
Schrödinger equation (Equation 35.1):

-
U2

2m
 
d2c

dx2 + U1x2c = Ec

where the potential energy U1x2 is that of the square well in Fig. 35.5:

 U = 0 for 0 6 x 6 L

 U = ∞  for x 6 0 or x 7 L

Since there’s no chance that the particle can penetrate the rigid walls, the function c must 
be exactly zero in the region where U = ∞ . All we need to calculate, then, is c inside the 
well, where 0 … x … L. To ensure that the particle is confined to the well, our solution 
must satisfy so-called boundary conditions: c = 0 at x = 0 and at x = L.

Within the well, U = 0 and the Schrödinger equation becomes

 -
U2

2m
 
d2c

dx2 = Ec (35.4)

To find solutions, recall de Broglie’s hypothesis that the allowed orbits in the Bohr atom are 
those for which standing waves just “fit” around the orbit. We have a similar situation with 
the infinite square well, in which the allowed solutions should be standing waves with nodes 
at the ends of the well—exactly analogous to standing waves on a string with both ends 
clamped that we discussed in Chapter 14. So we want a sinusoidal wave for c1x2, subject 
to the boundary conditions c102 = 0 and c1L2 = 0. The first condition is satisfied if we 
take a wave of the form c = A sin kx, with A and k both constants. The  second condition 
requires that k = np/L, where n is any integer—a condition equivalent to saying that an 
integer number of half-wavelengths fit in the well. So we propose a  solution of the form

c1x2 = A sin anpx

L
b

with the constant A still undetermined. This equation represents standing waves with 
nodes at the ends of the square well, but does it satisfy the Schrödinger equation? We can 
find out by substituting into Equation 35.4. We need not only c but also its second deriva-
tive; twice differentiating our proposed solution gives

d2c

dx2 = -A 

n2p2

L2  sin anpx

L
b

Substituting c and d2c/dx2 into Equation 35.4 gives

a-
U2

2m
b c -A 

n2p2

L2  sin anpx

L
b d = EA sin anpx

L
b

which reduces to

 E =
n2p2U2

2mL2 =
n2h2

8mL2 1energy levels for an infinite square@well potential2 (35.5)

Equation 35.5 says that our proposed solution can indeed satisfy the Schrödinger 
 equation—provided the particle energy E has any one of the values given by Equation 
35.5, with n an integer.

Figure 35.5 Infinite square-well potential-
energy curve describes a particle constrained 
to move in one dimension between rigid walls 
separated by a distance L.
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Our standing-wave solutions show how the quantization of energy arises naturally from 
the Schrödinger equation. Physically, the reason for quantization remains as de Broglie 
had postulated: Matter waves in a confined system must be standing waves with an integer 
number of half-wavelengths. Although de Broglie’s hypothesis and the Schrödinger equa-
tion lead to exactly the same conclusion for the infinite square well, we’ll see that with 
more complicated potential-energy functions only the Schrödinger equation can give us 
the full story.

The integer n that appears in Equation 35.5 is the quantum number for the particle in the 
square well. The physical state of a quantum-mechanical system is its quantum state. Here 
one quantum number suffices to specify the quantum state, which then tells us  everything 
quantum mechanics has to say about the situation. As far as the Schrödinger equation is 
concerned, it looks like all integer values of n are allowed. The choice of negative or positive 
n has no physical significance, since c2 has the same value with either sign of c; for this 
reason, negative n’s are redundant. But n = 0 implies c = 0 everywhere, giving no chance 
of finding the particle anywhere. So we’re left with positive integer values of n.

With only nonzero n’s allowed, Equation 35.5 shows that the particle’s energy is al-
ways positive; zero energy isn’t allowed. The lowest possible energy is E1 = h2/8mL2, 
obtained with n = 1. This is the ground-state energy; the corresponding wave function 
is the ground-state wave function. A nonzero ground-state energy is a common feature 
of quantum systems and one with no classical counterpart. Figure 35.6 is an energy-level 
diagram for the infinite square well.

Figure 35.6 Energy-level diagram for a particle 
in an infinite square well. Energy is proportion-
al to n2, so the levels aren’t evenly spaced.
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CoNCEPTUaL ExaMPLE 35.1  Ground-State Energy

Why can’t the ground-state energy of the square well be zero?

EvaluatE Consider the uncertainty principle, ∆x ∆p Ú U. If the 
ground-state energy were zero, then we would know precisely the 
particle’s kinetic energy p2/2m—zero—and therefore we would know 
that its momentum p was also zero. But we know that the particle is 
within the well, so the uncertainty in its position is at most the well 
width L. The product ∆p ∆x would then be zero, in violation of the 
uncertainty principle.

assEss We used the uncertainty principle in the preceding chapter to 
estimate the minimum energies of confined particles. The  ground-state 

energy for the square well is a specific instance of this so-called zero-
point energy.

Making thE ConnECtion An electron drops from the n = 2 state 
to the ground state of a 0.75-nm-wide infinite square well, emitting a 
photon in the process. Find the photon’s energy.

EvaluatE Equation 35.5 gives the square-well energies. Here the 
photon’s energy is the difference between E2 and the ground-state en-
ergy E1: ∆E = 3.2 * 10-19 J, or 2.0 eV.

GoT IT? 35.3 Electron A is confined to a square well 1 nm wide; electron B to a 
 similar well only 1 pm wide. How do their ground-state energies compare? (a) EB = 10EA; 
(b) EB = 1000EA; (c) EB = 106EA; (d) EB = 10- 3EA

Normalization, Probabilities, and the  
Correspondence Principle
We still don’t know the constant A in our solution for the infinite square well. We 
find this using the normalization condition 35.3: 1∞

-∞c
2dx = 1. Inside the well, 

c = A  sin1npx/L2; outside, c = 0. So we can write the normalization condition as an 
integral over 0 6 x 6 L:

L
L

0
 A2 sin2 anpx

L
b  dx = 1

If we divided1L
0  sin21npx/L2 dx by the well width L, we would have the average of sine 

squared over an integer number of half-cycles—or just 1
2. So the integral of sin21npx/L2 
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674 Chapter 35 Quantum Mechanics

from 0 to L is 1
2 L, and therefore A21L/22 = 1, or A = 12/L. The normalized wave 

 function is then

 cn = A 2

L
 sin anpx

L
b  (35.6)

where the subscript n refers to the function associated with the nth quantum state.  
Figure 35.7 shows wave functions for the ground state and three excited states.

Where are we likely to find the particle? Classically, it would move back and forth at 
constant speed and therefore would be equally likely to be anywhere in the well. Quantum-
mechanically, the probability of finding it at some position x is proportional to the probabil-
ity density c2 at that point. Figure 35.8 shows the probability densities given by squaring the 
wave functions of Fig. 35.7. For n = 1, we’re clearly most likely to find the particle near 
the middle of the well—in marked contrast to the classical prediction of equal  probability 
everywhere. For other low-n states there are obvious regions of high and low probability. 
But as the quantum number increases, the maxima and minima of the  probability density 
get closer together. Any instrument we use to detect the electron has a finite resolution, 
and once the periodicity of the wave function drops below that resolution, we measure an 
 average probability, which is essentially constant over the interval (Fig. 35.8).

This is a manifestation of Bohr’s correspondence principle: For large quantum numbers 
n, the interval between adjacent energy levels becomes small compared with the energy 
itself, and a measurement of the electron’s position gives results in agreement with clas-
sical physics. But classical physics is totally inadequate at low n, where the nonclassical 
zero-point energy and quantization are most evident.

Figure 35.7 Wave functions for a particle in an 
infinite square well, each centered on the cor-
responding energy level.

n = 15

n = 3

n = 2

n = 1

∞ ∞

Break

Figure 35.8 Classical (dashed) and quantum 
(solid) probability densities for a particle 
in an infinite square well. The shaded 
area under each curve is 1, indicating that 
the particle must be somewhere in the 
well. Width of the colored rectangle is the 
 resolution of an  instrument used to detect 
the particle.

n = 15

n = 3

n = 2

n = 1

For large n, the
detector samples an
average equal to the
classical probability.

Rectangle width is
detector resolution;
area of rectangle is
probability of
detecting the particle.

Solid curve is
quantum probability
density; dashed line is
classical.

For n = 1, quantum
and classical
probabilities
disagree; similarly
for n = 2 and 3.

ExaMPLE 35.1  Quantum Probability: The Square-Well Ground State

A particle is in the ground state of an infinite square well. Find the 
probability that it will be found in the left-hand quarter of the well.

intErprEt This is a question about probability, and we know that the 
probability density is the square of the wave function. So our solution 
is going to involve c2.

DEvElop The ground-state wave function from Equation 35.6 is 
c1 = 12/L sin1px/L2. We normalized the wave function so the 

 integral of c1
2 over the entire well is 1, showing that the particle is 

somewhere in the well. That is, the area under the entire plot of c1
2 

is 1. We sketched c1
2 in Fig. 35.9, showing that the probability of 

finding the particle in some region is the area under the curve in that 
region. So to find the probability that the particle is in the left-hand 
quarter of the well, we’ll evaluate 1c2dx from 0 to 14 L.
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35.3 Particles and Potentials 675

The infinite square well gives insights into important quantum phenomena shared by 
more realistic systems such as atoms. These include quantized energy levels, nonzero 
ground-state energy, nonclassical probabilities, and agreement with classical physics at 
large quantum numbers. In Chapter 36 we’ll apply the Schrödinger equation to atoms, 
where we’ll find many of the same phenomena. First, though, we look at some other 
 simple systems that exhibit additional quantum behaviors.

The Harmonic oscillator
In Chapter 13 you studied simple harmonic motion, which occurs when a  particle 
is  subject to a restoring force that’s directly proportional to the displacement from 
 equilibrium. Such a linear restoring force implies a quadratic potential-energy function, 
and conversely, as you saw in Section 13.5, any system with a quadratic potential-energy 
function is a  harmonic oscillator. That includes many systems at the atomic and molecular 
scale.  Understanding the quantum-mechanical harmonic oscillator is therefore crucial in 
describing the behavior of matter on small scales.

A mass–spring system has potential energy U = 1
2 kx2 and oscillates with angu-

lar frequency given by Equation 13.7a: v = 1k/m. Combining these equations gives 
U = 1

2 mv2x2, providing a potential-energy function suitable for an electron or atom 
 vibrating at the end of a molecular bond. Solving the Schrödinger equation for this 
 potential requires advanced math techniques, and shows that normalizable wave functions 
exist only for discrete values of the energy E:

 En = 1n + 1
22Uv (35.7)

where now n = 0 is the ground state. Figure 35.10 shows an energy-level diagram for the 
harmonic oscillator; note the even spacing implied by Equation 35.7. The additive factor 
1
2 in Equation 35.7 shows that Planck wasn’t quite right in suggesting that the allowed 
harmonic-oscillator energies should be multiples of hf 1=Uv2. Planck’s spectral distribu-
tion (Equation 34.3) is nevertheless correct, but he did not foresee the existence of nonzero 
ground-state energy.

The even spacing between the energy levels of the harmonic oscillator is in marked 
contrast to the situation in atoms (Fig. 34.11) or in the infinite square well (Fig. 35.6).  

EvaluatE The probability becomes

P =
2

L L
L/4

0
 sin2  apx

L
b  dx

We can integrate using the table at the end of Appendix A; the result is

P =
2

L
 ax

2
-

sin12px/L2
4p/L

`
L/4

0
b =

2

L
 aL

8
-

L

4p
b = 0.091

assEss This is considerably lower than the probability P = 0.25 we 
would expect classically for finding the particle in any quarter of the 
well, and reflects the lower value of c2 nearer the well ends.  Problem 
54 repeats the calculation of this example for arbitrary  quantum 
 numbers, showing that classical and quantum probabilities agree at 
large n. ■

Figure 35.9 Sketch for Example 35.1.

1
4

The wave function is
normalized to make 
area under the 
entire curve equal to 1 c

cso this area
gives the probability
of �nding the particle
between x = 0 and x =   L.

GoT IT? 35.4 Which of the following would be a reasonable answer if Example 
35.1 had asked for the probability that the particle would be found in the central quarter of 
the well: (a) 0.091, (b) 0.25, (c) 0.475, (d) 0.90?

Figure 35.10 Energy-level diagram for a 
quantum-mechanical harmonic oscillator, 
superposed on its quadratic (i.e., parabolic) 
potential-energy curve.
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A quantum harmonic oscillator emits or absorbs photons as it makes transitions among 
adjacent levels, and the even spacing means that all transitions between adjacent levels of 
a pure harmonic oscillator involve photons of the same energy.

A classical harmonic oscillator moves slowest near its turning points, so it’s most likely 
to be found at the extremes of its motion. It’s least likely to be at its equilibrium  position, 
where it’s moving fastest. As with the square well, the harmonic oscillator in low-n 
states exhibits unclassical behavior; in the ground state it’s most likely to be found at its 
 equilibrium position! Figure 35.11 shows classical and quantum probability densities for 
the harmonic oscillator; note that for larger n the two begin to agree, once again  showing 
Bohr’s correspondence principle at work.

Quantum Tunneling
One remarkable feature of Fig. 35.11 is the nonzero probability of finding a quantum har-
monic oscillator beyond its classical turning points—the points at which its kinetic energy 
has been converted entirely to potential energy. This unusual situation, which seems to 
violate energy conservation, has no counterpart in the classical description of matter.

Another example of penetration into a classically forbidden region is a particle encoun-
tering a potential barrier (Fig. 35.12). Examples of such barriers include electric potential 
differences associated with atomic nuclei, gaps between solid materials, and insulating 
layers in some semiconductor devices. Classically, a particle whose total energy is lower 
than the barrier energy is confined to one side of the barrier. If we solve the Schrödinger 
equation for this potential-energy curve, however, we find oscillatory solutions on either 
side of the barrier, joined according to the continuity conditions on c and dc/dx by expo-
nential functions within the barrier. Such a solution is shown superimposed on the barrier 
in Fig. 35.12. The probability density c2 associated with this solution remains nonzero 
through the barrier and continues to give a nonzero probability of finding the particle on 
the far side—implying that a particle initially on one side of the barrier may later be found 
on the other side.

How likely is this phenomenon, called quantum tunneling? That depends on the rela-
tion of the particle energy E to the barrier energy U, and also on the width of the barrier. As 
you can show in Problem 49, the c function inside the barrier involves exponential func-
tions of the form e{12m1U - E2x/U. In general, these exponentials drop very rapidly across 
the barrier width unless the particle energy E is close to the barrier energy or the particle 
mass m is small. The probability that a particle will be found on the far side of the barrier 
is therefore very low when the mass m is large, so quantum tunneling is a microscopic 
phenomenon (Fig. 35.13).

It looks as if tunneling violates energy conservation. But we’re saved by the uncertainty 
principle. If we catch the particle within the barrier, the uncertainty in its position is no 
greater than the barrier width. We know from Example 34.5 that this implies a minimum 
energy. A quantitative analysis shows that minimum to be such that we can no longer be 
sure the particle energy is lower than the barrier energy. If we don’t try to detect a particle 
within the barrier, its penetration is a purely wave phenomenon to which our particulate 
energy considerations don’t apply. Again we see the wave–particle duality at work: If we 
don’t observe the particle, its behavior is governed by the associated waves and may result 
in most unparticle-like phenomena such as tunneling. If we do try to catch it in the act of 
such behavior, it ceases to be wave-like and the surprising phenomena cease.

Tunneling is important in a number of quantum-mechanical phenomena and techno-
logical devices. That the Sun shines—and therefore that we’re alive—is a consequence of 
quantum tunneling of nuclei in the Sun’s core. Classically, those nuclei don’t have suffi-
cient energy to get close enough to overcome their mutual electric repulsion. But they can 
tunnel through this “Coulomb barrier” and fuse to release the enormous energy that pow-
ers the Sun. An opposite process, alpha decay, occurs as alpha particles tunnel through a 
potential barrier that traps them inside large nuclei like uranium. Measurement of the alpha 
particles’ energy shows it to be lower than the barrier energy, confirming that tunneling 
occurs. Tunneling is the basis of the scanning tunneling microscope (STM), a  remarkable 
device that lets us image individual atoms (see Application, next page). Quantum tunneling 

Figure 35.11 Probability densities c21x2 for 
some states of the harmonic oscillator. Dashed 
curves are classical predictions. Increasing 
spread in the classical turning points reflects 
the higher energy of the higher-n states.
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Figure 35.12 A potential barrier of height 
U, showing the wave function for a particle 
incident from the left with energy E lower than 
the barrier energy U.
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35.3 Particles and Potentials 677

moves electrons on and off the transistors that store information in flash memory—the 
memory used in your smartphone, tablet, camera, flash drive, and increasingly as replace-
ments for hard disks in computers. Finally, tunneling of individual electrons is the basis of 
one proposed implementation of a new elementary-charge based definition of the coulomb, 
as described in Chapter 20.

GoT IT? 35.5 A proton and an electron approach a barrier. Both have the same 
 energy E, which is lower than the barrier potential U. Is (a) the proton or (b) the electron 
more likely to get through, or (c) are they equally likely to get through?

aPPLICaTIoN Scanning Tunneling Microscope

Developed in the 1980s by Heinrich Rohrer and Gerd Binnig of IBM Zurich 
 Research Laboratory, the scanning tunneling microscope (STM) has become a 
vital tool for semiconductor engineers, biologists, chemists, and nanotechnolo-
gists. The STM works by quantum tunneling between an extraordinarily fine 
conducting tip and the surface under study. The photo shows a scanning elec-
tron microscope image of an STM tip, which may be only one atom wide. As 
in the barrier of Fig. 35.12, the electron wave function tapers off exponentially 
in the space outside the surface. Place a conducting tip near but not touching 
the surface, and there’s a nonzero probability that electrons will tunnel through  
the gap to reach the tip, resulting in an electric current. The exponential falloff 

of the wave function means this tunneling current is extremely sensitive to the 
tip-to-surface gap, and therefore changes significantly with surface irregularities.

A practical STM scans the tip over the surface, and feedback devices move 
the tip to keep the tunneling current constant despite surface irregularities, as 
shown in the figure. Therefore, the tip traces out the surface topography, and 
this information is used to construct an image of the surface—even at the scale 
of individual atoms (see this chapter’s opening photo).

Scanning motion Feedback
motion

Probe
tip

Tunneling
current

Surface

Material

Feedback keeps
this distance
constant, so the 
tip traces out 
the surface contours.

Finite Potential Wells
Both the infinite square well and the harmonic oscillator have potential wells of infinite 
depth. No matter what its energy a particle is bound in such a well; it can’t escape to large 
distances. Its quantized energy states are therefore all bound states. Provided they aren’t 
too shallow, wells of finite depth also exhibit quantized bound states whose wave func-
tions resemble those of the infinite square well (Fig. 35.14), although they show a small 
but nonzero probability of tunneling into the classically forbidden region outside the well. 
Problems 58–60 explore quantitatively the energy levels in finite wells.

Figure 35.14 Bound-state wave functions 
for a finite square well, superposed on the 
 associated energy levels. For this combination 
of well depth, well width, and particle mass 
there are only three bound states.

U0

n = 2

n = 1

n = 3

L

E1 = 0.098U0

E2 = 0.37U0

E3 = 0.81U0

PheT: Quantum Tunneling and Wave Packets
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Quantized bound states represent particles with energy lower than the well height. Par-
ticles with higher energy are free to move anywhere, and their wave functions are every-
where oscillatory. Furthermore, particles in these unbound states can have any energy 
whatsoever as long as it exceeds the well height; unbound energies aren’t quantized. 
Rather, there’s a continuum of allowed energies above the well top, in contrast to the dis-
crete, quantized levels below (Fig. 35.15). We’ll find both bound and unbound states again 
in the next chapter when we study the atom.

35.4 Quantum Mechanics in Three Dimensions
One-dimensional quantum systems show important features of the quantum world, 
like energy quantization and tunneling. But atoms and most other quantum systems are 
three-dimensional. The wave function then depends on all three spatial variables, and 
the Schrödinger equation reflects this complexity. You can explore the three-dimensional 
Schrödinger equation in Problem 51; here we just point out some new features of three- 
dimensional quantum systems.

A single quantum number n characterizes quantum states in one dimension. With the 
infinite square well, for example, an integer number of half-wavelengths can fit in the 
well, and n is that number. Each n is associated with a distinct energy level. In two or three 
dimensions, similar considerations lead to independent quantum numbers for each dimen-
sion (Fig. 35.16). For each set of quantum numbers there’s an associated energy. For a 
particle of mass m confined to a cubical box of side L, for example, a generalization of the 
one-dimensional square well leads to the energy levels

 E =
h2

8mL2   1nx
2 + ny

2 + nz
22 (35.8)

where the n’s are the quantum numbers associated with each spatial dimension. As in one 
dimension, the allowed values for the n’s are positive integers. Thus, the ground state has 
nx = ny = nz = 1. But what’s the first excited state? It could be nx = 2, ny = nz = 1. 
But it could equally well be nx = ny = 1, nz = 2, or nx = nz = 1, ny = 2, since all three 
of these combinations give the same energy.

Two or more quantum states with the same energy are termed degenerate. The first 
excited state of a particle confined to a cubical box is threefold degenerate, meaning 
there are three distinct states with the same energy. Degeneracy is often associated with 
symmetry of the quantum-mechanical system. In the cubical box, the equal-length sides 
 result in different combinations of quantum numbers with the same energy. Making the 
sides different would remove the degeneracy, splitting a single energy level into three  
(Fig. 35.17). The same thing happens in more realistic quantum systems. For  example, 
 imposing a magnetic field on an otherwise spherically symmetric atom breaks the 
 symmetry and may split energy levels that were previously degenerate (Fig. 35.18). 
 Detection of this splitting in optical spectra allows measurement of magnetic fields on the 
Sun and in other remote objects.

Figure 35.15 Energy-level diagram for a finite 
square well shows discrete bound states and a 
continuum of unbound states.

Continuum
states

n = 3

n = 2

n = 1

E = U0

E = 0

Figure 35.16 One possible wave  function 
for a particle confined to a square  region 
in two dimensions. This function is 
c(x, y) = sin1nxpx/L2 sin1nypy/L2,  
with nx = 2 and ny = 1.
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Figure 35.17 Energy-level diagrams showing 
the ground state and first excited state for a 
particle in a three-dimensional box.  Making 
the sides different lengths removes the 
degeneracy.

E112,E121,E211 E121

E211

E112

E111 E111

E = 0

Cubical Rectangular

E
ne

rg
y,

 E

Figure 35.18 (a) Spectral line at 404.66 nm produced by mercury atoms undergoing transitions 
from n = 7 to n = 6. The upper level is actually threefold degenerate. (b) A magnetic field 
breaks the symmetry and removes the degeneracy, splitting the spectral line.
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35.5 Relativistic Quantum Mechanics 679

GoT IT? 35.6 Is the energy of the first excited state for a particle in a cubical box  
(a) twice, (b) four times, or (c) eight times that of the ground state?

35.5 Relativistic Quantum Mechanics
Like Newtonian physics, quantum mechanics based on the Schrödinger equation is not 
consistent with special relativity’s requirement that the laws of physics be the same in all 
inertial reference frames. It’s therefore an approximation valid for particle speeds v much 
lower than c. For most applications in atomic, molecular, and condensed-matter physics, 
v V c so the Schrödinger equation applies. But when particle speeds are a significant 
fraction of c, the Schrödinger equation becomes inadequate and must be replaced with a 
relativistic wave equation. And even for slowly moving particles, the requirement of rela-
tivistic invariance leads to some surprising new phenomena.

The Dirac Equation and antiparticles
In 1928 the English physicist Paul Dirac formulated a relativistic wave equation for elec-
trons. In the process he encountered several unexpected mathematical requirements with 
deep physical significance.

Dirac replaced the Newtonian energy–momentum relation K = p2/2m with the rela-
tivistic expression E2 = 1mc222 + p2c2 that we saw in Chapter 33. But this expression 
implies two values for E, depending on which sign one chooses in taking the square root. 
Dirac argued that both roots are meaningful and that the negative root implies the exis-
tence of a particle identical in mass to the electron but carrying positive charge. The 1932 
discovery of this positron vindicated Dirac’s brilliant idea. Today we know that every 
elementary particle has a corresponding antiparticle, identical in mass but opposite in 
electric, magnetic, and other properties.

Einstein’s energy–mass equivalence implies that pair creation of a particle– antiparticle 
pair is possible, given energy 2mc2 equivalent to the mass of the pair. The opposite pro-
cess, annihilation, occurs as particle and antiparticle meet and disappear to form a pair of 
photons. (Recall Chapter 33’s Application “PET Scans: Relativity in the Hospital,” which 
described pair annihilation.) Although pair creation is rare today, it was commonplace in 
the hot, early universe, where thermal energy alone was high enough to create particle– 
antiparticle pairs. In those early times Einstein’s mass–energy equivalence would have 
been obvious, and the number of particles in a closed volume wouldn’t have remained 
constant.

Electron Spin
Another unexpected mathematical result of Dirac’s work was that the wave function had 
to involve matrices. This, Dirac showed, implied physically that the electron must possess 
an intrinsic angular momentum—something physicists had already inferred from experi-
ments, but without any theoretical grounding. This angular momentum, called spin, has 
enormous significance in quantum mechanics and particularly in atomic structure, as we’ll 
see in the next chapter.
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The big idea here is the description of particles in the quantum realm using wave functions, whose square relates to the probability of finding a 
particle. Thus the link between the most thorough description physics can provide—the wave function—and the behavior of an individual particle 
is only statistical. The Schrödinger equation gives the wave function for nonrelativistic particles and leads to energy quantization for confined 
particles.

Chapter 35 Summary
Big Idea

Key Concepts and Equations

The time-independent Schrödinger equation gives the wave function c for a particle of mass m with total energy E and potential energy U:

-
U2

2m
 
d2c

dx2 + U1x2c = Ec

The square of the wave function is the 
probability density. In one dimension, 
the probability of finding the particle in 
some small interval dx at position x is

P(x) = c21x2 dx

P(x) = c2dx

c2

x
dx

Normalization: A particle must be 
somewhere, so

L
+∞

-∞
 c21x2dx = 1

Lc21x2dx = 1

c2

x

applications

Infinite square well

Wave functions: cn = A 2

L
 sin anpx

L
b

Energy levels: En =
n2h2

8mL2

3-D well: E =
h2

8mL21nx
2 + ny

2 + nz
22

n = 15

n = 3

n = 2

n = 1

∞ ∞

Break

Harmonic oscillator

Energy levels: En = 1n + 1
22Uv

1
2

3
2

5
2

7
2

9
2ℏv

ℏv

ℏv

ℏv

E = ℏv

4

3

2

1

n = 0

Finite well
Discrete bound states; continuum of unbound states

Continuum
states

n = 3

n = 2

n = 1

E = U0

E = 0

Quantum tunneling
Nonzero probability of finding a quantum particle in a 
region forbidden by classical energy conservation leads 
to the possibility of barrier penetration:

E
U

x
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Exercises and Problems 681

For homework assigned on MasteringPhysics, go to www.masteringphysics.com

BIO Biology and/or medicine-related problems DATA Data problems ENV Environmental problems CH Challenge problems Comp Computer problems

where A and a are constants. In terms of a, what value of A is 
required to normalize c?

Section 35.3 Particles and Potentials
15. What’s the quantum number for a particle in an infinite square 

well if the particle’s energy is 25 times the ground-state energy?
16. A particle in an infinite square well makes a transition from a 

higher to a lower energy state; the corresponding energy decrease 
is 33 times the ground-state energy. Find the quantum numbers 
of the initial and final states.

17. Determine the ground-state energy for an electron in an infinite 
square well of width 10.0 nm.

18. Find the width of a square well in which a proton’s first excited 
state has energy 1.5 keV.

19. A carbon nanotube traps an electron in a hollow cylindrical struc-
ture 0.48 nm in diameter. Approximating the nanotube as a one-
dimensional infinite square well, find the energies in eV of (a) 
the ground state and (b) the first excited state.

20. One reason we don’t notice quantum effects in everyday life is 
that Planck’s constant h is so small. Treating yourself as a parti-
cle (mass 60 kg) in a room-sized one-dimensional infinite square 
well (width 2.6 m), how big would h have to be if your minimum 
possible energy corresponded to a speed of 1.0 m/s?

21. A particle is confined to a 1.0-nm-wide infinite square well. If 
the energy difference between the ground state and the first ex-
cited state is 1.13 eV, is the particle an electron or a proton?

22. A 3-g snail crawls at 0.5 mm/s between two rocks 15 cm apart. 
Treating this system as an infinite square well, determine the ap-
proximate quantum number. Does the correspondence principle 
permit the use of the classical approximation in this case?

23. An alpha particle (mass 4 u) is trapped in a uranium nucleus with 
diameter 15 fm. Treating the system as a one-dimensional square 
well, what would be the minimum energy for the alpha particle?

24. A quantum harmonic oscillator has ground-state energy 0.14 eV. 
What would be the system’s classical oscillation frequency f ?

25. Find the ground-state energy for a particle in a harmonic os-
cillator potential whose classical angular frequency v is 
1.0 *1017 s-1.

26. A harmonic oscillator emits a 1.1-eV photon as it undergoes a 
transition between adjacent states. Find its classical oscillation 
frequency f.

27. The ground-state energy of a harmonic oscillator is 4.0 eV. Find 
the energy separation between adjacent quantum states.

28. Your roommate is taking Newtonian physics, while you’ve 
moved on to quantum mechanics. He claims that QM can’t be 
right, because he didn’t see any evidence of quantized energy 
levels in a mass–spring harmonic oscillator experiment. You re-
ply by calculating the spacing between energy levels of this sys-
tem, which consists of a 1-g mass on a spring with k = 80 N/m. 
What is that spacing, and how does this help your argument?

Section 35.4 Quantum Mechanics in Three Dimensions
29. If all sides of a cubical box are doubled, what happens to the 

ground-state energy of a particle in that box?
30. A very crude model for an atomic nucleus is a cubical box 1 fm 

on a side. What would be the energy of a gamma ray emitted if a 
proton in such a nucleus made a transition from its first excited 
state to the ground state?

For thought and Discussion
 1. Explain qualitatively why a particle confined to a finite region 

cannot have zero energy.
 2. Does quantum tunneling violate energy conservation? Explain.
 3. Bohr’s correspondence principle states that quantum and classi-

cal mechanics must agree in a certain limit. Give an example.
 4. The ground-state wave function for a quantum harmonic oscil-

lator has a single central peak. Why is this at odds with classical 
physics?

 5. What’s the essential difference between the energy-level struc-
tures of infinite and finite square wells?

 6. In terms of de Broglie’s matter-wave hypothesis, how does mak-
ing the sides of a box different lengths remove the degeneracy 
associated with a particle confined to that box?

 7. A particle is confined to a two-dimensional box whose sides are 
in the ratio 1:2. Are any of its energy levels degenerate? If so, 
give an example. If not, why not?

 8. What did Einstein mean by his remark, loosely paraphrased, that 
“God does not play dice”?

 9. Some philosophers argue that the strict determinism of classical 
physics is inconsistent with human free will, but that the inde-
terminacy of quantum mechanics does leave room for free will. 
Others claim that physics has no bearing on the question of free 
will. What do you think?

10. What fundamental principle of physics, when combined with 
quantum mechanics, provides a theoretical basis for the existence 
of antimatter?

11. Figure 35.19 shows an infinite square well with a step-like po-
tential at the bottom. Sketch qualitatively what you think a wave 
function might look like for a particle whose energy is (a) less 
than the step height and (b) greater than the step height.

U

x

Figure 35.19 Question 11

exercises and problems

Exercises

Section 35.2 The Schrödinger Equation
12. What are the units of the wave function c1x2 in a one-dimen-

sional situation?
13. A particle’s wave function is c = Ae-x2/a2

, where A and a are 
constants. (a) Where is the particle most likely to be found?  
(b) Where is the probability per unit length half its maximum 
value?

14. The solution to the Schrödinger equation for a particular potential 
is c = 0 for � x � 7 a and c = A sin1px/a2 for -a … x … a, 

M35_WOLF4752_03_SE_C35.indd   681 18/06/15   1:28 PM



682 Chapter 35 Quantum Mechanics

minimum photon energy that will promote HCl molecules to 
their first excited state. The result is 0.358 eV. What do you cal-
culate for the effective k?

47. A particle detector has a resolution 15% of the width of an infi-
nite square well. What’s the probability that the detector will find 
a particle in the ground state of the square well if the detector 
is centered on (a) the midpoint of the well and (b) a point one-
fourth of the way across the well?

48. Find the probability that a particle in an infinite square well is lo-
cated in the central one-fourth of the well for the quantum states 
n =  (a) 1, (b) 2, (c) 5, and (d) 20. (e) What’s the classical prob-
ability in this situation?

49. A particle of mass m is in a region where its total energy E is less 
than its potential energy U. Show that the Schrödinger equation 
has nonzero solutions of the form Ae{12m1U-E2x/U. Such solu-
tions describe the wave function in quantum tunneling, beyond 
the turning points in a quantum harmonic oscillator, or beyond 
the well edges in a finite potential well.

50. (a) Use Equation 35.8 to draw an energy-level diagram for the 
first six energy levels of a particle in a cubical box, in terms of 
h2/8mL2, and (b) give the degeneracy of each.

51. The generalization of the Schrödinger equation to three dimen-
sions is

-
U2

2m
  a 0 2c

0x2 +
0 2c

0y2 +
0 2c

0z2 b + U1x, y, z2c = Ec

(a) For a particle confined to the cubical region 
0 … x … L, 0 … y … L, 0 … z … L, show by direct substitu-
tion that the equation is satisfied by wave functions of the form 
c(x, y, z) = A  sin(nxpx/L)  sin(nypy/L)  sin(nzpz/L), where the 
n’s are integers and A is a constant. (b) In the process of working 
part (a), verify that the energies E are given by Equation 35.8.

52. A 9-W laser beam shines on an ensemble of 1024 electrons, each in 
the ground state of a one-dimensional infinite square well 0.72 nm  
wide. The photon energy is just high enough to raise an electron 
to its first excited state. How many electrons can be excited if the 
beam shines for 10 ms?

53. A large number of electrons are confined to infinite square wells 
1.2 nm wide. They’re undergoing transitions among all possible 
states. How many visible lines (400 nm to 700 nm) are in the 
spectrum emitted by this ensemble of square-well systems?

54. A particle is in the nth quantum state of an infinite square well. 
(a) Show that the probability of finding it in the left-hand quarter 
of the well is

P =
1

4
-

 sin1np/22
2np

(b) Show that for odd n, the probability approaches the classical 
value 14 as n S ∞ .

55. (a) Using the potential energy U = 1
2mv2x2 discussed on page 

675, develop the Schrödinger equation for the harmonic oscil-
lator. (b) Show by substitution that c0(x) = A0e

-a2x2/2 satisfies 
your equation, where a2 = mv/U and the energy is given by 
Equation 35.7 with n = 0. (c) Find the normalization constant A0. 
You then have the ground-state wave function for the harmonic 
oscillator.

56. You’re trying to convince a friend that nuclear energy represents 
a much more concentrated energy source than fossil fuels, whose 
combustion involves rearranging atomic electrons. For a rough 
comparison, you calculate the ground-state energy of a proton 

31. An electron is confined to a cubical box. For what box width will 
a transition from the first excited state to the ground state result 
in emission of a 950-nm infrared photon?

Problems
32. Find an expression for the normalization constant A for the wave 

function given by c = 0 for � x � 7 b and c = A(b2 - x2) for 
-b … x … b.

33. Suppose c1 and c2 are solutions of the Schrödinger equation for 
the same energy E. Show that the linear combination ac1 + bc2 
is also a solution, where a and b are arbitrary constants.

34. An electron is trapped in an infinite square well 25 nm wide. Find 
the wavelengths of the photons emitted in these transitions: (a) 
n = 2 to n = 1; (b) n = 20 to n = 19; (c) n = 100 to n = 1.

35. An electron drops from the n = 7 to the n = 6 level of an in-
finite square well 1.5 nm wide. Find (a) the energy and (b) the 
wavelength of the photon emitted.

36. Show explicitly that the difference between adjacent energy lev-
els in an infinite square well becomes arbitrarily small compared 
with the energy of the upper level, in the limit of large quantum 
number n.

37. An electron is in a narrow molecule 4.4 nm long, a situation that 
approximates a one-dimensional infinite square well. If the elec-
tron is in its ground state, what is the maximum wavelength of 
electromagnetic radiation that can cause a transition to an excited 
state?

38. The ground-state energy for an electron in infinite square well A 
is equal to the energy of the first excited state for an electron in 
well B. How do the wells’ widths compare?

39. Electrons in an ensemble of 0.834-nm-wide square wells are all 
initially in the n = 4 state. (a) How many different wavelengths 
of spectral lines could be emitted as the electrons cascade to the 
ground state through all possible downward transitions? (b) Find 
those wavelengths. (c) What regions of the electromagnetic spec-
trum do these spectral lines encompass?

40. Sketch the probability density for the n = 2 state of an infinite 
square well extending from x = 0 to x = L, and determine 
where the particle is most likely to be found.

41. An infinite square well extends from -L/2 to L/2. (a) Find ex-
pressions for the normalized wave functions for a particle of 
mass m in this well, giving separate expressions for even and odd 
quantum numbers. (b) Find the corresponding energy levels.

42. A particle is in the ground state of an infinite square well. What’s 
the probability of finding the particle in the left-hand third of the 
well?

43. A laser emits 1.96-eV photons. If this emission is due to electron 
transitions from the n = 2 to n = 1 states of an infinite square 
well, what’s the well width?

44. What’s the probability of finding a particle in the central 80% of 
an infinite square well, assuming it’s in the ground state?

45. Is quantization significant for macromolecules confined to bio-
logical cells? To find out, consider a protein of mass 250,000 u 
confined to a 10@μm-diameter cell. Treating this as a particle in a 
one-dimensional square well, find the energy difference between 
the ground state and the first excited state. Given that biochemi-
cal reactions typically involve energies on the order of 1 eV, what 
do you conclude about the role of quantization?

46. In your physical chemistry course, you model hydrogen chloride 
as a hydrogen atom on a spring; the other end of the spring is 
attached to a rigid wall (the massive chlorine atom). In order to 
determine the spring constant in your model, you measure the 
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Answers to Chapter Questions 683

20 Mm

Figure 35.20 In this microscopic photo, motor protein molecules called 
dynein have been tagged with quantum dots, allowing their paths to be 
tracked (Passage Problems 61–64).

61. If a qdot’s size is decreased, what happens to the wavelength of 
the photon emitted in a transition from the dot’s first excited state 
to the ground state?
a. The wavelength increases.
b. The wavelength decreases.
c. The wavelength is unchanged.

62. If the dot behaves as a perfectly cubical 3-D square well, the first 
excited state is
a. nondegenerate.
b. twofold degenerate.
c. threefold degenerate.
d. You can’t tell without knowing the energy.

63. If the dot behaves as a perfectly cubical 3-D square well, the 
ground state is
a. nondegenerate.
b. twofold degenerate.
c. threefold degenerate.
d. You can’t tell without knowing the energy.

64. If all three sides of a qdot are halved, its ground-state energy
a. is halved.
b. drops to one-fourth its original value.
c. doubles.
d. quadruples.

Answers to Chapter Questions

Answer to Chapter Opening Question
Quantum tunneling, the ability of particles to penetrate a barrier that 
classical physics says they don’t have sufficient energy to overcome.

Answers to GOT iT? Questions
 35.1  (d)
 35.2  (a)
 35.3  (c)
 35.4   (c)
 35.5  (b)
 35.6  (a)

confined to 1-fm-diameter atomic nucleus and that of an electron 
confined to a 0.1-nm-diameter atom. Approximating each system 
as a one-dimensional infinite square well, what’s the ratio of their 
ground-state energies?

57. The table below lists the wavelengths emitted as electrons in 
identical square-well potentials drop from various states n to the 
ground state. Determine a quantity that, when you plot l against 
it, should yield a straight line. Make your plot, establish a best-fit 
line, and use your line to determine the width of the square well.

Initial state, n 4 5 7 8 10

Wavelength, l (nm) 1110 674 354 281 169

58. The next three problems solve the Schrödinger equation for finite 
square wells like that shown in Fig. 35.14. It’s convenient to work 
in dimensionless forms of the particle energy E and well depth 
U0, given respectively by P = 2mL2E /U2 and m = 2mL2U0 /U2. 
Assuming that E 6 U0, or, equivalently, P 6 m, show by substi-
tution that the following wave functions satisfy the Schrödinger 
equation in the regions indicated:

 c1 = A sin 12Px/L2, 0 … x … L

 c2 = Be -2m- Px/L, x Ú L

where A and B are constants.
59. The wave functions of Problem 58, as well as their derivatives, 

need to be continuous at x = L if these functions are to represent 
the quantum state of a particle in the finite square well. (a) Show 
that these conditions lead to two equations:

 A sin 12P2 = Be -2μ - P

 2PA cos 12P2 = - 2μ - PBe -2μ - P

(b) then show that these lead to the single equation

 tan 12P2 = - A P
μ - P

60. Solve the final equation of Problem 59 to find all possible values 
of P for (a) m = 2, (b) m = 20, and (c) m = 50. You’ll need to 
use a numerical root-finding routine on a calculator or computer. 
The number of solutions may vary with m, and it’s  possible that 
there are no solutions for some values of m.

Passage Problems

BIO Quantum dots, or qdots, are nanoscale crystals of semiconductor 
material that trap electrons in a potential well closely resembling the 
three-dimensional square well discussed in Section 35.4. Physicists, 
materials scientists, and semiconductor engineers have been study-
ing qdots for their potential to miniaturize electronic components. 
More recently, qdots have been used in biology and medicine to “tag”  
individual molecules, helping scientists follow cellular processes  
(Fig. 35.20). Qdots also facilitate high-resolution imaging within the 
cell, and they show promise for medical diagnostics and targeting tu-
mors for the delivery of anticancer agents. In the biomedical context, 
qdots work as replacements for traditional fluorescent dyes. Illumi-
nating qdots promotes their electrons to higher energy levels; as they 
drop back, they emit photons of precise wavelength. A dot’s size and 
structure determine this wavelength.

comp
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34
Particles and Waves

35
Quantum 

Mechanics

37
Molecules and 

Solids

38
Nuclear Physics

In Chapter 35 we applied the Schrödinger equation to simplified quantum systems. 
Here we turn to the more realistic case of the atom, and explore how quantum me-

chanics explains atomic structure and the periodic table of the elements. We’ll deal 
most thoroughly with the simplest atom, hydrogen, and we’ll be more qualitative in 
describing multielectron atoms.

36.1 The Hydrogen Atom
Like a particle in a three-dimensional box, the electron in hydrogen is confined 
to a three-dimensional potential well. For the electron, the well results from the 
proton’s electrostatic attraction. From Chapter 22 you know that the electric po-
tential due to the proton, treated as a point charge e, is V1r2 = ke/r, with r the 
distance to the proton and the zero of potential at infinity. Electric potential is 

How You’ll Use It
■ If your future studies or career involve 

chemistry, you’ll appreciate that 
chemistry is based, ultimately, on 
the quantum mechanical description 
of atoms. Increasingly, chemists 
determine complicated molecular 
structures with computer calculations 
based on the Schrödinger equation.

■ If you use spectroscopy as an 
analysis tool in any area of science or 
engineering, you’ll be exploiting the 
quantization of energy in atoms and 
molecules, and electron transitions 
among energy.

■ Understanding the exclusion principle 
will show you why the universe is so 
rich with different forms of matter and 
why complex systems such as yourself 
can even exist.

What You’re Learning
■ You’ll see the Schrödinger equation 

for the hydrogen atom expressed in 
spherical coordinates.

■ You’ll solve explicitly for the hydrogen 
ground states.

■ You’ll understand how excited 
states of hydrogen arise from the 
Schrödinger equation.

■ You’ll learn about quantized angular 
momentum in the hydrogen atom, 
including space quantization.

■ You’ll learn about electron spin and 
how it’s quantized.

■ You’ll learn the exclusion principle and 
how it’s responsible for the structure 
of multielectron atoms and, ultimately, 
the periodic table of the elements.

■ You’ll learn rules governing transitions 
among atomic energy levels and how 
they explain, among other things, the 
operation of lasers.

What You Know
■ You’ve seen how the Schrödinger 

equation leads to quantized energy 
levels for a particle in a potential well.

■ You understand the distinction 
between bound states and continuum 
states.

■ You know how to calculate the 
probability of finding a quantum 
particle in a particular region, given its 
wave function.

Atomic Physics

36

How do the principles of quantum physics explain the 
different chemical elements?
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36.1 The Hydrogen Atom 685

energy per unit charge, so multiplying by the electron charge - e gives the potential en-
ergy of the electron–proton system—that is, of the hydrogen atom:

 U1r2 = -
ke2

r
 (36.1)

We’ll approximate the massive proton as being at rest at the origin, so Equation 36.1 gives 
the electron’s potential energy as a function of radial position r. We can therefore use 
Equation 36.1 as the potential energy in the Schrödinger equation for the hydrogen atom.

The Schrödinger Equation in Spherical Coordinates
Because the electron’s potential energy depends on radial distance r, it’s best to work in 
spherical coordinates, where the position of a point is given by its distance r from the ori-
gin along with two angles u and f that specify its orientation (Fig. 36.1). Converting the 
Schrödinger equation to spherical coordinates is straightforward but tedious; the result is

Figure 36.1 Spherical coordinates r, u, f 
 provide an alternative to rectangular 
 coordinates x, y, z.

x

y

z

r 

P

u

f

 -
U2

2mr2  c 0
0r

 ar2 
0c
0r

b +
1

 sin u
 

0
0u

   a sin u
0c
0u

b +
1

 sin2u
 
02c

0f2 d -
ke2

r
 c = Ec  aSchrödinger equation,

spherical coordinates b  (36.2)

where we’ve used Equation 36.1 for the potential-energy function.
Although Equation 36.2 looks forbidding, it can be solved using advanced techniques. For 

total energy E less than zero, corresponding to bound states in hydrogen’s potential well, most 
solutions become infinite at large r and therefore aren’t normalizable. As a result, only certain 
values of the energy E give acceptable bound-state solutions. For total energy greater than 
zero, the electron is unbound and any energy proves possible, as with the finite square well.

The Hydrogen Ground State
In general, solutions to Equation 36.2 depend on all three variables r, u, f. But some 
 solutions, including the ground state, are spherically symmetric—they depend only on r. 
Here we show that the ground state has the form of an exponential, and in the process 
 derive the ground-state energy. Consider the function

 c = Ae-r/a0 (36.3)

where A and a0 are as yet undetermined constants, the latter with the units of length.  
For this spherically symmetric function, nothing depends on the angular variables u and f,  
so derivatives with respect to those variables are strictly zero. We’re then dealing with  
a  function of only one variable, so we can write total instead of partial derivatives. 
 Equation 36.2 then becomes

 -
U2

2mr2 
d

dr
 ar2 

dc

dr
b -

ke2

r
 c = Ec  (36.4)

Substituting the proposed solution 36.3 for c gives

 -
U2

2ma0
2 +

U2

mra0
-

ke2

r
= E1 

(see Problem 42), where E1 is the ground-state energy. This equation must be satisfied for 
all values of r, so the two r-dependent terms must cancel:

U2

mra0
=

ke2

r

or

a0 =
U2

mke2 = 5.29 * 10-11 m = 0.0529 nm

PheT: Quantum Bound State: One Well: 
3D Coulomb
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686 Chapter 36 Atomic Physics

This is precisely the Bohr radius that we introduced in Section 34.4.
With the r terms gone, our expression for the ground-state energy becomes 

E1 = -U2/2ma0
2 = -13.6 eV, where the minus sign shows that the atom is a bound 

 system. Thus Equation 36.3 is indeed a solution to the Schrödinger equation for hydrogen, 
with energy E1 = -13.6 eV.

In deriving expressions for a0 and E1, we’ve shown how Schrödinger’s theory gives two 
fundamental parameters of atomic physics: the Bohr radius and the hydrogen ground-state 
energy. Both agree with the values we found in Chapter 34 using the simpler Bohr model. 
But Bohr’s theory still clings to the notion of classical orbits, with a0 the ground-state orbital 
radius. Schrödinger’s theory is truly quantum mechanical, representing the electron with its 
wave function c and associated probability distribution. The Bohr radius is no longer an 
 actual orbital radius but instead determines atomic size only in a statistical sense.

The Radial Probability Distribution
Because the ground-state wave function falls off exponentially as e-r/a0, we’re unlikely 
to find the electron at distances far greater than the Bohr radius. But where are we most 
likely to find it? Although c is greatest at r = 0, that’s not the answer. In three dimensions 
the probability density c2 is the probability per unit volume of finding the electron. In ask-
ing where we’re most likely to find the electron, we want the probability per unit radial 
distance. Figure 36.2 shows a thin spherical shell with radius r and therefore area 4pr2. 
It has thickness dr, so its volume is dV = 4pr2dr. Then the probability of finding the 
electron in this shell is c2dV = 4pr2c2dr. The radial probability density, P1r2, is the 
probability per unit radius, or

 P1r2 = 4pr2c2  1radial probability density2 (36.5)

For the hydrogen ground state, we use Equation 36.3 for c to get P1 = 4pr2A2e-2r/a0, 
where the subscript 1 designates the ground state. Figure 36.3 is a plot of this probability 
density, which peaks at r = a0. Thus the single most likely place to find the electron in 
ground-state hydrogen is one Bohr radius from the proton.

Figure 36.2 A thin shell has volume 
dV = 4pr2dr; thus the probability per unit 
radial distance is 4pr2 times the probability 
per unit volume.

Area 4pr2

dr

r

Figure 36.3 Radial probability density for the 
hydrogen ground state.
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ExAmPLE 36.1  The Hydrogen Atom: Normalization and the Probability Distribution

(a) Determine the normalization constant A in Equation 36.3. (b) Use 
the resulting wave function to find the probability that the electron in 
the hydrogen ground state will be found beyond the Bohr radius.

Interpret The wave function 36.3 contains an undetermined 
 constant A. This problem is asking us to apply the normalization 
 condition to find A and then use the concept of radial probability 
density to determine the probability of finding the electron beyond 
r = a0.

Develop The electron must be somewhere in the range r = 0 
to r = ∞ . Since P1r2 dr is the probability of finding the elec-
tron in a  region of width dr, the normalization condition becomes 

1∞
0 P1r2 dr = 1.  So our plan is to evaluate this integral using the 

ground-state probability density P1 = 4pr2A2e-2r/a0. We’ll then solve 
for the unknown A. Then we can integrate again, this time from r = a0 
to r = ∞ , to get the probability of finding the electron beyond a0.

evaluate (a) Using the probability density P1, the normalization 
condition becomes

L
r = ∞

r = 0
 4pr2A2e-2r/a0  dr = 1

We could evaluate using integration by parts; however, the result is in 
the integral table at the end of Appendix A. Replacing x by r and a by 

-2/a0 in the table’s expression for 1x2eaxdx, we have

L
∞

0
 4pA2r2e-2r/a0dr

= 4pA2e r2e-2r/a0

1-2/a02 -
2

1-2/a02  c e-2r/a0

1-2/a022   a-
2
a0

 r - 1b d f `
∞

0
= 1

The expression in curly brackets vanishes at r = ∞ , and at r = 0 
the exponentials are just 1, so we have 4pA230 - 1-1

4 a0
324 = 1, or 

A = 1/2pa0
3.

(b) In part (a) we integrated from r = 0 to r = ∞  because we 
wanted the probability that the electron was somewhere. Here we want 
the probability that it’s beyond r = a0, so we change the lower limit 
on the integral from 0 to a0. The result is

 P1r 7 a02 = L
∞

a
 4pr2A2e-2r/a0 dr

 = 4pA2a0
311

2 e-2 + 3
4 e-22 = 5pA2a0

3e-2

With A2 = 1/pa0
3, this becomes P1r 7 a02 = 5e-2 ≃  0.677.

assess Our result shows that about two-thirds of the time, the electron 
will be found beyond the Bohr radius. So although it’s reasonable to say that 
the atom’s radius is roughly the Bohr radius, both Fig. 36.3 and our result 
here show that there’s no sharp cutoff that marks the “size” of the atom. ■
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36.1 The Hydrogen Atom 687

Excited States of Hydrogen
So far we’ve examined only the ground state of hydrogen. But Equation 36.2 admits many 
more normalizable solutions, corresponding to the excited states of hydrogen.

In general, each energy level is associated with one spherically symmetric wave 
 function and a number of nonsymmetric ones. For historical reasons, the spherically 
 symmetric states are called s states. The distinct energy levels are labeled by the quantum 
number n, called the principal quantum number. The ground state, for example, is the 
1s state. The energy of the nth level, derivable from the Schrödinger equation, turns out to 
agree exactly with the earlier Bohr theory:

 En = -  
1

n2 
U2

2ma0
2 =

E1

n2 =
-13.6 eV

n2   1hydrogen energy levels2 (36.6)

The spherically symmetric state with energy E2—that is, the 2s state—has wave function 
given by

 c2s =
1

422pa0
3

  a2 -
r

a0
be-r/2a0  (36.7)

By substituting this function into Equation 36.4, you can verify that the energy E2 is given 
by Equation 36.6 (see Problem 66). The radial probability densities for the first three 
spherically symmetric states are plotted in Fig. 36.4; note that the excited states  correspond 
to larger, more “smeared-out” atoms.

Although we’re discussing hydrogen, our results generalize to any single-electron 
atom—that is, to an atom of atomic number Z ionized Z - 1 times. For such an atom 
the potential-energy function becomes -kZe2/r, and our calculations go through as before 
 except that the factor e2 is replaced by Ze2. Then the energy levels become

 En = -
Z2

n2 
U2

2ma0
2 =

Z2E1

n2 = -
113.6 eV2Z2

n2   (36.8)

reflecting the tighter binding of the more highly charged nucleus (see Fig. 36.5 and 
 Problem 67).

GoT IT? 36.1 Which is the most appropriate estimate for the radial “size” of a 
 hydrogen atom in its 2s state: (a) a0, (b) 2a0, (c) 5a0, (d) 15a0?

orbital Quantum Numbers and Angular momentum
In the spherically symmetric s states, it turns out that the  orbital angular  momentum 
associated with the electron’s motion is zero. This is at odds with Bohr’s prediction 
that angular momentum should be an integer multiple of U. And it makes clear that we 
can’t be talking here about classical orbits, since motion in an elliptical or circular path 
 entails  angular momentum. But there are other solutions to the Schrödinger equation 
for  hydrogen, solutions that aren’t spherically symmetric and that have nonzero angular 
 momentum.

For a given principal quantum number n, there are in fact n distinct solutions with dif-
ferent angular momenta. The orbital quantum number l distinguishes these states and 
ranges from 0 to n - 1. Thus the ground state 1n = 12 corresponds to the single value 
l = 0. Higher energy levels, however, are degenerate, meaning there’s more than one l 
value for each n 7 1. The orbital quantum number determines the magnitude L of the elec-
tron’s orbital angular momentum:

 L = 2l1l + 12U  1quantization of orbital angular momentum2  (36.9)

Figure 36.4 Radial probability densities for the 
spherically symmetric 1s, 2s, and 3s states of 
hydrogen.
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Figure 36.5 Energy-level diagram for a 
 one-electron atom with atomic number Z. 
Energies scale as Z 2.
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688 Chapter 36 Atomic Physics

States with l values 0, 1, 2, 3, 4, 5, . . . are given the letter labels s, p, d, f, g, h, . . . . 
These combine with the principal quantum number n to specify both the energy and an-
gular momentum of a state. Thus, the ground state is 1s, and the n = 2 state with l = 1 is 
the 2p state. (The lowercase letters s, p, d, . . . are used in discussing individual electrons, 
while the corresponding capital letters denote orbital angular momentum states of an en-
tire atom. For one-electron hydrogen, the two are the same.)

Quantization of orbital angular momentum is another nonclassical aspect of quantum 
mechanics. In classical physics, an electron of a given energy can have any angular mo-
mentum, up to the maximum of a circular orbit (Fig. 36.6). At high n, the number of l 
values is so large that we don’t notice quantization—another manifestation of Bohr’s cor-
respondence principle. But for low n, the quantum-mechanical discreteness of both energy 
and angular momentum is clearly evident.

Space Quantization
Angular momentum is a vector, and the angular momentum vector is quantized not only in 
magnitude but also in direction—a phenomenon called space quantization. Space quanti-
zation of orbital angular momentum gives rise to a third quantum number, ml. Space quan-
tization becomes evident when an atom is in a magnetic field that establishes a preferred 
axis along which the angular momentum component can be measured; for this reason ml is 
called the orbital magnetic quantum number.

Space quantization requires that the component Lz of orbital angular momentum along 
any chosen axis have only values given by

 L = mlU  1space quantization2  (36.10)

where ml takes integer values from - l to l. Thus an l = 1 state can have one of three pos-
sible ml values: -1, 0, or +1, corresponding to angular momentum components -U, 0, 
or +U along some axis. Since the magnitude of the angular momentum in an l = 1 state 
is 12U (see Example 36.2), none of these values corresponds to full alignment with the 
axis. Instead, we can think geometrically of the angular momentum vectors as being con-
strained to lie at angles cos-11Lz/L2 to the axis; for l = 1 these angles are {45° and 90° 
(Fig. 36.7). Although the angle is useful for diagramming the angular momentum vector, 
we emphasize that the quantum numbers l and ml tell everything there is to know about 
quantized orbital angular momentum. Quantum physicists, therefore, aren’t usually con-
cerned with the orientation of angular momentum vectors.

36.2 Electron Spin
Detailed observation of the hydrogen spectrum shows that spectral lines exhibit a fine 
splitting; where a lower-resolution spectrum shows one spectral line, at higher resolution 
there appears a closely spaced pair of lines. This splitting could not be explained using the 
three quantum numbers n, l, and ml. In 1925 the Austrian physicist Wolfgang Pauli sug-
gested that a fourth quantum number, capable of taking only two values, might be needed. 

ExAmPLE 36.2  orbital Angular momentum: An Excited State

Find the possible values for the orbital angular momentum of an elec-
tron in the n = 3 state of hydrogen.

Interpret We’re asked about the orbital angular momentum L, 
whose value follows from the orbital quantum number l. Thus we’ll 
need the possible l values for n = 3.

Develop For any n, there are n distinct l values, from 0 to n - 1. For 
n = 3, that means l = 0, 1, or 2. So our plan is to evaluate L  using  
Equation 36.9, L = 1l1l + 12U, for these three l values.

evaluate With l = 0, Equation 36.9 gives L = 0; for l = 1,
L = 12U; and for l = 2, L = 16U.

assess l = 0 is the spherically symmetric 3s state, which we’ve 
seen has zero angular momentum. The higher-l states have increasing 
angular momentum. ■

Figure 36.6 Classical electron orbits with the 
same energy but different angular momenta.

Circular orbit:
maximum L

Elliptical orbit:
lower L

Narrow ellipse:
still lower L

Figure 36.7 The three possible orientations 
for the angular momentum vector in the 
l = 1 state, where L = 12U. Only the z- 
component is fixed; the x- and y-components 
are  uncertain.

12ℏ

z
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36.2 Electron Spin 689

Soon Samuel Goudsmit and George Uhlenbeck realized that the spectral splitting could 
be explained if this fourth quantum number were associated with an intrinsic angular mo-
mentum, or spin, carried by the electron. Later, as we indicated in Chapter 35, Paul Dirac 
showed that electron spin follows from the requirement of relativistic invariance. Spin is 
an inherently quantum-mechanical property with no classical analog. Although it can be 
visualized crudely by imagining the electron to be a small sphere spinning about an axis, 
this classical picture is really inappropriate.

Spin angular momentum is quantized similarly to orbital angular momentum. But unlike 
the orbital quantum number l that takes a range of integer values, the electron spin quantum 
number s has only the single value s = 1

2. The electron is therefore a spin@12 particle. The mag-
nitude of the spin angular momentum is related to the spin quantum number in the same way 
that the magnitude of orbital angular momentum is related to the orbital quantum number l:

 S = 2s1s + 12U  1quantization of spin angular momentum2 (36.11)

Since s takes only the value 1
2, the magnitude of the electron spin angular momentum is 

S = 13
2  U.

Spin angular momentum also exhibits space quantization. That is, the component of 
spin along a chosen axis takes only the values

 Sz = ms U  (36.12)

where the quantum number ms has the two possible values -1
2 and +1

2. Figure 36.8 shows 
space quantization of electron spin.

magnetic moment of the Electron
Together, the electron’s spin and electric charge mean the electron behaves like a minia-
ture current loop, with an intrinsic magnetic dipole moment. The dipole moment vector M

S
 

associated with the spin angular momentum vector S
S

 is given by

 M
S

= -
e
m

S
S

 (36.13)

with e/m the electron’s charge-to-mass ratio (see Problem 73). Since the component of S
S

 on 
any axis can take only the values {1

2 U, the components of the magnetic moment can be only

 Mz = { eU
2m

  (36.14)

The quantity mB = eU /2m is a fundamental unit for measuring magnetic moments. It’s 
called the Bohr magneton, and its value is approximately 9.27 * 10-24A #  m2.

The ratio of magnetic moment to spin angular momentum is twice what we would 
 expect classically for a charged particle in circular motion. Like spin itself, the factor of 
2 is a relativistic effect first explained by Dirac. Actually, the factor is not quite 2 but 
 approximately 2.00232, a result that follows from the theory of quantum electrodynamics.

The Stern–Gerlach Experiment
In 1922, Otto Stern and Walther Gerlach at the University of Hamburg demonstrated the 
quantization of atomic angular momentum vectors. The Stern–Gerlach experiment used a 
nonuniform magnetic field to separate a beam of silver atoms according to the  component of 
their angular momentum along the field direction. T. E. Phipps and J. B.  Taylor  repeated the 
experiment in 1927, giving unambiguous verification of quantized electron spin. They used 
hydrogen atoms in the ground state; as we’ve seen, this state has zero orbital  angular mo-
mentum, so the only angular momentum effects are due to electron spin.  Classically a beam 
of hydrogen should be spread into a continuous band corresponding to angular momentum 
components from - 13

2  U to + 13
2  U. But in fact the beam always splits in two, corresponding 

to the two angular momentum components {1
2 U. Figure 36.9 shows the experiment.

Figure 36.8 Space quantization of electron 
spin.
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Figure 36.9 The Stern–Gerlach experiment.
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690 Chapter 36 Atomic Physics

GoT IT? 36.2 The nucleus of oxygen-17 has spin 5
2. How many possible orienta-

tions are there for its spin angular momentum vector? (a) 2; (b) 5; (c) 6; (d) 7; (e) 17

Total Angular momentum and Spin-orbit Coupling
Orbital and spin angular momenta combine through the process of spin-orbit coupling to 
give an atom’s total angular momentum, J

S
:

 J
S

= L
S

+ S
S

  (36.15)

The magnitude J is quantized similarly to orbital and spin angular momenta:

 J = 2j1j + 12U  1quantization of total angular momentum2  (36.16)

For an atom with a single electron, the quantum number j takes the values

  j = l { 1
2   for l ≠ 0  (36.17a)

  j = 1
2   for l = 0   (36.17b)

The state of an atom with total angular momentum J is specified by the principal quantum 
number, the capital letter designating the orbital angular momentum 1S, P, D, F, G, . . .2, 
and, as a subscript, the j value. Thus a hydrogen atom with n = 3, l = 2, and j = 3

2 is 
designated 3D3/2.

Total angular momentum also exhibits space quantization, with the component of J
S

 on 
some axis given by

 Jz = mj U (36.18)

Here the quantum number mj takes the values 1- j, - j + 1, . . . , j - 1, j2.
Derivation of these so-called angular momentum coupling rules is not easy, but we 

can understand them in terms of simple vector diagrams like those shown in Fig. 36.10.
Figure 36.10 Spin-orbit coupling with l = 1, for 
which Equation 36.17a gives j = 1

2 or j = 3
2.

1

2

3

2

S
S

S
S

L
S

L
S

J
S

J
S

j = j = 

ExAmPLE 36.3 Spin-orbit Coupling: Finding the Angular momentum

(a) Find the possible magnitudes for the total angular momentum of 
hydrogen in the l = 2 state. (b) For each possible J, how many values 
are there for the component of J

S
 on a given axis?

Interpret We’re asked about total angular momentum, which re-
sults from spin and orbital angular momentum contributions as shown 
in Fig. 36.10, and about the space quantization of J

S
.

Develop (a) Equations 36.16, J = 2j 1j + 12 U, and 36.17a, 
j = l { 1

2, determine J. With l = 2, our plan is to use Equation 
36.17a to find the possible j values. Then we can apply Equation 
36.16 to get each corresponding J. (b) Equation 36.18, Jz = mj U, de-
termines the Jz values in terms of mj, which ranges from - j to j. So 
once we have the j’s, we can determine the number of Jz values.

evaluate (a) With l = 2, Equation 36.17a gives j = 3
2 or j = 5

2. 

For j = 3
2, Equation 36.16 yields J = 23

2 

13
2 + 12 U = 115

2  

U; simi-

larly, j = 5
2 gives J = 135

2  

U. (b) For j = 3
2 there are four possible mj 

values from - j to j: -3
2, -1

2, 12, 32, and correspondingly four Jz values, 

given by Equation 36.18: -3
2 U, -1

2 U, 12 U, 32 U. Similar counting gives six 

values for j = 5
2.

assess Figure 36.11 shows how the spin and orbit angular momenta 
combine to give the two possible j values in this example. ■

Figure 36.11 Vector diagrams for spin-orbit coupling with l = 2 (Example 36.3).
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36.3 The Exclusion Principle 691

The two j values for a given l correspond to two distinct quantum states, and these 
states have slightly different energies. This energy difference is associated with the orien-
tation of the electron’s magnetic moment in a magnetic field that, in the electron’s refer-
ence frame, results from the apparent motion of the positively charged nucleus around the 
electron—a field whose direction is that of the electron’s orbital angular momentum L

S
. As 

Equation 36.13 shows, the electron’s negative charge means its spin S
S

 and magnetic mo-
ment M

S
 have opposite directions. Because a magnetic dipole has the highest energy when 

it’s oriented opposite the magnetic field, this means that the more nearly parallel align-
ment of S

S
 and L

S
—corresponding to j = l + 1

2—has the higher energy.
In hydrogen, the magnitude of the energy difference between the j = 1

2 and j = 3
2 

states of the first excited level is only 5 * 10-5 eV, far smaller than the 10.2-eV separation 
between this level and the ground state. Because the n = 2, l = 1 state is actually two 
states of slightly different energy, hydrogen atoms undergoing transitions from these states 
to the ground state emit two spectral lines slightly separated in wavelength. The term fine 
structure describes this and related spectral-line splittings. In the present example, the 
split spectral line is called a doublet. Figure 36.12 is an energy-level diagram showing the 
effect of spin-orbit splitting in hydrogen. Relativistic and other small corrections further 
alter the fine structure of hydrogen’s spectrum.

The spin-orbit effect results from a magnetic field internal to the atom itself. But split-
ting of energy levels also occurs in an external magnetic field and is called the Zeeman 
effect. We showed an example of Zeeman splitting in Fig. 35.18.

Since it has zero orbital angular momentum, the ground state does not exhibit spin-
orbit splitting. But interaction of the electron’s magnetic moment with the nuclear mag-
netic dipole results in an even finer splitting known as hyperfine structure. The transition 
between the two hyperfine levels of the hydrogen ground state—corresponding physically 
to a change in the orientation of the electron spin vector—involves a photon of 21-cm 
wavelength. Radio astronomers use the 21-cm hydrogen radiation to map interstellar hy-
drogen in the cosmos.

36.3 The Exclusion Principle
In trying to understand why atomic electrons distributed themselves as they did, Pauli in 
1924 developed his exclusion principle, which, loosely, states that two electrons cannot 
be in the same quantum state. Since an electron’s quantum state includes its spin orien-
tation specified by ms, the exclusion principle means that at most two electrons can occupy 
a state whose other quantum numbers n, l, and ml are the same.

The Pauli exclusion principle has profound implications for multielectron systems, 
requiring that most electrons remain in high-energy states (Fig. 36.13). If the exclusion 
principle didn’t hold, atomic electrons would collapse to the ground state and there would 
be no such thing as chemistry or life! The exclusion principle even manifests itself at the 
cosmic scale, as the Application shows.

Figure 36.12 Energy-level diagram show-
ing spin-orbit splitting of the 2P levels in 
hydrogen. Diagram is not to scale; the spacing 
between the 2P1/2 and 2P3/2 levels is actually 
about five millionths that of the n = 1 and 
n = 2 levels.

Spin-orbit
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n = 2 level.

Levels if
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Figure 36.13 Particles in a square well, showing 
the exclusion principle’s effect on electron 
distribution.
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When a star exhausts its nuclear fuel, it collapses because there’s no longer 
pressure to counter gravity. For a star with more than several times the Sun’s 
mass, there’s no force strong enough to halt the collapse, and the star becomes 
a black hole from which nothing can escape. But in less massive stars the 

 collapse eventually halts because of a quantum-mechanical pressure associated 
with the exclusion principle.

When the Sun collapses some 5 billion years from now, its electrons will 
drop into the lowest available energy states. But as with the square well in  
Fig. 36.13, the exclusion principle requires that most of the Sun’s 1057 
 electrons will end up in high-energy states. The associated degenerate elec-
tron pressure—independent of temperature, unlike the pressure of an ordinary 
gas—will stabilize the Sun as a white dwarf, about the size of Earth. For stars 
more massive than about 1.4 Sun masses, collapse proceeds until the protons 
and electrons merge to form neutrons. The neutrons, too, develop a degener-
ate pressure that stabilizes the resulting neutron star—an object with a mass 
exceeding the Sun’s crammed into a 20-km sphere! The figure compares the 
sizes of these stellar endpoints.

APPLICATIoN White Dwarfs and Neutron Stars

Sun

White dwarf

White dwarf

Neutron star
Black hole

Neutron star
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The Pauli exclusion principle quickly became fundamental to the developing quantum 
mechanics of the late 1920s. But physicists remained dissatisfied invoking this seemingly 
ad hoc rule with no theoretical basis. Late in the 1930s, following detailed analysis of 
relativistic quantum theories, Pauli finally showed that the exclusion principle, like spin, is 
ultimately grounded in the requirement of relativistic invariance. Pauli found that particles 
whose spin quantum number s is a half-integer (collectively called fermions) must neces-
sarily obey the exclusion principle. On the other hand, particles with integer spin (called 
bosons) do not obey the exclusion principle. Photons, for example, are spin-1 particles 
and therefore an arbitrarily large number of them can occupy exactly the same quantum 
state. The laser, with its intense, coherent beam of light, is possible because the many 
photons that make up the beam are essentially all in the same state. In 1995 physicists at 
the University of Colorado first succeeded in producing an assemblage of bosonic matter 
all in the same quantum state (Fig. 36.14). This so-called Bose–Einstein condensate had 
been a goal of physicists since 1924, when the Indian physicist Satyendra Nath Bose first 
suggested the possibility. The Bose–Einstein condensate represents a truly new state of 
matter, in which thousands of atoms join quantum mechanically to behave as a single en-
tity. Today physics labs around the world are experimenting with Bose–Einstein conden-
sates, probing the fundamentals of quantum physics and developing applications including 
atom-beam analogs of the optical laser.

Got It? 36.3 If you put seven electrons in a quantum harmonic oscillator potential 
(recall Fig. 35.10), what will the total energy of the system be? (a) 72 

Uv; (b) 13
2  

Uv; (c) 7Uv;  
(d) 25

2  

Uv

36.4 Multielectron Atoms and the Periodic table
Our modern understanding of the chemical elements developed in the late 18th century, 
when chemists first distinguished compounds, such as water, from elements, defined 
as substances that couldn’t be decomposed by chemical means. From the formulas for 
 various compounds, chemists could determine the relative atomic masses of the elements. 
The first attempts to organize the elements systematically used atomic mass, but a break-
through occurred in 1869, when the Russian chemist Dmitri Mendeleev set up a table 
with the approximately 60 elements then known. He left blanks where necessary to main-
tain the periodic occurrence of similar chemical properties. Elements filling the blanks 
were soon discovered, validating Mendeleev’s periodic table and suggesting an underlying 
 order in the composition of atoms. Then, early in the 20th century, studies of X-ray spectra 
led to a table organized by atomic number Z, the number of protons in the nucleus. When 
this was done, a number of elements missing from earlier periodic tables were identi-
fied. The modern periodic table is shown in Fig. 36.15 and is printed with atomic weights 
 inside the back cover.

Explaining the Periodic table
The orderly arrangement of elements in the periodic table enhances our understanding of 
chemistry and our ability to formulate new and useful compounds. But why does  nature 
exhibit this regularity? The answer lies in the Schrödinger equation and the exclusion 
 principle.

Solution of the Schrödinger equation for multielectron atoms is complicated by the 
interactions among the electrons; analytic solutions like those for hydrogen aren’t gen-
erally available. But qualitatively, we still find energy levels characterized by the prin-
cipal quantum number n. Each such level is called a shell; for historical reasons, the 
shells n = 1, 2, 3, . . . are also labeled with the letters K, L, M, . . . . As with hydrogen, 
an electron at the nth energy level can have any of the n values l = 0, 1, 2, . . . , n - 1 
for the orbital quantum number. The different angular momentum states within a shell are 

Figure 36.14 Velocity distribution of atoms 
in a Bose–Einstein condensate shows a large 
peak at the near-zero velocity of atoms all in 
their common ground state. The three peaks 
show the evolution from a normal gas to the 
condensate.
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Figure 36.15 The periodic table. A larger version, with atomic weights, is inside the back cover; the 
names of the elements are in Appendix D.

57
La

58
Ce

59
Pr

60
Nd

61
Pm

62
Sm

63
Eu

64
Gd

65
Tb

66
Dy

67
Ho

68
Er

69
Tm

70
Yb

71
Lu

89
Ac

90
Th

91
Pa

92
U

93
Np

94
Pu

95
Am

96
Cm

97
Bk

98
Cf

99
Es

100
Fm

101
Md

102
No

103
Lr

Lanthanide
series

Actinide
series

3
Li

4
Be

1
H

11
Na

12
Mg

19
K

20
Ca

37
Rb

38
Sr

55
Cs

56
Ba

87
Fr

88
Ra

21
Sc

39
Y

57-71
Lanthanide

series

89-103
Actinide

series

22
Ti

40
Zr

72
Hf

104
Rf

23
V

41
Nb

73
Ta

105
Db

24
Cr

42
Mo

74
W

106
Sg

25
Mn

43
Tc

75
Re

107
Bh

26
Fe

44
Ru

76
Os

108
Hs

27
Co

45
Rh

77
Ir

109
Mt

28
Ni

46
Pd

78
Pt

29
Cu

47
Ag

79
Au

31
Ga

49
In

81
Tl

13
Al

5
B

32
Ge

50
Sn

82
Pb

14
Si

6
C

33
As

51
Sb

83
Bi

15
P

7
N

34
Se

52
Te

84
Po

16
S

8
O

35
Br

53
I

85
At

17
Cl

9
F

36
Kr

54
Xe

86
Rn

18
Ar

10
Ne

2
He

30
Zn

48
Cd

80
Hg

Atomic number
Symbol

2
He

110
Ds

111
Rg

112
Cn

113 114
Fl

115 116
Lv

117 118

Hydrogen and the alkali metals 
have one outer-shell electron, 
making them highly reactive.

The nonmetals (gray) tend to 
accept electrons when they 
form chemical compounds.

In this column are the noble 
gases, whose outer shells 
are full so they don't easily 
react chemically.

Some of the heaviest elements 
were synthesized so recently that 
they haven't been of�cially 
named.

Most of the elements (color) 
are classi�ed as metals, 
meaning they tend to give 
up electrons when forming 
chemical compounds.

Elements in each of these two 
series have similar properties 
because their outermost shells 
remain the same.

Table 36.1 Atomic Shell Structure

Quantum Number Shell Notation Allowed Values Letter Labels Number of States

n Shell 1, 2, 3, . . . K, L, M, . . . Infinite

l Subshell 0, 1, 2, . . . , n - 1 s, p, d, f, . . . n

ml Orbital - l, - l + 1, . . . , l - 1, l — 2l + 1

ms — -1
2, +1

2
2

termed subshells; subshells with the values l = 0, 1, 2, 3, . . . are labeled with the letters 
s, p, d, f, . . . . Finally, for each subshell there are 2l + 1 possible values of the magnetic 
orbital quantum number ml, ranging from - l to l. A state characterized by all three quan-
tum numbers n, l, and ml is called an orbital. Table 36.1 summarizes shell-structure nota-
tion; for completeness, the table also lists the spin quantum number ms.

The structure of a multielectron atom is determined by the quantum states of its con-
stituent electrons—their distribution among the shells, subshells, and orbitals. According 
to the exclusion principle, no two electrons can be in exactly the same quantum state; that 
is, they can’t have the same values for all four quantum numbers n, l, ml, and ms. Since an 
atomic orbital is characterized by the three quantum numbers n, l, and ml, the exclusion 
principle implies that at most two electrons can occupy a single orbital.

We’re now ready to understand the ground-state electronic structure of multielectron 
atoms. The simplest is helium (He), with two electrons. The K shell 1n = 12 is the lowest 
possible energy level. As Table 36.1 shows, only the zero-angular-momentum s subshell 
is permitted within the K shell, and within that subshell there’s only the single orbital cor-
responding to ml = 0. But that orbital can accommodate two electrons. So in the ground 
state of helium, both electrons occupy the s subshell of the K shell. We describe this with 

PheT: Build an Atom
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the notation 1s2, where 1 stands for the principal quantum number n, s for the subshell, 
and the superscript 2 for the number of electrons in that subshell. The corresponding nota-
tion for hydrogen is 1s1.

After helium comes lithium (Li), with three electrons. From our analysis of helium, 
we know that the K shell is full with two electrons. So the third electron goes into the L 
shell, or n = 2 energy level. Of the subshells in the L shell, the s subshell turns out to have 
slightly lower energy than the others, so the third electron occupies the s subshell. Then 
the electronic configuration of lithium is 1s2 2s1—that is, a helium-like core with a single 
outer electron in the s subshell of the n = 2 level.

Beryllium (Be), with four electrons, fills the 1s and 2s subshells; its designation is 
1s22s2. The fifth electron of boron (B) then goes into the 2p subshell, giving the  structure 
1s2 2s2 2p1. Table 36.1 shows that a p subshell 1l = 12 allows three ml values—that is, 
three orbitals, capable of holding a total of six electrons. As we advance in atomic num-
ber, electrons continue to fill the p subshell. Finally, at neon 1Z = 102, the 2p subshell 
is full. Only with the next element, sodium 1Z = 112, does the n = 3 shell begin to fill.  
 Table 36.2 lists electronic configurations for the elements hydrogen 1Z = 12 through 
 argon 1Z = 182, along with their ionization energies (the energy required to remove the 
outermost electron).

Table 36.2 Electronic Configurations and Ionization Energies of Elements 1–18

Atomic Number, z element electronic Configuration ionization energy (eV)

1 H 1s1 13.60

2 He 1s2 24.60

3 Li 1s22s1 5.390

4 Be 1s22s2 9.320

5 B 1s22s22p1 8.296

6 C 1s22s22p2 11.26

7 N 1s22s22p3 14.55

8 O 1s22s22p4 13.61

9 F 1s22s22p5 17.42

10 Ne 1s22s22p6 21.56

11 Na 1s22s22p63s1 5.138

12 Mg 1s22s22p63s2 7.644

13 Al 1s22s22p63s23p1 5.984

14 Si 1s22s22p63s23p2 8.149

15 P 1s22s22p63s23p3 10.48

16 S 1s22s22p63s23p4 10.36

17 Cl 1s22s22p63s23p5 13.01

18 Ar 1s22s22p63s23p6 15.76

Gaps mark ends of periodic-table rows.

An atom’s chemical behavior is determined primarily by its outermost electrons, be-
cause these electrons interact most directly with nearby atoms and because they’re most 
weakly bound to their nuclei. Table 36.2 shows that the outer-electron configurations for 
lithium through neon (Ne) are the same as the corresponding configurations for sodium 
(Na) through argon (Ar). The chemical properties of the corresponding atoms are there-
fore similar. Both lithium and sodium, for example, have a single electron in their out-
ermost shell. As their relatively low ionization energies suggest, this electron is loosely 
bound, so it readily interacts with other atoms, giving these elements their extreme re-
activity. Neon and argon, in contrast, both have completely filled outermost shells. All 
the outer-shell electrons have essentially the same energy; the corresponding ionization 
energy is high; and there’s little tendency for these electrons to interact with other atoms. 
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As a result,  argon and neon don’t readily form chemical compounds, and at normal tem-
peratures they’re gases (collectively, the elements in the periodic-table column containing 
argon and neon are called the noble gases). Other element pairs also share similar prop-
erties. Fluorine and chlorine, for instance, each need only one more electron to achieve 
the energetically favorable noble-gas configuration. Consequently these elements readily 
accept electrons. Materials such as common salt, NaCl, owe their high melting points to 
the strong bond that results when reactive sodium gives up its outer electron to electron-
accepting chlorine, and the resulting positive and negative ions bind strongly by the elec-
trostatic force. We’ll consider molecular bonding in the next chapter.

Beyond argon 1Z = 182, shielding effects of the inner electrons result in the 4s states 
having lower energy than the 3d states. Potassium 1Z = 192 thus has the electronic 
 configuration 1s22s22p63s23p64s1 rather than 1s22s22p63s23p63d1. After potassium comes 
calcium, with two electrons in its single 4s orbital. But the 4p orbitals do have higher 
 energy than the 3d, so elements beyond calcium begin filling the 3d orbitals. The next 
ten elements, scandium through zinc, have chemical properties that vary only slightly 
 because their two outermost electrons remain 4s electrons; collectively, they’re transition 
 elements. (Chromium, Z = 24, and copper, Z = 29, are minor exceptions; in these an 
extra electron goes into the 3d orbitals, leaving only one 4s electron.) Finally, elements 
31 (gallium) through 36 (krypton) repeat the pattern of aluminum through argon shown in 
Table 36.2, as their 4p orbitals fill with electrons. Krypton, with its outer p subshell full, is 
again a noble gas.

CoNCEPTUAL ExAmPLE 36.1  The Periodic Table

Explain the general structure of the periodic table’s first five rows.

evaluate Each row of the periodic table starts with an element 
whose outermost shell contains a single s electron; these elements in-
clude hydrogen and the highly reactive alkali metals. Each row ends 
with a noble gas, its outermost p subshell full. The first row involves 
filling the 1s orbital only; since this orbital holds at most two elec-
trons, there are only two elements in the first row. The second row has 
eight elements, associated with the filling of the 2s and 2p orbitals, as 
shown in Table 36.2. The third row is like the second, but with the 3s 
and 3p orbitals filling. Because the 4s orbitals have lower energy than 
the 3d orbitals, the third row ends with a noble gas whose 3p orbitals 
are full, and the fourth row begins as the 4s orbital begins to fill. Then 
come the elements Z = 21 through Z = 30, in which the 3d orbitals 
are filling; these make for 10 additional elements in the fourth row. 

The fifth row is a repeat of the fourth, as first the 5s orbitals fill, then 
the higher-energy 4d orbitals, then the remaining 5p orbitals.

assess Our explanation shows why elements in each column of the 
periodic table have similar chemical properties, while those properties 
generally change as we move across the table’s rows.

MakIng the ConneCtIon Determine the electronic configuration 
of iron.

evaluate Z = 26 for iron, so we need to accommodate eight more 
electrons outside iron’s argon-like core. Since iron is a transition ele-
ment, its 4s orbitals fill before 3d. So two electrons go into 4s and 
the remaining six into 3d. Iron’s electronic configuration is therefore 
1s22s22p63s23p63d64s2.

The sixth and seventh rows don’t quite fit our analysis in Conceptual Example 36.1. At 
element 57, lanthanum, the 4f  orbitals begin filling while the outermost electron  remains 6s. 
This continues through element 71, lutetium, giving elements 57–71 similar  chemical proper-
ties. These elements constitute the lanthanide series, and they’re printed separately below the 
main table. Row seven repeats this pattern, with the actinide series.  Seventh-row elements 
beyond uranium (element 92) are radioactive with half-lives that are short  compared to Earth’s 
age. They’re not found naturally but are produced in  particle accelerators, fission reactors, and 
nuclear explosions. Elements beyond the actinides are very short-lived, although theory sug-
gests that there may be an “island of stability”  encompassing more massive nuclei than those 
yet produced; their lifetimes might range from minutes to possibly as much as millions of 
years. You’ll learn more about nuclear lifetimes in Chapter 38.

Note the crucial role the exclusion principle plays in our discussion of the chemical 
 elements. Without that principle, every atom in its ground state would have all its electrons 
in the 1s orbital. There would be no qualitative distinction among the elements, and the 
science of chemistry would not exist. Nor would there be any chemists or physicists, as 
life itself would be impossible without the rich diversity of chemical compounds formed 
from the different elements.
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GoT IT? 36.4 What’s the final term in the electron configuration for xenon (Xe)? 
 Answer without working out the entire configuration. (a) 4p6; (b) 5p6; (c) 5p5; (d) 5p7; (e) 6s1

36.5 Transitions and Atomic Spectra
Emission and absorption of photons with specific energies provide the most direct mani-
festation of quantized atomic-energy levels, and give rise to the spectral lines that permit 
precise analysis of atomic systems from the laboratory to distant astrophysical objects. 
Even simple hydrogen exhibits myriad quantum states. In multielectron atoms, the possi-
bilities for electronic excitation are even more numerous. The spectra of atoms reflect this 
rich array of available quantum states.

Selection Rules
Not all energy-level transitions are equally likely. So-called selection rules determine 
which are allowed transitions—those most likely to occur. One rule limits allowed transi-
tions to those for which the orbital quantum number l changes by ∆l = {1; this and other 
selection rules are related to the conservation of angular momentum. Quantum mechanics 
also provides a way of calculating transition probabilities, and from them the mean life-
times of excited states. For outer electrons, excited states that de-excite by allowed transi-
tions have typical lifetimes on the order of 10-9 s.

Transitions that are not allowed by selection rules are called forbidden transitions; 
most are not strictly impossible but just extremely unlikely. States that can lose energy 
only by forbidden transitions are metastable states; their lifetimes are many orders of 
magnitude longer than the nanosecond timescale for allowed transitions. “Glow in the 
dark” phosphorescent materials emit light through the slow de-excitation of metastable 
states. Forbidden spectral lines are valuable probes of low-density astrophysical gases in 
which collisions are rare, and atoms can therefore remain in metastable states.

optical Spectra
Spectral lines in or near the visible involve transitions among the incompletely filled outer 
atomic shells. The alkali metals, with a single outer s electron, therefore produce spectra 
qualitatively similar to that of hydrogen. However, the more complicated structure of a mul-
tielectron atom shifts some energy levels (Fig. 36.16). Many of the transitions in Fig. 36.16 
are actually doublets or triplets resulting from spin-orbit splitting (Fig. 36.17). The energy-
level structure is even more complicated for atoms with more than one outer-shell electron.

GoT IT? 36.5 Which of the transitions shown in Fig. 36.16 results in a photon of the 
shortest wavelength?

Figure 36.16 Energy-level diagram for sodium, 
neglecting spin-orbit splitting. Note the 
widely separated 4s and 4p levels, with 3d 
between them; this explains why the 4s orbital 
fills  before 3d. Lines connecting levels show 
 allowed transitions.
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Figure 36.17 Magnified portion of sodium’s 
energy-level diagram, showing spin-orbit 
splitting of the 3p level. Transitions from 
the two states result in the slightly different 
 wavelengths of the sodium D doublet.

3s

l = 588.995 nm l = 589.592 nm

3p3>2 3p1>2

D2 D1

ExAmPLE 36.4  Atomic Spectra: The Sodium Doublet

Use Fig. 36.17 to determine the energy difference between the 3p 
states of sodium.

Interpret We’re asked about the energy difference between two 
atomic states (3p1/2 and 3p3/2), and we’re given the wavelengths of 
photons emitted in transitions from those states to a common end state 
13s2. We know that those photons carry off energy equal to the differ-
ence between the energies of the starting and ending states.

Develop The quantization condition E = hf  relates photon energy 
and frequency; since fl = c, we also have E = hc/l. Our plan is to 
use this expression to find the energies of the two transitions shown in 

Fig. 36.17, and then subtract to get the energy difference between the 
3p levels.

evaluate We have

∆E3p =
hc

588.995 nm
-

hc

588.592 nm
 = 3.42 * 10-22 J.

assess Our answer is about 2 meV, much lower than the eV-range 
energies associated with optical transitions themselves. That’s ex-
pected, given the small separation between the 3p states evident in 
Fig. 36.17. In sodium, states below 3s are all full, so 3s is the lowest 
end state for optical transitions. ■

Video Tutor Demo | Illuminating Sodium Vapor with 
Sodium and Mercury Lamps
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Spontaneous and Stimulated Transitions
What makes an electron jump between energy levels? In an upward transition, the electron 
must absorb the appropriate amount of energy. Generally, that energy is supplied by a 
photon whose energy is equal to the energy difference between the two levels; the process 
is called stimulated absorption (Fig. 36.18a). (Upward transitions can result from other 
processes as well, such as an energetic collision between two atoms or the interaction of a 
free electron with atomic electrons.)

For most downward transitions, however, there’s no specific cause. An electron spon-
taneously jumps from a higher to a lower energy level and a photon is emitted; this is 
spontaneous emission (Fig. 36.18b). Although an individual spontaneous emission is a 
random event, quantum mechanics gives the probability per unit time for that event to 
 occur; the inverse of that probability is the mean lifetime of the excited state.

In 1917 Einstein recognized a third possibility: Excited atoms can be stimulated to drop 
into lower energy states by the mere presence of a photon, again of energy appropriate to 
the transition. A second photon is emitted in the process, with the same energy and phase 
as the stimulating photon, and in the same direction. This process, stimulated emission, is 
the reverse of stimulated absorption (Fig. 36.18c).

Spontaneous emission, stimulated absorption, and stimulated emission play major 
roles in the transfer of radiation through gases. And stimulated emission is essential to the 
 operation of lasers.

Figure 36.18 Interaction of photons with atomic 
electrons. Horizontal lines denote two atomic 
energy levels, and the wave is a photon with 
energy equal to the difference between the 
two levels. (a) Stimulated absorption; (b) spon-
taneous emission; (c) stimulated emission.
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As Fig. 36.18c suggests, stimulated emission is a way to multiply photons 
with identical wavelength and phase. The laser, whose name derives from 
light amplification by stimulated emission of radiation, exploits this effect 
to produce an intense beam of coherent light. The key to laser action is a 
population inversion, an unusual situation with many atoms in an excited 
state. The excited state is usually metastable, to prevent spontaneous emis-
sion from de-exciting the atoms. Atoms are first excited to a higher state 
from which they quickly drop by spontaneous emission to the metastable 
state, where they’re “stuck” by the lack of allowed transitions downward. 
The excitation process is called pumping, and the excitation energy source 
is the pump. Laser pumps include flash lamps, sunlight, other lasers, electric 
currents, chemical reactions, and even nuclear explosions.

With a large number of excited atoms, it isn’t long before one randomly 
de-excites even from the metastable state. It emits a photon that passes by 
other excited atoms, causing stimulated emission. That makes more photons 
and still more stimulated emission, as shown in the figure. The process snow-
balls, resulting in an intense beam of photons with the same wavelength and 
phase. In a laser, the radiating medium sits in a cavity with mirrors at the 
ends; as the photons reflect off the mirrors and traverse the medium, more 
and more stimulated emission results, building up the beam intensity. One 
mirror is only partially reflective to allow the laser beam to emerge. Some la-
sers produce a short burst of radiation before being pumped to prepare for an-
other burst. Others are pumped continuously, resulting in a continuous beam.

The first laser, built in 1960, used a ruby rod as the lasing medium, sur-
rounded by a coiled flash lamp for the pump. Since then myriad laser types 
have been developed. Almost anything can be used as the lasing medium, 
provided a population inversion is possible. Laser media include gases, solids, 
liquids, semiconductors, and ionized plasmas. Natural laser action occurs even 
in interstellar gas clouds. Some lasers, especially those using chemical dyes or 
temperature-sensitive semiconductors, are tunable over a range of wavelengths.

Laser light is monochromatic, since all photons have essentially the 
same energy. It’s coherent because the photons all have the same phase. 
Coherence allows the beam to travel long distances with minimal spread-
ing and enables very precise focusing. Finally, laser light can be made ex-
tremely intense, since stimulated emission extracts energy from many atoms 
simultaneously. Since photons are spin-1 particles that don’t obey the exclu-
sion principle, there’s no limit to the number of photons in a laser beam. 
Small lasers like those used in laser pointers have power outputs in the sub-
milliwatt range, while the most powerful continuous lasers exceed 1 MW. 
Pulsed lasers, in contrast, have produced outputs as great as 1 PW—1000 
times the output of all the world’s electric generating plants—but only with 
very brief pulses.

Today lasers are ubiquitous. They’re used in commonplace applications 
like bar-code scanners and CD/DVD drives. Medical lasers correct vision 
(Application, “Laser Vision Correction,” Chapter 31), whiten teeth, and per-
form bloodless surgery. Biologists use laser beams as “optical tweezers” to 
manipulate microscopic structures within cells. Lasers have replaced older 
technologies in surveying, leveling, and measuring instruments used in 
construction. Industrial lasers cut metal, shape gears, and harden surfaces. 
Semiconductor lasers drive the optical fibers that carry communications sig-
nals and Internet traffic. Military lasers lock on targets for precise weapons 
guidance. Ultrafast lasers probe chemical reactions that occur on femtosec-
ond timescales (Application, “Femtosecond Photography of Chemical Reac-
tions,” Chapter 34). Lasers halt atoms’ thermal motion, cooling materials to 
nanokelvin levels and enabling Bose–Einstein condensates. Laser beams re-
flected from the Moon measure its distance to within a few centimeters, test-
ing Einstein’s general relativity (Application, “Moon Distance,” Chapter 30). 
Holograms capture interfering laser wavefronts, creating three-dimensional 
images. Future laser applications may include laser-driven spaceflight and 
the use of lasers to clear space debris.

APPLICATIoN Lasers

This electron
dropped
spontaneously c

cstimulating
these two.

These will drop
in succession c

cand six
photons will
emerge.
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The big idea here is that atomic electrons are quantum particles trapped in the three-dimensional potential well associated with the electric force. 
Solving the Schrödinger equation then leads to quantized energy levels. Considerations of electron spin and orbital angular momentum introduce 
subtle details into the atom’s energy-level structure. The exclusion principle permits only one atomic electron per quantum state, and this fact un-
derlies the shell structure of atoms and the periodic table of the elements.

Chapter 36 Summary
Big Idea

Key Concepts and Equations

The principal quantum number n determines the energy levels in 
hydrogen:

En = -
1

n2 
U2

2ma0
2 =

E1

n2 =
-13.6 eV

n2

For n = 1 the electron is most likely to be found one Bohr radius 
a0 from the nucleus; in higher-energy states it’s likely to be farther 
away.

E
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The orbital quantum number l determines 
the angular momentum:

L = 2l1l + 12U

where l ranges from 0 to n - 1.

The orbital magnetic quantum number ml deter-
mines the component of the angular momentum along 
any given axis:

Lz = ml U

This is space quantization, where ml ranges from  
- l to l.

12ℏ
Lz= 0

Space quantization
for l = 1

Lz = ℏ

Lz= - ℏ

z

0 L 0 = 
S

Electrons are spin@12 particles or fermions; 
the component of their spin angular mo-
mentum on a given axis is {1

2U.
Electron spin gives rise to the electron’s 

intrinsic magnetic dipole moment, charac-
terized by the Bohr magneton:

mB = eU /2m = 9.27 * 10-24 A #m2

Sz =    ℏ1
2

1
2Sz = -  ℏ

z

2

130 S 0 =     ℏ
S

Spin-orbit coupling results in fine-structure splitting of atomic-
energy levels.

n = 2

2P3>2

2P1>2

Spin angular momentum S
S

 and total angular momentum J
S

 obey quantization rules similar to those for orbital angular momentum.

Applications

Bosons are particles with 
integer spin. They don’t 
obey the exclusion princi-
ple, allowing many particles 
to be in the same state, as 
happens in a Bose– Einstein 
condensate or a laser beam.

Forming a Bose–Einstein condensate

In stimulated absorp-
tion, an electron ab-
sorbs a photon and 
jumps to a higher en-
ergy level.

Electrons in ex-
cited states can drop to 
lower energy states by 
either spontaneous or 
stimulated emission.

Stimulated
absorption

Spontaneous
emission

Stimulated
emission

E2

E1

E2

E1

E2

E1

Before After
E2

E1

E2

E1

E2

E1

M36_WOLF4752_03_SE_C36.indd   698 18/06/15   3:08 PM



Exercises and Problems 699

For homework assigned on MasteringPhysics, go to www.masteringphysics.com

BIO Biology and/or medicine-related problems DATA Data problems ENV Environmental problems CH Challenge problems

23. Theories of quantum gravity predict a spin-2 particle called the 
graviton. What would be the magnitude of the graviton’s spin an-
gular momentum?

24. Some very short-lived particles known as delta resonances have 
spin 3

2. Find (a) the magnitude of their spin angular momentum 
and (b) the number of possible spin states.

25. What are the possible j values for a hydrogen atom in the 3D 
state?

Section 36.3 The Exclusion Principle
26. An infinite square well contains nine electrons. Find the energy 

of the highest-energy electron in terms of the ground-state energy 
E1.

27. A quantum harmonic oscillator with frequency v contains 21 
electrons. What’s the energy of the highest-energy electron?

Section 36.4 Multielectron Atoms and the Periodic Table
28. Use shell notation to characterize rubidium’s outermost electron.
29. Write the full electronic structure of scandium.
30. Write the full electronic structure of bromine.

Section 36.5 Transitions and Atomic Spectra
31. Show that the wavelength l in nm of a photon with energy E in 

eV is l = 1240/E.
32. The 4f S 3p transition in sodium produces a spectral line at 

567.0 nm. Find the energy difference between these two levels.
33. The 4p S 3s transition in sodium produces a double spectral line 

at 330.237 nm and 330.298 nm. What’s the energy splitting of 
the 4p level?

Problems
34. Adapt part (b) of Example 36.1 to find the probability that an 

electron in the hydrogen ground state will be found beyond two 
Bohr radii.

35. Determine the principal and orbital quantum numbers for a 
 hydrogen atom whose electron has energy 20.850 eV and orbital 
angular momentum L = 112 U.

36. Find (a) the energy and (b) the magnitude of the orbital angular 
momentum for an electron in the 5d state of hydrogen.

37. Assuming the Moon’s orbital angular momentum is quantized, 
estimate its orbital quantum number l.

38. The maximum possible angular momentum for a hydrogen atom 
in a certain state is 30111 U. Find (a) the principal quantum 
number and (b) the energy.

39. A hydrogen atom is in an l = 2 state. What are the possible 
 angles its orbital angular momentum vector can make with a 
given axis?

40. A hydrogen atom has energy E = -0.850 eV. Find the maxi-
mum possible values for (a) its orbital angular momentum and 
(b) the component of that angular momentum on a given axis.

41. An electron in hydrogen is in the 5f  state. What possible values, 
in units of U, could a measurement of the orbital angular momen-
tum component on a given axis yield?

42. Substitute Equation 36.3 into Equation 36.4 and carry out 
the  differentiations to show that you get the first unnumbered 
 equation following Equation 36.4.

43. Differentiate the radial probability density for the hydrogen 
ground state, and set the result to zero to show that the electron is 
most likely to be found at one Bohr radius.

For thought and Discussion
 1. The electron in a hydrogen atom is somewhat like a particle 

 confined to a three-dimensional box. In the atom, what plays the 
role of the confining box?

 2. A friend who hasn’t studied physics asks you the size of a 
 hydrogen atom. How do you answer?

 3. How many quantum numbers are required to specify fully the 
state of a hydrogen atom?

 4. Both the Bohr and Schrödinger theories predict the same ground-
state energy for hydrogen. Do they agree about the angular 
 momentum in the ground state? Explain.

 5. Is it possible for a hydrogen atom to be in the 2d state? Explain.
 6. Can the component of a quantized angular momentum  measured 

on a given axis ever equal the magnitude of the angular 
 momentum vector? Explain.

 7. The electron is a spin-1
2 particle. Does this mean the electron’s 

intrinsic angular momentum is 12 U? Explain.
 8. How does the Stern–Gerlach experiment provide convincing evi-

dence for space quantization?
 9. Why is there no spin-orbit splitting in hydrogen’s ground state?
10. How does the exclusion principle explain the diversity of chemi-

cal elements?
11. Helium and lithium exhibit very different chemical behavior, yet 

they differ by only one unit of nuclear charge. Explain.
12. Why is stimulated emission essential for laser action?
13. What distinguishes a Bose–Einstein condensate from ordinary 

matter?

exercises and problems

Exercises

Section 36.1 The Hydrogen Atom
14. Using physical constants accurate to four significant figures (see 

inside front cover), verify the numerical values of the Bohr radius 
a0 and the hydrogen ground-state energy E1.

15. A group of hydrogen atoms is in the same excited state, and pho-
tons with at least 1.5-eV energy are required to ionize these at-
oms. What’s the quantum number n for the initial excited state?

16. Find the maximum possible magnitude for the orbital angular 
momentum of an electron in the n = 7 state of hydrogen.

17. Which of the following is not a possible value for the magni-
tude of the orbital angular momentum in hydrogen: (a) 112 U;  
(b) 120 U; (c) 130 U; (d) 140 U; (e) 156 U?

18. The orbital angular momentum of the electron in a hydrogen 
atom has magnitude 2.585 * 10-34 J #s. Find its minimum possible 
energy.

19. What’s the orbital quantum number for an electron whose orbital 
angular momentum has magnitude L = 130 U?

20. A hydrogen atom is in the 6f  state. Find (a) its energy and (b) the 
magnitude of its orbital angular momentum.

21. Give a symbolic description for the state of the electron in a hy-
drogen atom with total energy -1.51 eV and orbital angular mo-
mentum 16 U.

Section 36.2 Electron Spin
22. Verify the value of the Bohr magneton m

B
 in Equation 36.14.
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61. What’s the most orbital angular momentum that could be added 
to an atomic electron initially in the 6d state without changing its 
principal quantum number? What would be the new state?

62. A hydrogen atom is in an F state. (a) Find the possible values for 
its total angular momentum. (b) For the state with the greatest 
angular momentum, find the number of possible values for the 
component of J

S
 on a given axis.

63. A hydrogen atom is in the 2s state. Find the probability that its 
electron will be found (a) beyond one Bohr radius and (b) beyond 
10 Bohr radii.

64. Show that the maximum number of electrons in an atom’s nth 
shell is 2n2.

65. Form the radial probability density P21r2 associated with the 
c2s state of Equation 36.7, and find the electron’s most probable 
 radial position.

66. Substitute the wave function c2 of Equation 36.7 into Equation 
36.4 to verify that the equation is satisfied and that the energy is 
given by Equation 36.6 with n = 2.

67. (a) Verify Equation 36.8 by considering a single-electron atom 
with nuclear charge Ze instead of e. (b) Calculate the ionization 
energies for single-electron versions of helium, oxygen, lead, and 
uranium.

68. Excimer lasers for vision correction generally use a combina-
tion of argon and fluorine to form a molecular complex that can 
exist only in an excited state. Stimulated de-excitation produces   
6.42-eV photons, which form the laser’s intense beam. What’s 
the corresponding photon wavelength, and where in the spectrum 
does it lie?

69. A selection rule for the infinite square well allows only those 
transitions in which n changes by an odd number. Suppose an 
infinite square well of width 0.200 nm contains an electron in 
the n = 4 state. (a) Draw an energy-level diagram showing all 
allowed transitions that could occur as this electron drops toward 
the ground state, including transitions from lower levels that 
could be reached from n = 4. (b) Find all the possible photon 
energies emitted in these transitions.

70. An ensemble of one-electron square-well systems of width 1.17 
nm all have their electrons in highly excited states. They undergo 
all possible transitions in dropping toward the ground state, obey-
ing the selection rule that ∆n must be odd. (a) What wavelengths 
of visible light are emitted? (b) Is there any infrared emission? If 
so, how many spectral lines lie in the infrared?

71. Use the radial probability density from Equation 36.5 and the 
normalized ground-state hydrogen wave function from Equa-
tion 36.3 and Example 36.1 to calculate the average radial dis-
tance rav for an electron in the ground state. (Note: Because the 
probability-density curve isn’t symmetric, the average radial 
distance isn’t the same as the most probable distance shown in 
Fig. 36.3.)

72. Follow the procedure in Problem 71 to calculate the average ra-
dial distance for an electron in the 2s state of hydrogen.

73. The ratio of the magnetic moment, in units of the Bohr magneton 
mB, to the angular momentum, in units of U, is called the g-factor. 
(a) Show that the classical orbital g-factor for an atomic electron 
in a circular Bohr orbit is gL = 1. (b) Show that Equation 36.13 
gives gS = 2 for the g-factor associated with electron spin.

74. You work for a company that makes red helium–neon lasers 
widely used in physics experiments. Figure 36.19 shows an 
energy-level diagram for this laser. An electric current excites 
helium to a metastable level E1 at 20.61 eV above the ground 
state. Collisions transfer energy to neon atoms, exciting them 

44. Repeat Exercise 25 for the case where you know only that the 
principal quantum number is 3; that is, l might have any of its 
possible values.

45. A hydrogen atom is in the 4F5/2 state. Find (a) its energy in units 
of the ground-state energy, (b) its orbital angular momentum in 
units of U, and (c) the magnitude of its total angular momentum 
in units of U.

46. Suppose you put five electrons into an infinite square well of 
width L. Find an expression for the minimum energy of this sys-
tem, consistent with the exclusion principle.

47. A harmonic oscillator potential of natural frequency v contains 
eight electrons and is in its lowest-energy state. (a) What is its en-
ergy? (b) What would the lowest energy be if the electrons were 
replaced by spin-1 particles of the same mass?

48. You work for a nanotechnology company developing a new 
quantum device that operates essentially as a one-dimensional 
infinite square well of width 2.5 nm. You’re asked to specify the 
maximum number of electrons in the device before the total elec-
tron energy exceeds 25 eV. Your answer?

49. Determine the electronic configuration of copper.
50. An electron in a highly excited state of hydrogen 1n1 W 12 

drops into the state n = n2. Find the lowest value of n2 for which 
the emitted photon will be in the infrared.

51. A solid-state laser made from lead–tin selenide has a lasing tran-
sition at a wavelength of 30 μm. If its power output is 2.0 mW, 
how many lasing transitions occur each second?

52. For hydrogen, fine-structure splitting of the 2p state is only about 
50 μeV. What percentage is this difference of the photon energy 
emitted in the 2p S 1s transition? Your answer shows why it’s 
hard to observe spin-orbit splitting in hydrogen.

53. Find the probability that the electron in the hydrogen ground 
state will be found in the radial-distance range r = a0 { 0.1a0.

54. You’ve acquired a laser for your dental practice. It produces  
400-mJ pulses at 2.94@μm wavelength. A patient wonders about 
the number of photons in each pulse, and where they lie in the 
EM spectrum. Your answer?

55. Singly ionized oxygen (so-called O-II) is a prevalent species in 
the tenuous gas between stars, and O-II emits a doublet spectral 
line at 372.60 nm and 372.88 nm. Astrophysicists analyze this 
line to learn, among other things, about the distribution of inter-
stellar gas in distant galaxies. Find the energy splitting, in eV, 
that results in this doublet.

56. A harmonic oscillator potential with natural frequency v con-
tains a number of electrons and is in its state of lowest energy. If 
that energy is 6.5Uv, (a) how many electrons are in the potential 
well and (b) what’s the energy of the highest-energy electron?

57. A harmonic oscillator potential with natural frequency v con-
tains N electrons and is in its state of lowest energy. Find expres-
sions for the energy of the highest-energy electron for (a) N even 
and (b) N odd.

58. A harmonic oscillator potential with natural frequency v con-
tains N electrons and is in its state of lowest energy. Find expres-
sions for the total energy for (a) N even and (b) N odd.

59. An infinite square well containing a number of particles is in its 
lowest possible energy state, which is 19 times the ground-state 
energy E1 for the same well when it contains a single particle. (a) 
How many particles are in the well? (b) What’s the energy of the 
highest-energy particle?

60. Repeat Problem 58 for the case of an infinite square well con-
taining N particles, rather than for a harmonic oscillator. Express 
your answer in terms of the ground-state energy E1.
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Figure 36.20 Passage Problems 76–79. (a) An X-ray spectrum from air pollut-
ants trapped on a filter. The labeled peaks show the presence of lead (Pb) 
and arsenic (As), as evidenced by Ka, Kb, La, and Lb characteristic X rays.  
(b) X-ray of an intestinal tract, made by coating the intestinal wall with  
X- ray-opaque barium.

76. Molybdenum’s X-ray spectrum has its Ka peak at 17.4 keV. The 
corresponding X-ray wavelength is closest to
a. 1 pm.
b. 100 pm.
c. 1 nm.
d. 100 nm.

77. In general, how should the energy of an element’s La X rays 
compare with the energy of its Ka X rays?
a. They have less energy.
b. They have the same energy.
c. They have greater energy.
d. You can’t tell without knowing the element.

78. Elements A and B have atomic numbers ZA and ZB = 2ZA. How 
do you expect element B’s Ka X-ray energy to compare with that 
of element A?
a. B’s Ka energy should be about one-fourth that of A.
b. B’s Ka energy should be about half that of A.
c. B’s Ka energy should be about twice that of A.
d. B’s Ka energy should be about four times that of A.

79. Emission of characteristic X rays occurs in the context of multielec-
tron atoms that generally have all but one of their electrons present. 
You should therefore expect the X-ray energies to be described
a. quite accurately by Bohr’s atomic theory.
b. through hydrogen-like solutions to the Schrödinger equation.
c. only approximately by Bohr’s theory or hydrogenic solutions 

to the Schrödinger equation.

answers to Chapter Questions

Answer to Chapter opening Question
Only one electron is allowed in a given atomic quantum state, leading 
to the shell structure of atoms and to chemical properties based on the 
outermost atomic electrons.

Answers to GoT IT? Questions
 36.1  (c)
 36.2  (c)
 36.3  (d)
 36.4  (b)
 36.5  5p S 3s

to E2 = 20.66 eV. The lasing transition drops the atoms to E3, 
emitting a 632.8-nm photon in the process. You’re asked to find 
the maximum possible efficiency for this laser—that is, the light 
energy emitted as a percentage of the energy supplied to excite 
the atoms. Your answer?
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Figure 36.19 Energy-level diagram for the helium–neon laser (Problem 74).

75. Using the table below, make a plot of atomic volume versus 
atomic number, for the elements from Z = 30 to Z = 59 listed 
in the table. Comment on the structure of your graph in relation 
to the periodic table, the electronic structures of atoms, and their 
chemical properties. (Volumes are in units of 10- 30 m3.)

Z V Z V Z V

30 7.99 40 26.1 50 11.2

31 12.5 41 20.2 51 8.78

32 6.54 42 18.8 52 6.88

33 4.99 43 17.5 53 5.28

34 3.71 44 16.2 54 4.19

35 2.85 45 12.8 55 95.9

36 2.57 46 12.0 56 51.6

37 70.3 47 11.2 57 49.0

38 37.2 48 10.5 58 46.5

39 28.3 49 17.2 59 44.0

Passage Problems
With sufficient energy, it’s possible to eject an electron from an inner 
atomic orbital. A higher-energy electron will then drop into the un-
occupied state, emitting a photon with energy equal to the difference 
between the two levels. For inner-shell electrons, photon energies are 
in the keV range, putting them in the X-ray region of the spectrum. 
These characteristic X rays are labeled with the letter indicating the 
shell to which the electron drops, followed by a Greek letter indicating 
the higher level from which it drops; thus Ka designates a transition 
from the L shell to the K shell.

Characteristic X rays provide scientists and physicians with an im-
portant diagnostic tool. Environmental scientists bombard pollution 
samples with high-energy electrons, knocking out inner-shell elec-
trons and thus producing X-ray spectra that help identify contaminants 
(Fig. 36.20a). Geologists do the same with rocks. Medical radiologists 
reverse the process, exploiting the fact that X rays cause inner-shell 
transitions as well as complete ejection of inner-shell electrons. In 
particular, radiologists use the element barium in this way to produce 
high-contrast X-ray images of the intestinal tract (Fig. 36.20b).

DATA
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39
From Quarks to  

the Cosmos

In principle, we could apply the Schrödinger equation to all the particles making up a mol-
ecule or even a solid, but in practice that’s difficult for all but the simplest molecules. Ever-

increasing computer power has brought more complex molecules within reach of structural 
calculations based in the Schrödinger equation, but in many cases it’s appropriate to describe 
molecular and solid structure more qualitatively.

37.1 Molecular Bonding
The binding of atoms into molecules involves both electric forces and  quantum-  
mechanical effects associated with the exclusion principle. Although individual  atoms 
are electrically neutral, the distribution of charge within them gives rise to attractive or 
repulsive forces. When atoms are squeezed closely together, interactions  involving the 
spins of their outermost electrons also result in attractive or repulsive interactions. For 
atoms with unfilled outer shells, it’s energetically favorable for electrons to pair with 
opposite spins; this causes an attractive interaction. When the outer atomic shells are 
filled, the exclusion principle forces electrons from separate atoms into  different states 
as the atoms are brought together. One or more electrons go into higher  energy states, 
raising the overall energy and resulting in a repulsive interaction. Finally, if atoms 
get very close, the electrical repulsion of the nuclei becomes important.  Ultimately, 
the balance of attractive and repulsive interactions determines the equilibrium con-
figuration of a molecule. In energy terms, we can think of a stable molecule as a 
minimum-energy configuration of the electrons and nuclei making up two or more 

How You’ll Use It
■ In most fields of science and 

engineering, you’ll need some 
understanding of the properties of 
solids.

■ Materials scientists are continually 
developing new materials, based on 
principles you’ll learn in Chapter 37, 
and these materials will enrich your 
life no matter what your profession.

■ Superconductors hold the possibility 
of stunning breakthroughs in 
electromagnetic technologies and, 
especially, energy efficiency.

What You’re Learning
■ You’ll learn several common ways that 

atoms bond to form molecules.

■ You’ll learn to evaluate quantized 
energy levels associated with 
molecular rotation and vibration, 
and how these give rise to molecular 
spectra.

■ You’ll see how atoms bond to form 
crystalline solids.

■ You’ll learn to describe the electrical 
properties of insulators, conductors, 
and semiconductors using band 
theory.

■ You’ll develop a qualitative 
understanding of superconductivity.

What You Know
■ You’ve seen potential-energy curves, 

including curves for molecules, in 
Chapter 7.

■ You understand the mechanics of 
rotation, including rotational inertia.

■ You know how simple harmonic 
oscillations occur with linear restoring 
forces.

■ You understand how quantized 
electron energies arise in atoms.

■ You know the electrical properties of 
conductors and insulators.

Molecules and Solids

37

What equation determines the structure of a 
complex molecule, like the aspirin molecule 
shown here?
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37.1 Molecular Bonding 703

atoms (Fig. 37.1). Although such force and energy considerations ultimately govern all  
molecules, we distinguish several molecular binding mechanisms based on which 
 interactions are most important.

Ionic Bonding
As we saw in Chapter 36, elements near the left side of the periodic table have few elec-
trons in their outermost shells and correspondingly low ionization energies. In contrast, 
elements near the right side of the table have nearly filled shells and consequently strong 
affinities for electrons. When atoms from these different regions of the periodic table come 
together, it takes relatively little energy to transfer electrons between them. Sodium, for 
example, has an ionization energy of 5.1 eV, meaning it takes this much energy to make 
an Na+ ion. Chlorine, at the opposite end of the periodic table, has such a strong electron 
affinity that the energy of a Cl- ion is 3.8 eV below that of a neutral Cl atom. Thus an 
expenditure of only 1.3 eV 15.1 eV - 3.8 eV2 is required to transfer the outermost elec-
tron from a sodium to a chlorine atom. The resulting ions are strongly attracted and come 
together until they reach equilibrium at an internuclear separation of about 0.24 nm. The 
total energy of the pair is then 4.2 eV below that of neutral chlorine and sodium atoms at 
large separation (Fig. 37.2). Since it would therefore take 4.2 eV to separate the atoms, 
this quantity is called the dissociation energy.

Because the minimum-energy sodium–chlorine structure consists of ions bound by the 
electrostatic force, the binding mechanism is termed ionic bonding. Ionic bonding gener-
ally occurs in crystalline solids. Because the building blocks of an ionically bound sub-
stance are electrically charged, each can bind to several of the opposite charge, resulting in 
a regular crystal pattern (Fig. 37.3). Because the electrostatic force is strong, ionic solids 
are tightly bound and therefore have high melting points (801°C for NaCl). And because 
all electrons are bound to individual nuclei, there are no free electrons and therefore ionic 
solids are electrical insulators.

Figure 37.1 Potential energy of a pair of 
hydrogen atoms as a function of the distance 
between their nuclei.
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Figure 37.2 Potential-energy curve for Na+ and 
Cl- ions, with zero energy corresponding to 
infinite separation of neutral Na and Cl atoms.
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Figure 37.3 A sodium chloride 
crystal is a regular array of sodium 
and chlorine ions, bound by the 
electrostatic force.

Covalent Bonding
In an ionic bond, each electron is associated with only one ion. In a covalent bond, on 
the other hand, electrons are shared among atoms. Covalent bonds occur between atoms 
whose outermost shells aren’t full, and whose outer electrons can therefore pair with 
 opposite spins. The simplest example of a covalent bond is the hydrogen molecule, H2. 
Since each hydrogen atom has a single 1s electron, each could accommodate in its 1s shell 
a second electron with opposite spin. When two hydrogen atoms join, quantum mechanics 
predicts a molecular ground state in which both electrons share a single orbital, with the 
highest probability of finding the electrons between the nuclei (Fig. 37.4). Dissociation en-
ergies for covalent bonds are, like those of ionic bonds, on the order of a few electronvolts.

Figure 37.4 Probability density for finding 
electrons in the ground state of molecular 
hydrogen 1H22.

Highest probability
here, encouraging
atoms to stay together

PheT: Quantum Bound States: Two Wells 
(Molecular Bonding)
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704 Chapter 37 Molecules and Solids

With their outermost molecular orbitals full, covalently bonded molecules often have 
no room for another electron in their structures. For example, adding a third hydrogen 
to H2 is impossible because the ground-state orbital already contains two electrons with 
opposite spins, so the exclusion principle requires that a third electron go into a higher 
energy state. The energy of that state is higher than that of an H2 molecule and a distant 
H atom; for this reason H3 isn’t a stable molecule. Because their outermost molecular 
 orbitals are full, covalent molecules interact only weakly, and as a result many common 
covalent materials—for example, H2, CO, N2, and H2O—are either gases or liquids at 
ordinary temperatures. In other cases covalent bonds can form crystalline structures. A 
simple example is diamond, a pure-carbon solid formed when each carbon atom bonds 
covalently to its four nearest neighbors. A more dramatic covalent molecule is buckmin-
sterfullerene, C60, a soccer-ball configuration of 60 carbon atoms (Fig. 37.5).

Hydrogen Bonding
If water consists of covalently bonded molecules, why is it ever a solid? The answer lies in 
hydrogen bonds that form when the tiny, positively charged proton of a hydrogen nucleus 
nestles close to the negative parts of other molecules. In ice, hydrogen bonds link a proton 
in one H2O molecule to the oxygen in another. Because covalent bonding within the water 
molecule leaves the oxygen only slightly negative and the hydrogen only slightly positive, 
hydrogen bonds are much weaker than ionic or covalent bonds; a typical hydrogen-bond 
energy is 0.1 eV. Hydrogen bonds are important in determining the overall configuration 
of complicated molecules. In DNA, for example, covalent bonds join atoms to form long 
chains; hydrogen bonds then link two chains into the double-helix structure.

Van der Waals Bonding
In Section 20.5 we mentioned the van der Waals force that arises from electrostatic inter-
actions between induced dipole moments of otherwise nonpolar molecules. In gases, the 
van der Waals force causes deviations from the ideal-gas law that are most pronounced 
at high densities. As temperature drops, this weakly attractive force becomes effective 
in binding molecules into liquids and solids. Liquid and solid oxygen 1O22 and nitrogen 
1N22, for example, are held together by van der Waals bonds.

Metallic Bonding
In a metal, the outermost atomic electrons aren’t bound to individual nuclei, but move 
throughout the material. The metal forms a crystal lattice of positive ions, bound by this 
“electron gas.” The free electrons give a metal its high electrical and thermal conductivities.

Got It? 37.1 Energies associated with molecular bonds are typically (a) several eV 
for ionic, covalent, and hydrogen bonds; (b) 10 eV for hydrogen bonds and a few eV for 
covalent and ionic bonds; or (c) a few eV for covalent and ionic bonds, and a fraction of an 
eV for hydrogen bonds.

37.2 Molecular Energy Levels
In a molecule, electric forces bind electrons and nuclei into a single structure. Like any 
quantum-mechanical bound system, the energy levels of a molecule are quantized. As in 
atoms, differences among molecular energy levels are associated with different electronic 
configurations (Fig. 37.6). But molecules are more complex than atoms, and molecular 
energy can take additional forms.

In Chapter 18, you saw how a complete description of the specific heats of gases 
 required that we consider the rotational and vibrational motions of individual molecules. 
We hinted at quantum mechanics, pointing out that each of these modes of molecular mo-
tion could absorb only certain discrete amounts of energy (see Fig. 18.17). Here, in a   

Figure 37.5 Buckminsterfullerene, C60, is a 
symmetric arrangement of 60 carbon atoms. 
Discovered in the 1980s, C60 and related 
fullerenes hold promise in a wide range of 
technological applications.

Figure 37.6 Electron probability densities for 
(a) the ground state and (b) the first excited 
state of hydrogen. Nuclei are farther apart in 
the excited state.

(a)

(b)
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37.2 Molecular Energy Levels 705

quantum- mechanical treatment of molecular energetics, we consider rotational and 
 vibrational energy states as well as electronic configuration.

Rotational Energy Levels
If a molecule is rotating, it has angular momentum L whose magnitude, from Equation 
11.4, is L = Iv, where I is the rotational inertia and v the angular speed. The quantiza-
tion conditions that we found in Chapter 36 for atomic angular momenta also hold for the 
angular momentum of molecular rotation, so we have

 L = 2l1l + 12 U (37.1)

where the quantum number l takes on integer values 0, 1, 2, 3, . . . . But then the rotational 
energy, which from Equation 10.17 is Erot = 1

2 Iv2, must also be quantized. Solving the 
equation L = Iv for v allows us to write the energy as

Erot = 1
2 I  aL

I
b

2

=
L2

2I

Applying the quantization condition 37.1 for L, we then have the quantized rotational 
 energy levels:

 Erot =
U2

2I
  l1l + 12  for l = 0, 1, 2, 3, . . .  (37.2)

ExaMpLE 37.1  Molecular Rotation: Computing Molecular Size

A gas of HCl molecules shows spectral lines that result from transi-
tions between pairs of adjacent rotational energy levels. The energy of 
the transition increases by 2.63 meV from one spectral line to the next. 
(a) Use this experimental result to determine the rotational  inertia 
of the HCl molecule. (b) Approximating the more massive chlo-
rine as being essentially fixed, find an expression for the rotational 
inertia in terms of the hydrogen mass and the separation of the two 
atomic  nuclei. (c) Use the results of parts (a) and (b) to determine the 
 internuclear separation in HCl.

Interpret We’re asked to infer molecular properties from spectro-
scopic observations. We’re given not the wavelength or energy of a 
given spectral line, but the energy difference associated with adjacent 
lines.

Develop Spectral lines result from photons emitted as a molecule 
drops from one of the energy levels of Equation 37.2 to the next lower 
level. So the energy of such a photon is

∆ElSl- 1 =
U2

2I
 3l1l + 12 - 1l - 12l4 =

U2l

I

An adjacent spectral line would result from the transition 
l - 1 S l - 2, giving ∆El-1Sl- 2 =  U21l - 12/I. So our plan for 
(a) is to take the difference between these two transition energies, 
equate it to the observed energy difference of 2.63 meV between ad-
jacent spectral lines, and solve for I. For (b) we can treat the molecule 
as  having a fixed center (Cl) with a particle (H) in circular motion. 
Its rotational inertia is then given by Equation 10.12: I = mR2. 
 Equating the two expressions for I will let us solve for the internuclear 
 separation R in (c).

evaluate (a) The energy difference ∆1∆E2 between adjacent 
 transition energies is

∆1∆E2 =
 U2 l

I
-

 U21l - 12
I

=
 U2

I

Setting this to the observed 2.63-meV spacing and solving for I gives 
I = 2.65 * 10-47 kg#m2, where we had to convert meV to J to get the 
result in SI. (b) We’ve already shown that I = mR2. (c) Equating 
our algebraic and numerical expressions for I and solving gives the 
 internuclear distance:

R = A I

m
= A2.65 * 10-47 kg #  m2

1.67 *10-27 kg
= 0.126 nm

where we approximated the hydrogen mass, m, with the proton mass 
listed inside the front cover.

assess Our answer makes sense, since it’s slightly larger than an 
isolated hydrogen atom. However, it’s approximate because we took 
the chlorine as perfectly fixed and we also ignored the quantum- 
mechanical ground-state energy of molecular vibration, which 
stretches the molecule. Photon energies for low l values are on the 
 order of that 2.63-meV spacing, corresponding to a wavelength of 
about 0.5 mm. This is in the microwave region of the spectrum, with 
much lower energy and longer wavelength than we’ve seen for transi-
tions between atomic energy levels. ■
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706 Chapter 37 Molecules and Solids

Vibrational Energy Levels
The equilibrium configuration of a molecule corresponds to the minimum of the molecular 
potential-energy curve. In the vicinity of that minimum the curve is well approximated by 
a parabola (Fig. 37.7). In Chapter 13 we saw that parabolic potential-energy curves result 
in simple harmonic motion, and in Chapter 35 we used a parabolic potential-energy curve 
in the Schrödinger equation for the harmonic oscillator. There, we found that  quantized 
vibrational energy levels are given by

 Evib = 1n + 1
22  Uv  (37.3)

where the quantum number n takes on integer values 0, 1, 2, 3, . . . , and where v is the 
natural frequency for classical harmonic oscillations of the molecule. The selection rule 
for harmonic oscillators limits allowed transitions to those with ∆n = {1, so  Uv is the 
energy of photons emitted or absorbed in allowed transitions among vibrational energy 
levels. (Actually, the small-amplitude approximation is often justified for only the lower 
quantum states, so Equation 37.3 and the selection rule ∆n = {1 may apply to only 
these states.) For typical diatomic molecules, v is on the order of 1014 s-1, in the infra-
red region of the spectrum. Consequently, study of molecular vibrations involves infrared 
 spectroscopy.

As we found in Chapter 35, the minimum energy of a quantum harmonic oscillator 
is the ground-state energy E0 = 1

2   Uv. Thus a molecule can never have zero vibrational 
 energy, although Equation 37.2 shows that it can have zero rotational energy.

An HCl molecule is in its vibrational ground state. Its classical vibra-
tion frequency is f = 8.66 * 1013 Hz. If its rotational and vibrational 
energies are nearly equal, what are its rotational quantum number and 
angular momentum?

Interpret We’re being asked to compare energies associated with 
two different processes: vibration and rotation. We’re told the vibra-
tional energy state (the ground state, n = 0), and we need to find the 
rotational state with comparable energy.

Develop With n = 0, Equation 37.3, Evib = 1n + 1
22  Uv, gives  

the ground-state vibrational energy Evib = 1
2   Uv = 1

2  hf, where we 
used  U = h/2p and v = 2pf. Our plan is to equate this to the rota-
tional energy of Equation 37.2, Erot = 1 U2/2I2l1l + 12, and solve for 
the quantity l1l + 12. Then we’ll use Equation 37.1 to get the angular 
momentum.

evaluate Equating the vibrational and rotational energies gives

 U2

2I
  l1l + 12 = 1

2   Uv =  Upf

where we used v = 2pf. So l1l + 12 = 2pf I/ U, and Equation 37.1, 
L = 2l1l + 12 U, gives

L = A2pf I

 U
  U = 12pf I  U = 1f Ih = 1.23 * 10-33 J #s

where we used the rotational inertia I = 2.65 * 10-47 kg#m2 that we 
found in Example 37.1.

assess Our angular momentum is about 12 times  U; approximating 
l1l + 12 by l 2 in Equation 37.1 then shows that l is about 12. So we 
need a fairly high rotational quantum state to give the same energy 
as the vibrational ground state. That’s consistent with  transitions 
 between adjacent rotational states involving microwave photons, 
while vibrational transitions involve infrared photons. ■

ExaMpLE 37.2  Molecular Energies: Rotational and Vibrational

Molecular Spectra
A molecule with vibrational quantum number n and rotational quantum number l can 
undergo transitions obeying the selection rules ∆n = {1 and ∆l = {1. If molecules 
couldn’t rotate, the molecular spectrum would consist of a single line at the classical 
 vibration frequency, corresponding to transitions among adjacent vibrational states. But 
each vibrational level corresponds to an infinite number of rotational states. The  resulting 
energy-level diagram is shown in Fig. 37.8. At typical temperatures, only the ground and 
first vibrational levels are significantly populated, but with energy distributed among many 
rotational levels. As a result, molecular spectra show a rich structure, with many lines 
 corresponding to the different transitions of Fig. 37.8. Figure 37.9 is a spectrum of HCl, 
taken with a high-resolution infrared spectrometer that resolves the individual  spectral 
lines. At lower resolution, the pattern shows up as a broad band, and we often speak of 

Figure 37.7 Near its minimum, the molecu-
lar potential-energy curve approximates a 
parabola.

Curve approximates
a parabola c

cgiving simple
harmonic motion.
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Figure 37.8 Energy-level diagram showing the 
ground state and first vibrational excited state 
of a diatomic molecule; also shown are four of 
the infinitely many rotational states for each n.

n = 1

l = 4

l = 3
l = 2
l = 1
l = 0

n = 0

l = 4

l = 3
l = 2
l = 1
l = 0
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37.3 Solids 707

 infrared absorption bands in describing the effect of molecules on infrared radiation. For 
example, absorption bands of atmospheric water vapor and carbon dioxide limit the  escape 
of infrared radiation from Earth, causing the greenhouse effect and global warming that 
we described in Chapter 16. Molecular energy levels are therefore at the heart of today’s 
most global environmental concern. Figure 37.10 shows some of the molecular absorption 
bands that are most responsible for greenhouse warming.

Got It? 37.2 If a scientist uses microwave technology to study molecular structure, 
what form of molecular energy is she most concerned with?

37.3 Solids
Bonding mechanisms can join relatively few atoms to form a molecule, or many to form 
a solid. In the lowest energy state, the atoms of a solid are arranged in a regular, repeating 
pattern; the solid is then crystalline. Sometimes solids form without their atoms having 
the opportunity to achieve a crystal structure; such solids are termed amorphous. Glass 
is a common amorphous solid. Amorphous materials are difficult to analyze due to their 
inherent randomness, so we concentrate here on crystalline solids.

Crystal Structure
The hallmark of a crystalline solid is the regular arrangement of atoms. Looking closely shows 
that a basic pattern repeats throughout the crystal (Fig. 37.11). This basic arrangement is the 
unit cell. Different crystalline materials have different unit cells (Fig. 37.11a, c). Sometimes 

Figure 37.9 Absorption spectrum of HCl, 
 showing lines that result from transitions 
 between the n = 1 and n = 0 vibrational 
states.

Fine splitting
shows mass
difference
between
35Cl and
37Cl.

These lines correspond
to the left-hand arrows
in Fig. 37.8 c

cand these to the 
right-hand arrows.
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Figure 37.10 Upper graph shows the radiance 
of a blackbody at Earth’s average surface 
temperature of 288 K, which is predominantly 
in the infrared with wavelengths from 5 μm to 
25 μm. Lower graph shows the transmissivity 
of Earth’s atmosphere in the same wavelength 
range, showing the effects of absorption by 
vibrational and rotational transitions in water 
vapor, carbon dioxide, and ozone. Where 
transmission is low, the atmosphere absorbs 
outgoing infrared. This absorption contributes 
to the greenhouse effect and global warming.
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Figure 37.11 (a) The unit cell of cesium chloride has eight chlorine ions surrounding each cesium ion.  
(b) A cesium chloride crystal is a periodic array of unit cells. (c) Sodium chloride is different; here each ion is 
surrounded by only six nearest neighbors of the opposite type.

(c)(a) (b)

Na+

Cs+

Cl-
Cl-
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708 Chapter 37 Molecules and Solids

the same underlying matter may assume different structures, depending on how the solid was 
formed; this is the case with diamond and graphite, both crystalline forms of carbon.

As with individual molecules, properties like atomic separation in a crystalline solid are 
determined by the interplay of attractive and repulsive interactions. The situation is compli-
cated, however, because an individual atom experiences forces from many other atoms in the 
crystal. With ionic bonding, those forces are electrical attraction and repulsion as described 
by Coulomb’s law, and that makes ionic crystals amenable to simple mathematical treatment.

For ionic crystals, we can take individual ions to be point charges. Consider the NaCl struc-
ture of Fig. 37.11c. Each sodium ion is surrounded by six nearest chlorine ions, each some 
distance r away. The potential energy of a singly ionized positive sodium ion in the potential of 
each negative chlorine ion is -ke2/r. So the contribution to the potential energy of the six nearest  
chlorines is -6ke2/r, with the minus indicating an attractive interaction. But then there are  
12 sodium ions a distance 12r from the sodium; they give rise to a repulsive force and 
consequently a positive potential energy +12ke2/12r. At a distance of 13r there are 
eight more chlorines, giving potential energy -8ke2/13r. The result is that the elec-
trostatic potential energy of the sodium ion can be written as U1 = -a1ke2/r2, where 
a = 6 - 12/12 + 8/13 - g; a is called the Madelung constant. Many terms in the se-
ries are required to compute a accurately, showing that the effect of distant ions is significant in 
determining the energy of an ion in the crystal. For the NaCl structure, a is approximately 1.748.

As ions are brought closer together, they experience the repulsive effect of the  exclusion 
principle, as we discussed in Section 37.1. This repulsion is described approximately by a 
potential energy of the form U2 = A/rn, where A and n are constants. So the total potential 
energy of an ion in the crystalline solid is

 U = U1 + U2 = -a 

ke2

r
+

A

rn 

At equilibrium the potential energy is a minimum (Fig. 37.12), corresponding to zero net 
force on the ion. Differentiating the potential energy with respect to r and setting dU/dr to 
zero to find the minimum, we have

0 =
ake2

r0
2 -

nA

r0
n + 1

where r0 designates the equilibrium separation. Solving for A gives A = ake2 r0
n - 1/n, so 

the potential energy becomes

 U = -a 

ke2

r0
 c r0

r
-

1
n

  ar0

r
b

n

d  (37.4)

The value of U at the equilibrium separation r0 is designated U0 and is called the ionic 
cohesive energy. The magnitude of U0 represents the energy needed to remove an ion 
 entirely from the crystal. The cohesive energy is sometimes given in kcal/mol, in which 
case its magnitude is the energy per mole needed to break an entire crystal into its 
 constituent ions (see Exercise 23).

Figure 37.12 Potential-energy function for an 
ionic crystal, showing separate contributions 
of the attractive and repulsive terms.
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The ionic cohesive energy for NaCl is -7.84 eV. The equilibrium 
separation, which follows from the measured density, is 0.282 nm (see 
Exercise 22). Use these values and the Madelung constant a = 1.748 
to find the exponent n in Equation 37.4 for NaCl.

Interpret Here we’re given all but one of the quantities in the ex-
pression for a crystal’s potential energy, and we’re asked to solve for 
the one unknown, n.

Develop Equation 37.4 for the potential energy U looks formidable, 
with n in two places, including an exponent. But we’re given the ionic 
cohesive energy U0, which is the value of U when r = r0. So the two 
terms r0/r become 1, and since 1n = 1, the n in the exponent drops 
out. With r = r0 and U = U0, Equation 37.4 simplifies to

U0 = -a   

ke2

r0
  a1 -

1
n
b

Our plan is to solve this equation for n.

ExamplE 37.3 potential Energy in a Solid: The NaCl Crystal
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Band theory
Quantum-mechanical analysis of a solid containing 1023 atoms or so might seem a hope-
less task. But the regularity of a crystalline solid makes that problem, while not easy, at 
least amenable to mathematical treatment. The physical regularity of the solid is reflected 
mathematically in the properties of the wave function; specifically, the wave function for a 
crystalline solid in equilibrium is itself periodic. That’s because equivalent points in differ-
ent unit cells have exactly the same physical properties.

We won’t solve the Schrödinger equation for a crystal, or even write the solutions. 
But you can see what some properties of those solutions must be. Consider two identi-
cal atoms, initially widely separated, as they’re brought closer together. When the atoms 
are far apart, they’re described by identical wave functions and associated energy-level 
diagrams; a given electron state, for example, has exactly the same energy in each atom. 
But as the atoms move closer, their wave functions begin to overlap to form a single wave 
function that characterizes the entire composite system. Because of the exclusion prin-
ciple, two electrons that were in identical states in the two widely separated atoms can 
no longer be in the same state. This effect manifests itself as a separation of what were 
originally identical energy levels (Fig. 37.13a). As more and more atoms come together, 
initially  identical energy levels split into ever more finely spaced levels (Fig. 37.13b). 
In a crystalline solid, there are so many atoms that each level splits into an essentially 
 continuous band of  allowed energies (Fig. 37.13c). Band gaps separate the bands arising 
from  distinct  single-atom states, as shown in Fig. 37.13c. An electron can have any energy 
between the top and bottom of a band, but energies in the band gaps are forbidden. The 
situation is like a single atom, where electrons are allowed only certain discrete energies, 
except now the discrete levels have broadened into bands.

evaluate Solving gives

n = a1 +
U0 

r0

ake2 b
-1

= 8.22

with k the constant in Coulomb’s law and e the elementary charge; 
other quantities are given in the problem statement.

assess The large value of this exponent shows that the NaCl crystal 
is strongly resistant to compression. In Problem 46 you can calculate 
the associated repulsive force. ■

Figure 37.13 (a) Energy levels of the 1s and 2s states as a pair of atoms are brought close together. (b) With 
five atoms, each level splits into a group of five closely spaced levels. (c) In a crystalline solid, the large 
 number of atoms results in essentially continuous energy bands, separated by gaps.
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We’re usually interested in the properties of a solid at or near its equilibrium state, des-
ignated r0 in Fig. 37.13c. There the solid is characterized by an energy-level diagram in 
which the energy levels are those of Fig. 37.13c at the value r = r0 (Fig. 37.14).

Figure 37.14 Energy-level diagram for the 
equilibrium separation of Fig. 37.13c.
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710 Chapter 37 Molecules and Solids

Conductors, Insulators, and Semiconductors
Sometimes the splitting and shifting depicted in Fig. 37.13 result in overlapping bands. 
Figure 37.15 shows the band structure of sodium, in which the 3s and 3p bands overlap. 
Note that the high-energy band containing electrons—here the 3s/3p band—is not com-
pletely full, meaning that energy levels in the upper portion of the band aren’t occupied by 
electrons.

We can determine which of the allowed energy levels of a solid will be occupied in 
the same way we established the electronic structure of atoms: by placing a given total 
number of electrons in the lowest possible levels consistent with the exclusion principle. 
In some materials, like sodium, that filling process results in the highest-energy occupied 
band being only partially full. But in others, like the material shown in Fig. 37.16, the 
highest-energy occupied band is completely full.

Figures 37.15 and 37.16 show the essential difference between conductors and insula-
tors. A conductor is a material in which charges are free to move in response to an electric 
field. Classically, there’s no problem with this: Apply an electric field, and if an electron is 
“free,” it will accelerate and gain energy. But quantum mechanically, an electron can gain 
energy only by jumping into a higher allowed energy level. So there needs to be a higher 
unoccupied level available.

In sodium, the 3s atomic level contains a single electron, although it has room for two. 
Put N sodium atoms together to form a crystal, and the 3s band contains only N of the 
total 2N electrons it could hold. So the 3s band is only half full, as Fig. 37.15 shows, and 
therefore electrons near the top of the filled portion have available unoccupied states with 
only a little more energy. That makes it easy for an electric field to promote electrons to 
unoccupied levels. For that reason sodium is an electrical conductor.

In the material of Fig. 37.16, in contrast, one band is completely full and the next higher 
one empty. An electron in the filled band can’t gain energy unless it’s enough to jump the 
band gap. Electric fields of reasonable magnitude can’t provide this energy, so the elec-
trons are stuck in the filled bands. That makes the material an insulator.

Metallic Conductors
We found in Chapter 24 that classical physics can’t account for the details of metal-
lic conduction, in particular the temperature dependence of conductivity. Quantum 
mechanically, the conduction electrons in a metal are like electrons in the three-dimen-
sional box of Section 35.4. They’re free to move about inside the metal, but not to leave 
it. The number of states available to the electrons, per unit energy interval, turns out 
to increase with energy. You can see the beginnings of this trend in Fig. 35.17, which 
shows the first few states of the three-dimensional box. We won’t do this count; the re-
sult, however, is given by

 g1E2 = a27/2pm3/2

h3 b1E (37.5)

where m is the electron mass and g1E2 is the density of states—the number of states per 
unit volume per unit energy interval centered on the energy E.

At absolute zero, electrons fill the lowest available states according to the exclusion 
principle. The energy of the highest filled level at absolute zero is the Fermi energy, EF. 
At temperature T = 0, all states below the Fermi energy are full, and all those above are 
empty, as shown in Fig. 37.17a.

For T 7 0, thermal energy promotes some electrons to levels above the Fermi energy, 
leaving some levels just below EF vacant (Fig. 37.17b). Now, the Fermi energy in most 
metals is about 1–10 eV, much higher than the thermal energy at typical temperatures 
(0.025 eV at room temperature). So the electron distribution changes only slightly—and 
that means electrons near the Fermi energy carry essentially all the electric current, regard-
less of temperature. The mean electron speed is therefore quite different from the classical 
thermal speed (see Problem 50), and that makes the temperature dependence of electrical 
conductivity in metals very different from the classical prediction.

Figure 37.15 Band structure of metallic sodium, 
with gray indicating filled states and color 
 unfilled states. Bands lower than 3s aren’t 
shown; they correspond to inner electrons, 
whose levels aren’t split significantly.

Unoccupied states

Occupied states

3p

3s

Figure 37.16 Band structure for an insulator.
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Got It? 37.3 Both parts of Fig. 37.17 describe the same piece of metal. How 
do the shaded areas compare? (a) Area at left is greater; (b) area at right is greater;  
(c) areas are equal. Explain your answer.

Semiconductors
In Chapter 24 we gave a classical description of semiconductors—the materials at the 
heart of our modern electronic world. Here we see how band theory gives a quantum-
mechanical explanation of semiconductors.

Our band diagram for an insulator (Fig. 37.16) is strictly correct only at absolute zero. 
Here the highest occupied band—the valence band—is full, and above it the  conduction 
band is empty. At temperatures above absolute zero, though, random thermal energy may 
give an occasional electron enough energy to jump the gap into the conduction band, 
where it has plenty of nearby states available and can thus respond freely to an electric 
field. In good insulators, the band gap is many electronvolts and this effect is negligible. 
But in some materials, notably silicon and germanium, the band gap is on the order of 1 eV 
(see Table 37.1). At room temperature, thermal excitation promotes enough electrons into 
the conduction band that these materials conduct electricity, although their  conductivity is 
much lower than in metallic conductors. Such a material is a semiconductor. Figure 37.18 
compares the band structures for conductors, insulators, and semiconductors.

Figure 37.17 Density of states given by  Equation 37.5, with shaded region indicating occupied 
energy levels. (a) T = 0; (b) T 7 0.
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Table 37.1 Band-Gap Energies for Selected 
Semiconductors (at 300 K)

Semiconductor Band-gap energy (eV)

Si 1.14

Ge 0.67

InAs 0.35

InP 1.35

GaP 2.26

GaAs 1.43

CdS 2.42

CdSe 1.74

ZnO 3.2

ZnS 3.6

Figure 37.18 Band structures for a conductor, an insulator, and a 
 semiconductor. Gray indicates occupied states.

Conductor Insulator Semiconductor

Conduction band

Valence band

In Chapter 24 we showed how doping—adding small quantities of impurities—could 
radically alter the electrical properties of semiconductors. In terms of band theory, a 
 dopant such as phosphorus, with five valence electrons, adds donor levels just below 
the conduction band (Fig. 37.19a). Thermal energy readily promotes electrons from 
these  levels into the conduction band, greatly increasing the conductivity. This makes an  
N-type semiconductor because its predominant charge carriers are electrons. A dopant 
like boron, in contrast, creates acceptor levels just above the valence band (Fig. 37.19b). 
Electrons promoted to these levels leave behind holes that act as positive charge carriers. 
The result is a P-type semiconductor.

Figure 37.19 Band structures in doped 
 semiconductors: (a) N-type; (b) P-type.

Donor
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712 Chapter 37 Molecules and Solids

In Chapter 24 we gave a classical explanation of how a junction of P- and N-type 
semiconductors conducts electric current in only one direction. From there we went on 
to  describe the operation of the transistor—the semiconductor device at the heart of all 
 modern electronics. We can also understand the PN junction in terms of band structure. 
In Fig. 24.11 we showed how electrons and holes diffuse across a PN junction, deplet-
ing the junction of charge carriers and making it a poor conductor. Diffusion of electrons 
also gives the P-type side of the junction a net negative charge, and diffusion of the holes 
makes the N-type side positive. This charge separation creates an electric field pointing 
from N to P, as shown in Fig. 37.20a. The field opposes further diffusion of charge and 
thus establishes an equilibrium in which there’s no net charge flow across the junction. 
Because they’ve moved with the electric field, the electrons that have diffused into the  
P-type region have higher potential energy than those that remained behind in the N-type 
region. (Remember that electrons are negative, so their potential energy increases when 
they move in the same direction as an electric field.) As a result, the band-structure dia-
gram for electrons in the PN junction takes the form shown in Fig. 37.20b.

Figure 37.20 (a) Physical picture of an unbiased PN junction and (b) the corresponding band structure.  
(c) Band structure of a forward-biased junction and (d) a reverse-biased junction.
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Now suppose we connect a battery to our PN junction, with the positive terminal to the 
P-type side of the junction. This condition is called forward bias. The effect is to make the 
P-type material less negative, the N-type less positive, and thus weaken the electric field 
and lower the potential “hill” that separates the two regions (Fig. 37.20c). It becomes eas-
ier for electrons to move from N to P and, as we could show with analogous diagrams for 
holes, it’s easier for holes to move from P to N. So a current flows in the P-to-N direction, 
and the forward-biased PN junction becomes a good conductor. If, on the other hand, we 
connect the battery’s positive terminal to the N-type material, then we strengthen the in-
ternal electric field and steepen the potential “hill,” making it hard for charges to cross the 
junction (Fig. 37.20d). Now the PN junction is reverse biased, and it’s a poor conductor.

As electrons and holes pour across a forward-biased junction, many recombine; that is, 
they drop from the conduction band into the valence band, releasing energy in the process. In 
light-emitting diodes (LEDs) and diode lasers, this energy appears as photons whose energy 
is close to that of the band gap. Because E = hf, the band gap determines the frequency and, 
equivalently, the wavelength and color of the emitted light. Development of semiconductor 
lasers with ever-larger band gaps enabled the evolution from CD to DVD to Blu-ray discs 
that we outlined in Chapter 32. Conversely, a material whose band gap corresponds to visible-
light photons can absorb light energy, promoting electrons to the conduction band and driving 
current through an external circuit. Such photovoltaic cells are increasingly used to generate 
electric power, both on individual buildings and in large-scale solar power plants (Fig. 37.21).

Figure 37.21 Les Mées solar farm in France 
comprises 113,000 solar panels, giving a peak 
power output of 100 MW.

PheT: Semiconductors

M37_WOLF4752_03_SE_C37.indd   712 18/06/15   1:32 PM
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37.4 Superconductivity
In Chapter 24 we introduced superconductivity—the complete loss of electrical 
 resistance in some materials at low temperature. First discovered in mercury in 1911, 
 superconductivity was for decades limited to a few elements and alloys below about  
20 K. A breakthrough in 1986 brought a new class of metal-oxide superconductors with 
 superconducting transition temperatures of about 100 K; today the highest transition 
temperatures exceed 160 K. The ultimate goal of a room-temperature superconductor, 
once thought beyond reach, may yet be achieved.

Superconductors find use in an ever-increasing range of applications, including 
 high-strength electromagnets for MRI scanners, particle accelerators, materials separation, 
and research; compact, efficient motors for vehicle and marine propulsion; high-Q  filters 
for cell-phone base stations; sensitive magnetic-field sensors for brain-wave imaging 
and physics research; underground power transmission in crowded cities; and so-called 
 synchronous condensers for optimizing the power factor in AC power transmission (see 
Section 28.5). Other applications include superconducting electronic devices that promise 
orders-of-magnitude increases in computer speed, and magnetically levitated vehicles for 
ground transportation at speeds up to 500 km/h (see the Application on p. 714).

Superconductivity and Magnetism
The hallmark of a superconductor is zero electrical resistance. Another distinguishing 
characteristic is the Meissner effect, wherein a superconductor excludes magnetic flux 
from its interior (Fig. 37.22). Figure 37.22c shows why: Currents in the superconductor 

CoNCEptUaL ExaMpLE 37.1  CD to Blu-ray: Engineering the Band Gap

The amount of information stored on CDs, DVDs, and Blu-ray discs 
is limited in part by diffraction effects associated with the wavelength 
of the laser light used to “read” the disc (see Chapter 32’s Application 
“Movies on Disc”). The lasers used in optical drives are semiconduc-
tor lasers, with wavelengths set by the semiconductors’ band gaps. 
Compare the band gaps of lasers used for reading CDs and Blu-ray 
discs.

evaluate A CD holds 74 minutes of audio, yet a Blu-ray disc of 
the same physical size holds several hours of high-definition video. 
So Blu-ray data are stored at a smaller spatial scale and thus require 
a shorter wavelength to “read” the data. Since E = hf = hc/l, that 
means higher photon energy and therefore a larger band gap.

assess As Making the Connection shows, the band gap for Blu-ray is 
nearly twice that of a CD laser. In fact, the trade name “Blu-ray” comes 
from the blue wavelength used. Multiple-layer storage and better com-
pression algorithms also contribute to Blu-ray’s much greater capacity.

MakIng the ConneCtIon The lasers that “read” CDs, DVDs, and 
Blu-ray discs operate at 780 nm, 650 nm, and 405 nm, respectively. 
Find the corresponding band gaps.

evaluate Photon energy quantization E = hf = hc/l gives the pho-
ton energy and therefore the required band gap. Working in electron-
volts gives 1.59 eV for CD, 1.91 eV for DVD, and 3.07 eV for Blu-ray.

Figure 37.22 The Meissner effect.
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714 Chapter 37 Molecules and Solids

create their own magnetic field that exactly cancels the field within the material. As we 
pointed out in Section 27.6, a superconductor’s exclusion of magnetic flux makes it per-
fectly diamagnetic. The magnetic levitation shown in Fig. 27.34 is a manifestation of the 
Meissner effect, wherein a magnet is supported over a superconductor by mutual repulsion 
between the magnet and currents in the superconductor.

As the strength of an applied magnetic field increases, so do the currents and resulting 
magnetic field of the superconductor. But beyond a critical field, the external magnetic 
field alters the superconducting state, and the superconductor no longer excludes magnetic 
flux. In type I superconductors, superconductivity ceases abruptly at the critical field 
(Fig. 37.23a). Type II superconductors, in contrast, have upper and lower critical fields, 
between which superconductivity gradually diminishes (Fig. 37.23b). At the lower critical 
field the material begins to allow flux penetration, and a regular array of nonsuperconduct-
ing regions forms, centered on magnetic field lines. These grow with increasing field, until 
at the upper critical field the superconducting regions vanish altogether.

Figure 37.23 Responses of (a) type I and (b) type II superconductors to applied magnetic fields.  
Bc denotes the critical field.
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Because electric currents generate magnetic fields, the critical field can limit the 
 current-carrying capability of superconductors. Fortunately, type II superconductors have 
high enough upper critical fields to permit substantial currents. Type IIs tend to be alloys 
or complex mixtures, and include all the high-T superconductors. Critical fields of high-T 
superconductors are as high as 100 T; however, these materials are brittle ceramics and 
present engineering challenges to the fabrication of wires and other flexible conductors.

appLICatIoN Maglev!

Passengers arriving at Shanghai’s Pudong International Airport make the 30-km 
trip to a city metro station in only 7 minutes, “flying” on a magnetically levitated 
vehicle—a maglev—at speeds exceeding 400 km/h. The Shanghai system uses 
conventional electromagnets and electronic feedback circuits to keep the  vehicle 
levitated a mere 1 cm above its guideway. But others are developing maglev 
systems that rely on superconducting magnets for both levitation and propul-
sion. Coils in the guideway carry alternating current, alternately pushing and 
pulling the vehicle’s onboard magnet. In effect, vehicle and guideway become 
a linear electric motor, much like a conventional motor that’s been “unwound” 
to produce straight-line motion. In superconducting systems, any deviation 
from perfect alignment with the guideway results in induced currents and, 
 correspondingly, magnetic forces that act to keep the maglev vehicle centered 
in its guideway. Today’s superconducting maglevs require onboard refrigeration 
systems, so development of a room-temperature superconductor would make 
maglev a much more attractive transportation alternative. The photo shows a 
Japanese superconducting maglev that has achieved speeds of 450 km/h.

theories of Superconductivity
Superconductivity is a purely quantum-mechanical phenomenon; classical physics is 
 totally inadequate to explain its existence. A successful theory of conventional low@Tc 
 superconductors, called the BCS theory after its originators, was formulated in 1957 by 
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John Bardeen, Leon Cooper, and John Robert Schrieffer; the trio shared the 1972 Nobel 
Prize in Physics.

In BCS theory, superconductivity results from a quantum-mechanical pairing of elec-
trons that leads to a lower-energy state in which electron pairs move through the crystal 
lattice with no energy loss to the ions, resulting in zero electrical resistance. The electron 
pairing involves one electron slightly deforming the ion lattice, with the second electron 
attracted by the slight positive charge of the deformed lattice (Fig. 37.24a, b). But the 
paired electrons aren’t physically close; typically, a million other electrons, each paired 
with another distant electron, may lie between the two (Fig. 37.24c). The result of this 
long-range pairing is coherent motion of the conduction electrons that extends throughout 
the superconductor. Like well-choreographed dancers, the electrons all move together in a 
way that precludes energy loss to the ion lattice.

High-temperature superconductors aren’t fully understood, although they almost cer-
tainly involve quantum-mechanical pairing of charge carriers. The mechanism of the pair-
ing is less clear; one promising candidate involves magnetic interactions, although other 
mechanisms are under investigation. Superconductivity presents a continuing challenge to 
both theorists and experimentalists.

Figure 37.24 Electron pairing in BCS theory. (a) A normal conductor, with uncorrelated electrons. (b) In a 
superconductor, one electron passing through the lattice deforms it slightly. About 10-12  s later, a second 
electron passes through and experiences the potential of the deformed lattice. The two electrons are 
therefore correlated. (c) Paired electrons are typically 1μm apart, with a million others in their vicinity. The 
coherent motion of all the paired electrons results in superconductivity.
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The big idea here is that quantum mechanics can explain the structure of molecules and solids as well as the atoms treated in Chapter 36. At this 
level we can’t solve the Schrödinger equation for these many-particle systems, but we’ve argued—using energy and angular momentum quantiza-
tion and the exclusion principle—that quantum effects are important in molecules and solids.

Chapter 37 Summary
Big Idea

Key Concepts and Equations

Common types of molecular bonding include ionic, 
covalent, hydrogen, van der Waals, and metallic 
bonding. Whatever the bonding mechanism, a stable 
molecule is at the minimum of its potential-energy 
curve, shown below for H2.
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Molecules exhibit both rotational and vibrational energy, giving rise to a rich 
 structure of quantized energy levels and the resulting spectra.

•   Quantization of angular momentum 
leads to quantized rotational energy 
levels:

Erot =
 U2

2I
  l1l + 12, l = 0, 1, 2, . . .

•   The vibrational energy levels are those 
of the harmonic oscillator:

Evib = 1n + 1
22   Uv, n = 0, 1, 2, . . .

n = 1

l = 4

l = 3

l = 2
l = 1
l = 0

n = 0

l = 4

l = 3

l = 2
l = 1
l = 0

When atoms join to make solids, individual atomic energy levels separate to form 
bands. Band theory distinguishes conductors from insulators depending on 
whether the uppermost occupied band is partially or completely full, respectively. 
 Semiconductors are like insulators, but with a much smaller band gap that permits 
thermal excitation of electrons into the conduction band.

In a metallic conductor, the energy of the highest occupied state at absolute zero is 
the Fermi energy.

Conductor Insulator Semiconductor

Conduction band

Valence band

applications

Superconductivity is a quantum-mechanical phenomenon that occurs at 
low temperatures and admits no classical explanation. Paired electrons move 
 coherently through a superconductor without energy loss to the ion lattice, 
 resulting in zero electrical resistance. Superconductors exclude magnetic fields—
the  Meissner effect—up to a critical field that destroys superconductivity, 
abruptly in type I superconductors and gradually in type II  superconductors.
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The band structure of doped semiconductors helps explain the one-way conduction of a PN junction, a phenomenon at the heart of modern 
 electronics.
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Exercises and Problems 717

For homework assigned on MasteringPhysics, go to www.masteringphysics.com

BIO Biology and/or medicine-related problems DATA Data problems ENV Environmental problems CH Challenge problems

20. The classical vibration frequency for diatomic hydrogen 1H22 is 
1.32 *1014 Hz. Find the spacing between its vibrational energy 
levels.

21. The energy between adjacent vibrational levels in diatomic nitro-
gen is 0.293 eV. What’s the classical vibration frequency of N2?

Section 37.3 Solids
22. Use the 2.16@g/cm3 density of NaCl to calculate the ionic spacing 

r0 in the NaCl crystal. (Hint: Consult Appendix D.)
23. Express the 7.84-eV ionic cohesive energy of NaCl in kilocalo-

ries per mole of ions.
24. Lithium fluoride, LiF, has the same crystal structure as NaCl and 

therefore has essentially the same Madelung constant a. Its ionic 
cohesive energy is -10.5 eV and the value of n in Equation 37.4 
is 6.25. Find the equilibrium ionic separation in LiF.

25. Find the wavelength of light emitted by a gallium phosphide 
(GaP) light-emitting diode. (Hint: See Table 37.1.)

26. What’s the shortest wavelength of light that could be produced 
by electrons jumping the band gap in a material from Table 37.1? 
What is that material?

27. Which material in Table 37.1 would provide the longest wave-
length of light in a light-emitting diode? What’s that wavelength?

28. A common light-emitting diode is made with gallium arsenide 
phosphide (GaAsP) and emits red light at 650 nm. What’s its 
band gap?

problems
29. A molecule drops from the l = 2 to the l = 1 rotational level, 

emitting a 2.68-meV photon. If the molecule then drops to the 
rotational ground state, what energy photon will it emit?

30. A molecule absorbs a photon and jumps to the next higher ro-
tational state. If the photon energy is three times what would be 
needed for a transition from the rotational ground state to the first 
rotational excited state, between what two levels is the transition?

31. Find an expression for the energy of a photon required for a tran-
sition from the 1l - 12th level to the lth level in a molecule with 
rotational inertia I.

32. A molecule with rotational inertia I undergoes a transition from 
the lth rotational level to the 1l - 12th level. Show that the wave-
length of the emitted photon is l = 4p2Ic/hl.

33. The rotational spectrum of diatomic oxygen shows spectral lines 
spaced 0.356 meV apart in energy. Find O2’s atomic separation. 
(Hint: See Example 37.1, and remember that the oxygen atoms 
have equal mass.)

34. Use the answer in the back of the book for Problem 59 to find the 
bond length in carbon monoxide (CO), given that excitation of 
the first rotational state requires photons of wavelength 2.59 mm.

35. For the HCl molecule of Example 37.2, determine (a) the energy 
of the vibrational ground state and (b) the energies of photons 
emitted in transitions among adjacent vibrational states, for the 
cases ∆l = +1 and ∆l = -1.

36. Diatomic deuterium has classical vibration frequency 
9.35 *1013 Hz and rotational inertia 9.17 *10-48 kg#m2. Find  
(a) the energy and (b) the wavelength of a photon emitted in a 
transition between the n = 1, l = 1 state and the n = 0, l = 2 
state.

For thought and Discussion
 1. If you push two atoms together to form a molecule, the exclusion 

principle results in a repulsive interaction between the atoms. 
How does this repulsion come about?

 2. Why do ionically bonded materials have high melting points?
 3. The electrostatic attraction between oppositely charged ions is 

what binds atoms in an ionic molecule. Is the electric force in-
volved in covalent bonding? Explain.

 4. Does it make sense to distinguish individual NaCl molecules in 
a salt crystal? What about individual H2O molecules in an ice 
crystal? Explain.

 5. Is it useful to think of the highest-energy electrons as “belong-
ing” to individual atoms in an ionically bonded molecule? In a 
covalently bonded molecule?

 6. What are the approximate relative magnitudes of the energies as-
sociated with electronic excitation of a molecule, with molecular 
vibration, and with molecular rotation?

 7. Radio astronomers have discovered many complex organic mole-
cules in interstellar space. Why were these discoveries made with 
radio telescopes and not optical telescopes?

 8. In Fig. 18.17, why are rotational states excited at lower tempera-
tures than vibrational states?

 9. Would you expect solid hydrogen to conduct electricity? Why or 
why not?

10. The Fermi energy in metals is much higher than the thermal en-
ergy at typical temperatures. Why does this make the mean speed 
of conduction electrons nearly independent of temperature?

11. Why does the size of the band gap determine whether a material 
is an insulator or a semiconductor?

12. How would you expect the conductivity of an undoped semicon-
ductor to depend on temperature? Why?

13. Name some technological innovations that might result from a 
room-temperature superconductor.

14. Suppose a room-temperature superconductor were discovered, 
but it had a very low critical field. In what way would this limit 
its practical applicability?

15. How do type I and type II superconductors differ?

exercises and problems

Exercises

Section 37.2 Molecular Energy Levels
16. Find the energies of the first four rotational states of the HCl 

molecule described in Example 37.1.
17. The rotational inertia of oxygen 1O22 is 1.95 *10-46 kg#m2. Find 

the wavelength of electromagnetic radiation needed to excite 
 oxygen molecules to their first rotational excited state.

18. Find the wavelength of a photon emitted in the l = 5 to 
l = 4 transition of a molecule whose rotational inertia is 
1.75 *10-47 kg#m2.

19. Photons of wavelength 1.68 cm excite transitions from the ro-
tational ground state to the first rotational excited state in a gas. 
What’s the rotational inertia of the gas molecules?
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718 Chapter 37 Molecules and Solids

49. Use the result of Problem 47 to determine the Fermi energy for cal-
cium, which has 4.6 *1028 conduction electrons per cubic meter.

50. Find (a) the speed associated with an electron whose kinetic en-
ergy is equal to copper’s 7.00-eV Fermi and (b) the thermal speed 
of an electron at room temperature (293 K). (c) What does the 
difference between your calculated speeds tell you about whether 
a quantum or a classical model best describes copper’s electrical 
conductivity?

51. The Fermi temperature is defined by equating the thermal energy 
kT to the Fermi energy, where k is Boltzmann’s constant. Calcu-
late the Fermi temperature for silver, for which EF = 5.48 eV, 
and compare it with room temperature.

52. Photons with energy lower than a semiconductor’s band gap 
aren’t readily absorbed by the material, so a measurement of 
absorption versus wavelength gives the band gap. An absorption 
spectrum for silicon shows no absorption for wavelengths longer 
than 1090 nm. Use this information to calculate the band gap in 
silicon, and verify its value in Table 37.1.

53. Calculate the median wavelength lmedian for sunlight, treating the 
Sun as a 5800-K blackbody (see Equation 34.2b). Use your re-
sult to decide whether zinc selenide, with band gap 3.6 eV, would 
make a good photovoltaic cell.

54. Pure aluminum, which superconducts below 1.20 K, exhibits a crit-
ical field of 9.57 mT. Find the maximum current that can be carried 
in a 30-gauge (0.255-mm-diameter) aluminum superconducting 
wire without the field from that current exceeding the critical field. 
(Hint: Where is the field greatest? Consult Example 26.8.)

55. The critical field in a niobium–titanium superconductor is 15 T. 
What current in a 5000-turn solenoid 75 cm long will produce a 
field of this strength?

56. The transition from the ground state to the first rotational 
 excited state in diatomic oxygen 1O22 requires 356 μeV. At what 
 temperature would the thermal energy kT be sufficient to set dia-
tomic oxygen into rotation? Would you ever find diatomic oxy-
gen exhibiting the specific heat of a monatomic gas at normal 
pressure?

57. Green fluorescent protein (GFP) is a substance that was first ex-
tracted from jellyfish; variants are used to “tag” biological mol-
ecules for study. The original “wild” GFP absorbs 395-nm light, 
undergoing an upward transition to an excited state. Movement 
of a proton within the protein then excites it to 2.44 eV above the 
ground state. Photons emitted in the subsequent downward tran-
sition to the ground state provide a visual indication of the GFP’s 
location as seen in a microscope. What’s the wavelength of these 
photons?

58. The density of rubidium iodide (RbI) is 3.55 g/cm3, and its ionic 
cohesive energy is -145 kcal/mol. Determine (a) the equilibrium 
separation and (b) the exponent n in Equation 37.4 for RbI.

59. You’re troubled that Example 37.1 neglects the mass of the hy-
drogen, and you wonder how much error this introduces. So you 
consider a diatomic molecule consisting of different atoms with 
masses m1 and m2, separated by a distance R, and derive an ex-
pression for the molecule’s rotational inertia about its center of 
mass. You then calculate a more accurate value for the HCl bond 
length in Example 37.1. Your results?

60. What fraction of conduction electrons in a metal at absolute zero 
have energies less than half the Fermi energy?

61. The Madelung constant (Section 37.3) is notoriously diffi-
cult to calculate because it’s the sum of an alternating series of 
nearly equal terms. But it can be calculated for a hypothetical 
one-dimensional crystal consisting of an evenly spaced line of 

37. Carbon dioxide contributes to global warming because the tria-
tomic CO2 molecule exhibits many vibrational and rotational 
excited states, and transitions among them occur in the infra-
red region where Earth emits most of its radiation. Among the 
strongest IR-absorbing transitions is one that takes CO2 from its 
ground state to the first excited state of a “bending” vibration and 
sets the molecule rotating in its first rotational excited state. The 
energy required for this transition is 82.96 meV. What IR wave-
length does this transition absorb?

38. An oxygen molecule is in its vibrational and rotational ground 
states. It absorbs a photon of energy 0.19653 eV and jumps to 
the n = 1, l = 1 state. It then drops to n = 0, l = 2, emitting 
a 0.19546-eV photon. Find (a) the classical vibration frequency 
and (b) the rotational inertia of the molecule.

39. The internuclear spacing in diatomic hydrogen (H2) is 74.14 pm. 
Find (a) the energy and (b) the wavelength of a photon emitted 
in a transition from the first rotational excited state to the ground 
state. (c) In what spectral region does this wavelength lie?

40. Biological macromolecules are complex structures that exhibit 
many more vibrational modes than the diatomic molecules con-
sidered in this chapter. DNA has a low-frequency “breathing” 
mode whose associated photon wavelength is 330 μm. Find the 
corresponding (a) frequency and (b) photon energy in eV.

41. What wavelength of infrared radiation is needed to excite a tran-
sition between the n = 0, l = 3 state and the n = 1, l = 2 state 
in KCl, for which the rotational inertia is 2.43 *10-45 kg#m2 and 
the classical vibration frequency is 8.40 THz?

42. Find the wavelengths emitted in all allowed transitions between 
the first three rotational states in the n = 1 level to any states 
in the n = 0 level in H2, whose rotational inertia and classical 
vibration frequency are 4.60 *10-48 kg#m2 and 3.69 *1014 Hz, re-
spectively.

43. Determine the constant n in Equation 37.4 for potassium chlo-
ride (KCl), which has the same crystal structure as NaCl and for 
which r0 = 0.315 nm and U0 = -7.21 eV.

44. A salt crystal contains 1021 sodium–chlorine pairs. How much 
energy would it take to compress the crystal to 90% of its normal 
size?

45. Lithium chloride, LiCl, has the same structure and therefore the 
same Madelung constant as NaCl. The equilibrium separation in 
LiCl is 0.257 nm, and n = 7 in Equation 37.4. Find the ionic 
cohesive energy of the LiCl crystal.

46. You’re researching the possibility of storing radioactive waste in 
underground salt formations. In support of this idea, you’d like to 
demonstrate that salt is extremely resistant to compression. You 
differentiate Equation 37.4 to obtain an expression for the force 
on an ion in an ionic crystal, and then use your result to find the 
force on an ion in NaCl if the crystal were compressed to half its 
equilibrium spacing (see Example 37.3 for relevant parameters). 
You compare this with the electrostatic attraction at this com-
pression. What do you find?

47. Integrating Equation 37.5 over all energies gives the total number 
of states per unit volume in a metal. Therefore, integrating from 
E = 0 to E = EF—that is, over the occupied states only—gives 
the number of conduction electrons per unit volume. Carry out this 
integration to show that the electron number density is given by

n = a29/2pm3/2

3h2 bE3/2
F

48. The Fermi energy in aluminum is 11.6 eV. Use the result of Prob-
lem 47 to find the density of conduction electrons in aluminum.
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Conversely, photons with more than the band-gap energy give up their 
excess energy as heat, also reducing PV efficiency.

Metallic
contact

Antire�ection
coating

Photon

P-type
semiconductor

Thin,
transparent
N-type
semiconductor

Metallic
contact

PN
junction

Figure 37.26 Operation of a photovoltaic cell, showing a solar photon pro-
ducing an electron-hole pair at the PN junction (Passage Problems 68–71).

68. Problem 53 shows that the median wavelength in the solar spec-
trum is 710 nm, at the visible-IR boundary. What percentage of 
the incident solar energy can a silicon PV cell absorb? (Hint: See 
Exercise 36.31.)
a. about 25%
b. about 50%
c. about 75%

69. How does the percentage of the number of incident solar photons 
that a PV cell absorbs compare with the energy percentage in the 
preceding problem?
a. It’s less than the energy percentage.
b. It’s the same as the energy percentage.
c. It’s more than the energy percentage.

70. Making PV cells with a semiconductor whose band gap is lower 
than silicon’s will
a. increase the fraction of solar energy absorbed while decreas-

ing the amount of absorbed energy lost as heat.
b. increase both the fraction of solar energy absorbed and the 

amount of absorbed energy lost as heat.
c. decrease the fraction of solar energy absorbed while increas-

ing the amount of absorbed energy lost as heat.
d. decrease both the fraction of solar energy absorbed and the 

amount of absorbed energy lost as heat.
71. One way to improve PV efficiency is to make multilayer cells 

with several PN junctions using semiconductors with different 
band gaps. For a multilayer PV cell to be effective,
a. the junction with the largest band gap should be closest to the 

top of the PV cell.
b. the junction with the largest band gap should be closest to the 

bottom of the PV cell.
c. the largest band gap should correspond to infrared wavelengths.
d. the smallest band gap should correspond to ultraviolet wave-

lengths.

answers to Chapter Questions

answer to Chapter opening Question
The Schrödinger equation.

answers to Got It? Questions
 37.1  (c)
 37.2  rotational energy
 37.3  (c) they’re equal because both areas represent the total number 

of electrons

alternating positive and negative ions (Fig. 37.25). Show that the 
potential energy of an ion in this “crystal” can be written as

U = -a  

ke2

r0

where the Madelung constant a has the value 2 ln 2.

r0

Figure 37.25 Problem 61

62. The lower-energy states in a covalently bound diatomic molecule 
can be found approximately from the so-called Morse potential 
U1r2 = U01e21r - r02/a - e-21r - r02/a2, where r is the atomic sepa-
ration and U0, r0, and a are constants determined from experi-
mental data. Calculate dU/dr and d2U/dr2 to show that U has a 
minimum, and find expressions for (a) Umin and (b) the separa-
tion rmin at the minimum energy.

63. (a) Count the number of electron states N1E2 with energy equal to 
or less than E in Equation 35.8 by finding the volume  available to 
such states in the space with Cartesian coordinate axes nx, ny, nz. 
(Hint: Consider each set of positive integers, at the  corner of a 
unit cube, and that lies inside a radius 2nx

2 + n 2
y + n 2

z , and 
 remember that there are two spin values per state.) (b) Differenti-
ate N1E2 with respect to E to obtain Equation 37.5.

64. Use Equation 37.5 to calculate the average energy of a conduc-
tion electron at T = 0 in terms of the Fermi energy.

65. You’re designing a new medical MRI imager. The design calls 
for a long solenoid wound with 75 turns per meter of niobium– 
titanium superconductor. The upper critical field for your 
particular Nb-Ti alloy is 12 T. To avoid a disastrous loss of su-
perconductivity (see Example 27.9), you want to limit the actual 
field to half the upper critical field. What maximum current do 
you specify for your device?

66. Squeezing a particular solid in all directions reduces the inter-
atomic spacing to 76.6% of its equilibrium value; the result is 
that the solid’s total potential energy becomes zero. Find the 
value of the exponent n in Equation 37.4 for this solid.

67. The table below shows the wavelengths of photons emitted 
when identical molecules drop from the lth rotational level to the 
(l - 1)th level. Find quantities that, when plotted, should yield 
a straight line. Make your plot, determine a best-fit line, and use 
the result to find the rotational inertia of the molecules.

Initial state, l 2 3 4 5 6

Wavelength, l (mm) 0.24 0.17 0.12 0.095 0.078

Passage Problems
Photovoltaic (PV) cells convert sunlight energy directly into elec-
tricity, with no moving parts (recall Fig. 37.21). In a PV cell, pho-
tons incident on a semiconductor PN junction promote electrons to 
the conduction band, producing electron-hole pairs and driving cur-
rent through an external circuit (Fig. 37.26). Commercially available 
PV cells are 15–20% efficient, meaning they convert this fraction of 
incident sunlight into electrical energy; the theoretical maximum ef-
ficiency is around 33% for silicon-based PV cells. An important limi-
tation on PV efficiency is the relation between the solar spectrum and 
PV cells’ semiconductor band-gap energy. For silicon, the band gap is 
1.14 eV; photons with less energy can’t promote electrons to the con-
duction zone and are thus unavailable for the PV energy conversion. 
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36
Atomic Physics

37
Molecules and 

Solids

39
From Quarks to  

the Cosmos

In Chapters 36 and 37 we explored atomic structure and saw how atoms join to form mole-
cules and solids. Now we turn inward, to the atomic nucleus. Since Ernest Rutherford and his 

colleagues discovered the nucleus in 1911, we’ve known that all the atom’s positive charge 
and nearly all its mass are concentrated in a tiny nuclear region only about 10-5 of the atom’s 

How You’ll Use It
■ Depending on where you live, you 

may get a substantial portion of your 
electrical energy from nuclear fission.

■ At some point in your life, you’re 
likely to undergo medical diagnostic 
procedures based in nuclear physics.

■ You’re likely to eat foods that have 
been preserved by irradiation.

■ Some decades in the future, 
humankind may learn to harness the 
almost inexhaustible energy resources 
of nuclear fusion.

What You’re Learning
■ You’ll learn to characterize nuclei by 

atomic number and mass number 
and to explain the difference between 
isotopes of the same element.

■ You’ll be able to distinguish between 
stable and unstable nuclei and 
interpret the chart of the nuclides.

■ You’ll be able to calculate the sizes 
and spin angular momenta of nuclei.

■ You’ll learn about three common 
types of nuclear reactions and to write 
equations describing each.

■ You’ll learn to quantify radioactivity 
and to describe its time dependence 
using half-life.

■ You’ll see the curve of binding energy 
and learn how it explains energy 
released in nuclear fission and nuclear 
fusion.

■ You’ll explore the technology of 
nuclear fission, including several types 
of nuclear reactors.

■ You’ll learn how nuclear fusion powers 
the Sun and other stars, and you’ll 
explore current efforts to harness 
fusion as a terrestrial energy source.

What You Know
■ You know that atoms are made of 

nuclei surrounded by electrons.

■ You’ve seen the quantization of 
angular momentum.

■ You understand the electric force 
between charges.

■ You’re familiar with energy in its 
various forms.

■ You’ve seen relativistic mass–energy 
equivalence.

Nuclear Physics

38

Smoke pours from a damaged reactor at Japan’s Fukushima Dai-ichi nuclear power plant. How 
dependent is humankind on nuclear power?
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38.1 Elements, Isotopes, and Nuclear Structure 721

diameter. By 1920 Rutherford had proposed that nuclei beyond hydrogen contain neutral as well 
as positive particles, and today we know the nucleus is a composite of positive protons and neu-
tral neutrons—collectively called nucleons. As we’ve seen, the uncertainty principle implies high 
minimum energies for particles confined in small regions, so we can infer that the nucleus is a 
huge energy repository. We’ll conclude this chapter with a look at humankind’s attempts to har-
ness that energy.

38.1 Elements, Isotopes, and Nuclear Structure
You saw in Chapter 36 how the number of electrons determines an atom’s shell struc-
ture and therefore its chemical behavior. It’s the number of protons in the nucleus—the 
atomic number, Z—that, in turn, determines the number of electrons in a neutral atom. 
That means all nuclei with the same Z belong to the same element.

Isotopes and Nuclear Symbols
Nuclei of the same element can, however, have different numbers of neutrons. That’s 
 because neutrons don’t affect the nuclear charge and therefore have negligible influence 
on chemical behavior. Nuclei of the same element with different numbers of neutrons are 
distinct isotopes. We call the total number of nucleons the mass number, A. Specification 
of the atomic number Z and mass number A then fully describes a nucleus. Figure 38.1 
shows the conventional symbolism used in describing nuclei: the element symbol with a 
preceding subscript for Z and superscript for A. Actually, the atomic number and symbol 
are redundant. To be helium (He), for example, means to have two protons and therefore 
Z = 2; to be uranium means Z = 92. Sometimes, therefore, we write helium-4, He-4, or 
4He to mean the same thing as 2

4He.
Elements typically have several naturally occurring isotopes; a few are shown in  

Fig. 38.1. Most hydrogen has a single proton in its nucleus, but about one in 6500 hydro-
gen atoms is deuterium 11

2H2, whose nucleus contains a proton and a neutron. Most oxy-
gen is  8

16O, but O-17 and O-18 also occur naturally; their ratios in polar ice cores provide 
valuable information about past climates. Most uranium is  92

238U, but 0.7% is the U-235 
that’s used in fission reactors and weapons—hence the great concern about the prolifera-
tion of uranium-enrichment facilities to increase the proportion of U-235. Incidentally, the 
atomic masses listed in the periodic table are averages that reflect the natural abundances 
of an element’s several isotopes. Most elements also have short-lived radioactive isotopes 
that don’t usually occur naturally but can be produced through nuclear reactions; more on 
these later.

Figure 38.1 Isotopes of a given element have the same number of protons but different 
 numbers of neutrons.
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The mass number A is the
total number of nucleons.

The atomic number Z is
the number of protons.

PheT: Rutherford Scattering
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722 Chapter 38 Nuclear Physics

Got It? 38.1 Determine the number of protons and neutrons in these nuclei:  
(1) 6

12C; (2) 8
15O; (3) 26

57Fe; (4) 94
239Pu.

the Nuclear Force
Given the electrical repulsion of the protons, there must be another force acting  attractively 
to bind the nuclear constituents. Throughout much of the 20th century, this nuclear 
force was considered fundamental, but we now recognize it as a manifestation of a more 
 fundamental force between the quarks that make up neutrons and protons. We’ll explore 
quarks and their interactions in Chapter 39.

The attractive nuclear force acts between all nucleons—neutrons and protons, 
 protons and protons, neutrons and neutrons. It’s very strong at distances of less than a 
few  femtometers 110-15 m2, but falls approximately exponentially with distance—more 
rapidly than the inverse-square falloff of the electric force. The attractive nuclear force 
therefore dominates between two neighboring  protons, but electrical repulsion becomes 
dominant for more widely separated protons. The  structure of the nucleus is determined, 
to a first approximation, by the interplay between the weaker but long-range electric force 
and the stronger but shorter-range nuclear force.

Stable Nuclei
Not every combination of protons and neutrons will stick together indefinitely. Too many 
protons, and electrical repulsion wins out; sooner or later the nucleus decays by  emitting 
a chunk of nuclear material (more details in Section 38.2). In larger nuclei most protons 
are far apart and therefore experience electrical repulsion more strongly than nuclear 
 attraction (Fig. 38.2). To hold these nuclei together therefore requires more neutrons, 
which  contribute attractive nuclear force but not electrical repulsion. So larger nuclei tend 
to have a higher ratio of neutrons to protons. Even this effect has its limits, though, and the 
result is that there are no stable nuclei for Z 7 83.

Too many neutrons also make a nucleus unstable. That’s because the exclusion prin-
ciple requires extra neutrons to go into higher energy states, making individual particles 
more likely to escape the nucleus. Furthermore, the neutron itself is an unstable particle; 
an isolated neutron decays spontaneously into a proton, an electron, and an elusive particle 
called a neutrino. This decay is suppressed in stable nuclei, but occurs if there are too many 
neutrons.

Figure 38.2 Two widely separated protons in a 
large nucleus experience significant electrical 
repulsion and negligible nuclear attraction.
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Figure 38.3 A chart of the nuclides, color-coded by half-life.
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38.1 Elements, Isotopes, and Nuclear Structure 723

The delicate balance between neutrons and protons results in about 400 known  stable 
nuclei, collectively called nuclides. Figure 38.3 is a chart of the nuclides, showing the 
stable nuclei, along with many unstable ones, on a chart of atomic number Z versus  neutron 
number N = A - Z. The chart shows that lighter nuclei tend to have equal numbers of 
protons and neutrons, but that heavier nuclei invariably have more neutrons to compensate 
for the increasing electrical repulsion of their widely separated protons.

Nuclear Size
Unlike atomic electrons in their widely separated orbitals, nucleons pack tightly into the 
nucleus. Studies show that most nuclei are spherical, with the nuclear radius—defined as 
the radius at which the density has fallen to half its central value—given approximately by

 R = R0 A
1/3  (38.1)

where R0 = 1.2 fm and A is the mass number. This cube-root dependence is what we 
should expect for a tightly packed sphere whose volume is proportional to the number A 
of its constituent particles, as suggested in Fig. 38.2. This tight packing also suggests that 
all nuclei have approximately the same density, on the order of 1017 kg/m3. A teaspoon 
of  nuclear matter has a mass roughly equal to the mass of the Rock of Gibraltar! That 
 absurdly high density reaffirms our picture of the complete atom as mostly empty space 
with its mass concentrated in a tiny nucleus.

Nuclear Spin
In Chapter 36 we noted the important role of electron spin in atomic structure. Protons and 
neutrons are, like electrons, spin@12 particles. The spins of individual nucleons, combined 
with any angular momentum associated with their motions within the nucleus, give the nu-
cleus a quantized spin angular momentum I that obeys the same rules we’ve seen for other 
quantized angular momenta:

 I = 2i1i + 12 U  (38.2)

Here i, the nuclear spin quantum number, is a multiple of one-half. The component of I 
on a given axis is also quantized, just like other angular momenta, according to Iz = mi  

U, 
where mi ranges from - i to i in steps of 1.

The spin quantum number i is an even or odd multiple of one-half depending on 
whether the number of nucleons is even or odd. This means that nuclei with even values 
of A are bosons,  particles with integer spin that don’t obey the exclusion principle. Odd-
A nuclei, in contrast, have  half-integer spin and are fermions that do obey the exclusion 
principle. This distinction can lead to profound differences in physical behavior between 
isotopes of the same element. Helium-4, for example, becomes superfluid at low tempera-
tures, meaning it flows without any viscosity. That’s possible because helium-4 nuclei are 
bosons that can all occupy the same quantum state. Similar superfluidity doesn’t occur in 
fermionic helium-3, although at extremely low temperatures He-3 nuclei themselves pair 
to form spin-1 particles that do make a superfluid.

The angular momentum of the nucleus results in a nuclear magnetic dipole moment, 
usually expressed in units of the nuclear magneton, mN = e U /2mp = 5.05 *10-27 J/T, 
where mp is the proton mass. The proton itself has a magnetic moment whose component 
on a given axis takes either of the values {2.793 mN = {1.41 * 10-26 J/T—a value that’s 
usually listed as “the magnetic moment of the proton,” although it’s actually the compo-
nent. Interaction of the nuclear magnetic moment with magnetic fields alters very slightly 
the energy levels of the atom—although the effect is much smaller than with atomic elec-
trons because the higher proton mass makes for a much smaller magnetic moment. In 
hydrogen, for example, the proton can have either of two spin orientations relative to the 
magnetic field due to the electron, and the result is hyperfine splitting of the ground state 
into two levels a mere 5.9 μeV apart (Fig. 38.4). Transitions between these levels result in 
a spectral line at a radio wavelength of 21 cm. Radio astronomers use this line to detect 
interstellar clouds of neutral hydrogen.
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724 Chapter 38 Nuclear Physics

Figure 38.4 (a) A nonzero magnetic field B
S

 splits the energy level of the spin@1
2 proton into two 

levels. (b) The two possible orientations of the proton in the magnetic field of the electron split the 
 hydrogen ground state into two levels 5.9 μeV apart.
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AppLICAtIoN Nuclear Magnetic Resonance and MRI

Putting nuclei in an external magnetic field creates two possible energy 
states, as suggested in Fig. 38.4a, depending on whether the nuclear  magnetic 
 moments are more nearly parallel or antiparallel to the field. Applying 
 electromagnetic radiation with the appropriate photon energy will flip nuclei 
into the higher energy state. But because nuclei also experience magnetic fields 
from the electrons moving around them, the exact energy required is extremely 
sensitive to the details of the electron distribution—that is, to the surrounding 
molecular structure.

Nuclear magnetic resonance (NMR) uses this nuclear spin flipping 
to  determine the structure of chemical compounds. In an NMR spectrom-
eter, shown schematically in the figure, the sample under analysis is placed 
in a uniform magnetic field B, usually from superconducting coils. A smaller 
coil carries AC current at a frequency f  corresponding to photon energy hf  
that would flip the spin of an isolated nucleus in the field B. The coil emits 
 electromagnetic waves, and if the nuclei absorb the associated photons, then 
they flip into their higher states and drop back, emitting radiation of frequency 
f  in the process. A receiver coil detects this radiation.

Because of the extra magnetic effect of the surrounding electrons, nuclei 
won’t generally flip at the exact frequency and field B. So the field is varied 
until the superposition of the applied field and the electron-generated field is 

exactly right. This condition of magnetic resonance then produces the up/down 
spin flips that generate a signal in the receiver coil. Scanning the field through 
a range of values detects nuclei in different electron environments, and from 
this information scientists can deduce the molecular structure.

Nuclear magnetic resonance with protons (H nuclei) is the basis of 
 magnetic resonance imaging (MRI), a widely used medical procedure. In 
MRI, a patient is placed inside a large solenoid whose field varies slightly with 
 position. That makes the magnetic resonance frequency a function of position, 
and thus the resonance signal can be used to localize the protons  undergoing 
magnetic resonance. A computer then uses the resonance information to 
 construct an image. Most of the MRI signal comes from fat and water, making 
MRI especially good at imaging soft tissue that doesn’t show well in X rays. 
The photo shows an MRI image of a human head and upper torso; soft-tissue 
structures including the brain are clearly visible.
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PheT: Simplified MRI
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Models of Nuclear Structure
We’ve seen how the right ratio of neutrons to protons is essential for stable nuclei, and 
why that ratio increases for larger nuclei. Figure 38.3, the chart of the nuclides, summa-
rizes this information. But take a closer look at that figure: There are more stable nuclei 
for even values of Z, and some—those with the so-called magic numbers 2, 8, 20, 28, 50, 
82, and 126 protons or neutrons—have many more stable nuclei. Why?

Answering this question and explaining the decay mechanisms and lifetimes of 
 unstable nuclei require a theory of nuclear structure. There still is no complete nuclear 
theory, analogous to the atomic theory of Chapter 36, that explains all aspects of all   
nuclei. Our still-imperfect knowledge of the nuclear force, and the tight packing of nu-
cleons,  render useless a simple two-particle model like the one we used for hydrogen.  
Instead, nuclear physicists resort to several models to explain different aspects of nu-
clear structure.  Together, these models provide a good understanding of the nucleus and 
 accurately predict nuclear properties, although not with the precision available in atomic 
physics.

The liquid-drop model provides a reasonable approximation for heavier nuclei, whose 
many nucleons behave somewhat like the molecules in a drop of liquid. A liquid-drop 
nucleus can rotate, vibrate, and change shape as long as its volume doesn’t change, and 
the resulting quantized energy levels predict nuclear gamma-ray spectra that are in good 
agreement with observation. The liquid-drop model also helps explain nuclear fission, as 
you’ll see in Section 38.4. But it can’t account for the dramatic effects of small changes in 
nucleon number, particularly the role of the magic numbers.

The nuclear shell model, advanced in the late 1940s by physicists Maria Goeppert 
Mayer and J. Hans Jensen, gives the nucleus a shell structure similar to that of atoms. The 
shells occur because neutrons and protons obey the exclusion principle, and the magic 
numbers correspond to closed-shell configurations analogous to the electronic structure 
of inert gases. Closed-shell nucleons are tightly bound, making a magic nucleus particu-
larly stable. Additional nucleons beyond a closed shell stay largely on the outskirts of the 
nucleus, where they’re more readily excited to higher energy levels. Neutrons and protons 
behave independently in the shell model, and each has its own set of quantum numbers. 
Closed-shell structure therefore occurs with magic numbers of either protons or neutrons. 
Some nuclei, like 20

40Ca 1Z = 20, N = 202, are “doubly magic” and show exceptional 
 stability.

The collective model, advanced by Niels Bohr’s son Aage, combines aspects of the 
liquid-drop and shell models, emphasizing the collective quantum-mechanical behavior of 

ExAMpLE 38.1  Nuclear Spins: Finding the MRI Frequency

The MRI solenoid of Example 26.10 produces a 1.50-T magnetic 
field. What frequency should be used to drive the transmitter coil in 
this MRI device?

Interpret MRI is an implementation of nuclear magnetic resonance 
using protons (see the Application), so we’re being asked for the fre-
quency corresponding to photons that will flip a proton in a 1.50-T 
magnetic field.

Develop We need to calculate the necessary photon energy and then 
use E = hf  to find the corresponding frequency. We’ve just seen 
that the proton acts like a magnetic dipole whose component along 
the field is mp = {1.41 * 10-26 J/T. Equation 26.16 gives the energy 
of a magnetic dipole: U = -m

! # B
S

. Here we’re given the component 

of the magnetic moment m
!
 along the field, so our two energies be-

come U = {mpB, where the signs correspond to the two possible 
spin orientations. A spin flip changes a proton’s energy from +mp B 
to -mpB, so our plan is to find the energy difference between these 
levels, equate it to the photon energy h f, and solve for f.

evaluate We have E = mp B - 1-mp B2 = 2mp B, so

f =
E

h
=

2mp B

h
=

12211.41 * 10-26 J/T211.50 T2
6.63 * 10-34 J # s

= 63.8 MHz

assess This frequency is in the radio region of the electromagnetic 
spectrum, consistent with the diagram in the Application showing 
the use of coils and currents, and the approximate transmitter coil 
 frequency of 100 MHz. ■
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726 Chapter 38 Nuclear Physics

the nucleons. One remarkable prediction of the collective model is that larger, nonmagical 
nuclei may be more stable if they take nonspherical shapes.

Active areas of nuclear-structure research involve the creation and exploration of ex-
ceptionally heavy or neutron-rich nuclei. The creation of elements 115 and 116 in the 
early 2000s and element 117 in 2010 suggests that physicists are approaching a region 
of longer-lived nuclei dubbed the “island of stability,” which may be associated with a 
new magic neutron number of 184. And the recent creation of relatively stable silicon-42 
implies that silicon’s atomic number Z = 14 becomes magic in this neutron-bloated 
1N = 282 species. Until we have a complete nuclear theory, discoveries like these will 
continue to challenge physicists with nuclear surprises.

38.2 Radioactivity
In 1896 Henri Becquerel of Paris noticed that a photographic plate stored near uranium 
compounds became fogged, as though exposed to invisible rays. Becquerel had discovered 
radioactivity, wherein some substances spontaneously emit high-energy particles or pho-
tons. Marie and Pierre Curie promptly began a thorough exploration of the phenomenon, 
for which Marie Curie coined the name “radioactivity.” The Curies shared the 1903 Nobel 
Prize in Physics with Becquerel, and Marie Curie won the 1911 Nobel Prize in Chemistry 
for her discovery of polonium and radium.

Decay Rate and Half-Life
Radioactivity results from the decay of unstable nuclei, a process that occurs at vastly dif-
fering rates in different isotopes. The number of decays per unit time is the activity of a 
radioactive sample; the SI unit of activity is the becquerel (Bq), equal to one decay per 
second. An older unit, the curie (Ci), is 3.7 * 1010 Bq and is approximately the activity 
of 1 gram of radium-226. For a given isotope, activity is proportional to the number N of 
nuclei present. N decreases as nuclei decay, so we can write

dN

dt
= -lN

where l is the decay constant. As we’ve seen with discharging capacitors and  decaying 
inductor currents, this differential equation is a prescription for exponential decay. We 
solve it the same way, multiplying both sides by dt/N and integrating:

L
N

N0

dN

N
= -lL

t

0
 dt

where N0 is the initial number of nuclei at time t = 0. Evaluating the integrals gives 
ln1N/N02 = -lt or, exponentiating each side and using eln x = x:

 N = N0 

e-lt  (38.3a)

Equation 38.3a shows that the decay constant l is a measure of the exponential decay rate. 
We can also interpret l as the probability that a given atom will decay in a 1-s time inter-
val. Another convenient measure of exponential decay is the half-life, t1/2, defined as the 
time for half the nuclei in a given sample to decay. If we start with N0 nuclei at time t = 0, 
then at a later time t the number of nuclei remaining will be

 N = N0 2
-t/t1/2   1radioactive decay2 (38.3b)

As you can show in Problem 54, t1/2 and l are related by t1/2 =  ln2/l ≃  0.693/l.  
Figure 38.5 is a graph of Equation 38.3b. Since activity and number of nuclei are 
 proportional, both decline with the same half-life, as described in Equation 38.3b.  
Table 38.1 lists some significant radioisotopes and their half-lives.

Figure 38.5 Exponential decay of a radioactive 
sample.
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Table 38.1 Selected Radioisotopes

isotope Half-life Decay Mode Comments

Carbon-14 1 6
14C2 5730 years b- Used in radiocarbon dating

Iodine-131 1 53
131I2 8.04 days b- Fission product abundant in fallout from nuclear weapons and 

reactor accidents; damages thyroid gland

Oxygen-15 1 8
15O2 2.03 minutes b+ Short-lived oxygen isotope used for PET scans

Potassium-40 119
40K2 1.25 * 109 years b- Comprises 0.012% of natural potassium; dominant radiation source 

within the normal human body; used in radioisotope dating

Plutonium-239 1 94
239Pu2 24,110 years a Fissile isotope used in nuclear weapons

Radium-226 1 88
226Ra2 1600 years a Highly radioactive isotope discovered by Marie and Pierre Curie; 

results from decay of  92
238U

Radon-222 1 86
222Rn2 3.82 days a Radioactive gas formed naturally in decay of  88

226Ra; seeps into 
buildings, where it may cause serious radiation exposure

Strontium-90 138
90Sr2 29 years b- Fission product that behaves chemically like calcium; readily 

absorbed into bones

Technetium-99m 1 43
99mTc2 6.006 hours g Metastable excited state of Tc-99, widely used in medical 

diagnostics.

Tritium 11
3H2 12.3 years b- Hydrogen isotope used in biological studies and to enhance 

yields of nuclear weapons

Uranium-235 1 92
235U2 7.04 * 108 years a Fissile isotope comprising 0.72% of natural uranium; used as 

reactor fuel and in crude nuclear weapons

Uranium-238 1 92
238U2 4.46 * 109 years a Predominant uranium isotope; cannot sustain a chain reaction

ExAMpLE 38.2 Radioactive Decay: Fukushima Fallout

The 2011 tsunami-induced disaster at Japan’s Fukushima Dai’ichi 
nuclear power plant spread radioactive fallout over the surrounding 
region and adjacent ocean. One isotope of particular concern was 
iodine-131, which is absorbed by the thyroid gland and can cause 
thyroid cancer. Shortly after the radiation releases began, the city of 
Iwaki, some 90 km from the Fukushima nuclear plant, recorded I-131 
activity of 980 Bq/kg in milk. How long would such milk need to be 
held back from consumption in order to meet the 300-Bq/kg Japanese 
safety standard for milk?

Interpret This is a problem about radioactive decay. We’re given 
the initial activity per kilogram of milk, and we need to find how 
long it takes for that to decay to the given safety standard. Using  
Table 38.1, we identify I-131’s half-life as 8.04 days.

Develop Equation 38.3b, N = N0 2- t/t1/2, describes the decline in 
both the number of radioactive nuclei and their radioactivity. The 
equation shows that after n half-lives, activity drops to 1/2n of its orig-
inal level. So our plan is to find the number of half-lives n that will 
lower the milk’s I-131 activity from 980 Bq/kg to 300 Bq/kg. Math-
ematically, we want 1/2n = 300/980. Our plan is to solve for n and 
then use the known half-life to get the actual time.

evaluate Inverting the expression 1/2n = 300/980 and taking 
 logarithms of both sides gives

ln(2n) = ln(980/300)

But ln12n2 = n ln2, so

n =
ln1980/3002

ln2
= 1.71 half@lives

With t1/2 = 8.04 days, this amounts to 13.7 days or just under  
2 weeks.

assess A quick check shows that our answer must be about right. 
The milk starts out contaminated with almost 1000 Bq/kg of I-131. 
After one half-life, the activity has dropped in half, to just under  
500 Bq/kg. Another half-life, and it’s about 250 Bq/kg—already 
 under the safety standard. So the answer must be somewhere  between 
one and two half-lives, and closer to two because the 250 Bq/kg 
reached after two half-lives isn’t much less than the 300-Bq/kg 
safety  standard. Note that the 2-week wait time depends not only on 
physics but also on policy—namely, the government’s safety stand-
ard.  Exercise 28  reworks this example using the lower international 
 guideline of 100 Bq/kg, and Problem 55 considers a similar contami-
nation  situation  following the Chernobyl nuclear accident. ■

✓tIp Half-Life and Powers of 2

After n half-lives, activity has dropped by a factor of 1/2n. When we estimate activity 
levels, it’s useful to note that 210 = 1024, or very nearly 1000. Thus activity drops by a 
factor of about 1000 every 10 half-lives—and therefore by about 1 million in 20 half-lives.
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Got It? 38.2 A PET-scan patient is injected with radioactive oxygen-15, whose 
half-life is 2 min. Approximately what fraction of the original 15O remains undecayed an 
hour later? (a) 1/30; (b) 1/60; (c) one thousandth; (d) one millionth; (e) one billionth

AppLICAtIoN Radiocarbon Dating and Fossil Carbon

Archaeologists, art historians, geologists, and others use radioactive decay to 
date ancient objects. For ages up to a few tens of thousands of years, the 5730-
year isotope carbon-14 is especially useful. 14C forms continuously in the at-
mosphere through reactions of cosmic rays with nitrogen. Living things take in 
14C and maintain a steady concentration through the balance between uptake 
and radioactive decay. At death, uptake ceases and the level of 14C begins to 
drop. Measuring the ratio of 14C to stable 12C in a sample of once-living mat-
ter and comparing with the ratio found in living material then provides the age 
(see the figure and Example 38.3).

The cosmic-ray flux at Earth varies with solar activity, and so, therefore, 
does the atmospheric 14C/12C ratio. Scientists correct for this effect with data 
from growth rings in ancient trees, which provide an independent measure of 
age. Measuring the actual radioactivity takes a fairly large sample, so today the 
most sophisticated dating is done instead by counting individual C-14 atoms, 
separating them from ordinary C-12 using a mass spectrometer—a device we 
described in Example 26.2.

Radiocarbon dating is quite accurate to about 20,000 years and can be used 
back to about 50,000 years. For longer time spans, up to the billions of years 
characterizing the ages of rocks, ratios of longer-lived isotopes provide age 
information. Much knowledge of our own past, and our planet’s and our solar 
system’s, comes from radioisotope dating.

In the modern era, the atmospheric 14C/12C ratio provides evidence that 
the ongoing buildup of atmospheric CO2 results from the combustion of fos-
sil fuels (see the Application “The Greenhouse Effect and Global Warming,” 
in Chapter 16). That 14C/12C ratio is dropping, showing that the added CO2 
is depleted in C-14. This is consistent with a carbon source that’s been out 
of contact with the atmosphere for a long enough time that its C-14 has all 
decayed. Also decreasing is the ratio of the stable isotope 13C to 12C. Plants 
preferentially incorporate the lighter C-12, so taken together the decreasing ra-
tios of C-14 and C-13 to C-12 point to a long-buried, plant-derived source of 
the new atmospheric carbon—namely, the fossil fuels.

14CO2

Cosmic rays

Carbon-14 formed in the
atmosphere is incorporated 
into a living organism through
the food chain. At death, 14C uptake ceases.

Much later, 14C activity has 
decayed considerably.

Archaeologists excavate the long-
dead remains. By measuring 14C 
activity, they can infer the time since 
death. Note that the archaeologists, 
with their active 14C intake, are more 
radioactive than their ancient ancestor.

(a)

(c)

(b)

(d)

ExAMpLE 38.3 Radioactive Decay: Archaeology

Archaeologists unearth charcoal from an ancient campfire and find its 
carbon-14 activity per unit mass to be 7.4% of the activity measured 
in living wood. Find the charcoal’s age.

Interpret This is a problem about using the decay of carbon-14 to 
date a once-living material. We want the time it takes for 14C activity 
to decline to 7.4% of its original level. From Table 38.1, we identify 
the half-life of 14C as 5730 years.

Develop Equation 38.3b, N = N0 2
-t/t1/2, shows that activity drops 

by 1/2n in n half-lives, so our plan is to find the number of half-lives 
that makes the factor 1/2n equal to 0.074. Then we can multiply by the 
half-life to get the actual time.

evaluate Solving as we did in Example 38.2 gives

n ln 2 = ln11/0.0742

which gives n = 3.76 half-lives. With t1/2 = 5730 y, the age is then 
21,500 years.

assess Again a quick check suffices: One half-life drops activity to 
50%; two half-lives to 25%, three to 12.5%, and four to just over 6%. 
So it must take a little less than four half-lives to get down to 7.4% of 
the original activity level.

types of Radiation
Passing nuclear radiation through a magnetic field shows that there are three types: one 
positively charged, one negatively charged, and one neutral (Fig. 38.6). Early  researchers 
named these alpha, beta, and gamma radiation, respectively. Today we know that  alpha 
radiation consists of He-4 nuclei, beta radiation consists of high-energy electrons or 

■
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positrons, and gamma rays are high-energy photons. They differ in penetrating power: 
A sheet of paper can stop alpha particles, several centimeters of matter stop most betas, 
and gamma rays can penetrate substantial thicknesses of concrete or lead. Different radio-
isotopes emit not only different types of radiation but also radiation of different energies.

Alpha Decay
Alpha emitters are nuclei with too much positive charge. They shed charge, and mass, by 
emitting a bundle of two protons and two neutrons—an alpha particle, 2

4He. Symbolically,

 Z
AX ¡ Z - 2

A - 4Y + 2
4He  1alpha decay2  (38.4)

Here X is the original or parent nucleus, and Y is the daughter. Note that the sums of 
the atomic numbers on both sides of this equation are equal, as are the mass numbers. 
Most of the energy released in the reaction appears as kinetic energy of the alpha parti-
cle. The alpha particle actually emerges with less energy than needed to overcome the 
 nuclear potential barrier, and this provides one of the most direct confirmations of quan-
tum  tunneling—which is the only way the alpha particle can escape the nucleus.

Beta Decay
Beta emitters have too many neutrons, one of which decays into an electron, a proton, and 
an elusive neutral particle called a neutrino (symbol n). The electron exits at high energy 
to form beta radiation, leaving a nucleus with essentially the same mass but its atomic 
number increased because it has one more unit of positive charge:

 Z
AX ¡ Z + 1

 
 
AY + e- + n  1beta decay2 (38.5a)

In ordinary beta decay the neutrino is, in fact, an antineutrino—hence the bar over its 
symbol n.

Beta decay is a manifestation of the weak nuclear force, and in the Sun it produces 
a steady stream of neutrinos that provide direct information on conditions in the solar 
core. That’s because neutral, nearly massless neutrinos interact only rarely with  matter; 
for  example, they pass through the entire Earth with little probability of interaction. 
You’ll see in Chapter 39 how neutrinos nonetheless are opening a new window on distant 
 astrophysical events and the early universe.

A second type of beta decay converts a proton into a neutron, emitting both a positron 
(an anti-electron, e+) and a neutrino:

 Z
AX ¡ Z - 1

 
 
AY + e+ + n  1beta decay, positron emission2  (38.5b)

This reaction occurs in some short-lived isotopes of lighter elements like carbon and 
 oxygen, and gamma rays from the subsequent annihilations of positrons are used in 
the medical imaging procedure known as positron emission tomography (PET; see the 
 Application “PET Scans: Relativity in the Hospital,” in Chapter 33.).

A third beta-decay process is electron capture, in which a nucleus captures an inner-
shell atomic electron, converting a proton to a neutron and ejecting a neutrino:

 Z
AX + e- ¡ Z - 1

 
 
AY + n  1electron capture2 (38.5c)

Gamma Decay
A nucleus in an excited state decays by emitting a photon, just like an atom. But the much 
higher energy associated with nuclear processes puts such photons in the gamma-ray 
region of the spectrum. Since the gamma-ray photon is neutral and massless, it doesn’t 
change the type of nucleus; therefore, we write

 Z
AX* ¡ Z

AX + g  1gamma decay2  (38.6)

where X* designates the excited state.

Figure 38.6 The three types of radiation go 
separate ways in a magnetic field.
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730 Chapter 38 Nuclear Physics

Decay Series and Artificial Radioactivity
A few radioisotopes, like 40K and 238U, have half-lives comparable to Earth’s age, so it’s 
not surprising to find these in nature. But we also find shorter-lived species. Some, like 
cosmic-ray-produced 14C, result from naturally occurring nuclear reactions. Many others 
arise in the decay of long-lived isotopes, while some we produce in particle accelerators, 
nuclear reactors, and nuclear explosions.

Figure 38.7 shows the decay series for uranium-238, whose 4.46-billion-year half-life 
ensures that there’s still plenty of it around. The shorter-lived daughter products in this se-
ries are present wherever there’s natural uranium. A balance between formation and decay 
establishes the abundance of each product in the decay series. One of the uranium daugh-
ters is radon-222, a radioactive gas that can be a serious health hazard in closed spaces.

In 1930 Marie Curie’s daughter Irène and her husband Frédéric Joliot-Curie were the 
first to induce artificial radioactivity, by bombarding stable isotopes with alpha particles. 
Today we produce radioisotopes with particle beams or with neutrons from nuclear reac-
tors, or by extracting them from the by-products of nuclear fission.

Uses of Radioactivity
Nuclear radiation has numerous beneficial uses in our technological society. Here we 
 survey just a few:

•  Radioactive Tracers “Tagging” molecules with radioactive atoms makes it 
easy to trace their flows through biological and physical systems. Biologists use 
 radioactive tracers routinely to study the uptake and distribution of chemicals. 
 Engineers use radioisotopes to study wear in mechanical parts. Physicians “tag” 
bone-seeking compounds with radioisotopes to image the skeletal system; the 
 resulting “bone scans” reveal cancer and other diseases.

•  Cancer Treatment Radiation destroys living cells, especially fast-dividing cancer 
cells. Early radiation treatment used gamma radiation; today, particle beams deliver 
radiation with less effect on surrounding tissue. Alternatively, radioisotope “seeds” 
are embedded directly into a tumor.

•  Food Preservation High radiation doses destroy bacteria and enzymes that 
cause food spoilage, providing longer shelf life and a safer food supply. Though 
 controversial, food irradiation is increasingly widespread, especially for spices, 
fruits, and some ground meats.

•  Insect Control Radiation preferentially damages reproductive cells and can  therefore 
cause sterility. Sterilizing large numbers of pest insects with radiation causes popula-
tions to collapse when the sterile insects mate with normal ones. The Mediterranean 
fruit fly, a serious pest of citrus crops, has been controlled in this way.

•  Fire Safety Common smoke detectors contain americium-241, whose alpha 
 radiation ionizes air, allowing it to carry electric current. Smoke particles interfere 
with the current, triggering the alarm. Exit signs containing radioactive tritium 
13H2 glow without the need for electricity, providing another measure of fire safety 
in public buildings.

•  Activation Analysis Bombarding materials with neutrons or other particles results 
in excited states or the production of unstable isotopes. Analyzing the resulting 
 radiation helps identify unknown materials. Art historians use this technique to de-
tect forgeries; environmental scientists identify the constituents of pollution; and air-
port luggage scanners search for the radiation “fingerprint” of chemical  explosives.

Biological Effects of Radiation
Nuclear radiation has sufficiently high energy to ionize or otherwise disrupt biological 
molecules. Results include cell death, loss of biological functions, and mutations that lead 
to cancer or to genetic changes in future generations. Many early nuclear scientists, in-
cluding Marie Curie and her daughter Irène, succumbed to leukemia and other cancers that 
undoubtedly resulted from radiation exposure.

Figure 38.7 The decay of uranium-238 results 
in a series of shorter-lived nuclei. Times shown 
are half-lives.
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The energy absorbed in a radiation dose is a rough measure of its biological danger. 
The SI unit of absorbed dose is the gray (Gy), defined as 1 J of energy per kg of absorbing 
material. A more appropriate measure is the sievert (Sv), which is weighted by the biolog-
ical effectiveness of particular radiation types. Alpha particles, for example, cause more 
damage per unit energy than do gamma rays, so 1 Gy of alpha radiation is more harmful 
than 1 Gy of gamma radiation. But 1 Sv of alphas and 1 Sv of gammas cause essentially 
the same damage.

The biological effects of high radiation doses are well known; exposure to 4 Sv, for 
example, causes death in about half its human victims. But doses in the 0.1-Sv range and 
lower are more controversial. There are only a few cases of well-quantified exposures to 
populations large enough that small effects can be determined accurately. Even less certain 
are the effects of very low doses, such as the 1-mSv average dose to residents just outside 
the evacuation zone at Fukushima, or the even smaller 10@μSv dose to people  living near 
the 1979 Three Mile Island nuclear accident. On the one hand, biological repair mecha-
nisms may limit damage at low doses. On the other, even low doses may disproportion-
ately affect the young and the unborn. A 2005 study by the U.S. National Academy of 
Sciences (NAS) suggests that the risk of cancer—the dominant health effect of low-level 
radiation—should scale linearly with dose. For a one-time dose of 1 mSv, the NAS study 
estimates a lifetime cancer risk of 1 in 10,000. This compares with a 42% lifetime chance 
of developing cancer from all causes.

The average U.S. citizen receives about 3.6 mSv of radiation per year, most of it from 
natural sources (Fig. 38.8). The dominant source, at 55%, is the uranium decay product 
 radon-222, which seeps into buildings from the decay of naturally occurring uranium in 
the ground and in building materials. Our own bodies account for some 11%, mostly from 
natural potassium-40. About 19% of our average exposure in the United States comes 
from artificial sources, mainly medical procedures.

Consumer products—mostly tobacco, drinking water, and building materials—account 
for about 3%. Less than 1% of our yearly radiation dose is from nuclear power and weap-
ons. Radiation doses vary greatly with location and occupation; for example, residents 
of high-altitude Denver have greater exposure to cosmic rays, and airline flight crews’ 
cosmic-radiation dose often exceeds the allowed dose for nuclear-plant workers. No mat-
ter what your exact dose, though, the risks to your health from radiation exposure pale 
compared with other risks you knowingly take.

38.3 Binding Energy and Nucleosynthesis
Disassembling a nucleus requires energy to overcome the strong nuclear force. The more 
tightly bound the nucleus, the higher this binding energy. The energies involved in nu-
clear interactions are high enough that Einstein’s mass–energy equivalence is clearly evi-
dent, so accounting for energy conservation requires us to consider the rest energy of the 
particles. Then we can write

 mNc2 + Eb = Zmpc
2 + 1A - Z2mnc

2  (38.7)

where the terms on the left are the rest energy of the nucleus, whose mass is mN, and the 
binding energy Eb. The terms on the right are the rest energies of the Z individual  protons 
and A - Z  neutrons that make up the nucleus. So Equation 38.7 shows that we can 
 disassemble a nucleus into its constituent nucleons if we supply additional energy equal to 
the binding energy. Equivalently, Eb is the energy released if we assemble a  nucleus from 
isolated nucleons.

Equation 38.7 shows that the nuclear mass mN is not the sum of the constituent 
 particles’ masses; rather, it’s less by the amount Eb /c

2. This is clear evidence for mass– 
energy equivalence. Again, as in Chapter 33, we emphasize that there’s nothing uniquely 
nuclear about this so-called mass defect. The mass of a water molecule is also less than 
the sum of its constituent hydrogen and oxygen atoms—but with chemical binding the 
 effect is so small as to be virtually immeasurable. It’s the strength of the nuclear force that 
makes mass–energy equivalence more obvious in nuclear interactions.

Figure 38.8 Natural (gray) and artificial (color) 
sources of radiation, as percentages of the 
U.S. average yearly dose of 3.6 mSv. “Other” 
includes nuclear power, radioactive waste, and 
weapons tests.
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It’s convenient to measure nuclear and particle masses in unified mass units, u, 
 currently defined as one-twelfth the mass of a neutral carbon-12 atom. The unified mass 
unit is very nearly 1.66054 * 10-27 kg, slightly less than the mass of the proton or neu-
tron. High-energy physicists, ever cognizant of mass–energy equivalence, often express 
masses in MeV/c2—a value numerically equal to the rest energy in MeV. Table 38.2 lists 
selected particle masses in kg, u, and MeV/c2. In practice one often knows atomic rather 
than nuclear masses, but the difference is generally negligible because the extra mass of 
the electrons is so small.

Table 38.2 Selected Masses

Mass (kg) Mass (u) Mass (MeV , c2)

Electron 9.10939 * 10-31 0.000548579 0.510999

Proton 1.67262 * 10-27 1.007276 938.272

Neutron 1.67493 * 10-27 1.008665 939.566

1
1H atom 1.67353 * 10-27 1.007825 938.783

a particle 12
4He nucleus2 6.64466 * 10-27 4.001506 3727.38

 6
12C atom 1.99265 * 10-26 12 11,177.9

Unified mass unit (u) 1.66054 * 10-27 1 931.494

ExAMpLE 38.4 Mass Defect in Helium: powering the Sun

Use the appropriate masses from Table 38.2 to find the binding energy of 2
4He.

Interpret This is a question about binding energy—the energy difference between separate 
 constituents of helium-4 and the helium-4 nucleus. We identify the constituent particles from the 
symbol 2

4He: Z = 2 protons and N = A - Z = 2 neutrons.

Develop Equation 38.7 determines the binding energy in terms of the various masses:

Eb = Zmpc
2 + 1A - Z2mnc

2 - mNc2

evaluate Using our values for Z and N = A - Z, along with the proton, neutron, and alpha-
particle (He-4 nucleus) masses from Table 38.2, gives

 Eb = 21938.272 MeV/c22c2 + 21939.566 MeV/c22c2 - 13727.38 MeV/c22c2

 = 28.3 MeV

assess Notice how easy it was to work with mass in units of MeV/c2; the factor c2 canceled and 
we didn’t need to use the speed of light explicitly. The formation of helium through a sequence 
of nuclear reactions is what powers the Sun, and our 28.3-MeV result is very close to the actual  
26.7 MeV released for each He-4 nucleus formed through the solar process. ■

the Curve of Binding Energy
Binding energy plays a crucial role in the formation of the elements and in nuclear energy. 
Figure 38.9 shows the curve of binding energy, a plot of binding energy per nucleon 
as a function of mass number A. The higher this quantity, the more tightly bound is the 
nucleus. The broad peak in the vicinity of A = 60 shows that nuclei with mass numbers 
around this value are most tightly bound. That means it’s energetically favorable for two 
lighter nuclei to join through the process of nuclear fusion, making a middle-weight nu-
cleus. But heavier nuclei can reach a lower energy state if they split or fission into two 
middle-weight nuclei. We’ll discuss fission and fusion later in the chapter.

Got It? 38.3 Rank order these nuclei from the most to the least tightly bound: 

2
4He;  92

238U; 26
57Fe; 1

2H;  54
132Xe.
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Nucleosynthesis and the origin of the Elements
Since it’s energetically favorable for light nuclei to fuse together, they’ll do so if they 
have enough energy to overcome their electrical repulsion. This condition held in the high-
temperature early universe, particularly from about 1 minute to 30 minutes after the start 
of the Big Bang. During that time, protons fused to form helium, leaving the universe 
with approximately its present composition of about 75% hydrogen and 25% helium, with 
traces of deuterium, lithium, beryllium, and boron. Hundreds of millions of years later 
the first stars formed, and in the interiors of more massive stars conditions were ripe for 
a two-step process that fused three helium nuclei to make carbon-12. From there fusion 
reactions led to the formation of isotopes up to those near the A = 60 peak in the curve of 
binding energy. In fact, the nuclei of essentially all the elements with A 6 60—including 
most of the materials in our own bodies—were formed in the interiors of massive stars  
(Fig. 38.10). Some nuclei with A 7 60 also formed inside massive stars; others formed 
in the violent supernova explosions that end such stars’ lives. Those explosions spewed 
fusion-synthesized elements into the interstellar medium where, eons later, they’re incor-
porated into new stars, planets, and even living things.

38.4 Nuclear Fission
Neutrons, first discovered in 1932, make excellent probes of the nucleus because they don’t 
have to overcome electrical repulsion. In 1938 the German chemists Otto Hahn and Fritz 
Strassmann bombarded uranium with neutrons. They were puzzled to find among the re-
action products radioactive versions of the much lighter elements barium and lanthanum. 
Physicist Lise Meitner and her nephew Otto Frisch interpreted these results to mean that 
uranium had split or, in their words, fissioned (Fig. 38.11). It was the eve of World War II, 
and the military implications were obvious and ominous: Nuclear fission represented an en-
ergy source orders of magnitude more potent than chemical reactions. The race for nuclear 
weapons was on. With the help of the international physics community, many of whom had 
fled fascism, the U.S. effort succeeded. A team led by the Italian Enrico Fermi built the first 
nuclear reactor under the stands of the University of Chicago stadium; it became opera-
tional in 1942. Three years later came the first nuclear weapons test, at Trinity Site in New 
 Mexico, followed quickly by the nuclear destruction of Hiroshima and Nagasaki.

Although fission can occur spontaneously, it’s much more likely when a neutron strikes 
a nucleus. Figure 38.11 shows U-235 absorbing a neutron to become U-236. This unstable 
nucleus undergoes dumbbell-shaped oscillations until electrical repulsion tears it apart. 
The resulting fission products are generally a pair of middle-weight nuclei with unequal 

Figure 38.9 The curve of binding energy, showing how fusion and fission can 
result in the release of nuclear energy.
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Figure 38.10 Onionlike structure of a  massive 
star before it goes supernova. Successive 
stages of fusion reactions produce the 
 elements shown, which accounts for their 
 relative abundance.
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Figure 38.11 Neutron-induced fission of 235U, 
showing three neutrons (gray) released in the 
process.
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734 Chapter 38 Nuclear Physics

masses; typically two to three neutrons are also released in fission. Skipping the interme-
diate U-236 nucleus, neutron-induced fission of U-235 takes the form

 0
1 n +  92

235U ¡ X + Y + b 0
1n  1fission2  (38.8)

Here 0
1 n is the neutron, with 0 charge and 1 mass unit; X and Y are the fission products; and 

b is the number of neutrons released immediately. A specific example of Equation 38.8 
is 235U fission that produces barium and krypton: 0

1 n +  92
235U ¡  56

141Ba + 36
92Kr + 3 0

1 n. 
Note how the equation balances: The total charge (subscripts) is the same on both sides, 
and the mass numbers (superscripts) also agree.

CoNCEptUAL ExAMpLE 38.1  Radioactive Waste!

Use Fig. 38.3 to explain why fission products are necessarily 
 radioactive.

evaluate Figure 38.3 shows that more massive nuclei need higher 
ratios of neutrons to protons in order to overcome the protons’ electri-
cal repulsion. When uranium fissions, the resulting nuclei have nearly 
the same neutron-to-proton ratio as the original uranium. But that 
gives them way too many neutrons, making them highly radioactive 
via beta decay. Figure 38.12 shows a simplified chart of the nuclides 
to help make this point.

assess Highly radioactive materials decay rapidly, giving them rel-
atively short half-lives. Even the longer-lived fission products have 
half-lives measured typically in decades.

MakIng the ConneCtIon Neutron-induced fission of 235U yields 
102
42Mo, three neutrons, and another fission product. What’s that 

 product?

evaluate This reaction is a specific instance of Equation 38.8: 
1
0n +  235

92U S 102
42Mo + Z

AX + 31
0n, with X being the unknown  fission 

product. Balancing atomic and mass numbers gives A = 131 and 
Z = 50. The periodic table shows that Z = 50 is iodine, so X is I-131, 
a dangerous contaminant discussed in Example 38.2.

Figure 38.12 This chart of nuclides, simplified from Fig. 38.3, shows that fission 
products lie below the stable nuclei because they have too many neutrons.
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Energy from Fission
Fission of a uranium nucleus releases about 200 MeV of energy, as shown in  
Fig. 38.13. Spontaneous fission is rare because of the energy barrier associated with forces 
on the outermost nucleons; rather, fission usually results when a nucleus  absorbs a  neutron, 
initiating the process shown in Fig. 38.11. Many heavy nuclei, including 238U and 235U, 
are fissionable, meaning they can undergo neutron-induced fission. Fissile  nuclei will 
 fission with  neutrons of any energy, including thermal energy. Fissile nuclei are  significant 
because they alone can sustain a nuclear chain reaction, and thus they’re essential for both 
nuclear power and nuclear weapons. The three important fissile nuclei are uranium-233, 
uranium-235, and plutonium-239.

Figure 38.13 Fission energy is distributed among 
fission products, neutrons, and radiation.
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PheT: Nuclear Fission: One Nucleus
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Uranium-235 presently constitutes only about 0.7% of natural uranium; nearly all 
the rest is 238U. For most uses, uranium must be enriched in 235U, to several percent for 
 commercial power reactors and 80% or more for weapons. Uranium enrichment is 
 difficult and expensive; since the isotopes 235U and 238U are chemically similar, enrich-
ment techniques make use of their very slight mass difference. The technique of choice 
today involves spinning uranium hexafluoride gas in a sequence of high-speed centrifuges. 
Enrichment technology is highly sensitive because a nation possessing it can produce 
weapons-grade uranium.

Plutonium-239, with a 24,110-year half-life, does not occur in nature. It’s produced by 
neutron bombardment of 238U. The reaction forms 239U, which undergoes two beta decays 
to produce first 239Np and then the fissile 239Pu:

 0
1n +  92

238U ¡  92
239U

  92
239U ¡  93

239Np + e- + n

  93
239Np ¡  94

239Pu + e- + n

Although 239Pu is produced copiously in nuclear reactors (see Problem 80),  reprocessing 
spent reactor fuel to extract plutonium is difficult and dangerous. Contamination with 
other plutonium isotopes further complicates the process. Like uranium enrichment, 
 plutonium reprocessing is a sensitive technology, and the decision of several European 
countries and Japan to engage in commercial reprocessing for reactor fuel has made 
 Pu-239 a  commercial commodity.

ExAMpLE 38.5  Nuclear Fission: Uranium versus Coal

Assuming 200 MeV per fission, estimate the amount of pure 235U that 
would provide the same energy as 1 metric ton (1000 kg) of coal.

Interpret We’re asked to compare the energies of nuclear fission 
and the chemical burning of coal.

Develop For coal, we can look up the energy released per unit 
mass in Appendix C’s “Energy Content of Fuels” table. We can then 
find the number of fission events, at 200 MeV per fission, needed to 
 release the same energy as 1000 kg of coal. Finally, we’ll use the mass 
of a U-235 nucleus to find the corresponding mass of uranium.

evaluate Appendix C gives an energy content of 29 MJ/kg for 
coal, so burning 1000 kg of coal releases 29 GJ of energy. With 
1.6 * 10-19 J/eV, each 200-MeV fission releases about 3.2 * 10-11 J.

Then we need a total of

29 GJ/3.2 * 10-11 J/fission = 9.1 * 1020 fission events

Each of the 9.1 * 1020 U-235 nuclei has a mass of approximately  
235 u, so the total mass required is

19.1 * 1020 nuclei21235 u211.66 * 10-27 kg/u2 = 0.35 g

assess That’s about one one-hundredth of an ounce of 235U, packing 
as much energy as a ton of coal! Our result shows that U-235 contains 
about three million times as much energy as the same amount of coal. 
That’s the reason nuclear power plants are fueled only about once a 
year, with a truckload or so of nuclear fuel, while coal-burning plants 
burn many 110-car trainloads of coal each week. It’s also the reason 
for the immense destructive power of nuclear weapons. ■

the Chain Reaction
Neutrons induce fission, and fission itself releases more neutrons. This makes possible 
a chain reaction, in which each fission event results in more fission. To sustain a chain 
reaction, each nucleus that fissions must, on average, cause at least one more fission event; 
otherwise, the reaction will fizzle to a halt. In a piece of material that’s too small, most 
neutrons will escape without causing additional fission. For that reason there’s a  critical 
mass of nuclear fuel necessary to sustain a chain reaction. More than that amount is 
 supercritical and results in an exponentially growing chain reaction (Fig. 38.14).

The size of the critical mass depends on the purity of the fissile material, its configura-
tion, and surrounding materials. For plutonium it can be less than 5 kg, and as low as 15 kg 
for uranium. Those numbers are frighteningly small, and they show why we worry about 
city-destroying “suitcase bombs.”

The multiplication factor, k, is the average number of neutrons from a fission event 
that cause additional fission. A critical mass has k = 1, and a supercritical mass has k 7 1. 
The average time between successive fissions is the generation time. In a  supercritical 
mass this can be as short as 10 ns, leading to the entire mass fissioning in about 1 μs.

PheT: Nuclear Fission: Chain Reaction
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Fission Weapons
A rapidly fissioning supercritical mass is a nuclear explosive. The major technological 
difficulty in producing a fission weapon is to assemble a supercritical mass so rapidly that 
the chain reaction consumes enough fissile material before it blows apart. With highly 
enriched uranium that’s not an insurmountable challenge. The crude bomb that destroyed 
Hiroshima contained about 50 kg of enriched uranium, of which only about 1 kg actually 
fissioned. So confident were its developers that they never tested this design. Plutonium 
weapons present a greater challenge; neutrons from spontaneous fission make it more 
likely that the weapon will “pre-ignite” and blow itself apart.

Construction of a simple fission weapon is distressingly straightforward, but  acquisition 
of weapons-grade fissile material is not. Again, that’s why uranium enrichment and 
 plutonium reprocessing technologies are so sensitive. We live in a dangerous and unstable 
world, and it’s going to get more dangerous if fissile materials become widely available.

Nuclear power
A nuclear reactor uses a controlled fission chain reaction with k = 1 to release energy at 
a steady rate. Since the average number of neutrons emitted in U-235 fission is about 2.5, 
reactors require that most neutrons don’t cause fission. Commercial power reactors limit 
k in part by keeping the concentration of fissile U-235 low—typically a few percent—so 
that many neutrons are absorbed by U-238 instead of causing fission. Control rods made 
of neutron-absorbing material allow for active adjustment of k; these can be moved into 
and out of the nuclear fuel to provide precise control of the power level. A small fraction—
about 0.65%—of fission-produced neutrons are emitted with delays from about 0.2 s to  
1 min, and these delayed neutrons allow for relatively slow mechanical control of nuclear 
reactors. The next example explores this point.

For each �ssion,
two more �ssions 
follow.

Figure 38.14 A supercritical chain reaction with 
multiplication factor k = 2.

ExAMpLE 38.6  Nuclear Fission: Delayed Neutrons and Reactor Control

A change in operating conditions makes a nuclear reactor slightly 
supercritical, with k = 1.001. Determine the time it would take the 
reactor power to double (a) if delayed neutrons establish a generation 
time t = 0.1 s, and (b) if prompt neutrons—those released immedi-
ately—sustain the reaction to give t = 10-4 s.

Interpret We’re asked to calculate the time until the reaction rate 
doubles, given the multiplication factor k and two different values for 
the generation time.

Develop A multiplication factor k = 1.001 means the rate of fission-
ing increases by a factor of 1.001 with each generation time; after two 
generations it will have increased by k2, and so forth. So our plan is to 

find the number n of generations that gives kn = 2. Then we can multi-
ply by the two different t values to find the actual times: t = nt.

evaluate We set kn = 2 and take the logarithm of both sides. With 
ln1kn2 = n lnk, we have n lnk =  ln2, or n = ln2/lnk = 693 with 
k = 1.001. With t = 0.1 s that gives t = nt = 69.3 s or just over  
1 min, but with t = 10-4 s it’s only 0.07 s.

assess With delayed neutrons the doubling time is long enough for 
the reactor operators and their mechanical controls to take corrective 
action; with prompt neutrons there isn’t time to prevent a serious nu-
clear accident. Delayed neutrons are crucial to reactor control! Loss 
of control to a reaction governed by prompt neutrons alone was a key 
factor in the 1986 Chernobyl nuclear accident. ■

High-energy fission neutrons aren’t very effective at causing additional fission events, 
so in most reactor designs they must be slowed to roughly the mean thermal speed. A 
 substance called the moderator effects this slowing through elastic collisions between 
neutrons and the moderator nuclei. In Chapter 9 you saw that the maximum energy 
 transfer occurs when colliding particles have equal mass; therefore, the best moderators 
have low-mass nuclei. The choice of moderator is among the most significant distinguish-
ing features of different reactor designs. Another important choice is the coolant, which 
 carries off fission-generated heat.

Power reactors in the United States are light-water reactors (LWRs), using ordi-
nary water with the protons of its hydrogen serving as the moderator nuclei. The same 
 water acts as coolant and circulates through a pressure vessel containing uranium fuel 
rods and control rods. About one-third of the United States’ roughly 100 power  reactors 

PheT: Nuclear Fission: Nuclear Reactor
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are  boiling-water reactors (BWRs), in which water boils in the reactor vessel to make 
steam that drives a turbine-generator (Fig. 38.15). The remainder are pressurized-water 
 reactors (PWRs), in which liquid water under pressure transfers its energy to a secondary 
loop where water boils to make steam (Fig. 38.16). An advantage of this more  complex 
system is that the steam loop doesn’t become radioactive. Both types of light-water 
 reactors have an intrinsic safety feature, in that a loss of coolant also means loss of mod-
erator, and that brings the chain reaction to a halt. But light water has the disadvantage 
that 1

1H readily absorbs neutrons, and therefore light-water reactor fuel must be enriched in 
235U in order to sustain the chain reaction. Refueling a LWR is also a big operation: The 
reactor must be shut down and the lid removed from the pressure vessel—a process that 
can take a month or longer.

The Canadian CANDU design uses heavy water (1
2H2O, or deuterium oxide) as mod-

erator and coolant. Low neutron absorption means CANDU reactors can operate on natu-
ral uranium, eliminating the need for sensitive enrichment technology. And the CANDU 
design allows continuous refueling, although that increases another proliferation risk by 
making it easier to extract plutonium.

Figure 38.15 A boiling-water reactor, one 
of two types commonly used in the United 
States.
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Figure 38.16 A complete power plant using a 
pressurized-water reactor, the most common 
type of power reactor in the United States.
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An older Soviet-era design is the graphite-moderated, water-cooled RBMK reactor. 
 Often built to provide both electric power and plutonium for weapons, this design suf-
fered from the safety defect that loss of coolant not only didn’t shut down the chain re-
action but could actually accelerate it due to loss of neutron-absorbing hydrogen in the 
H2O  coolant. The disastrous 1986 Chernobyl accident involved an RBMK reactor.  During 
a test of the emergency cooling system, operators inadvertently put the reactor in an 
 unstable state where an increase in power boiled away more cooling water, resulting in a 
further  increase. The power level soared by a factor of 4000 in 5 seconds, causing a steam 
 explosion that blew the top off the reactor and ignited the flammable graphite moderator. 
Heavy smoke carried radioactive materials into the atmosphere, resulting in widespread 
contamination (see Problem 55). Today, thousands of square miles surrounding Chernobyl 
remain officially uninhabitable.

Other reactor designs include gas-cooled reactors that can operate at higher tempera-
tures and therefore greater thermodynamic efficiencies, and breeder reactors designed 
specifically to “breed” plutonium from U-238 and therefore turn most of the nonfissile 
U-238 into fissile Pu-239. Breeders have no moderator, use liquid sodium coolant, and are 
critical with fast neutrons alone. Breeders are therefore less stable than so-called thermal 
reactors using slow neutrons, and widespread adoption of breeder technology entails inter-
national trafficking in fissile plutonium.

On the drawing board are a variety of advanced reactors, collectively termed Genera-
tion IV—although none has yet proven commercially viable. Some Gen-IV designs claim 
intrinsic safety, including the ability to survive a total loss of coolant. Others are designed 
to “burn” waste from current reactors, reducing humanity’s long-term burden of nuclear 
waste. Even the decades-old light-water reactor has seen substantial improvements, in-
cluding more robust safety systems. Had the 1970s-vintage reactors at Fukushima been, 
instead, the contemporary Generation III+  designs, the Fukushima power plant might 
well have survived the tsunami.

M38_WOLF4752_03_SE_C38.indd   737 18/06/15   1:33 PM



738 Chapter 38 Nuclear Physics

Nuclear Waste
We’ve seen that fission products are highly radioactive because they contain too many 
neutrons for stable middle-weight nuclei. Because of their high activity, fission products 
have relatively short half-lives, typically measured in decades. That makes fission-product 
waste dangerous for centuries to a few millennia. However, neutron absorption in fission 
reactors also produces plutonium and a host of other transuranic isotopes—those heavier 
than uranium—with much longer lifetimes. It’s these substances that mean we’ll have to 
safeguard nuclear waste for tens of thousands of years.

As fission proceeds, the concentration of fission products in the fuel increases. Before a 
reactor’s 235U is exhausted, fission products begin absorbing enough neutrons to interfere 
with the chain reaction. In U.S. LWRs, that requires about one-third of the fuel rods to be 
replaced annually. Older fuel is also rich in fissile plutonium, and at the end of a fuel rod’s 
3 years in the reactor, more than half the energy generation comes from fissioning pluto-
nium rather than uranium. Figure 38.17 shows the evolution of nuclear fuel in an LWR.

Figure 38.17 Evolution of 1000 kg of 3.3% enriched uranium over its 3-year stay in a light-water reactor.
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The disposal of nuclear waste is a thorny issue, mixing political and scientific 
 considerations. To date, the United States has no repository for commercial nuclear waste, 
which continues to accumulate at reactor sites. Lest you picture mountains of nuclear 
garbage, however, remember that factor-of-107 difference between nuclear and chemical 
 energy sources. That translates into far less fuel needed for nuclear power plants, and far 
less waste produced. A 1-GW power reactor produces some 20 tons of high-level nuclear 
waste annually, while a comparable coal plant produces 1000 tons of carbon  dioxide and 
30 tons of solid waste every hour.

Got It? 38.4 Transportation and mining accidents involving coal are much more 
frequent than those involving uranium fuel. What’s the fundamental reason for this?

prospects for Nuclear power
Today, nuclear power supplies some 11% of the world’s electrical energy, a figure that’s 
dropped from a high of 15% in 2006 due to economic factors and the Fukushima acci-
dent. Reliance on nuclear power varies widely; in nuclear-intensive France the figure is 
nearly 80%, and in the United States it’s 20%. Dozens of new reactors are under construc-
tion, predominantly in Asia; most use advanced versions of light-water reactor designs. 
 Recently, the United States has seen nuclear-plant license applications for the first time 
in 30 years. But worldwide, hundreds of older reactors are nearing the end their lifetimes, 
and without massive new construction, nuclear’s share of the world’s energy supply is 
 unlikely to increase significantly.

Concern over climate change from fossil-fuel combustion has spurred a renewed inter-
est in nuclear power, even among some environmentalists. New reactor designs promise 
greater reliability, economic viability, and, most important, safety based on intrinsic reac-
tor design rather than complicated safety systems. Most physicists agree that the public’s 
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 concern over nuclear power is exaggerated. We regularly accept much greater risks from 
other  technologies—for example, some 13,000 premature deaths each year in the United 
States due to pollution from coal-fired power plants. Comparable estimates for nuclear plants 
range from about 10 to fewer than 1000 from even the most vigorously antinuclear groups.

Nevertheless, ongoing uncertainties about the risk of catastrophic nuclear accidents, 
long-term waste storage, terrorism, and weapons proliferation continue to haunt the nu-
clear power industry. Proliferation, especially, is a very real concern. Although nuclear 
power and weapons development are different enterprises, they share infrastructure and 
an educated technological elite that can be put to either purpose. If nuclear power is to 
advance, it will need to do so under strict international guarantees against diversion of 
materials and expertise to weapons production.

38.5 Nuclear Fusion
The curve of binding energy (Fig. 38.9) shows that fusion of light nuclei provides another 
approach to nuclear energy production. The curve is steepest at its left end, indicating that 
the most energy per nucleon comes from the fusion of hydrogen. Indeed, the fusion reac-
tions powering the Sun and many other stars begin with the fusion of hydrogen to form 
deuterium. Also emitted in the process are a positron, a neutrino, and 0.42 MeV of energy:

 1
1H + 1

1H ¡ 1
2H + e+ + n  10.42 MeV2 (38.9a)

Deuterium then fuses with hydrogen to form helium-3 and a gamma ray:

 1
2H + 1

1H ¡ 2
3He + g  15.49 MeV2  (38.9b)

Two helium-3 nuclei then react to form helium-4 and a pair of protons 11
1H2, releasing 

12.86 MeV:

 2
3He + 2

3He ¡ 2
4He + 2 1

1H  112.86 MeV2  (38.9c)

In addition, the positron from reaction 38.9a annihilates with an electron, forming two 
gamma rays with a total energy of 2mc2 or 1.022 MeV. Together, these reactions constitute 
the proton–proton cycle. In the full cycle, reactions 38.9a and b occur twice for each oc-
currence of reaction 33.9c. The net effect is to convert four protons and two electrons to a 
single He-4 nucleus, releasing 26.7 MeV (Fig. 38.18). In massive stars, 2

4He then becomes 
a building block for still heavier elements, as we discussed earlier.

Figure 38.18 Net result of the proton–proton cycle of Equations 38.9.

26.7 MeV+

4 H + 2e - He 4
2

1
1 + 26.7 MeV

Reaction 38.9a does not occur readily, and terrestrial fusion research has therefore 
focused on reactions involving the heavier hydrogen isotopes. Of immediate interest are 
deuterium–tritium (D-T) and deuterium–deuterium (D-D) reactions, listed below with the 
energy released in each:

 1
2H + 1

3H ¡ 2
4He + 0

1n  117.6 MeV; D@T reaction2  (38.10a)

 1
2H + 1

2H ¡ 2
3He + 0

1n  13.27 MeV; D@D reaction2  (38.10b)

 1
2H + 1

2H ¡ 1
3H + 1

1H   14.03 MeV; D@D reaction2  (38.10c)

The two outcomes of the D-D reaction have nearly equal probability.
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The electrical repulsion between nuclei makes it difficult to get them close enough 
to fuse. Although quantum tunneling helps, it still takes very high nuclear speeds— 
corresponding to high temperatures—to initiate fusion. At fusion temperatures, atoms 
are stripped of their electrons and the fusing material constitutes a plasma. It’s necessary 
somehow to contain this hot plasma. Stars achieve both ends with their immense grav-
ity, which compresses stellar material to fusion temperatures and simultaneously provides 
confinement. In the Sun’s core, for example, the temperature is some 15 MK, and fusing 
nuclei approach with energies on the order of 1 keV—although even under these condi-
tions the fusion process isn’t particularly efficient.

Terrestrial fusion requires still higher temperature, as high-energy particles undergo 
large accelerations that result in the plasma losing energy by radiation. The temperature at 
which fusion-generated power exceeds radiation loss is the critical ignition  temperature. 
For the D-D reactions of Equations 38.10b and c, Fig. 38.19 shows that the ignition tem-
perature is about 600 MK; for D-T it’s a lower 50 MK. Net fusion-energy production re-
quires not only high temperature but also confinement for long enough that the  fusion 
energy produced exceeds the energy required to heat the plasma. The heat required 
 depends on the number of nuclei or, on a volume basis, on the number density n. However, 
the rate of fusion-energy production depends on the square of the density. That’s because 
doubling n doubles both the number of nuclei available to strike other nuclei and the num-
ber of nuclei available to be struck; the result is a quadrupling of the fusion rate. The total 
energy released therefore scales as n2t, where t is the confinement time. Meanwhile the 
radiation energy loss depends linearly on n, and as a result there’s a minimum value of the 
product nt necessary in an energy-producing fusion device. This condition is the Lawson 
criterion, given approximately by

 nt 7 1022 s/m3  1Lawson criterion, D@D fusion2 
(38.11)

nt 7 1020 s/m3  1Lawson criterion, D@T fusion2
The factor-of-100 difference here shows that D-T fusion will be much easier to achieve.

Fusion technologies use two distinct approaches to the Lawson criterion. Inertial 
 confinement strives for very high densities with short confinement times—so short that the 
particles’ inertia alone is sufficient to prevent them from leaving the fusion site during the 
brief time needed. Magnetic confinement holds lower-density plasma in a “magnetic bottle” 
whose magnetic-field configuration minimizes the chance of escape during a relatively long 
confinement time. Neither approach has yet produced a sustained energy yield from fusion.

Inertial Confinement Fusion
Although peaceful fusion devices still elude us, inertial confinement has been used 
 successfully since the 1950s in thermonuclear weapons—often called “hydrogen 
bombs” to distinguish them from fission explosives (incorrectly called “atomic bombs”). 
 Thermonuclear weapons aren’t pure fusion devices, though. They use a fission explosion 
to achieve the high temperatures needed to ignite fusion, and a clever arrangement for 
 focusing the fission energy on a mixture of lithium deuteride and plutonium-239. The mix-
ture is compressed to fusion temperatures, and fission neutrons convert lithium to  helium 
and tritium. D-T fusion then occurs, providing the device with approximately half its explo-
sive yield. The remainder comes from fission in an outer layer of natural uranium, whose 
nonfissile U-238 nevertheless fissions under the bombardment of high-energy neutrons. 
There’s essentially no limit to the yield of a thermonuclear weapon, and devices as large as 
58 megatons (Mt) TNT equivalent have been tested. That’s 5000 times the energy of the fis-
sion bomb that destroyed Hiroshima. Today’s missile-based thermonuclear weapons range 
from 40 kt to about 1 Mt, and there are still thousands of them in the world’s arsenals.

Inertial confinement fusion (ICF) schemes for controlled fusion focus high-power 
laser beams on millimeter-size deuterium–tritium targets, producing miniature thermo-
nuclear explosions. The most advanced ICF experiment is the National Ignition Facil-
ity (NIF) at California’s  Lawrence Livermore National Laboratory. NIF uses 192 laser 
beams to focus a 1.9-MJ pulse of some 20-ns duration on a gold chamber containing the 
D-T target (Fig. 38.20); the gold converts laser light energy into intense X rays that then 

Figure 38.19 Power loss by radiation and  power 
produced by D-D and D-T fusion  reactions, as 
functions of temperature on a log-log plot.
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Figure 38.20 Target chamber of the National 
Ignition Facility is 11 m in diameter and weighs 
130 tonnes. Holes are ports for the 192 laser 
beams that converge on the millimeter-size 
target.
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compress the target to the temperature and density needed for fusion. During the brief 
pulse, the peak laser power is nearly 500 TW—about 30 times humanity’s total energy-
consumption rate. In 2013 NIF achieved a milestone of sorts, with the energy produced 
from fusion exceeding for the first time the energy absorbed by the target. But there’s 
still a long way to go: Total laser beam energy was still 100 times the energy from fu-
sion, and far more energy still was required to produce the laser beams. It takes several 
days to prepare NIF for a single laser “shot,” while a fusion power plant would require 
some 15 shots each second to reach a commercially viable power output. Development 
of fusion energy is only one of NIF’s three broad purposes; the others are to explore mat-
ter under extreme conditions and to simulate nuclear weapons explosions without carry-
ing out actual nuclear tests.

Magnetic Confinement Fusion
In Chapter 26 we saw how charged particles in highly conducting plasma are essentially 
“frozen” to the magnetic field lines. Trapping of charged particles on magnetic field lines is 
the essence of magnetic confinement fusion schemes. The first job of magnetic confinement 
is to create a magnetic configuration that keeps plasma away from the relatively cool walls 
of the device. Plasma can escape to the walls in three general ways, as shown in Fig. 38.21.

Figure 38.21 Plasma loss in magnetic confinement. Colored region represents the plasma. (a) End losses oc-
cur when field lines intersect device walls. (b) Curvature of field lines results in cross-field drifts. (c) Instabili-
ties distort the plasma and magnetic field. In (a) and (b) the spiral represents the path of a charged particle.
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Figure 38.22 Cutaway diagram of the ITER 
fusion reactor. D-shaped structures are cross 
sections of the toroidal plasma chamber.

The most promising magnetic fusion device is the tokamak, a Russian invention now 
used worldwide in fusion research. The tokamak has a toroidal configuration whose mag-
netic field lines never penetrate the walls, eliminating the end loss shown in Fig. 38.21a. 
Making the machine larger reduces field-line curvature, and with it the cross-field drift of 
Fig. 38.21b. Additional field components enhance confinement and suppress the instabili-
ties of Fig. 38.21c. After smaller tokamaks paved the way, a vast international consortium 
is constructing the ITER fusion reactor in France (Fig. 38.22). ITER is scheduled to begin 
plasma experiments in the early 2020s and should begin fusion operations late in that dec-
ade. ITER is expected to be the first magnetic fusion system to produce net energy exceed-
ing the energy used for plasma heating. ITER will operate at a plasma temperature higher 
than 100 MK and should generate 400 MW of fusion power from its 840 cubic meters of 
D-T plasma. ITER will use deuterium and lithium as fuel, with tritium 11

3H2 “bred” right 
in the reactor by neutron bombardment: 3

6Li + 0
1n ¡ 2

4He + 1
3H.

prospects for Fusion Energy
When work on controlled fusion began in the 1950s, scientists confidently predicted that 
limitless fusion energy would be available in a few decades. More than half a century 
later, controlled fusion still appears decades away. But it’s a goal worth pursuing: Problem 
72 shows that with D-D fusion, a gallon of seawater is equivalent to some 300 gallons of 
gasoline, and Problem 73 shows that fusion energy resources could last far longer than the 
Sun will continue to shine!

Once controlled fusion proves scientifically feasible, there will be formidable engineer-
ing challenges in the design of a practical fusion power plant. Intense neutron fluxes from 
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742 Chapter 38 Nuclear Physics

D-T fusion degrade materials that form the reaction chamber. Neutron-capture reactions 
produce radioactive isotopes within the walls, although the associated radioactivity and 
that of the tritium fuel are much less than the radioactivity of fission waste.

The first practical fusion plants will likely use D-T fusion because its ignition tem-
perature and Lawson criterion are lower than for D-D fusion; the resulting energy will 
probably run a conventional steam cycle. But the D-D reaction promises cleaner and 
more efficient power production. Because D-D reaction 38.10 c produces charged protons 
11

1H2 rather than neutral neutrons, there’s the possibility of using a magnetohydrodynamic 
(MHD) generator, in which electromagnetic induction converts charged-particle kinetic 
energy directly to electricity. MHD generators would bypass the conventional steam cycle 
and greatly increase the thermodynamic efficiency of a fusion power plant.

There’s one caveat to this rosy fusion future: Although fusion itself is relatively clean 
and produces no greenhouse gases, the availability of unlimited cheap energy would likely 
spur industrial growth at a level our planet might not tolerate. And ultimately, if fusion 
energy use grew exponentially, the waste heat from fusion power could itself have climate-
changing consequences.

Got It? 38.5 A single D-T fusion reaction releases 17.6 MeV of energy, while fission-
ing of a single uranium nucleus releases some 200 MeV. How do these reactions compare on 
a per-unit-mass basis? (a) fusion releases considerably more energy per unit mass of reacting 
particles; (b) fission releases considerably more energy per unit mass; (c) they release about 
the same energy per unit mass
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The big idea here is that the tiny but massive atomic nucleus is a repository of vast energy—on the order of 107 times the 
energy released in chemical reactions. The protons and neutrons that make up the nucleus can take many configurations, 
with the atomic number, Z, determining the element and the mass number, A, determining the particular isotope. We 
write Z

AX to describe the isotope with mass number A of the element whose atomic number is Z and whose symbol is X.

Chapter 38 Summary
Big Idea

helium-3

Helium
isotopes

3
2He 4

2He
helium-4

Stable isotopes require a delicate balance between protons and neutrons, with near equal numbers for lighter stable nuclei and more neutrons 
for heavier nuclei. Unstable isotopes are radioactive and decay by shedding particles. The curve of binding energy shows that energy can be 
 released by either fusion of lighter nuclei or fission of heavier nuclei.
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Key Concepts and Equations

Radioactive isotopes decay with a characteristic half-life, t1/2: N = N02
-t/t1/2.
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Alpha decay emits a helium-4 nucleus:

Z
AX ¡ Z - 2

A - 4Y + 2
4He

Beta decay emits an electron or a positron and an  antineutrino 
or a neutrino:

Z
AX ¡ Z + 1

 A Y + e- + n

Z
AX ¡ Z - 1

 A Y + e+ + n

Gamma decay emits a high-energy photon (gamma ray) as an 
excited nucleus drops to a lower energy state:

X* ¡ X + g

Applications

Radioactivity is measured in becquerels, with 1 Bq equal to one decay per second. Sieverts (Sv) measure the biological effects of radiation. Resi-
dents of the United States receive an average yearly radiation dose of about 3.6 mSv from both natural and artificial sources.

For fission, the most important isotopes are the fissile  92
235U and  94

239Pu, 
which can fission when struck by low-energy neutrons:

0
1n +  92

235U ¡ X + Y + b 0
1n

The extra neutrons produced in fission can sustain a chain  reaction pro-
vided there’s a critical mass of fissile material. Exponentially growing 
chain reactions power fission weapons, while controlled fission occurs in 
nuclear reactors used for power generation.

+
+

+

+

+

Time

Fusion powers the Sun and stars but has proved elusive on 
Earth except in thermonuclear weapons. Inertial confinement 
or  magnetic confinement fusion may one day provide us with 
nearly limitless energy.

+
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26. Carbon-11–labeled acetate shows promise in PET scans for 
 determining the extent of metastasized prostate cancer. (a) Given 
C-11’s 20.4-min half-life, how long will it take an initial dose of 
2.0 GBq to decay to 7.0 kBq (roughly the natural radioactivity of 
the human body)? (b) What nucleus remains after C-11 decays 
by positron emission?

27. Nuclear bomb tests of the 1950s deposited a layer of stron-
tium-90 over Earth’s surface. How long will it take from the time 
of the bomb tests for (a) 99% and (b) 99.9% of this radioactive 
contaminant to decay?

28. Rework Example 38.2, now using the international guideline of 
100 Bq/kg for milk.

Section 38.3 Binding Energy and Nucleosynthesis
29. Use Fig. 38.9 to estimate the mass defect in deuterium, which 

 appears at the lowest point on the curve of binding energy.
30. Find the total binding energy of oxygen-16, given its nuclear 

mass of 15.9905 u.
31. Determine the nuclear mass of nickel-60, given that its binding 

energy is very nearly 8.8 MeV/nucleon.
32. Find the nuclear mass of plutonium-239, given its atomic mass of 

239.052157 u.
33. The mass of a lithium-7 nucleus is 7.01435 u. Find the binding 

energy per nucleon.

Section 38.4 Nuclear Fission
34. A 235U nucleus undergoes neutron-induced fission, yielding 

141Cs, three neutrons, and another nucleus. What’s that nucleus?
35. Neutron-induced fission of 235U yields fission products 

 iodine-139 and yttrium-95. How many neutrons are released?
36. Write a complete equation for neutron-induced fission of 

 plutonium-239 that yields barium-143, two neutrons, and another 
 nucleus.

37. Assuming 200 MeV per fission, determine the number of fission 
events occurring each second in a reactor whose thermal power 
output is 3.2 GW.

Section 38.5 Nuclear Fusion
38. Verify from Equations 38.9 that the proton–proton cycle yields 

net energy of 26.7 MeV.
39. In a magnetic-confinement fusion device with confinement time 

0.5 s, what density is required to meet the Lawson criterion for 
D-T fusion?

40. The National Ignition Facility’s 2013–2014 experiments achiev-
ing net fusion energy gain involved effective confinement times 
of about 150 ps. What corresponding density was required to 
meet the Lawson criterion for D-T fusion?

41. What confinement time is required for the D-T Lawson  criterion 
in the ITER fusion reactor, given its plasma density of 1019 
 particles per cubic meter?

problems
42. To what diameter would Earth have to collapse to be at nuclear 

density?
43. Find the energy needed to flip the spin state of a proton in Earth’s 

magnetic field, whose magnitude is about 30 μT.
44. An NMR spectrometer is described as a “300-MHz instrument,” 

meaning 3.00 *108 Hz is the frequency supplied to its transmitter 
coil to flip the spin states of bare protons. What’s the strength of 
its unperturbed magnetic field?

For thought and Discussion
 1. Why do nuclei contain neutrons?
 2. Why are there no stable nuclei for sufficiently high atomic 

 numbers?
 3. Why might future archaeologists have problems dating samples 

from the second half of the 20th century?
 4. Beta decay by positron emission is soon followed by a pair of 

511-keV gamma rays. Why?
 5. Why would it have been easier to make bombs fueled with 

 uranium-235 a few billion years ago?
 6. Why are iodine-131 and strontium-90 particularly dangerous 

 radioisotopes?
 7. Which model, liquid-drop or nuclear shell, does a better job 

 explaining (a) nuclear fission and (b) gamma-ray spectra?
 8. On an energy-release-per-unit-mass basis, by approximately 

what factor do nuclear reactions exceed chemical reactions?
 9. Explain and distinguish the roles of the control rods and 

 moderator in a nuclear reactor.
10. Why is a water-moderated reactor intrinsically safer in a  loss- 

 of-coolant accident than a graphite-moderated reactor?
11. Is 238U fissionable? Is it fissile? Explain the distinction.
12. Why are fission fragments necessarily radioactive?
13. Nuclear waste comprises fission products and transuranics. 

 Distinguish the two, including their implications for nuclear 
waste disposal.

14. What properties of fusion fuel require extreme values and thus 
present the greatest challenge to fusion energy technologies?

15. Explain the different approaches to the Lawson criterion taken 
by inertial-confinement and magnetic-confinement fusion 
schemes.

16. If you could extract all the deuterium from a gallon of  seawater 
and use it as fusion fuel, how much gasoline would it be 
 equivalent to in energy content?

exercises and problems

Exercises

Section 38.1 Elements, Isotopes, and Nuclear Structure
17. Three radon isotopes have 125, 134, and 136 neutrons. Write the 

symbol for each.
18. Write the symbol for the germanium isotope with 44 neutrons.
19. How do (a) the number of nucleons and (b) the nuclear charge 

compare in the two nuclei 35
17Cl and 35

19K?
20. Compare the radius of the proton (the A = 1 nucleus) with the 

Bohr radius of the hydrogen atom.
21. A uranium-235 nucleus splits into two roughly equal-size frag-

ments. Find their common radius.

Section 38.2 Radioactivity
22. How many half-lives will it take for the activity of a radioactive 

sample to diminish to 10% of its original level?
23. Copper-64 can decay by any of the three beta-decay processes. 

Write the equation for each decay.
24. Referring to Fig. 38.7, write equations describing the decays of 

(a) radon-222 and (b) lead-214.
25. A milk sample shows iodine-131 activity of 450 pCi/L. What’s its 

activity in Bq/L?

744 Chapter 38 Nuclear Physics

BIO

M38_WOLF4752_03_SE_C38.indd   744 18/06/15   1:33 PM



Exercises and Problems 745

59. Brachytherapy is a cancer treatment involving implantation of 
radioactive “seeds” at the tumor site. Iridium-192, often used for 
cancers of the head and neck, undergoes beta decay by electron 
capture with 74.2-day half-life. Inner-shell electrons drop to the 
orbital occupied by the captured electron, resulting in emission 
of gamma rays that kill surrounding tumor cells. What percent-
age of initial Ir-192 activity will remain one year after implant?

60. Today, uranium-235 comprises only 0.72% of natural uranium; 
essentially all the rest is U-238. Use the half-lives in Table 38.1 
to determine the percentage of uranium-235 when Earth formed 
about 4.5 billion years ago.

61. You’re a geologist assessing underground sites for nuclear waste 
storage. A ruling by the U.S. Environmental Protection Agency 
suggests that waste-storage facilities should be designed for a mil-
lion years of radiation protection. What fraction of  plutonium-239 
initially in nuclear waste would remain after that time?

62. Oxygen-15 1t1/2 = 2.0 min2 is produced in a hospital’s cyclo-
tron. What should the initial activity concentration be if it takes 
3.5 min to get the O-15 to a patient undergoing a PET scan re-
quiring 0.50 mCi/L of activity?

63. How much 235U would be needed to fuel the reactor of Exercise 37  
for 1 year? (Note: Your answer is an overestimate because fission 
of 239Pu also contributes to the power output.)

64. How much uranium-235 would be consumed in a fission bomb 
with a 25-kt explosive yield?

65. A neutron collides elastically head-on with a stationary deuteron 
in a reactor moderated by heavy water. How much of its kinetic 
energy is transferred to the deuteron? (Hint: Consult Chapter 9.)

66. A buildup of fission products “poisons” a reactor, dropping the 
multiplication factor to 0.992. How long will it take the reactor 
power to decrease by half, given a generation time of 0.10 s?

67. The total thermal power generated in a nuclear power reactor is 
1.5 GW. How much U-235 does it consume in a year?

68. New Hampshire’s Seabrook nuclear power plant produces elec-
trical energy at the rate of 1.2 GW and consumes 1311 kg of 
U-235 each year. Assuming the plant operates continuously, find 
(a) its thermal power output and (b) its efficiency.

69. In the dangerous situation of prompt criticality in a fission reactor, 
the generation time drops to 100 μs as prompt neutrons sustain the 
chain reaction. If a reactor goes prompt critical with k = 1.001, 
how long does it take for a 100-fold increase in reactor power?

70. How much heavy water (deuterium oxide, 2H2O or D2O) would 
be needed to fuel a 1000-MW D-D fusion power plant for 1 year?

71. The proton–proton cycle consumes four protons while producing 
27 MeV of energy. (a) At what rate must the Sun consume protons 
to produce its power output of 4 * 1026 W? (b) The present phase 
of the Sun’s life will end when it has consumed about 10% of its 
original protons. Estimate how long this phase will last, assuming 
the Sun’s 2 *1030@kg mass was initially 71% hydrogen.

72. You’re enthusiastic about fusion energy, and you want to con-
vince others of the enormous fuel resource represented by the 
0.015% of hydrogen nuclei that are actually deuterium. Using an 
average of 7.2 MeV per deuteron, you calculate the energy that 
would be released if all the deuterium in a gallon of seawater 
 underwent fusion, and you compare your result with the energy 
in a gallon of gasoline (see Appendix C). What do you find for 
the gasoline equivalent of a gallon of seawater?

73. In a further effort to convince others of the benefits of fusion en-
ergy, you use the data from Problem 72 to estimate how long the 
deuterium in the world’s oceans (average depth 3 km) could sup-
ply humanity’s energy needs at the current consumption rate of 
about 16 TW. You then compare this with the Sun’s remaining 
lifetime, about 5 billion years. What do you find?

45. Iron-56, with nuclear mass 55.9206 u, is among the most tightly 
bound nuclei. Find the binding energy per nucleon, and check 
your answer against Fig. 38.9.

46. Find the atomic mass of iridium-193, whose binding energy is 
7.94 MeV/nucleon.

47. As a geologist, you’re assessing the feasibility of determining the 
ages of Earth’s earliest rocks using radioactive dating. You estimate 
the number of half-lives that have passed for three different isotopes 
during Earth’s 4.5-billion-year lifetime, and from that you deter-
mine the number of atoms remaining today from 106 atoms present 
at Earth’s formation. The isotopes you consider are carbon-14, ura-
nium-238, and potassium-40. What are your estimates, and which 
isotopes do you conclude are suitable for radioactive dating?

48. You measure the activity of a radioactive sample at 2.4 MBq. 
Thirty minutes later, the activity level is 1.9 MBq. Find the mate-
rial’s half-life.

49. You’re a home inspector, and you find radon-222 activity of  
23 pCi/L in the air inside a house, well above the EPA’s “action” 
limit of 4 pCi/L. If radon infiltration were stopped but there were 
no significant ventilation, how long would it take for the radon 
activity to drop below the action limit?

50. Nitrogen-13 is a 9.97-min-half-life isotope used to “tag” ammo-
nia for PET scans, including quantification of myocardial infarc-
tion. Consider an intravenous injection incorporating 20.0 mCi of 
N-13. Plot a graph of N-13 activity versus time, with your verti-
cal axis logarithmic and your horizontal axis linear. Why is the 
graph a straight line? What’s the significance of its slope?

51. Thorium-232 is an a emitter with 14-billion-year half-life. 
 Radium-228 is a b- emitter with 5.75-year half-life. Actinium-228 
is a b- emitter with 6.13-hour half-life. (a) What’s the third daugh-
ter in the thorium-232 decay series? (b) Make a chart similar to 
Fig. 38.7 showing the first three decays in the thorium series.

52. How much cobalt-60 (t1/2 = 5.24 years) must be used to make a 
laboratory source whose activity will exceed 1 GBq for 2 years?

53. Archaeologists unearth a bone and find its carbon-14 content is 
34% of that in a living bone. How old is the archaeological find?

54. Show that the decay constant and half-life are related by 
t1/2 =  ln2/l ≃ 0.693/l.

55. The table below lists reported levels of iodine-131 contamination 
in milk in four countries affected by the 1986 Chernobyl acci-
dent, along with each country’s safety guideline. Given I-131’s 
half-life of 8.04 days, how long did each country have to wait for 
I-131 levels to decline to a level deemed safe by its standards?

Level (Bq/L)

Country reported Safety guideline

Poland 2000 1000

Austria 1500 370

Germany 1184 500

Romania 2900 185

56. How many atoms are in a radioactive sample with activity 12 Bq 
and half-life 15 days?

57. Analysis of a Moon rock shows that 82% of its initial K-40 has 
decayed to Ar-40, a process with a half-life of 1.2 *109 years. 
How old is the rock?

58. You’re assessing the safety of an airport bomb-detection system 
in which neutron activation of the stable nitrogen isotope 15

7N 
turns it into unstable 16

7N. The N-16 decays by beta emission with 
7.13-s half-life. How long after activation will the N-16 activity 
have dropped by a factor of 1 million?
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Show that the total number of fission events in n generations is 
N = 1kn + 1 - 12/1k - 12. (b) In a typical nuclear explosive, k is 
about 1.5 and the generation time is about 10 ns. Use the result 
from (a) to calculate the time for all the nuclei in a 10-kg mass 
235U to fission. Hint: Sum a series in part (a), and neglect 1 com-
pared with N in part (b).

Passage Problems
In 1972, a worker at a nuclear fuel plant in France found that  uranium 
from a mine in Oklo, in the African Republic of Gabon, had less 
U-235 than the normal 0.7%—a quantity known from meteorites and 
Moon rocks to be constant throughout the solar system. Further analy-
sis showed the presence of isotopes that would result from the decay 
of fission products. Scientists drew the remarkable conclusion that a 
natural nuclear fission reaction had occurred some 2  billion years ago, 
lasting for about 100,000 years. Water, mixing with rich uranium ore, 
provided the moderator that enabled the chain reaction. More signifi-
cantly, U-235’s 700-My half-life means that 2 billion years ago there 
was a higher abundance of U-235 in  natural uranium.

86. At the time of the Oklo fission reaction, the actual amount of 
U-235 present was
a. about the same as today.
b. about twice as much as today.
c. about four times as much as today.
d. about eight times as much as today.

87. Given U-238’s 4.5-billion-year half-life, the percentage of U-235 
in natural uranium 2 billion years ago was
a. about 1%.
b. about 4%.
c. about 10%.
d. nearly 100%.

88. The power output from fission at Oklo was 10 kW to 100 kW. 
If at some point that power had been sufficient to boil away the 
water at the reaction site, the chain reaction would have
a. ceased.
b. continued, but more slowly.
c. been unaffected.
d. sped up.

89. At the Oklo site today, you would expect to find measurable 
amounts of
a. strontium-90.
b. cesium-137.
c. plutonium-239.
d. none of the above.

answers to Chapter Questions

Answer to Chapter opening Question
Nuclear power supplies about 9% of the world’s total energy, and 
more than 11% of electrical energy.

Answers to Got It? Questions
 38.1  (a) Z = 6, N = 6; (b) Z = 8, N = 7; (c) Z = 26, N = 31;  

(d) Z = 94, N = 145
 38.2  (e)
 38.3  26

57Fe,  54
132Xe,  92

238U, 2
4He, 1

2H
 38.4  Energy is vastly more concentrated in nuclear fuels, which 

means far less nuclear fuel is mined and transported.
 38.5  (a)

74. The atomic masses of uranium-238 and thorium-234 are 
238.050784 u and 234.043593 u, respectively. Find the energy 
released in the alpha decay of U-238.

75. Bismuth-209 and chromium-54 combine to form a heavy nucleus 
plus a neutron. Identify the heavy nucleus.

76. It’s possible, but difficult, to realize alchemists’ dreams of syn-
thesizing gold. One approach bombards mercury-198 with neu-
trons to produce, for each neutron captured, a gold-197 nucleus 
and another particle. Write the equation for this reaction.

77. Nickel-65 beta decays by electron emission with decay constant 
l = 0.275 h-1. (a) Identify the daughter nucleus. (b) In a sam-
ple of initially pure Ni-65, find the time when there are twice as 
many daughter nuclei as parents.

78. The dominant naturally occurring radioisotopes in the typical hu-
man body include 16 mg of 40K and 16 ng of 14C. Using half-lives 
from Table 38.1, estimate the body’s natural radioactivity.

79. A laser-fusion fuel pellet has mass 1.0 mg and consists of equal 
parts (by mass) of deuterium and tritium. (a) If half the deuterons 
and an equal number of tritons participate in D-T fusion, how 
much energy is released? (b) At what rate must pellets be fused 
in a power plant with 3000-MW thermal power output? (c) What 
mass of fuel would be needed to run the plant for 1 year? Com-
pare your answer with the 3.6 *106 tons of coal needed to fuel a 
comparable coal-burning power plant.

80. Of the neutrons emitted in each fission event in a light-water re-
actor, an average of 0.6 neutron is absorbed by 238U, leading to 
the formation of 239Pu. (a) Assuming 200 MeV per fission, how 
much 239Pu forms each year in a 30%-efficient nuclear plant whose 
electric power output is 1.0 GW? (b) With careful design, a fission 
explosive can be made from 5 kg of 239Pu. How many potential 
bombs are produced each year in the power plant of part (a)?

81. A family member is about to have a brain scan using techne-
tium-99m, an excited isotope with 6.01-hour half-life. The 
hospital makes Tc-99m from the decay of molybdenum-99 
1t1/2 = 2.7 days2, then delivers it to the nuclear medicine depart-
ment. You’re told that the Tc-99m will arrive 90 minutes after 
production, and that there must be 10 mg of it. The technician 
says she will produce 12 mg of Tc-99m. Is that sufficient?

82. A mix of two isotopes, one of them from Table 38.1, is observed 
over a period of 15 days, and the total radioactivity is tabulated 
below. Determine a quantity that, when plotted against time, 
should yield one or more straight lines. Make your plot and use 
it to determine the half-lives of the isotopes. Identify the isotope 
from Table 38.1.

Time (days) 0 0.25 0.5 0.75 1.0

Activity (kBq) 200 103 54 29 17

Time (days) 1.3 5.0 10 15

Activity (kBq) 4.6 3.2 2.1 1.4

83. The probability that a radioactive nucleus will have lifetime t is 
the probability that it will survive from time 0 to time t multi-
plied by the probability that it will decay in the interval from t to 
t + dt. Use this to show that the average lifetime of a nucleus is 
equal to the inverse of the decay constant in Equation 38.3a.

84. Nucleus A decays into B with decay constant lA and B decays 
into a stable product C with decay constant lB. A pure sample 
starts with N0 nuclei A at t = 0. Find an expression for the total 
activity of the sample at time t.

85. (a) Example 38.6 explains that the number of fission events in 
a chain reaction increases by a factor k with each generation. 
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Molecules and 

Solids

38
Nuclear Physics

747

The past five chapters have extended the realm of physics to the scales of atoms and mole-
cules and then down to the atomic nucleus. Here we go further still, probing the structure 

of nucleons themselves and trying to make sense of the host of subatomic particles nature 
reveals. We’ll be asking questions about the ultimate nature of matter at the smallest scales, 
but in the process we’ll find a remarkable connection with questions of the largest scale—
questions about the origin and ultimate fate of the entire universe.

How You’ll Use It
■ This chapter covers the frontiers of 

physics. After you’ve completed your 
physics course, keep watching for 
news of new discoveries in particle 
physics, fundamental forces, and 
cosmology!

What You’re Learning
■ You’ll learn how particles mediate 

interactions in the quantum 
description of forces.

■ You’ll learn to evaluate conserved 
quantities in particle interactions.

■ You’ll be able to describe the 
standard model of particles and 
forces, including the role of the newly 
discovered Higgs boson.

■ You’ll learn that baryons (including 
the proton and neutron) aren’t 
fundamental particles but are 
composed of quarks.

■ You’ll get a glimpse of physicists’ 
current efforts to unify the 
fundamental forces.

■ You’ll learn the latest evidence for 
the Big Bang origin of the universe 
and the ongoing cosmic expansion, 
emphasizing especially the 
importance of the cosmic microwave 
background radiation.

■ You’ll be able to outline the overall 
history of the universe.

What You Know
■ You’re familiar with the concepts of 

energy and force.

■ You’ve studied gravity and 
electromagnetism, which you know 
are among the fundamental forces.

■ You’re familiar with the most common 
of the “elementary” particles, including 
the electron, the proton, and the 
neutron.

■ You’ve studied several conservation 
laws.

From Quarks to the Cosmos
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A Higgs boson decays to two photons in this image from the Large Hadron Collider. Discovery of the 
Higgs in 2012 completed physicists’ standard model of particles and fields. What role does the Higgs 
play in particle physics?
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39.1 Particles and Forces
By 1932 four “elementary” particles of matter were known: the electron, the proton, the 
neutron, and the neutrino. In addition, there were the positron, antiparticle to the electron, 
and the photon of electromagnetic radiation. There were also the seemingly fundamen-
tal forces—gravity, the electromagnetic force, the nuclear force, and the weak force that 
manifests itself in beta decay.

In Chapter 34 you saw how the interaction of electromagnetic waves with matter 
 ultimately involves individual photons—the quanta of the electromagnetic field. In the 
quantum- mechanical view of electromagnetism, the force between two charged particles 
also involves photons, now exchanged between the interacting particles. Imagine two 
 astronauts tossing a ball back and forth (Fig. 39.1a). Catching or throwing the ball, one as-
tronaut gains momentum in a direction away from the other, so the exchange results in a net 
average repulsive force. If the two astronauts struggle for possession of the ball, then the ball 
mediates what appears as an attractive interaction (Fig. 39.1b). Figure 39.1 gives classical 
analogs for the attractive and repulsive electrical interactions involving photon exchange.

You know that photons are emitted when a particle jumps into a lower energy state, 
with the photon carrying off energy equal to the energy difference between the two states. 
This process conserves energy. But now we’re saying that a single, free electron emits  
photons that it exchanges with another particle to produce what we call the electromag-
netic force. How can that process conserve energy? The energy–time uncertainty relation 
(Equation 34.16) says that an energy measured in a time ∆t is necessarily uncertain by an 
amount ∆E Ú U /∆t. The photon exchanged by two particles lasts only a short time, and 
therefore its energy is uncertain. So we can’t really say that energy conservation is  violated. 
A  photon created in this way and lasting for only the short time it takes to  exchange with 
another particle is called a virtual photon. We never “see” the virtual  photon, since it’s 
emitted by one particle and absorbed by the other.

The quantum theory of the electromagnetic interaction is called quantum 
 electrodynamics (QED). Although begun by Paul Dirac, it was brought to consistent form 
in 1948 by Richard Feynman, Sin-Itiro Tomonaga, and Julian Schwinger. The fundamental 
event in QED is the interaction of a photon with an electrically charged particle. Two such 
events joined by a common virtual photon give the quantum electrodynamical descrip-
tion of the electromagnetic force (Fig. 39.2). The predictions of quantum electrodynamics 
have been confirmed experimentally to a remarkably high precision, and today QED is our 
best-verified theory of physical reality.

Mesons
In 1935 the Japanese physicist Hideki Yukawa proposed that the nuclear force should, 
like the electromagnetic force, be mediated by exchange of a particle. Yukawa called his 
hypothetical particle a meson. Because the range of the nuclear force is limited, Yukawa 
argued, the meson should have nonzero mass. The reason for this connection between 
mass and range again lies in the energy–time uncertainty relation.

The electromagnetic force falls off as 1/r2 and thus has an infinite range. Two parti-
cles can be very far apart and still interact electromagnetically. Since photons travel at the 
finite speed of light, the time ∆t for a photon interaction can be arbitrarily long. The en-
ergy–time uncertainty relation ∆E ∆t Ú U thus shows that the energy uncertainty ∆E can 
be arbitrarily small. Thus, the possible energies for virtual photons must extend downward 
toward zero—and that can happen only if photons have zero rest energy.

The nuclear force, in contrast, has a finite range of about 1.5 fm. At close to the speed of 
light, the longest a particle mediating this force would need to exist is a time ∆t given by

∆t =
∆x
c

=
1.5 * 10-15 m

3.0 * 108 m/s
= 5.0 * 10-24 s

Then energy–time uncertainty gives

∆E Ú
U
∆t

=
1.05 * 10-34 J #s

5.0 * 10-24 s
= 2.1 * 10-11 J = 130 MeV

Figure 39.1 Analogs for particle-mediated 
forces: (a) repulsive and (b) attractive. The ball 
represents a photon.

(a)

(b)

Figure 39.2 A Feynman diagram, showing 
the interaction of two electrons through the 
exchange of a virtual photon. The diagram 
provides a quantum description of the elec-
trons’ Coulomb repulsion.

Virtual photon

T
im

e

e- e-

e- e-
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Yukawa therefore proposed a new particle with mass 130 MeV/c2, about 250 times that 
of the electron. Yukawa’s prediction was eventually confirmed—but not before physicists 
found yet another particle.

39.2 Particles and More Particles
In the 1930s the most available source of high-energy particles was cosmic radiation—
high-energy protons and other particles of extraterrestrial origin. In 1937 the American 
physicist Carl Anderson (who had earlier discovered the positron) and his colleagues iden-
tified in cosmic rays a particle with a mass 207 times that of the electron. Now called the 
muon, this particle had the same charge and spin as the electron and seemed to  behave 
much like a heavier version of the electron. Two muons were found: the negatively charged 
m- and its antiparticle m+. Although the muon mass was close to Yukawa’s prediction, the 
muon interacted only weakly with nuclei and, therefore, could not be the mediator of the 
nuclear force.

The real Yukawa particle was discovered 10 years later in 1947, again in cosmic rays, 
and turned out to have a mass about 270 times that of the electron. This time there were 
three related particles, now called pions: positive p+, negative p-, and neutral p0.

The new particles are all unstable, undergoing decays that ultimately result in 
 well-known stable particles. The negative pion, for example, decays with a mean lifetime 
of 26 ns to a negative muon and an antineutrino:

p- ¡ m- + n

The muon then decays with a 2.2@μs lifetime to an electron and a neutrino–antineutrino pair:

m- ¡ e- + n + n

APPLICATIon Particle Detection

Despite their small size, we can, remarkably, follow the trajectories of 
 individual subatomic particles. Early particle detectors included the cloud 
chamber and the bubble chamber, in which particles ionize vapor or liq-
uid, causing visible condensation or bubble formation along the particle 
tracks. More recent is the multiwire proportional chamber, in which criss-
crossed wire grids record current pulses from electrons liberated as particles 
pass through a gas-filled chamber (see the photo, which shows a multiwire 
chamber at the Stanford Linear Accelerator Center). Analyzing the pulse 
distribution then reveals particle trajectories. Applying a magnetic field in a 
particle detector curves the trajectories, enabling scientists to determine the 
particles’ charge-to-mass ratios. Scintillation detectors give off light flashes 
as  particles pass through them, and the flash intensity provides a measure of 
particle  energy. Calorimeters, consisting of layers of scintillators and energy-
absorbing material, analyze the showers of secondary particles produced by a 
single high-energy particle to determine the original particle’s energy. Modern 
detectors are huge agglomerations of several basic detector types, arranged to 
extract the maximum information from particle interactions. Computer analy-
sis of detector output allows the identification of events so rare they may occur 
only once in a million interactions.

Classifying Particles
The availability of increasingly powerful particle accelerators led to an upsurge in particle 
discoveries. By 1980 there were more than 100 “elementary” particles. Early attempts to 
classify particles distinguished them by mass, but a more enlightening approach is based 
on the fundamental forces. We’ll now use this approach to outline three particle classes.
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750 Chapter 39 From Quarks to the Cosmos

Leptons are particles that don’t experience the strong force. They include the familiar 
electron, the muon, a more massive particle called the tau, and three types of neutrinos, one 
associated with each of the charged leptons. The neutrinos were long thought to be mass-
less, but recent experiments show that neutrinos have small nonzero mass and that they 
“oscillate” among the three types. Each of the leptons has an antiparticle as well. There are 
thus a total of six lepton–antilepton pairs, and experimental evidence strongly suggests that 
no others can exist. The leptons all have spin 12 and are therefore fermions, which obey the 
Pauli exclusion principle. Leptons are believed to be true elementary point particles with 
zero size and no internal structure.

Hadrons are particles that do experience the strong force. They fall into two subclasses: 
mesons and baryons. Mesons have integer spin and are therefore bosons that don’t obey the 
exclusion principle. Mesons include Yukawa’s pions and a host of others; all are unstable. 
Baryons have half-integer spins and are therefore fermions. They include the familiar pro-
ton and neutron and similar but more massive particles. The baryons are grouped into pairs, 
triplets, and higher-multiple groupings of closely related particles. The neutron and proton, 
for example, form a pair that differ in charge and very slightly in mass. Each baryon has an 
antiparticle, as do most mesons, but some neutral mesons are their own antiparticles.

The third class of particles comprises the field particles or gauge bosons, quanta of the 
different force fields and “carriers” of those forces. These include the familiar photon for the 
electromagnetic force; three particles called the W+, W-, and Z for the weak force; the gluon 
for the strong force and a hypothetical graviton that would carry the gravitational force in an 
as yet incomplete theory of quantum gravity. All the field particles are bosons, carrying spin 1 
or, for the graviton, spin 2. You might think Yukawa’s meson should be in this category in its 
role as carrier of the nuclear force. That it doesn’t appear here is a hint that the nuclear force 
isn’t really fundamental; as we’ll soon see, it’s the gluon that plays the more fundamental role.

Table 39.1 lists some of the particles known even before full confirmation of today’s 
elementary particle theories.

Particle Properties and Conservation Laws
Many new particles can be characterized by known properties such as mass, spin, and 
electric charge. Of these, spin and charge are associated with important conservation 
laws—conservation of angular momentum and conservation of electric charge. Allowed 
interactions among particles must conserve these quantities. The annihilation of an elec-
tron–positron pair, for example, is allowed because the initial particles have no net charge 
and neither do the resulting photons. Similarly, beta decay of the neutron produces an 
electron, a proton, and a neutral antineutrino and thus conserves charge:

n ¡ p + e- + ve

Here the subscript on the antineutrino indicates that it’s an electron antineutrino, as 
 opposed to the muon or tau variety.

Other particle properties appear to be conserved as well. Associated with each baryon or anti-
baryon is its baryon number (B), assigned the value +1 for a baryon and -1 for an antibaryon. 
All experimental evidence to date points to conservation of baryon number: In all observed parti-
cle reactions, the sums of the baryon numbers before and after the reaction are equal. An example 
is, again, beta decay of the neutron: The process starts with a neutron of baryon number B = 1 
and ends with a proton 1B = 12, an electron, and an antineutrino. The last two are leptons, so 
their baryon numbers are zero, and thus baryon number is conserved. Some theories, which we 
describe shortly, suggest that baryon number is only approximately conserved. If that’s so, then 
the proton itself is an unstable particle with a mean lifetime in excess of 1035 years.

Lepton number seems also to be conserved. Again, beta decay provides an example: 
The neutron and proton, being baryons, have lepton number zero, while the resulting elec-
tron and antineutrino have lepton numbers +1 and -1, respectively.

In the late 1950s particles called K, Λ, Σ, and Ξ were discovered. Strange characteristics of 
these particles’ decays could be explained by introducing a new fundamental property, called 
strangeness (s), with the new particles having s = {1 or {2. Strangeness is conserved in 
strong and electromagnetic interactions, but in weak interactions its value can change. We’ll 
soon see that several other new properties are needed to characterize matter fully.
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Table 39.1 Selected Particles*

Category/Particle

Symbol 
(Particle/
Antiparticle) Spin Mass (MeV/c2) Baryon Number, B Lepton Number, L Strangeness, s Lifetime (s)

Field particles
Photon g, g 1 0 0 0 0 Stable

Z0 Z0, Z0 1 91,188 0 0 0 ∼10-25

Leptons
Electron e-, e+ 1

2
0.511 0 +1 0 Stable

Muon m-, m+ 1
2

105.7 0 +1 0 2.2 * 10-6

Tau t-, t+ 1
2

1777 0 +1 0 2.9 * 10-13

Electron neutrino ne, ne
1
2 63 * 10-6 0 +1 0 Stable

Muon neutrino nm, nm
1
2

60.19 0 +1 0 Stable

Tau neutrino nt, nt 1
2

618.2 0 +1 0 Stable

Hadrons
Mesons

Pion p+, p- 0 139.6 0 0 0 2.6 * 10-8

Pion p0, p0 0 135.0 0 0 0 8.4 * 10-17

Eta h0, h0 0 547.8 0 0 0 ∼5 * 10-19

Rho r0, r0 1 775.8 0 0 0 ∼4 * 10-24

Kaon K +, K - 0 493.7 0 0 1 1.2 * 10-8

Kaon K0, K0 0 497.6 0 0 1 0.895 * 10-10

5.18 * 10-8†

Baryons
Proton p, p 1

2
938.3 1 0 0 Stable

Neutron n, n 1
2

939.6 1 0 0 885.7

Lambda Λ0, Λ0 1
2

1115.7 1 0 -1 2.6 * 10-10

Sigma Σ+, Σ- 1
2

1189.4 1 0 -1 0.80 * 10-10

Sigma Σ0, Σ0 1
2

1192.6 1 0 -1 7.4 * 10-20

Sigma Σ-, Σ+ 1
2

1197.4 1 0 -1 1.5 * 10-10

Omega Ω-, Ω+ 3
2

1672.45 1 0 -3 0.82 * 10-10

*Does not include any hadrons with c, b, or t quarks.
†The neutral kaon exists as a quantum-mechanical superposition of states with two different lifetimes.

ConCePTUAL exAMPLe 39.1 Conservation Laws: evaluating a Particle Interaction
A pion collides with a proton to produce a neutral kaon and a lambda 
particle:

p- + p ¡ K0 + Λ0

(a) Which of the following are conserved: electric charge, baryon 
number, lepton number, strangeness? (b) Could another possible 
 result of a pion–proton collision be an electron and a proton?

EvaluatE (a) Table 39.1 shows that all the particles are hadrons, so 
the lepton number is zero on both sides of the equation. On the left 
we have a positive and a negative particle and on the right two neu-
trals, so the electric charge is zero on both sides. The pion is a meson 
and the proton a baryon, so the baryon number on the left is 1; simi-
larly, the kaon is a meson and the Λ0 a baryon, so the baryon number 
is conserved. Finally, neither pion nor proton is strange, so the total 
strangeness on the left is zero. Table 39.1 lists the K0 with s = +1 
and the Λ0 with s = -1, so strangeness, too, is conserved. (b) Having 
an electron and a proton as the final state would conserve charge (0),  

strangeness (0), and baryon number (1). But it wouldn’t conserve lep-
ton number, which was originally 0 but would become 1.

assEss This example shows how conservation laws restrict the 
 possible outcomes of particle interactions.

Making thE ConnECtion What minimum kinetic energy is 
 required for the pion and proton together in order for this reaction to 
occur?

EvaluatE Table 39.1 gives the rest masses of the pion as 
139.6 MeV/c2 and the proton as 938.3 MeV/c2; therefore, their rest 
energies mc2 are 139.6 MeV and 938.3 MeV, for a total of 1078 
MeV. But the tabulated masses of the K0 and Λ0 show that the 
sum of their rest energies is 1613 MeV, so we need an additional 
1613 - 1078 = 535 MeV of energy to drive the reaction. This is the 
minimum value for the initial kinetic energy—the sum of the pion and 
proton kinetic energies.
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Symmetries
Watch a physical process in a mirror, and you expect the image to be a possible physical 
process; that is, the laws of physics should exhibit symmetry with respect to mirror reflec-
tion. At the subatomic level, the statement that a process and its mirror image are equally 
likely is called conservation of parity. Mathematically, a system has parity +1 if its wave 
function is unchanged on reflection through the origin—that is, on a coordinate change 
x S -x, y S -y, z S -z. If the wave function changes sign, then the parity is -1. Parity 
is conserved if its value is unchanged in a particle interaction.

In 1957 theoretical physicists Tsung-dao Lee and Chen Ning Yang pointed out that 
parity conservation had not been tested for the weak force. They made the revolution-
ary suggestion that parity need not be conserved—tantamount to suggesting that nature 
can distinguish right- from left-handed systems that are otherwise identical. A group led 
by Chien-Shiung Wu took up the challenge. Wu studied the beta decay of cobalt-60 in a  
magnetic field that established a left–right symmetry. Her experiments showed a prefer-
ential beta emission  opposite the field direction—a clear violation of parity conservation 
(Fig. 39.3).

Although parity might not be conserved, theorists held that a combination of parity 
reversal (P) and charge conjugation (C)—changing particles into antiparticles—would re-
sult in indistinguishable physical behavior. But in 1964 a violation of this CP conservation 
was found in a rare decay of the neutral kaon to a pion–antipion pair. The Russian physi-
cist Andrei Sakharov suggested that this asymmetric decay might account for the prepon-
derance of matter over antimatter in today’s universe.

It still appears that CPT conservation holds; that is, a combination of mirror reflec-
tion, charge conjugation, and reversal of the time coordinate makes a new physical process 
indistinguishable from the original. There may be a deep philosophical connection here 
with the direction of time, but the full implications of CPT symmetry and the failure of its 
individual components aren’t fully understood.

39.3 Quarks and the Standard Model
The proliferation of particles distressed physicists used to finding an underlying 
 simplicity in nature. Were all those particles really “elementary,” or was there a more 
fundamental, simpler level? In 1961 physicists Murray Gell-Mann and Yuval Ne’eman 
independently noticed patterns in the then-known particles. They called their patterns 
the Eightfold Way, after Buddhist principles for right living. An empty spot in one pat-
tern led Gell-Mann to predict a new particle with strangeness -3. Experimentalists soon 
found the particle, now known as the Ω-, in bubble-chamber photographs from earlier 
experiments.

Quarks
Success of the Eightfold Way convinced physicists that many “elementary”  particles 
weren’t really elementary. In 1964 Gell-Mann and his colleague George Zweig 
 independently proposed a set of three particles called quarks that combined to form the 
 then-known hadrons. These became known as the up quark, the down quark, and the 
strange quark. For each there was a corresponding antiquark.

One surprising thing about quarks is that they carry fractional electric charges. The 
two least massive quarks, the up and the down, carry +2

3 e and -1
3 e, respectively; their 

 antiparticles have the opposite charges. The quarks combine in pairs or triplets to make the 
two classes of hadrons. Baryons, like the proton and the neutron, consist of three quarks 
(Fig. 39.4). Mesons contain quark–antiquark pairs (Fig. 39.5). The quarks all have spin 12, 
which explains why the three-quark baryons all have odd half-integer spin, and why the 
two-quark mesons have integer spin.

The Pauli exclusion principle precludes three particles having the same quantum 
 numbers, so there must be an additional property distinguishing quarks. Called color, 
this property is a kind of “charge”—not to be confused with electric charge—that can 

Figure 39.3 Experimental evidence for 
 nonconservation of parity. At left of the  mirror, 
a 60Co nucleus has its spin aligned with a 
 magnetic field. (a) Reflected in the mirror, 
the spin vector still points to the right, even 
though the magnetic field is reversed. If the 
mirror image were equally likely, beta emission 
(arrows) would occur with equal probability 
along and opposite the spin direction.  
(b) Experiment shows that beta emission 
 occurs preferentially opposite the spin 
 direction, so the mirror-image situation at the 
right in (b) does not occur.
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Figure 39.4 Protons and neutrons consist of the 
quark combinations uud and udd, respectively.
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take on any of three values called, whimsically, red, green, and blue. The force binding 
quarks of different colors is the strong force, and the quark theory is known as quantum 
 chromodynamics (QCD). In QCD, gluons are the field particles that play the role of 
photons in quantum electrodynamics, binding particles subject to the strong force. Parti-
cles formed from quarks—the mesons and the baryons—are always colorless. This is true 
of mesons because they contain a quark of one color and another of its anticolor. It’s true 
of baryons because they contain three quarks of different colors, which combine to give 
the baryon zero net color charge. The nuclear force, once thought to be fundamental, is 
actually a residual manifestation of the strong force, acting between the quarks in color-
less particles—in much the same way that the van der Waals force between neutral gas 
molecules is a “residue” of the stronger electric force among the particles that make up the 
molecules.

Photons mediate the electromagnetic force between charged particles but are them-
selves uncharged. In contrast, gluons, like the quarks they bind, carry color charge. 
There are eight different gluons; six carry combinations like red–antiblue 1RB2, green–
antired 1GR2, and so on; the other two are colorless. Exchange of a colored gluon, 
unlike photon exchange in quantum electrodynamics, thus changes the colors of the 
particles involved.

Another surprising aspect of quarks is that the strong force doesn’t decrease with sepa-
ration. For that reason it appears impossible to isolate a single quark (Fig. 39.6). As a 
result we never see individual free particles with fractional electric charge.

Figure 39.5 Mesons consist of a quark and an 
antiquark. The meson here is the p+, made 
from an up quark and a down antiquark.

du
2
3+ e 1

3+ e

Figure 39.6 Quark confinement in a meson consisting of a green quark G and its antiquark G.  
(a) Field lines represent the “color field” that joins the two. (b) The field remains confined as the 
quarks are moved apart, so the field strength stays essentially constant. (c) Pulling the quarks 
far apart builds up enough energy to create another quark–antiquark pair, rather than isolating 
individual parts.

GG

G G

(a) (b)

(c)

G G

GG

The up, down, and strange quarks soon proved insufficient to account for all the ob-
served particles. Theorist Sheldon Glashow argued for a fourth quark, called the charmed 
quark. Ten years later, following intensive searches, experimental teams at Brookhaven 
National Laboratory and the Stanford Linear Accelerator Center announced the discovery 
of a particle that implies the existence of the charmed quark. The charmed and strange 
quarks form a related pair, similar to the up/down quark pair.

There’s still one more quark pair. A 1977 experiment confirmed the existence of the 
bottom quark, and in 1995 Fermilab announced the discovery of the top quark. The 
more exotic quarks are more massive, and therefore, through mass–energy equivalence, 
it takes more energy to produce particles containing them. This need for higher energy 
is what drives the push for ever more powerful and expensive particle accelerators. (See 
 Application, p. 756.) Table 39.2 lists some properties of the six quarks.
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Table 39.2 Matter Particles of the Standard Model

Quark Name Symbol
Approximate  
Mass (MeV/c2)* Charge

Corresponding Leptons  
(Symbol, Mass in MeV/c2)

Down d 5.0 -1
3 e Electron 1e, 0.5112, electron 

neutrino 1ne2
Up u 2.4 +2

3 e

Strange s 100 -1
3 e Muon 1m, 1062,  

muon neutrino 1nm2
Charmed c 1300 +2

3 e

Bottom b 4200 -1
3 e Tau 1t, 17772, tau neutrino 1nt2

Top t 1.75 * 105 +2
3 e

*Quark masses cannot be measured directly and are not precisely determinable; rather, they are 
calculated based on both experimental results and a particular theoretical framework.

exAMPLe 39.1  Quarks: Particle Composition and Properties
Given that the strange quark has strangeness s = -1, find the 
charge and strangeness of the Λ0 particle, which has quark compo-
sition uds.

intErprEt We’re asked to find how the charge and strangeness of 
three individual quarks combine in a composite particle, the Λ0.

DEvElop Our plan is to sum the values of the quark’s charge and 
strangeness to get the parameters of the Λ0.

EvaluatE Table 39.2 gives the charges of the u, d, and s quarks as 
+2

3 e, -1
3 e, and -1

3 e, respectively. These sum to zero net charge, so 
the Λ0 is electrically neutral. The up and down quarks aren’t strange, 
so they have s = 0. With s = -1 for the strange quark, the Λ0 must 
have strangeness -1.

assEss Table 39.1 shows we’re right about the strangeness of the 
Λ0, and its superscript 0 implies that this is a neutral particle, as we’ve 
found. ■

The Standard Model
We now have six flavors of quarks—up, down, strange, charmed, top, bottom—that seem 
to be truly elementary constituents of matter. Quarks join to form the hadrons—baryons 
and mesons. But other particles—namely, leptons and field particles—aren’t made from 
quarks. They, like quarks, seem to be truly indivisible, elementary particles.

In this “zoo” of elementary particles, physicists recognize three distinct “families.” 
The up and the down quarks make the neutron and proton; together with the electron and 
its  related neutrino, they account for the properties of ordinary matter. A second fam-
ily  consists of the strange and charmed quarks, the electron-like muon, and the muon 
 neutrino. The quarks of this family are more massive than the up and down quarks, and the 
muon is more massive than the electron. More massive still are the particles of the third 
family, consisting of the top and bottom quarks, the electron-like tau particle, and the tau 
neutrino. Table 39.2 lists these three families, from which all known matter is constructed.

You may be expecting that future editions of this book will tell of additional quarks, and 
thus of additional families of matter. Whether such additional families exist was an open 
question until physicists at the Large Electron Positron Collider in Geneva, Switzerland, 
examined more than half a million particle-decay events and concluded that the number of 
different types of neutrinos that can exist is 2.99 { 0.06—at least for low-mass neutrinos 
like those we’ve so far detected. Since there’s presumably a neutrino type for each family, 
this result seems to preclude the existence of additional families.

The theory that currently describes elementary particles and their interactions is called 
the standard model. In addition to the matter particles listed in Table 39.2, the standard 
model includes the gauge bosons responsible for particle interactions. Table 39.3 shows 
these bosons, which include the photons that mediate the electromagnetic interaction, the 
gluons of the strong force, the W and Z particles that mediate the weak force, and the 
Higgs boson—a particle first proposed in 1964 but not discovered until 2012. Interaction 
of elementary matter particles—quarks and leptons—with the Higgs and its associated 
field is believed to be responsible for the masses of these particles. The Higgs mechanism, 
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however, makes only a small contribution to the masses of composite particles like bary-
ons, whose mass is largely associated with virtual quarks and gluons.

The standard model is successful in explaining the phenomena of particle physics, but 
it leaves many fundamental questions unanswered. Why, for example, do the quarks and 
leptons have the particular masses they do? Why are there only three families of elemen-
tary particles? Why are leptons and quarks distinct? Are these particles really elementary, 
or are there even smaller structures at hitherto unexplored scales? Continuing theoretical 
work and experiments at ever-higher energies may someday answer these questions.

39.4 Unification
We introduced the fundamental forces of nature in Chapter 4: gravity, the electroweak 
force, and the strong force. It was not always that simple, though. In Chapters 20–29 we 
studied the electric and magnetic forces, first separately but then with the realization that 
they fall under the single umbrella of electromagnetism. The unification of electricity and 
magnetism was a major step forward in our understanding of physical reality. Physicists 
continue to strive for further unification, with the ultimate hope that someday all the forces 
will be understood as a manifestation of a single common interaction.

electroweak Unification
In the 1960s and early 1970s, a century after Maxwell formalized the unification of 
 electromagnetism, physicists Steven Weinberg, Abdus Salam, and Sheldon Glashow 
 proposed that the electromagnetic force and the weak force are really aspects of the same 
thing. Their theory predicted the existence of the particles W+, Z0, and W-, the “carri-
ers” of the unified electroweak force. In 1983 a huge international consortium headed by 
Carlo Rubbia discovered the W and Z particles (Fig. 39.7), using advances in accelerator 
technology developed by Simon van der Meer. That discovery confirmed the electroweak 
unification, and Rubbia and van der Meer joined a long list of physicists who had won the 
Nobel Prize for contributions to our understanding of the structure of matter.

Further Unification
Electroweak unification led to the present situation in physics, with the strong force, the 
electroweak force, and gravity comprising the fundamental forces that describe all interac-
tions of matter. A further step, the grand unification theories (GUTs), attempts to merge 
the electroweak and strong forces. Some versions of GUT predict that the proton should de-
cay on the very long timescale of some 1036 years. We can’t wait that long, but we can put 
1034 protons together in the form of tens of thousands of tons of water and watch for proton 
decay (Fig. 39.8). So far, such experiments have not found the predicted decays. Neverthe-
less, many physicists believe that some form of grand unification will soon be achieved.

Table 39.3 Field Particles and Forces

Particle Mass (GeV/c2) electric and Color Charges* Force Mediated range
Approximate Strength at 1 fm 
(relative to Strong Force)

Graviton 0 0, 0 Gravity Infinite 10-38

W{ 80.2 {1, 0 Weak 62.4 *10-18 m 10-13

Z0 91.2 0, 0

Photon, g 0 0, 0 Electromagnetic Infinite 10-2

Gluon, g  
(8 varieties)

0 0, 6 color–anticolor 
combinations,  
2 colorless Strong Infinite† 1

Higgs boson, H0 126 0, 0 Interaction with the Higgs field gives quarks and leptons their mass.

*Color is a quark property analogous to, but more complicated than, electric charge.
†The nuclear force is the residual strong force between colorless particles and has a range of about 1 fm 110-15 m2.

Figure 39.7 Particle tracks from the decay of  
a Z particle help confirm electroweak unifica-
tion.

Figure 39.8 Japan’s Super Kamiokande 
 experiment consists of 50,000 tons of 
pure  water in an underground chamber, 
 surrounded by some 10,000 photomultiplier 
tubes to detect flashes from rare nuclear 
reactions including neutrino interactions and 
hypothetical proton decays.
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Even grand unification would still leave two forces, one of them gravity. Attempts 
to reconcile our current theory of gravity—Einstein’s general theory of relativity—with 
quantum mechanics have so far made little progress. Yet such a reconciliation is a neces-
sary prerequisite for a final unification of all known forces. A possible candidate is string 
theory, which pictures elementary particles as vibration modes on stringlike structures 
that may be as short as 10-35 m (Fig. 39.9). String theory is set not in the four-dimensional 
spacetime to which we’re accustomed, but in a spacetime with 10 or more dimensions. 
The extra dimensions are “compactified” in a way that makes them undetectable in normal 
interactions. To some physicists, string theories hold the promise of a “theory of every-
thing,” explaining all our observations about the behavior of the universe. To others they’re 
another in a long line of unsuccessful attempts at a comprehensive explanation of physical 
phenomena. Only further research will tell.

Symmetry Breaking
Unification theories predict that phenomena that appear distinct under normal conditions 
will be seen as one at sufficiently high energies. The observed unification represents a kind 
of symmetry that’s “broken” as the energy level drops. Figure 39.10 shows a  mechanical 
analogy for such symmetry breaking. With high energy, a ball sits atop a potential “hill,” 
and the situation is symmetric. But when the ball drops to a low-energy state, it ends up at 
a particular angular position, and the symmetry is broken. Analogously, at energies above 
100 GeV, what we call the electromagnetic and weak forces are one and the same. But at 
lower energies the symmetry is broken, and we see two distinct forces. Particle accelera-
tors now being planned will exceed the energy of electroweak symmetry breaking, allow-
ing us to explore that interaction in its fundamental simplicity. But the energy at which 
symmetry breaking occurs increases to some 1015 GeV as we move from electroweak 
to grand unification, making it unlikely that we’ll achieve that energy in the foreseeable 
 future. And the energy at which gravity, too, would join a single unified force is an even 
more remote 1019 GeV.

Figure 39.9 (a) A particle decay involving point 
particles in the standard model. (b) A similar 
decay in string theory. Note that there’s no 
single point in spacetime at which the decay 
takes place. (a) (b)

Figure 39.10 A mechanical analogy for 
 symmetry breaking, showing a ball subject to 
a hat-shaped potential-energy curve.

The ball sits atop a 
potential hill;  the
situation is symmetric.

When the ball drops
to a low-energy state, 
it ends up in a 
particular location.
Now the symmetry
is broken.

APPLICATIon Particle Accelerators

Most particles are more massive than the proton, and some, like the weak-
force mediators W{ and Z, are extremely massive. Since the more massive 
particles are all unstable, discovering them involves first creating them—and 
that requires energy of at least mc2, with m the particle mass. That energy re-
quirement, along with the hint of new phenomena such as force unification, 
drives particle physicists’ seemingly insatiable desire for particle accelerators 
of ever-higher energies.

The earliest accelerators were electrostatic devices that established large 
potential differences between conducting electrodes, and they used the asso-
ciated electric field to accelerate charged particles. But such accelerators are 
limited to maximum energies of about 20 MeV because of the difficulties of 
handling high voltages. We saw in Chapter 26 how this problem is cleverly 
circumvented in the cyclotron, an accelerator that uses a magnetic field to keep 
particles in circular orbits so they can gain energy on each orbit from a modest 
electric field. But cyclotrons work for only nonrelativistic particles, for which 

the cyclotron frequency is independent of particle energy. Today’s high-energy 
experiments call for ultrarelativistic particles, whose speeds differ only mi-
nutely from the speed of light. As a result, today’s accelerators are primarily 
variations on the synchrotron, a device in which the magnetic field increases 
with the particle energy to maintain particles in a circular orbit of fixed radius. 
An alternative to the synchrotron is the linear accelerator, the largest of which 
is the 3-km-long Stanford Linear Accelerator (which was shown in Fig. 33.9).

A head-on collision between two cars is much more damaging than a colli-
sion of a moving car with a stationary one, since in the former case all the en-
ergy goes into damaging the cars while in the latter a great deal of energy goes 
into accelerating the initially stationary “target” car. For the same reason head-
on collisions of high-energy particles make much more energy available for 
the creation of new particles. As a result, most of the highest-energy accelera-
tors today are colliders, with particle beams accelerated in opposite directions 
and brought to collide inside elaborate detectors. The largest accelerator today 
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39.5 The evolving Universe
We come at the end to the broadest possible questions about physical reality: How did 
the universe begin? What is its overall structure? What will its future bring? Remarkably, 
these cosmological questions are closely linked with the questions of particle physics. 
Even more remarkably, we now have precise, quantitative answers to these and other ques-
tions that once seemed highly speculative.

expansion of the Universe
Early in the 20th century, astronomers argued about the nature of certain fuzzy patches 
visible in telescope photographs. Many thought they were gas clouds scattered among 
the visible stars, but others made a more radical proposal: that some of these “nebulae” 
were gravitationally bound systems containing billions of stars and that they were almost 
 inconceivably distant.

In the 1920s, the opening of the 2.5-m telescope at California’s Mt. Wilson  Observatory 
finally resolved the issue. There, astronomer Edwin Hubble proved that some nebulae 
were indeed distant galaxies like our own Milky Way, each containing billions of stars. 
 Today cosmologists think of galaxies as individual “point particles” whose distribution 
traces the overall structure of the universe.

Hubble continued to study the galaxies throughout the 1920s, and by analyzing their 
spectra he made a remarkable discovery: Spectral lines from distant galaxies were shifted 
toward the red, with the amount of shift dependent on the distance to the galaxies. The most 
reasonable explanation was a redshift caused by the Doppler effect (see  Section 14.8). 
Then the implication of Hubble’s work is that the distant galaxies are receding from us at 
speeds proportional to their distances. This result is known as Hubble’s law:

 v = H0 

d (39.1)

where v is the recession speed, d the distance, and H0 the Hubble constant, whose value 
is now known to be very nearly 20.8 kilometers per second per million light years of dis-
tance. Astronomers now use the Hubble relation to find the distances to remote galaxies, 
measuring their redshifts and using Equation 39.1 to infer their distances. Although the 
Hubble relation is written in terms of velocity, a more sophisticated view describes the 
Hubble expansion not as galactic motion but as a stretching of space itself—a process that 
also stretches light waves, giving the observed wavelength increase.

It may sound like Hubble’s law puts us right in the center of things, in grotesque vi-
olation of modern science’s view that Earth and its inhabitants don’t occupy a favored 

Aerial view showing the location of the 4.3-km-diameter Large Hadron 
 Collider on the Swiss–French border. The accelerator itself is in a tunnel 
50 m–175 m below ground. The device accelerates protons to 14 TeV. The 
smaller ring accelerates the protons to 450 GeV before they’re injected into 
the main accelerator.

is the Large Hadron Collider (LHC) at CERN, the European Laboratory for 
Particle Physics, at Geneva, Switzerland. With a 27-km circumference, LHC 
collides proton beams at energies up to 28 TeV. Both LHC and the Relativistic 
Heavy Ion Collider at Brookhaven National Laboratory in the United States 
create conditions that existed when the universe was only 10-12 s old; more on 
this in the next section.
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 position in the universe. But actually the inhabitants of any other galaxy would observe the 
same thing: All the distant galaxies would be receding from them at speeds proportional 
to their distances. As long as the universe is infinite in extent, none can claim to be at the 
center. And if it’s not infinite, then Einstein’s general theory of relativity gives it a closed-
curve shape that still has no center.

Extrapolating Hubble’s law backward in time suggests there was a time when all the 
galaxies were together. This implies that the universe had a definite beginning, in the form 
of a colossal explosion that flung matter into an expansion that continues today. Based on 
additional evidence that we’ll describe shortly, scientists are quite certain that the universe 
began with such a Big Bang. Some of that evidence comes from the Hubble Space Tel-
escope, named to honor Hubble’s pioneering studies (Fig. 39.11).

Figure 39.11 A portion of the Hubble Deep 
Field, a Hubble Space Telescope image 
 showing distant galaxies whose redshifts 
 provide information about cosmic expansion.

exAMPLe 39.2 Hubble’s Law: Calculating the Age of the Universe
Using H0 = 20.8 km/s/Mly and assuming the expansion rate has been 
constant, find out how long the universe has been expanding.

intErprEt We’re given the Hubble constant H0 and asked to extrap-
olate back to the time when all the galaxies were together.

DEvElop If a galaxy has been moving with constant speed for time 
t, then its distance from us today is d = vt. But Hubble’s law gives its 
speed in terms of distance: v = H0 

d. So our plan is to substitute H0 

d 
for v and solve for the time t.

EvaluatE We have t = d/v = d/H0d = 1/H0.To evaluate this ex-
pression we need to convert from the mixed units used for the Hubble 
constant:

t =
1

H0
=

1

120.8 km/s/Mly2/33.00 * 1051km/s2/1ly/y24 = 14.4 Gy

assEss Our calculation shows that the universe is about 14 billion 
years old—on the assumption that the expansion rate hasn’t changed. 
We’ll soon see that this assumption isn’t quite correct, but our result re-
mains a good estimate for the age of the universe (the actual number is 
close to 13.8 Gy). Note that we used c = 3.00 * 105 km/s in converting 
from km/s to ly/y so our answer would come out in years. ■

The Cosmic Background Radiation
In 1965 Arno Penzias and Robert Wilson at Bell Laboratories found a faint “noise” of 
microwave radiation in a satellite communications antenna they were testing. The noise 
seemed to come from all directions in the sky. Theorists at Princeton identified Penzias 
and Wilson’s “noise” as radiation dating to a much earlier era in the universe. This cosmic 
microwave background radiation is the strongest evidence yet for the Big Bang.

The Big Bang theory suggests that the universe started very hot and then cooled as it 
expanded, doing work against its own gravitation. At first it was so hot that any atoms that 
formed would be dashed apart by collisions at the high thermal energy prevailing. Thus, 
in its early times the universe was populated by individual charged particles. These inter-
acted readily with electromagnetic radiation, making the universe opaque. But by 380,000 
years the temperature had dropped to some 3000 K, and at that point atoms of hydrogen 
and helium could form. Since neutral atoms interact much more weakly with electromag-
netic radiation, the universe became transparent, and photons emitted as the atoms formed 
could travel throughout the universe with little chance of being subsequently absorbed. 
Those photons became the cosmic background radiation, permeating the entire universe.

Measurements of the cosmic microwave background show a near-perfect fit to a 2.7-K 
blackbody spectrum (Fig. 39.12). Applying the “stretching of space” interpretation of 
the Hubble expansion shows that the universe has expanded about 1000-fold since the 
 background radiation formed, dropping the temperature from 3000 K to about 3 K, and 
stretching the radiation’s wavelength by the same factor. That’s why radiation that initially 
had μm wavelengths now peaks in the microwave region with mm wavelengths. Thus 
the cosmic microwave background is a direct reflection of the conditions when it formed 
380,000 years after the universe began.

The cosmic microwave background (CMB) is remarkably uniform, but not perfectly so. 
Tiny spatial variations in the effective temperature of the radiation (about one part in 105;  

Figure 39.12 Spectrum of the cosmic 
 microwave background matches perfectly that 
of a blackbody at 2.726 K.
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see Fig. 39.13) provide a wealth of information about the early universe and confirm not 
only the universe’s Big Bang origin but also many precise details of its composition and 
evolution. A look at Fig. 39.13 shows that fluctuations in the CMB temperature occur on 
a variety of angular scales, with a scale on the order of about 1° being most prominent. 
These variations resulted, ultimately, from quantum fluctuations in the primordial den-
sity. Those fluctuations led, in turn, to oscillations driven by a combination of gravity and 
pressure, resulting in sound waves that propagated through the early universe. The sound 
waves were “frozen” at the time of formation of the cosmic background, when radiation 
and matter effectively decoupled. As a result, a spectrum of the size scales of the CMB 
fluctuations carries a wealth of information about the early universe.

Figure 39.14 is such a spectrum. On the horizontal axis is the angular scale of CMB 
fluctuations, and on the vertical axis is the “power” at each scale—roughly, the strength of 
the fluctuations at that scale. A smooth curve represents the theoretical prediction of our 
current cosmological theory, with a number of cosmological parameters adjusted for a best 
fit to the data. That the data points lie precisely on the curve is a strong indication that the 
theory is correct, and the fitting provides precise values for cosmological parameters, such 
as the Hubble constant introduced in Equation 39.1.

Figure 39.13, from which the data in Fig. 39.14 are derived, reveals only angular sizes 
of the CMB fluctuations. But the physics of sound waves gives the corresponding physical 
sizes. Comparing physical and angular sizes then reveals the geometry of the universe—
which, as you saw in Section 33.9’s brief introduction to general relativity, is associated 
with gravity. In particular, the location of the prominent peak in Fig. 39.14 at just under 1° 
scale shows that the universe is flat overall—that is, Euclidean geometry governs the over-
all universe, despite deviations in the curved spacetime near massive objects. The second 
peak in Fig. 39.14 is related to the density of baryons in the early universe, and the third 
peak is associated with all forms of nonrelativistic matter—all particles with velocities 
substantially less than c. All in all, data like those shown in Fig. 39.14 have taken cosmol-
ogy from an inexact science to a precise description of the overall universe and its history, 
with many of its characteristic parameters now measured to several significant figures.

Figure 39.13 All-sky map of the cosmic 
 microwave background shows minute 
spatial variations in the radiation intensity 
and  therefore in the associated temperature. 
The image spans the entire sky—360°—and 
thus the most prominent fluctuations are on 
 angular scales of around 1°. This image was 
made with the European Space Agency’s 
Planck spacecraft.
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Figure 39.14 Spectrum of the angular scales of fluctuations in the cosmic 
 microwave background. Points are data from the Planck spacecraft, and 
the smooth curve is a theoretical fit. Note the error bars, which are tiny 
except at very large angular scales. These data yield values of cosmological 
parameters to several significant figures.

The earliest Times
The cosmic microwave background shows us the universe as it was some 380,000 years 
after the Big Bang. Nuclear physics takes us back even further, to the time from about  
1 second to 30 minutes when the lightest nuclei were forming. The first composite nuclei 
were the simplest: deuterium, consisting of a proton and a neutron. The rate of deuterium 
formation is critically sensitive to the expansion rate of the universe. Measurements of 
deuterium abundance, based on spectral lines from interstellar deuterium, therefore pro-
vide direct evidence for conditions early in the Big Bang.

Evidence for still earlier times comes from particle physics, which predicts the interac-
tions and particle populations under the hot, high-energy conditions that existed a fraction 
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of a second after the Big Bang. In 2005, experiments using the Relativistic Heavy Ion 
Collider (RHIC) at Brookhaven National Laboratory produced a so-called quark–gluon 
plasma similar to the state of the universe just microseconds after the Big Bang. Thus 
RHIC and other high-energy particle accelerators can act as “time machines,” allowing us 
to study conditions that prevailed in the very early universe. Figure 39.15 summarizes our 
understanding of the universe’s evolution, showing that the phenomena of particle physics 
and unification are inextricably tied with cosmic expansion.

Figure 39.15 Evolution of the universe from the earliest times to the present. Note the highly logarithmic scales.
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The Inflationary Universe
The original Big Bang theory had difficulty explaining several features of the observed 
universe. Why, for example, does the universe seem homogeneous and in thermodynamic 
equilibrium on the largest scales, when the most distant regions are so far apart that light 
could not have traveled between them in the time since the beginning? And why is the 
overall geometry of the universe flat, as evidenced in Fig. 39.14, when general relativity 
allows for curved space?

The solution to these conundrums is inflation, an idea first advanced by Alan Guth of 
MIT. Guth’s theory holds that the universe underwent a period of exponential expansion 
beginning at about 10-35 s and lasting until about 10-32 s (Fig. 39.16). The expansion was 
the result of a delay in the symmetry breaking that made the fundamental forces appear 
distinct. Because of the tremendous expansion, now-distant locations would once have 
been close enough to reach the thermodynamic equilibrium that we now observe. Further-
more, the inflationary expansion would “flatten out” any overall curvature, giving us the 
flat universe we see today.

It might seem impossible to find observational evidence for an event that happened 
only 10-35 s into the history of the universe, but, remarkably, inflation would have left a 
“fingerprint” in the form of gravitational waves—“ripples” in spacetime whose existence 
(see Section 33.9) is predicted by general relativity. Those waves would have imposed 
a characteristic pattern on the polarization of the cosmic microwave background. Such 
polarization was tentatively detected in 2014, using the microwave telescope BICEP2 
(for Background Imaging of Cosmic Extragalactic Polarization) at the South Pole. If con-
firmed, these results will provide direct evidence for inflation in the early universe.

Dark Matter, Dark energy, and the Future of the Universe
Will the universe expand forever, or will the expansion eventually stop and reverse? That’s 
like asking whether a spacecraft will escape Earth forever or ultimately return, and the 
answer is the same: If the system’s kinetic energy exceeds the magnitude of its (negative) 

Figure 39.16 Expansion of the universe in Big 
Bang theories, both with and without inflation. 
The scale factor R measures the amount of 
expansion.
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potential energy, then expansion will proceed forever. Thus a single parameter— designated 
Ω (capital Greek omega)—determines the fate of the universe:

Ω =
� potential energy of the universe �

kinetic energy of the universe

where Ω 7 1 implies eventual collapse, and Ω 6 1 means continued expansion. An alternative 
way of expressing the same dichotomy is in terms of the average density. A simple Newtonian 
calculation based on kinetic and gravitational potential energies of particles in an expanding uni-
verse gives Ω in terms of the average density r and the Hubble constant: Ω = 8pGr/3H0

2— 
a result that turns out to be identical to the correct general relativistic calculation. Setting Ω = 1 
gives the critical density that divides eternal expansion from eventual collapse:

 rc =
3H0

2

8pG
  1critical density2 (39.2)

Analysis of the cosmic microwave background fluctuations strongly suggests that 
the actual universe is at the critical density, with Ω = 1. But when we total the  visible 
matter in the universe, we come up with far less than the critical density. Elementary 
 particle theories corroborate this observational result, suggesting that there can be only 
enough  ordinary matter—protons, neutrons, nuclei, and atoms—to make up about 4% of 
the  critical density. Furthermore, the motions of stars in galaxies and of galaxies in clus-
ters suggest the presence of a great deal more mass than is visible. All this implies the 
 existence of dark matter whose composition is unknown and which can’t be the sort of 
matter—made mostly from quarks—with which we’re familiar.

Another approach to the cosmic density is to study the most distant galaxies, whose light 
has taken so long to reach us that we’re seeing them as they were in the early  universe. One 
might expect that cosmic expansion was faster in earlier times, and slowed as the galaxies 
did work against their mutual gravitational attraction. Comparing the recession speeds of 
ancient, distant galaxies with the speeds of nearer ones should then give the rate of cosmic 
deceleration—which, in turn, should depend on cosmic density. But observations in 1998 
gave a surprising and unexpected result: The cosmic expansion is actually accelerating!

Cosmic acceleration implies a kind of “antigravity” operating on the largest scales. Ironi-
cally, Einstein had proposed just such a phenomenon in his original formulation of general 
relativity. Einstein needed this cosmological constant in his theory in order to keep the 
universe static—which, in 1916, astronomers thought it was. When Hubble then showed 
that the universe is expanding, Einstein dropped the cosmological constant and called it “the 
greatest blunder of my life.” Now it appears that Einstein had the right idea in the first place.

The source of the cosmic acceleration is dark energy, which may be just another name 
for Einstein’s cosmological constant or may be a different phenomenon with the same 
“ antigravity” effect. At this point we don’t know quite what it is. But we do know how 
much of it there is: Dark energy is fully 69% of the “stuff” that makes up our universe. 
Another 26% is dark matter. That means only 5% of the universe is in the form of familiar 
matter made from baryons and thus ultimately from quarks (Fig. 39.17). These numbers 
come from a confluence of recent observations of the cosmic microwave background, dis-
tant supernovae, and surveys of distant galaxies; together, they tightly constrain the relative 
amounts of matter and dark energy. Here, at the end of a long physics course, it’s sobering 
to realize that much of our universe consists of “stuff” about which we know so very little!

Understanding the Universe
With this chapter’s brief survey, we’ve reached the limits of present understanding of the 
universe. On the way we’ve seen that particle physics and cosmology are inextricably 
linked. To understand our universe, we need to understand all its aspects from the largest 
to the smallest—and that means understanding all the forces, from gravity to the weak 
force; all the physical laws, from Newton’s and Maxwell’s to the laws of quantum me-
chanics; and the nature of the elementary particles. In this text we’ve touched on all these 
topics, and we hope we’ve given you a foundation for further understanding and apprecia-
tion of the richness and diversity of the physical universe.

Figure 39.17 Composition of the universe, 
from the Planck spacecraft supplemented with 
additional data. Only a tiny fraction (colored 
wedge) is “stuff” we understand!
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The big idea here is that the structure of ordinary matter and its interactions can be explained in terms of a handful of particles: quarks, which make 
up the familiar proton and neutron and a host of other hadrons; leptons, including the familiar electrons and elusive neutrinos; and gauge  bosons, 
which mediate the fundamental forces and include the photon for the electromagnetic force. The standard model describes these elementary par-
ticles and their interactions; it sheds light not only on the structure of matter we see today but on the early universe as well. But there’s a humbling 
caveat: Only about 5% of the universe consists of familiar matter. The rest is dark energy and dark matter, about which we know very little.

Chapter 39 Summary
Big Idea

Key Concepts and equations

Quarks, which come in six flavors and three colors, join in threes to form baryons, including protons and neutrons, and in twos to form mesons. 
Quarks carry fractional electric charges, but because the strong force between quarks doesn’t decrease with distance, it appears impossible to have 
an isolated quark.
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Leptons are the other class of elementary matter particles, and include the electron and its more massive cousins, the muon and tau, and the three 
types of neutrinos.

The three fundamental forces—strong, electroweak, and 
 gravity—are believed to be manifestations of the same funda-
mental interactions that appear unified at high enough energies.

At typical energies in today’s universe, though, the elec-
troweak force separates into the electromagnetic and weak 
forces. The forces differ greatly in strength:

Force relative strength at 1 fm (approximate)

Gravity 10-38

Weak 10-13

Electromagnetic 10-2

Strong 1

Exchange of gauge bosons explains the forces between particles.

gauge Bosons

Electromagnetic force: photon

Weak force: W{, Z0

Strong force: gluon (8 varieties)

Gravity: graviton

Virtual photon
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Applications

Our knowledge of particles and their interac-
tions, combined with general relativity and 
with observations of the Hubble expansion 
and the cosmic microwave background 
radiation, gives us a picture of the origin 
and structure of the universe. The universe 
began some 14 billion years ago in a hot Big 
Bang. The simplest nuclei formed within the 
first half-hour, and the first atoms at about 
380,000 years; at that point the universe be-
came transparent and the cosmic microwave 
background formed. We’ve learned recently 
that the universe is overall flat and that its 
expansion is accelerating under the influ-
ence of mysterious dark energy. There’s 
still much that we don’t know!
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Gravity
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Exercises and Problems 763

For homework assigned on MasteringPhysics, go to www.masteringphysics.com

BIO Biology and/or medicine-related problems DATA Data problems ENV Environmental problems CH Challenge problems Comp Computer problems

the  reaction for this decay, and verify that it conserves charge, 
 baryon number, and strangeness.

 26. Are either or both of these decay schemes possible for the tau 
particle: (a) t- S e- + ne + nt; (b) t- S p- + p0 + nt?

 27. Is the interaction p + p S p + p+ allowed? If not, what conser-
vation law does it violate?

Section 39.3 Quarks and the Standard Model
 28. Determine the quark composition of the p-.
 29. The Eightfold Way led Gell-Mann to predict a baryon with 

strangeness -3. Determine this particle’s quark composition.
 30. The Σ+ and Σ- have quark compositions uus and dds, respec-

tively. Are the Σ+ and Σ- each other’s antiparticles? If not, give 
the quark compositions of their antiparticles.

Section 39.4 Unification
 31. Estimate the volume of the 50,000 tons of water used in the 

 Super Kamiokande experiment shown in Fig. 39.8.
 32. Estimate the temperature in a gas of particles such that the ther-

mal energy kT is high enough to make electromagnetism and the 
weak force appear as a single phenomenon.

 33. Repeat Exercise 32 for the 1015@GeV energy of grand unification.

Section 39.5 The Evolving Universe
 34. Express the Hubble constant in SI units.
 35. Find the distance to a galaxy whose redshift reveals that it’s re-

ceding from us at 2.5 * 104 km/s.
 36. Find the recession speed of a galaxy 360 Mly from Earth.
 37. Before the high-precision cosmological data from the Planck 

spacecraft became available in 2013, the best estimate for the 
Hubble constant was 22.7 km/s/Mly. Repeat Example 39.2 using 
this value for H0.

Problems
 38. The mass of the photon is assumed to be zero, but experiments 

put only an upper limit of 5 * 10-63 kg on the photon mass. What 
would the range of the electromagnetic force be if the photon 
mass were actually at this upper limit?

 39. Which of the following reactions is not possible, and why not? 
(a) Λ0 S p+ + p-; (b) K0 S p+ +  p-

 40. Both the neutral kaon and the neutral r meson can decay to a 
pion–antipion pair. Which of these decays is mediated by the 
weak force? How can you tell?

 41. Some grand unification theories suggest that the decay 
p S p0 + e+ may be possible, in which case all matter may 
eventually become radiation. Are (a) baryon number and  
(b) electric charge conserved in this hypothetical proton decay?

 42. Consider systems described by wave functions that are propor-
tional to the terms (a) xy2z, (b) x2yz, and (c) xyz, where x, y, and z 
are the spatial coordinates. Which pairs of these systems could be 
transformed into each other under a parity-conserving interaction?

 43. The J/c particle is an uncharmed meson that nevertheless in-
cludes charmed quarks. Determine its quark composition.

 44. List all the possible quark triplets formed from any combination 
of up, down, and charmed quarks, along with the charge of each.

 45. The Tevatron at Fermilab accelerates protons to energy of 1 TeV. 
(a) How much is this in joules? (b) How far would a 1-g mass 
have to fall in Earth’s gravitational field to gain this much energy?

 46. (a) Find the relativistic factor g for a 14-TeV proton in the Large 
Hadron Collider. (b) Find the proton’s speed, expressed as a 

For thought and Discussion
 1. Why did Yukawa conclude that the particle mediating the strong 

force should have nonzero mass?
 2. How can we follow the tracks of individual particles?
 3. How are baryons fundamentally different from leptons?
 4. What coordinates are changed under the inversion processes P 

and T?
 5. Why are we unlikely to observe an isolated quark?
 6. Describe the relation between the strong force and the nuclear 

force.
 7. What’s the role of gluons?
 8. Classify (a) mesons and (b) baryons as fermions or bosons, and 

relate your classification to the particles’ quark compositions.
 9. Name the fundamental force involved in (a) binding of a proton 

and a neutron to make a deuterium nucleus; (b) decay of a neu-
tron to a proton, an electron, and a neutrino; (c) binding of an 
electron and a proton to make a hydrogen atom.

 10. What forces are unified in the electroweak theory?
 11. What forces would be unified by GUTs?
 12. Why do we need higher-energy particle accelerators to explore 

fully the standard model?
 13. How can Hubble’s law hold without the universe having a center?
 14. Is it possible for a charged particle to be its own antiparticle?
 15. Describe the origin of the cosmic microwave background.
 16. Explain how particle accelerators can help us understand the 

early universe.
 17. What medical diagnostic procedure makes use of the fact that 

every particle has an antiparticle? What particle/antiparticle pair 
is involved?

 18. The radiation that we observe as the cosmic microwave back-
ground started out largely as infrared. Why is it now the micro-
wave background?

 19. If the hypothetical graviton is ever discovered, what should its 
mass be? Use Yukawa’s argument (Section 39.1) and the fact that 
the gravitational force falls as 1/r2.

 20. What data provide the most robust confirmation of cosmological the-
ory as well as the most precise values for cosmological parameters?

exercises and problems

exercises

Section 39.1 Particles and Forces
 21. How long could a virtual photon of 633-nm red laser light exist 

without violating conservation of energy?
 22. Some scientists have speculated on a possible “fifth force,” with 

a range of about 100 m. Following Yukawa’s reasoning, what 
would be the mass of the field particle mediating such a force?

Section 39.2 Particles and More Particles
 23. Write the equation for the decay of a positive pion to a muon and 

a neutrino, being sure to label the type of neutrino. (Hint: The 
positive muon is an antiparticle.)

 24. Use Table 39.1 to find the total strangeness before and after the 
decay Λ0 S p- + p, and use your answer to determine which 
force is involved in this reaction.

 25. The h0 particle is a neutral nonstrange meson that can decay 
to a positive pion, a negative pion, and a neutral pion. Write 

bio
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764 Chapter 39 From Quarks to the Cosmos

of the pair. You should see a modest bump whose energy you can 
roughly determine. That bump is evidence for the Higgs boson!

Energy (GeV) Events per 1.5 GeV

116 1031

118 965

119 866

121 811

122 829

124 818

125 820

127 743

128 668

130 612

131 567

133 549

Passage Problems
Pions are the lightest mesons, with mass some 270 times that of the 
electron. Charged pions decay typically into a muon and a neutrino 
or antineutrino. This makes pion beams useful for producing beams 
of neutrinos, which physicists use to study those elusive particles. In 
a medical application during the late 20th century, accelerator centers 
installed “biomedical beam lines” to test pions for cancer therapy. In 
these experiments, pions attached themselves to atomic nuclei within 
cancer cells. The nuclei would literally explode, delivering a “pion 
star” of cancer-killing nuclear debris. Unfortunately, results were not 
as encouraging as hoped, and enthusiasm for this technique has waned.

 61. The negative pion usually decays into a negative muon and one 
other particle. The other particle could be
a. a proton.
b. an antineutrino.
c. a neutrino.
d. an up quark.

 62. In the cancer-treatment experiments described in the passage, 
for which pions is it energetically easiest to be captured by a nu-
cleus?
a. p+

b. p0

c. p-

d. Energetically, capture is equally likely for all three pions.
 63. The lifetime of charged pions is 26 ns. The length of an accelera-

tor’s biomedical beam line, from the point where pions are cre-
ated to the patient, could be at most about
a. 800 m long.
b. 80 m long.
c. 8 m long.
d. 80 cm long.

 64. The quark composition of the negative pion is
a. uud.
b. du.
c. ud.
d. cc.

answer to Chapter Question

Answer to Chapter opening Question
 Other particles acquire their masses through interactions with the 
Higgs and its associated field.

decimal fraction of c, and accurate to 10 significant figures (you 
might need the binomial theorem here).

 47. In 2015 the proton energy in the Large Hadron Collider was dou-
bled, from 7 TeV to 14 TeV. In working this problem, keep just 
two significant figures. (a) How did this energy change affect the 
protons’ speed? (b) What is the new speed? (c) How long does it 
take a 14-TeV proton to circle the LHC’s 27-km circumference?

 48. Estimate the critical density of the universe.
 49. Estimate the diameter to which the Sun would have to be expanded 

for its average density to be the critical density found in Problem 48.
 50. A baryon called the neutral lambda particle has mass 

1116 MeV/c2. Find the minimum speed necessary for the par-
ticles in a proton–antiproton collider to produce lambda–anti-
lambda pairs.

 51. A so-called muonic atom is a hydrogen atom with the electron 
replaced by a muon; the muon’s mass is 207 times the electron’s. 
Find (a) the size and (b) the ground-state energy of a muonic atom.

 52. (a) By what factor must the magnetic field in a proton synchrotron 
be increased as the proton energy increases by a factor of 10? As-
sume the protons are highly relativistic, so g W 1. (b) By what 
factor must the diameter of the accelerator be increased to raise the 
energy by a factor of 10 without changing the magnetic field?

 53. A galaxy’s hydrogen@b spectral line, normally at 486.1 nm, ap-
pears at 495.4 nm. (a) Use the Doppler shift of Chapter 14 to find 
the galaxy’s recession speed, and (b) infer the distance to the gal-
axy. Is it appropriate to use Chapter 14’s nonrelativistic Doppler 
formulas in this case?

 54. At the time the cosmic microwave background radiation origi-
nated, the temperature of the universe was about 3000 K. What 
were (a) the median wavelength of the newly formed radiation 
(Equation 34.2b) and (b) the corresponding photon energy?

 55. Many particles are far too short-lived for their lifetimes to be 
measured directly. Instead, tables of particle properties often list 
“width,” measured in energy units and indicating the width of the 
distribution of measured rest energies. For example, the Z0 has 
mass 91.18 GeV and width 2.5 GeV. Use the energy–time uncer-
tainty relation to estimate its corresponding lifetime.

 56. A mix of particles starts with equal numbers of the three types of 
sigma particles listed in Table 39.1. Find the relative portion of 
each after (a) 5 * 10-20 s and (b) 5 * 10-10 s. Give your answer in 
a reference frame in which the particles are at rest.

 57. You pick up an old astronomy book and read that the Hubble 
constant is 17 km/s/Mly. You know that today’s more accurate 
value is 20.8 km/s/Mly. Use the simplified reasoning of Example 
39.2 to compare the ages for the universe implied by these two 
values of H0.

 58. A friend believes that the universe is less than 10,000 years old. 
Based on Hubble’s law, how would you argue that the universe is 
older? What would the Hubble constant be for a 10,000-year-old 
universe?

 59. Your roommate is writing a science-fiction novel set very far in 
the future, 60 Gy after the Big Bang. One of the characters is a 
cosmologist, and your roommate wants to know what the cos-
mologist will measure for the Hubble constant. What’s your an-
swer, assuming a steady expansion rate?

 60. When physicists “discover” a new particle, it isn’t by finding the 
particle itself in their detectors. Rather, they look for events that 
might indicate the particle’s decay. For a given type of event, 
they plot the frequency of events (number per unit energy inter-
val) versus energy. The particle shows up as a bump or deviation 
from an otherwise smooth background curve. You can explore 
this indirect approach to particle detection by plotting the data in 
the table below. These data are from the Large Hadron Collider 
and show events producing a pair of photons versus the energy 

DATA
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Modern physics, developed since the year 1900, contrasts with the 
classical physics that came before. Modern physics is essential in 
 understanding physical reality at the atomic scale, at very low tem-
peratures, at very high relative velocities, in regions of very strong 
gravity, and in the evolution and large-scale structure of the universe.

The two big ideas in modern physics are relativity and quantum 
mechanics. Relativity is based on a simple principle but drastically 
alters our commonsense notions of space and time, matter and energy, 
and the nature of gravity. Quantum mechanics replaces Newtonian de-
terminism with a statistical description in which matter and energy 
exhibit both wave-like and particle-like behaviors.

Einstein’s special theory of relativity is based in the statement that the laws of physics are the same 
for all observers in uniform motion. Therefore, Maxwell’s prediction that there should be electro-
magnetic waves propagating at the speed of light c is valid in all uniformly moving reference frames. 
So measures of space and time cannot be absolute, but depend on one’s reference frame.

v
u

C

C2C1

C

 

v
u

The time between two events is shortest in a 
reference frame where events occur at the same 
place; here that’s the reference frame of clock C.

An object’s length is longest in a reference 
frame in which it’s at rest.

Energy E, momentum p, and mass m in relativity are related by E2 = p2c2 + 1mc222.

For an object at rest with respect to an observer, this gives E = mc2, showing the relativistic 
 equivalence of mass and energy.

General relativity is Einstein’s theory 
of gravity, which explains gravity as 
the geometric curvature of spacetime. 
General relativity is central to modern 
astrophysics and cosmology, describ-
ing phenomena from black holes to the 
overall structure of the universe.

Quantum physics arose from attempts to explain several phenomena observed around the 
turn of the 20th century. These include blackbody radiation from hot objects, the photoelec-
tric effect, and the existence and spectra of atoms.

Hydrogen spectrum

Violet RedIncreasing wavelength

Wave–particle duality is at the heart of quantum physics. The energy in electromagnetic 
radiation of frequency f  is concentrated in particle-like “bundles” called photons. Thus 
electromagnetic energy is quantized, with each photon carrying energy E = hf, where 
h = 6.63 * 10-34 J #s is Planck’s constant. Conversely, matter exhibits wave-like behavior. 
The de Broglie wavelength associated with a particle of momentum p is l = h/p.

Quantization of atomic angular momentum leads to the 
Bohr model for the atom, with quantized energy levels 
that help explain atomic spectra.

Wave–particle duality is closely related to the Heisenberg uncertainty principle, which 
states that it’s impossible to measure a particle’s position and momentum simultaneously with 
perfect accuracy. Rather, the uncertainties ∆x and ∆p in position and momentum must obey 
the inequality

∆x ∆p Ú U (uncertainty principle), where U = h/2p

Quantum mechanics describes phenomena at 
the atomic scale. The Schrödinger  equation 
gives the wave function, c, for a particle 
of mass m with potential energy U and total 
 energy E:

-
U2

2m
 
d2c1x2

dx2 + U1x2c = Ec1x2

c2 is the probability density for finding the 
particle. Application of the Schrödinger equa-
tion to bound systems results in quantized en-
ergy levels.

n = 3

n = 2
n = 1

In�nite square well
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ℏv
E = ℏv

4

Harmonic oscillator

3
2
1

n = 0

Application of the Schrödinger equation to 
atoms and molecules explains atomic and 
molecular structure, the organization of the 
chemical elements in the periodic table, and 
the behavior of crystalline solids.

part Six Summary modern physics

n = ∞
n = 4
n = 3
n = 2

n = 1

E = 0

E = -13.6 eV

Hydrogen energy levels

a
 1

21
.6

 n
m

b
 1

02
.6

 n
m

g
   

97
.3

 n
m

(continued)
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766 Part Six Summary

Nuclear physics plunges into the heart of the atom and shows that larger nuclei require more 
neutrons than protons in order for the strong nuclear force to overcome the repulsive electric 
interaction between protons. Nuclear physics describes such phenomena as radioactivity and 
the production of energy by nuclear fission and fusion.
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Applying the principles of physics from the 
subatomic scale of quantum and particle phys-
ics to the largest scales described by general 
relativity gives us our modern-day picture of 
the origin and evolution of the universe.

The cosmic microwave background radiation, 
shown here in an image from the Planck space-
craft.

Part Six Challenge Problem
Derive Equation 39.2 for the critical density of the universe on the assumption that the universe is spherically symmetric, is homogeneous, and 
obeys Newton’s laws on large scales.
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A-1 Algebra and Trigonometry
Quadratic Formula

If ax2 + bx + c = 0, then x =
-b { 2b2 - 4ac

2a
.

Circumference, Area, Volume
Where p ≃ 3.14159 . . . :

circumference of circle 2pr
area of circle pr2

surface area of sphere 4pr2

volume of sphere 4
3 pr3

area of triangle 1
2 bh

volume of cylinder pr2l

h

b

r

l

Trigonometry
definition of angle (in radians): u =

s
r

2p radians in complete circle

1 radian ≃ 57.3°

u

r

s

Trigonometric Functions

sin u =
y

r

cos u =
x
r

tan u =
sin u

cos u
=

y

x

Essential University Physics 3e
Wolfson
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Pearson Education
9937240004
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A-2 Appendix A Mathematics

Values at Selected Angles

P

6
P

4
P

3
P

2
u S 0 (30°) (45°) (60°) (90°)

sin u 0
1

2

12

2

13

2
1

cos u 1
13

2

12

2

1

2
0

tan u 0
13

3
1 13 ∞

Graphs of Trigonometric Functions

p

2

p

2

3p

2

3p

2

1

0

si
n
u

-1

u

p 2p

1

0

co
su

-1

u

p 2p

Trigonometric Identities
sin1-u2 = -sin u

cos1-u2 = cos u

sin au { p

2
b = {cos u

cos au { p

2
b = |sin u

sin2 u + cos2 u = 1

sin 2u = 2 sin u cos u

cos 2u = cos2 u - sin2 u = 1 - 2 sin2 u = 2 cos2 u - 1

sin1a { b2 = sin a cos b { cos a sin b

cos1a { b2 = cos a cos b | sin a sin b

sin a { sin b = 2 sin31
21a { b24cos31

21a | b24
cos a + cos b = 2 cos31

21a + b24cos31
21a - b24

cos a - cos b = -2 sin31
21a + b24sin31

21a - b24
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Appendix A Mathematics A-3

Laws of Cosines and Sines
Where A, B, C are the sides of an arbitrary triangle and a, b, g the angles opposite those 
sides:

Law of cosines

C2 = A2 + B2 - 2AB cos g

A

B

C
a

b

g

Law of sines

sin a

A
=

sin b

B
=

sin g

C

Exponentials and Logarithms
eln x = x,  ln ex = x e = 2.71828 . . .

ax = ex ln a   ln1xy2 = ln x + ln y

axay = ax + y   ln ax
y
b = ln x - ln y

1ax2y = axy   ln a1
x
b = - ln x

 log x K log10  x = ln1102 ln x ≃ 2.3 ln x

Approximations
For 0 x 0  V  1, the following expressions provide good approximations to common  functions:

ex ≃ 1 + x

sin x ≃ x

cos x ≃ 1 - 1
2 x2

ln11 + x2 ≃ x

11 + x2p ≃ 1 + px 1binomial approximation2
Expressions that don’t have the forms shown may often be put in the appropriate form.  
For example:

12a2 + y2
=

1

a71 + y2

a2

=
1
a

 a1 +
y2

a2 b
-1/2

≃
1
a

 a1 -
y2

2a
b for y2/a2 V 1, or y2 V a2

Vector Algebra
Vector Products
A
S # B

S
= AB cos u

0 AS * B
S 0 = AB sin u, with direction of A

S
* B

S
given by the right-hand rule:

A
S

A
S

B
S

B
S

u

A * B
(out of
 page)

S S
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A-4 Appendix A Mathematics

Unit Vector Notation
An arbitrary vector A

S
may be written in terms of its components Ax, Ay, Az and the unit 

vectors in, jn, kn that have magnitude 1 and lie along the x-, y-, z-axes:

Ay

Ax

A = Axi + Ay j
S

nn

jn

kn

in

x y

z

In unit vector notation, vector products become

A
S # B

S
= AxBx + AyBy + AzBz

A
S

* B
S

= 1AyBz - AzBy2 in + 1AzBx - AxBz2jn + 1AxBy - AyBx2kn

Vector Identities

A
S # B

S
= B

S # A
S

A
S

* B
S

= - B
S

* A
S

A
S # 1B

S
* C

S2 = B
S # 1C

S
* A

S2 = C
S # 1A

S
* B

S2
A
S

* 1B
S

* C
S2 = 1A

S # C
S2B

S
- 1A

S # B
S2C

S

A-2 Calculus

Derivatives
Definition of the Derivative
If y is a function of x, then the derivative of y with respect to x is the ratio of the change 
∆y in y to the corresponding change ∆x in x, in the limit of arbitrarily small ∆x:

dy

dx
= lim

∆xS0
 
∆y

∆x

Algebraically, the derivative is the rate of change of y with respect to x; geometrically, it is 
the slope of the y versus x graph—that is, of the tangent line to the graph at a given point:

y

x

∆x

∆y
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Derivatives of Common Functions
da

dx
= 0 1a is a constant2   

d

dx
 tan x =

1

cos2 x

 
dxn

dx
= nxn - 1 1n need not be an integer2   dex

dx
= ex

d

dx
 sin x = cos x   

d

dx
 ln x =

1
x

d

dx
 cos x = -sin x

Derivatives of Sums, Products, and Functions of Functions
 1. Derivative of a constant times a function

d

dx
 3af1x24 = a 

df

dx
  1a is a constant2

 2. Derivative of a sum

d

dx
 3 f1x2 + g1x24 =

df

dx
+

dg

dx

 3. Derivative of a product

d

dx
 3 f1x2g1x24 = g 

df

dx
+ f 

dg

dx

Examples

d

dx
 1x2 cos x2 = cos x 

dx2

dx
+ x2 

d

dx
 cos x = 2x cos x - x2 sin x

d

dx
 1x ln x2 = ln x 

dx

dx
+ x 

d

dx
 ln x = 1ln x2112 + x a1

x
b = ln x + 1

 4. Derivative of a quotient

d

dx
 c f1x2

g1x2 d =
1

g2 ag 
df

dx
- f 

dg

dx
b

Example

d

dx
 asin x

x2 b =
1

x4 ax2 
d

dx
 sin x - sin x 

dx2

dx
b =

cos x

x2 -
2 sin x

x3

 5. Chain rule for derivatives
If f  is a function of u and u is a function of x, then

df

dx
=

df

du
 
du

dx

Examples

a. Evaluate 
d

dx
 sin1x22. Here u = x2 and f1u2 = sin u, so

d

dx
 sin1x22 =

d

du
 sin u 

du

dx
= 1cos u2 

dx2

dx
= 2x cos1x22

b. 
d

dt
 sin vt =

d

d vt
 sin vt 

d

dt
 vt = v cos vt  1v is a constant2
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A-6 Appendix A Mathematics

c. Evaluate 
d

dx
 sin2 5x. Here u = sin 5x and f1u2 = u2, so

 
d

dx
 sin2 5x =

d

du
 u2 

du

dx
= 2u 

du

dx
= 2 sin 5x 

d

dx
 sin 5x

 = 1221sin 5x21521cos 5x2 = 10 sin 5x cos 5x = 5 sin 2x

Second Derivative
The second derivative of y with respect to x is defined as the derivative of the derivative:

d2y

dx2 =
d

dx
 ady

dx
b

Example

If y = ax3, then dy/dx = 3ax2, so

d2y

dx2 =
d

dx
 3ax2 = 6ax

Partial Derivatives
When a function depends on more than one variable, then the partial derivatives of that 
function are the derivatives with respect to each variable, taken with all other variables held 
constant. If f  is a function of x and y, then the partial derivatives are written

0f

0x
 and 

0f

0y

Example

If f1x, y2 = x3 sin y, then

0f

0x
= 3x2 sin y and 

0f

0y
= x3 cos y

Integrals
Indefinite Integrals
Integration is the inverse of differentiation. The indefinite integral, 1 f1x2 dx, is defined as 
a function whose derivative is f1x2:

d

dx
 c L f1x2 dx d = f1x2

If A1x2 is an indefinite integral of f1x2, then because the derivative of a constant is zero, the 
function A1x2 + C is also an indefinite integral of f1x2, where C is any constant. Inverting 
the derivatives of common functions listed in the preceding section gives the integrals that 
follow (a more extensive table appears at the end of this appendix).

La dx = ax + C  Lcos x dx = sin x + C

Lxn dx =
xn + 1

n + 1
+ C, n ≠ -1  Lex dx = ex + C

Lsin x dx = -cos x + C  Lx -1 dx = ln x + C
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Appendix A Mathematics A-7

Definite Integrals
In physics we’re most often interested in the definite integral, defined as the sum of a large 
number of very small quantities, in the limit as the number of quantities grows arbitrarily 
large and the size of each arbitrarily small:

L
x2

x1

 f1x2 dx K lim
∆xS0
NS ∞

  a
N

i = 1
f 1xi2 ∆x

where the terms in the sum are evaluated at values xi between the limits of integration x1 
and x2; in the limit ∆x S 0, the sum is over all values of x in the interval.

The key to evaluating the definite integral is provided by the fundamental theorem of 
calculus. The theorem states that, if A1x2 is an indefinite integral of f1x2, then the definite 
integral is given by

L
x

2

x1

f1x2 dx = A1x22 - A1x12 K A1x2 2 x2

x1

Geometrically, the definite integral is the area under the graph of f1x2 between the limits 
x1 and x2:

Evaluating Integrals
The first step in evaluating an integral is to express all varying quantities within the integral 
in terms of a single variable; Tactics 9.1 in Chapter 9 outlines a general strategy for setting 
up an integral. Once you’ve set up an integral, you can evaluate it yourself or look it up in 
tables. Two common techniques can help you evaluate integrals or convert them to forms 
listed in tables:

 1. Change of variables
An unfamiliar integral can often be put into familiar form by defining a new variable. 
For example, it is not obvious how to integrate the expression

L
x dx2a2 + x2

where a is a constant. But let z = a2 + x2. Then

dz

dx
=

da2

dx
+

dx2

dx
= 0 + 2x = 2x

so dz = 2x dx. Then the quantity x dx in our unfamiliar integral is just 12 dz, while the 
quantity 2a2 + x2 is just z1/2. So the integral becomes

L  
1

2
 z-1/2 dz =

1
2 z1/2

1
2

= 2z

where we have used the standard form for the integral of a power of the independent 
variable. Substituting back z = a2 + x2 gives

L
x dx2a2 + x2

= 2a2 + x2

f 1x2dxL
x2

x1

f 1x2

x1 x2

x

Z01_WOLF4752_03_SE_APPA.indd   7 17/06/15   7:09 PM



A-8 Appendix A Mathematics

 2. Integration by parts
The quantity 1u dv is the area under the curve of u as a function of v between specified 
limits. In the figure, that area can also be expressed as the area of the rectangle shown 
minus the area under the curve of v as a function of u. Mathematically, this relation 
among areas may be expressed as a relation among integrals:

Lu dv = uv - Lv du  1integration by parts2

This expression may often be used to transform complicated integrals into simpler ones.

Example

Evaluate 1x cos x dx. Here let u = x, so du = dx. Then dv = cos x dx, so we have 
v = 1dv = 1cos x dx = sin x. Integrating by parts then gives

Lx cos x dx = 1x21sin x2 - L  sin x dx = x sin x + cos x

where the +  sign arises because 1  sin x dx = -cos x.

Table of Integrals
More extensive tables are available in many mathematical and scientific handbooks; see, for 
example, Handbook of Chemistry and Physics (Chemical Rubber Co.) or Dwight, Tables 
of Integrals and Other Mathematical Data (Macmillan). Some math software, including 
Mathematica and Maple, can also evaluate integrals symbolically. Wolfram Research provides 
Mathematica-based integration both at integrals.wolfram.com and through WolframAlpha at 
www.wolframalpha.com/calculators/integral-calculator.

In the expressions below, a and b are constants. An arbitrary constant of integration 
may be added to the right-hand side.

Leax dx =
eax

a
  L  

dx

x2 + a2 =
1
a

 tan-1 ax
a
b

L  sin ax dx = -  
cos ax

a
  L  

x dx2a2 - x2
= - 2a2 - x2

L  cos ax dx =
sin ax

a
  L  

x dx2x2 { a2
= 2x2 { a2

L  tan ax dx = -  
1
a

 ln 1cos ax2  L 
dx

1x2 { a223/2 =
{x

a22x2 { a2

L  sin2 ax dx =
x

2
-

sin 2ax

4a
  Lxeax dx =

eax

a2  1ax - 12

L  cos2 ax dx =
x

2
+

sin 2ax

4a
  Lx2eax dx =

x2eax

a
-

2
a

 c eax

a2  1ax - 12 d

Lx sin ax dx =
1

a2 sin ax -
1
a

 x cos ax   L  
dx

a + bx
=

1

b
 ln1a + bx2

Lx cos ax dx =
1

a2 cos ax +
1
a

 x sin ax  L 
dx

1a + bx22 = -  
1

b1a + bx2

L  
dx2a2 - x2

= sin-1a  
x
a

 b  L  ln ax dx = x ln ax - x

L 
dx2x2 { a2

= ln 1x + 2x2 { a22

u

v

vdu

udv

1
1

Z01_WOLF4752_03_SE_APPA.indd   8 17/06/15   7:09 PM

http://www.wolframalpha.com/calculators/integral-calculator


A-9

The International  
System of Units (SI)

A
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p
e
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d
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The International System of Units (SI) system is undergoing a major overhaul, which 
should be completed by 2017. The new SI will give explicit-constant definitions to six 

of the seven base units, defining those units by setting exact values for appropriate  physical 
constants. Here we list SI unit definitions informally to reflect this ongoing transition.

length (meter): The meter is defined so that the speed of light in vacuum is exactly 
299,792,458 m/s. In effect since 1983, this definition is reworded but not otherwise changed.

mass (kilogram): In the new SI, the definition of the kilogram changes from one based on 
a physical standard, the international prototype kilogram, to an explicit-constant definition 
based on a defined value for Planck’s constant h.

time (second): The second is defined as the duration of 9,192,631,770 periods of the radia-
tion corresponding to the transition between the two hyperfine levels of the ground state of the 
cesium-133 atom. In effect since 1967, this definition is reworded but not otherwise changed.

electric current (ampere): Since 1948 the ampere has been defined in terms of the force 
between two current-carrying wires, but that changes to a definition based on an exact 
value for the elementary charge.

temperature (kelvin): Since 1967 the kelvin has been defined such that the triple point of water 
is at 273.16 K. That changes to a definition based on an exact value for Boltzmann’s constant k.

amount of substance (mole): The 1971 definition of the mole in terms of carbon-12 atoms 
changes to one based on an exact value for Avogadro’s number.

luminous intensity (candela): The 1979 definition defines the candela as the luminous 
intensity of a 540-THz source emitting (1/683) watt per steradian. This is reworded but not 
otherwise changed.

SI Base and Supplementary Units

SI Unit

Quantity Name Symbol

Base Unit

Length meter m

Mass kilogram kg

Time second s

Electric current ampere A

Thermodynamic temperature kelvin K

Amount of substance mole mol

Luminous intensity candela cd

Supplementary Units

Plane angle radian rad

Solid angle steradian sr

SI Prefixes

Factor Prefix Symbol

1024 yotta Y

1021 zetta Z

1018 exa E

1015 peta P

1012 tera T

109 giga G

106 mega M

103 kilo k

102 hecto h

101 deka da

100 — —

10-1 deci d

10-2 centi c

10-3 milli m

10-6 micro μ
10-9 nano n

10-12 pico p

10-15 femto f

10-18 atto a

10-21 zepto z

10-24 yocto y
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A-10 Appendix B The International System of Units (SI)

Some SI Derived Units with Special Names

SI Unit

Quantity Name Symbol

Expression in  
 Terms of  
  Other Units

Expression in  
   Terms of SI  
   Base Units

Frequency hertz Hz s-1

Force newton N m # kg # s-2

Pressure, stress pascal Pa N/m2 m-1 # kg # s-2

Energy, work, heat joule J N # m m2 # kg # s-2

Power watt W J/s m2 # kg # s-3

Electric charge coulomb C s # A

Electric potential, potential  
 difference, electromotive  
 force

volt V J/C m2 # kg # s-3 # A-1

Capacitance farad F C/V m-2 # kg-1 # s4 # A2

Electric resistance ohm Ω V/A m2 # kg # s-3 # A-2

Magnetic flux weber Wb T # m2, V # s m2 # kg # s-2 # A-1

Magnetic field tesla T Wb/m2 kg # s-2 # A-1

Inductance henry H Wb/A m2 # kg # s-2 # A-2

Radioactivity becquerel Bq 1 decay/s s-1

Absorbed radiation dose gray Gy J/kg, 100 rad m2 # s-2

Radiation dose equivalent sievert Sv J/kg, 100 rem m2 # s-2
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Conversion Factors
A
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The listings below give the SI equivalents of non-SI units. To convert from the units 
shown to SI, multiply by the factor given; to convert the other way, divide. For conver-

sions within the SI system, see the table of SI prefixes in Appendix B, Chapter 1, or the 
inside front cover. Conversions that are not exact by definition are given to, at most, four 
significant figures.

Length
1 inch 1in2 = 0.0254 m 1 angstrom 1A

∘ 2 = 10-10 m

1 foot 1ft2 = 0.3048 m 1 light year 1ly2 = 9.46 * 1015 m

1 yard 1yd2 = 0.9144 m 1 astronomical unit 1AU2 = 1.496 * 1011 m

1 mile 1mi2 = 1609 m 1 parsec = 3.09 * 1016 m

1 nautical mile = 1852 m 1 fermi = 10-15 m = 1 fm

Mass
1 slug = 14.59 kg 1 unified mass unit 1u2 = 1.661 * 10-27 kg

1 metric ton 1tonne; t2 = 1000 kg

Force units in the English system are sometimes used (incorrectly) for mass. The units 
given below are actually equal to the number of kilograms multiplied by g, the accelera-
tion of gravity.

1 pound 1lb2 = weight of 0.454 kg 1 ounce 1oz2 = weight of 0.02835 kg

1 ton = 2000 lb = weight of 908 kg

Time
1 minute 1min2 = 60 s 1 day 1d2 = 24 h = 86,400 s

1 hour 1h2 = 60 min = 3600 s 1 year 1y2 = 365.2422 d* = 3.156 * 107 s

Area
1 hectare 1ha2 = 104 m2 1 acre = 4047 m2

1 square inch 1in22 = 6.452 * 10-4 m2 1 barn = 10-28 m2

1 square foot 1ft22 = 9.290 * 10-2 m2 1 shed = 10-30 m2

Volume
1 liter 1L2 = 1000 cm3 = 10-3 m3 1 gallon 1U.S.; gal2 = 3.785 * 10-3 m3

1 cubic foot 1ft32 = 2.832 * 10-2 m3 1 gallon 1British2 = 4.546 * 10-3 m3

1 cubic inch 1in32 = 1.639 * 10-5 m3

1 fluid ounce = 1/128 gal = 2.957 * 10-5 m3

1 barrel (bbl) = 42 gal = 0.1590 m3

Angle, Phase
1 degree 1°2 = p/180 rad = 1.745 * 10-2 rad

1 revolution 1rev2 = 360° = 2p rad

1 cycle = 360° = 2p rad

*The length of the year changes very slowly with changes in Earth’s orbital period.
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A-12 Appendix C Conversion Factors

Speed, Velocity
1 km/h = 11/3.62 m/s = 0.2778 m/s 1 ft/s = 0.3048 m/s

1 mi/h 1mph2 = 0.4470 m/s 1 ly/y = 3.00 * 108 m/s

Angular Speed, Angular Velocity, Frequency, and Angular Frequency
1 rev/s = 2p rad/s = 6.283 rad/s 1s-12 1 rev/min 1rpm2 = 0.1047 rad/s 1s-12
1 Hz = 1 cycle/s = 2p s-1

Force
1 dyne = 10-5 N 1 pound 1lb2 = 4.448 N

Pressure
1 dyne/cm2 = 10- 1 Pa 1 lb/in2 1psi2 = 6.895 * 103 Pa

1 atmosphere 1atm2 = 1.013 * 105 Pa 1 in H2O 160°F2 = 248.8 Pa

1 torr = 1 mm Hg at 0°C = 133.3 Pa 1 in Hg 160°F2 = 3.377 * 103 Pa

1 bar = 105 Pa = 0.987 atm

Energy, Work, Heat

1 erg = 10-7 J 1 Btu* = 1.054 * 103 J

1 calorie* 1cal2 = 4.184 J 1 kWh = 3.6 * 106 J

1 electronvolt 1eV2 = 1.602 * 10-19 J 1 megaton (explosive yield; Mt)

1 foot@pound 1ft # lb2 = 1.356 J = 4.18 * 1015 J

Power
1 erg/s = 10-7 W 1 Btu/h 1Btuh2 = 0.293 W
1 horsepower 1hp2 = 746 W 1 ft # lb/s = 1.356 W

Magnetic Field
1 gauss 1G2 = 10-4 T 1 gamma 1g2 = 10-9 T

Radiation
1 curie 1ci2 = 3.7 * 1010 Bq 1 rad = 10-2 Gy

1 rem = 10-2 Sv
Energy Content of Fuels

Energy Source Energy Content

Coal 29 MJ/kg = 7300 kWh/ton = 25 * 106 Btu/ton

Oil 43 MJ/kg = 39 kWh/gal = 1.3 * 105 Btu/gal

Gasoline 44 MJ/kg = 36 kWh/gal = 1.2 * 105 Btu/gal

Natural gas 55 MJ/kg = 30 kWh/100 ft3 = 1000 Btu/ft3

Uranium (fission) 
 Normal abundance 
 Pure U-235

5.8 * 1011 J/kg = 1.6 * 105 kWh/kg
8.2 * 1013 J/kg = 2.3 * 107 kWh/kg

Hydrogen (fusion) 
 Normal abundance 
 Pure deuterium
 Water

7 * 1011 J/kg = 3.0 * 104 kWh/kg
3.3 * 1014 J/kg = 9.2 * 107 kWh/kg
1.2 * 1010 J/kg = 1.3 * 104 kWh/gal

 = 340 gal gasoline/gal water

100% conversion, matter to energy 9.0 * 1016 J/kg = 931 MeV/u = 2.5 * 1010 kWh/kg

*Values based on the thermochemical calorie; other definitions vary slightly.
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The atomic weights of stable elements reflect the abundances of different isotopes; values given 
here apply to elements as they exist naturally on Earth. For stable elements, parentheses ex-

press uncertainties in the last decimal place given. For elements with no stable isotopes (indicated 
in boldface), at most three isotopes are given; for elements 99 and beyond, only the longest-lived 
isotope is given. (Exceptions are the unstable elements thorium, protactinium, and uranium, for 
which atomic weights reflect natural abundances of long-lived isotopes.) See also the periodic table 
inside the back cover.

Atomic Number Names Symbol Atomic Weight

1 Hydrogen H 1.00794 (7)

2 Helium He 4.002602 (2)

3 Lithium Li 6.941 (2)

4 Beryllium Be 9.012182 (3)

5 Boron B 10.811 (5)

6 Carbon C 12.011 (1)

7 Nitrogen N 14.00674 (7)

8 Oxygen O 15.9994 (3)

9 Fluorine F 18.9984032 (9)

10 Neon Ne 20.1797 (6)

11 Sodium (Natrium) Na 22.989768 (6)

12 Magnesium Mg 24.3050 (6)

13 Aluminum Al 26.981539 (5)

14 Silicon Si 28.0855 (3)

15 Phosphorus P 30.973762 (4)

16 Sulfur S 32.066 (6)

17 Chlorine Cl 35.4527 (9)

18 Argon Ar 39.948 (1)

19 Potassium (Kalium) K 39.0983 (1)

20 Calcium Ca 40.078 (4)

21 Scandium Sc 44.955910 (9)

22 Titanium Ti 47.88 (3)

23 Vanadium V 50.9415 (1)

24 Chromium Cr 51.9961 (6)

25 Manganese Mn 54.93805 (1)

26 Iron Fe 55.847 (3)

27 Cobalt Co 58.93320 (1)

28 Nickel Ni 58.69 (1)

29 Copper Cu 63.546 (3)

30 Zinc Zn 65.39 (2)

31 Gallium Ga 69.723 (1)

32 Germanium Ge 72.61 (2)

33 Arsenic As 74.92159 (2)

(continued)
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Atomic Number Names Symbol Atomic Weight

34 Selenium Se 78.96 (3)

35 Bromine Br 79.904 (1)

36 Krypton Kr 83.80 (1)

37 Rubidium Rb 85.4678 (3)

38 Strontium Sr 87.62 (1)

39 Yttrium Y 88.90585 (2)

40 Zirconium Zr 91.224 (2)

41 Niobium Nb 92.90638 (2)

42 Molybdenum Mo 95.94 (1)

43 Technetium Tc 97, 98, 99

44 Ruthenium Ru 101.07 (2)

45 Rhodium Rh 102.90550 (3)

46 Palladium Pd 106.42 (1)

47 Silver Ag 107.8682 (2)

48 Cadmium Cd 112.411 (8)

49 Indium In 114.82 (1)

50 Tin Sn 118.710 (7)

51 Antimony (Stibium) Sb 121.75 (3)

52 Tellurium Te 127.60 (3)

53 Iodine I 126.90447 (3)

54 Xenon Xe 131.29 (2)

55 Cesium Cs 132.90543 (5)

56 Barium Ba 137.327 (7)

57 Lanthanum La 138.9055 (2)

58 Cerium Ce 140.115 (4)

59 Praseodymium Pr 140.90765 (3)

60 Neodymium Nd 144.24 (3)

61 Promethium Pm 145, 147

62 Samarium Sm 150.36 (3)

63 Europium Eu 151.965 (9)

64 Gadolinium Gd 157.25 (3)

65 Terbium Tb 158.92534 (3)

66 Dysprosium Dy 162.50 (3)

67 Holmium Ho 164.93032 (3)

68 Erbium Er 167.26 (3)

69 Thulium Tm 168.93421 (3)

70 Ytterbium Yb 173.04 (3)

71 Lutetium Lu 174.967 (1)

72 Hafnium Hf 178.49 (2)

73 Tantalum Ta 180.9479 (1)

74 Tungsten (Wolfram) W 183.85 (3)

75 Rhenium Re 186.207 (1)

76 Osmium Os 190.2 (1)

77 Iridium Ir 192.22 (3)

78 Platinum Pt 195.08 (3)

79 Gold Au 196.96654 (3)

80 Mercury Hg 200.59 (3)

81 Thallium Tl 204.3833 (2)

82 Lead Pb 207.2 (1)

83 Bismuth Bi 208.98037 (3)
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Atomic Number Names Symbol Atomic Weight

84 Polonium Po 209, 210

85 Astatine At 210, 211

86 Radon Rn 211, 220, 222

87 Francium Fr 223

88 Radium Ra 223, 224, 226

89 Actinium Ac 227

90 Thorium Th 232.0381 (1)

91 Protactinium Pa 231.03588 (2)

92 Uranium U 238.0289 (1)

93 Neptunium Np 237, 239

94 Plutonium Pu 239, 242, 244

95 Americium Am 241, 243

96 Curium Cm 245, 247, 248

97 Berkelium Bk 247, 249

98 Californium Cf 249, 250, 251

99 Einsteinium Es 252

100 Fermium Fm 257

101 Mendelevium Md 258

102 Nobelium No 259

103 Lawrencium Lr 262

104 Rutherfordium Rf 263

105 Dubnium Db 268

106 Seaborgium Sg 266

107 Bohrium Bh 272

108 Hassium Hs 277

109 Meitnerium Mt 276

110 Darmstadtium Ds 281

111 Roentgenium Rg 280

112 Copernicium Cn 285

113 — — 284

114 Flerovium Fl 289

115 — — 288

116 Livermorium Lv 292

117 — — 294

118 — — 294
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Astrophysical Data

Sun, Planets, Principal Satellites

Body Mass (1024 kg)

Mean Radius 
(106 m except 

as noted)

Surface 
Gravity 
(m/s2)

Escape 
Speed 
(km/s)

Sidereal 
Rotation  
Period*  
(days)

Mean Distance 
from Central 

Body†  (106 km)
Orbital  
Period

Mean  
Orbital 
Speed 
(km/s)

Sun 1.99 * 106 696 274 618 36 at poles 
27 at equator

2.6 * 1011 200 My 250

Planets

Mercury 0.330 2.44 3.70 4.25 58.6 57.9 88.0 d 47.4

Venus 4.87 6.05 8.87 10.4 -243 108 225 d 35.0

Earth 5.97 6.37 9.81 11.2 0.997 149.6 365.2 d 29.8
Moon 0.0735 1.74 1.62 2.38 27.3 0.3844 27.3 d 1.02

Mars 0.642 339 3.71 5.03 1.03 228 1.88 y 24.1

Phobos 1.07 * 10-8 9–13 km 0.0057 0.0114 0.319 9.4 * 10-3 0.319 d 2.14

Deimos 1.48 * 10-9 5–8 km 0.003 0.00556 1.26 23 * 10-3 1.26 d 1.35

Jupiter 1.90 * 103 69.9 24.8 60.2 0.414 779 11.9 y 13.1
Io 0.0893 1.82 1.80 2.38 1.77 0.422 1.77 d 17.3
Europa 0.480 1.56 1.32 2.03 3.55 0.671 3.55 d 13.7
Ganymede 0.148 2.63 1.43 2.74 7.15 1.07 7.15 d 10.9
Callisto 0.108 2.41 1.24 2.44 16.7 1.88 16.7 d 8.20
and 13 smaller satellites

Saturn 568 58.2 10.4 36.1 0.444 1.43 * 103 29.5 y 9.69
Tethys 0.0007 0.53 0.2 0.4 1.89 0.294 1.89 d 11.3
Dione 0.00015 0.56 0.3 0.6 2.74 0.377 2.74 d 10.0
Rhea 0.0025 0.77 0.3 0.5 4.52 0.527 4.52 d 8.5
Titan 0.135 2.58 1.35 2.64 15.9 1.22 15.9 d 5.6
and 12 smaller satellites

Uranus 86.8 25.4 8.87 21.4    -0.720 2.87 * 103 84.0 y 6.80
Ariel 0.0013 0.58 0.3 0.4 2.52 0.19 2.52 d 5.5
Umbriel 0.0013 0.59 0.3 0.4 4.14 0.27 4.14 d 4.7
Titania 0.0018 0.81 0.2 0.5 8.70 0.44 8.70 d 3.7
Oberon 0.0017 0.78 0.2 0.5 13.5 0.58 13.5 d 3.1
and 11 smaller satellites

Neptune 102 24.6 11.2 23.5 0.673 4.50 * 103 165 y 5.43
Triton 0.134 1.9 2.5 3.1 5.88 0.354 5.88 d 4.4
and 7 smaller satellites

Dwarf Planets

Ceres 0.000945 0.476 0.27 0.51 0.38 414 4.60 y 17.9

Pluto 0.0131 1.20 0.58 1.2 -6.39 5.91 * 103 248 y 4.67
Charon 0.00162 0.604 0.278 0.580 -6.39 0.00196 6.39 d 0.23
and 4 smaller satellites

Eris 0.0167 1.16 0.827 1.38 1.1 1.02 * 104 560 y 3.43
and 1 small satellite, Dysnomia

*Negative rotation period indicates retrograde motion, in opposite sense from orbital motion. Periods are sidereal, meaning the time for the body to 
return to the same orientation relative to the distant stars rather than the Sun.
†Central body is galactic center for Sun, Sun for planets, and planet for satellites.
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Answers to Odd- 
Numbered Problems

Chapter 1
13. 105

15. 108.783 ps
17. 108

19. 0.62 rad = 35°
21. 30 g
23. 106

25. 8.6 m2/L
27. 3.6 km/h
29. 57.3°
31. 24 Zm
33. 7.4 * 106 m/s2

35. 4 * 106

37. 41 m
39 (a) 5.18 (b) 5.20
41. 3 * 106

43. About 0.08%
45. (a) ∼3 * 103 m3 (b) ∼100 days
47. 105

49. ∼ 250 μm
51.  (a) 40 nm (b) 5 * 105 calculations  

per second
53. ∆ = 1001{0.05/N2,
55. in the U.S.
57. about 2000
59. about 1-  2 m2

61.  (a) 1.0 m (b) 0.001 m2 (c) 0.0 m  
(d) 1.0

63. $10.10
65. slope = 4.09 g/cm3

67. b
69. c

Chapter 2
13. (a) 375 yd/min (b) 5.72 min
15. 21 h
17. (a) 3.0 * 104 m/s (b) 19 mi/s
21. (a) v = b - 2ct (b) 8.4 s
23. 0.35 m/s2

25.  falling: 9.82 m/s2, stopping: 84.0 m/s2

27. 17 m/s2

29. v = dx/dt = d/dt1x0 + v0t + at2/22
 = v0 + at

31. (a) 46 m/s2 (b) 61 s
33. 27 ft/s2

35. 15 s
37. 95 m
39.  (a) 123 m (b) 39 m/s, 40 m  

(c) 9.8 m/s, 100 m; (d) -20 m/s, 100 m
41. 11 m/s

43. 48 mi/h
45. 2.2 s
47.  (a) 9.82 m/s (b) 9.34 m/s  

(c) 9.18 m/s (d) 9.18 m/s
49. (a) 39.95 m/s (b) 0.13%
51. 4.3 m/s2

53. 2.75 s
55. 55%
57. (a) 0.014 s (b) 51 cm
59. 0.89 km
61. (a) 25 m/s (b) 180 m
63. 0.0051 m/s2

65. 11 m/s
67. 270 m
69. -1

22hg
71. (a) 7.88 m/s, 7.67 m/s (b) 0.162 s
73. 3.9 s, 6.2 m/s
75. 4.8 m/s (17 km/h)
77.  (a) v = 1v1 + v22/2  

(b) v = 12v1v22/1v1 + v22  
(c) arithmetic mean

79. 70.7 %
81. -0.3 m/s

83. 
h

4
 a 2h

g∆t2 ba
g∆t2

2h
- 1b

2

85. 15 s- 1

89.  (a) -1a0 /v2sin vt (b) 1a0 /v
22cos vt  

(c) vmax = a0 /v, xmax = a0 /v
2

91. (a) v0 7 2gh0 /2 (b) h0 - gh 2
0 /2v0

93. c
95. c

Chapter 3
13. 270 m, 150°
15. 700 km, 110°
17. 105in + 58jn km
19. 1.414, u = 45°
21. 1-14 m/s, -12 m/s2
23. 3ct2 in
25.  (a) v

!
= -2.2 * 10- 6 jn m/s  

(b) a
!

= -3.2 * 10- 10 in m/s2

27. v
!
2 = 1.3in + 2.3jn m/s

29. (a) 26° upstream (b) 53.9 s
31. 42.8° west of south
33. 49 m, 6.4° to your original direction
35. (a) 1.3 s (b) 15 m
37. 34 nm
39. 1090 m
41. 2.28 * 10- 7m/s2

43. 2.8 mm/s2

45. (a) A25 (b) A210
47. C

S
= -15in + 9jn - 18kn

49. (a) 4c/3d (b) c/3d
51. 96 m
53.  (a) 0.249 m/s (b) 7.00 * 10- 4 m/s2  

(c) 7.21 * 10- 4 m/s2, about 3%  difference
55. A = B
57. 0.50 m/s2

59. 5.7 m/s
61.  (a) x1 = x2 implies 

 y1 = h a1 -
gh

v0
2 b = y2 (b) v0 Ú  2gh

63. 8.3 m/s, 61°
67. semi-circle of radius 
2.5 cm; 6.54 m/s, 17.1 m/s2

69. Yes
71. 66°
73.  (a) v22/13 ≈ 1.07v  

(b) 24 3t ≈ 1.3t
75. 2.3 km
77. 2h
79. 19 m
81. dx/du0 = 2v0

2/g cos 12u02 = 0 1
 u0 = 45°.
83. 1

2 cos- 111/(1 + v0
2/gh22

87. 2vat /r
89. c
91. c

Chapter 4
15. (a) 2.0 m/s2 (b) 0.082 m/s2

17. -13 kN
19. 2.0 * 106 m/s2

21. 22 cm
25. 210 kg
27. 9000 kg
29. 490 N
31. 380 N
35. 55 kN
37. 130 N
39. 19 cm
41. 2.94 m/s2, downward
43. 4.9 m/s2

45. 0.53 s
47. 6.0 N to the right
49. 1.62 * 10- 7N/m
51.  (a) 5.3 kN (b) 1.1 kN (c) 0.49 kN  

(d) 0.59 kN
53. 680 m
55. 0.96 m
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57. 950 N
59.  (a) -0.40 mg (b) 2.40 mg  

(c) 1.40 mg
61. F@35A: yes, 0.81 m/s2; 
 A@380: no
65. 1.96 m/s2

67. (a) 1mf - ms2g/ms

 (b) 
mf  

as h0

1mf - ms21g + as2
69. (a) 60.0 m/s (b) 0.672 m
71. 11.8 m/s2

73. 0.92 kg, 1.4 kg
75. vF0/M
77. a
79. b

Chapter 5
13. 5.40 in + 11.0jn N
15. 22.4°
17. 880 N
19. 34°
21. mR/mL = 2.5
23. (a) 3.9 m/s2 (b) 530 N
27. 58 km/h
29. 490 km/h
31. 0.18
33. 0.53
35. 0.43 m
37. about 2.62 times

39. T = m2 g, t = 2p21m1R2/1m2g2
41.  310 N downward (b) -mSBv2/R  

(c) nothing
43. 8.5 km
45. 0.15
47. 25 s
49. Yes
51. 0.23 … ms … 0.30
53. 4.2 m/s2

55. 0.62
57. (a) 10 cm (b) no
59. 100 km/h
63. 17 min- 1

65. Brake, don’t swerve
67. 28 cm

69. T′ = uk/21 + mk
2

73. Yes
75. 7.6 km
77. a
79. b

Chapter 6
13. 900 J
15. 150 kJ
17. 190 MN
19. A

S # 1B
S

+ C
S2 =

 AB cos 1uAB2 +  AC cos 1uAC2 =
 A

S # B
S

+ A
S # C

S

21. 1.9 m
23. (a) 1 J (b) 3 J
25. 30 cm
27. 7.5 GJ

29. {120 km/h
31. 110 m/s
33. 97 W
35. (a) 60 kW (b) 1 kW (c) 41.7 W
37. 9.4 * 106 J
39. 0 W
41. 22 s
43. (a) 400 J (b) 31 kg
45. (a) 76,000 (b) 14 kW
47. 25°
49. (a) 0 (b) 90°
51. 622 J
53. kB = 8kA

55. W = F0  ax -
x2

2L0
+

L0
2

L0 + x
- L0b

57. v2 = {2v1
59. (a) 1.3 * 10- 17W (b) 1.4 * 10- 14J
61. 9.6 kW
63. F0 x0 /3
65. 70.5°
67. 370 * 106 gal/day
69. 26 m/s
71. 0.60
73. (a) 0.45 kW (b) 7.99 kJ
75. 42 kJ
77. 6.0 years

81. Wx1Sx2
= 2b12x2 - 2x12,

 W1x1 = 02 = 2b2x2

83. (a) 12 kL0
2 + 1

3 bL0
3 + 1

4 cL0
4 + 1

5 dL0
5 

 (b) 12 kJ
85. 135 J
87. 30 people
89.  Stopping force is 35 times weight of leg
91. c
93. c

Chapter 7
11. Wa = Wb = -mgL
13. (a) 1.3 MJ (b) -59 kJ
15. 840 m
17. 55 cm
19. {22 m/s, {35 m/s
21. 92 m
23. 2.3 kN/m
25. 0.75
27. {2.0 m
29. (a) 4.4 * 1013J (b) 11 h
31. (a) 1.07 J (b) 1.12 J
33. 778 J, 4.90%
35. 2.5 J
37. U1x2 = -1

3ax3 - bx

39. r =
kx2

2mg sin u
43. (a) -11 cm (b) {4 m/s
45. h Ú  5R/2

49.  (a) U1x2 = -
a

2
 x2 +

b

4
 x4 

 (b) 0.7 m and 2 m
51. 20 m/s, 30 m/s
53. 1.4 m
55. 62.5 cm

57. 2.9 m
59. 14 m

61. v = 2x3/4A a

3m
63. 5.8 s

65. 
mgh

2d
22g1h - d2

67. 185 N/m
69. d
71. b

Chapter 8
11. RP = RE /22
13. 57.5%
15. 8.6 kg
17. 542 m
19. 3070 m/s
21. 1.77 d
23. 0.28 * 106 m
25. 3.17 GJ
27. 4.29 km/s
29. -2.64 * 1033 J
31. (a) 2.44 km/s (b) 2.10 * 108 m/s
33. 10 m/s2

35. g1h2/g102 = 0.414
37. 2.73 * 10- 3 m/s2, ac/g = 2.78 * 10- 4

39. 60.5 min
41. 2.6 * 1041 kg

43. T2 =
4p2L3

3GM
45. 2.79 AU
47. E 7 0, hyperbolic path
51.  The comet is going faster than the escape 

velocity from the Sun, so it will not 
return to Earth’s vicinity.

55. (a) 2.06 * 106 m (b) 0.805 * 106 m
57. (a) 4.59 km/s (b) 14.2 km/s
59. 4.17 km/s
61. 4.60 * 1010 m
63. 1.42 * 103 km
65. 1.58 * 1016 kg
67. 3.8 m/century
69.  No danger, since the puck needs at least 

6100 km/h to go into orbit.
71. 1.5 * 106 km
73. d
75. d

Chapter 9
15. 2m
17. 10, 0.289L2
19. v

!
2 = -67in cm/s

21. 0.268 Mm/s
23. 1.21 J
25.  The impulse imparted by gravity is 

0.08% of the collision impulse.
27. 41.8 s
31.  The second truck’s load was about  

7600 kg—close to, but slightly  below, the 
legal limit.

33. 46 m/s
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35. v1 f = -11 Mm/s, v2 f = +6.9 Mm/s,
 velocities are exchanged
37. (0, 0.115 (a)
39. r

!
cm = 12t2 + 4t + 8

32in + 15
3t + 4

32jn;
 v

!
cm = 14t + 42in + 15

32jn; a
!
cm = 4 in

41. mb = 4mm

43. 10, 0, h/42
45. (a) 0.99 m (b) 3.9 m/s

47. (a) a
!
c =

v0

M
 adm

dt
b in (b) v0

51. (a) (0, 0, 13 m) (b) (0, 0, 11 m)
53. v

!
3 = 4.4in + 3.0jn m/s

55. 9.4 m/s
57. 2

5v; 75v

59. (a) 37.7° (b) -65.8 cm/s
61. 5.8 s
63. 0.92 m/s
65.  If vBuick = 55 km/h, then 

vToyota = 90 km/h; if vToyata = 55 km/h, 
then vBuick = 65 km/h

67. 120°
69. 5.83
73. 18.6%
75. J = 2F0 /a
77. (a) 12.0 m/s (b) 15.4 m/s
79. v1 = v/6, v2 = 5v/6
81. 8.3 kg
83.  The peak force of 327 kN occurs at  

165 ms.
87.  The center of mass lies along line through 

the middle of the slice, at  
a distance of 14R/3u2 sin 11

2 u2 from the tip.
89. 3.75 min

91.  (a) 
M

1 + a
; (b) 

1 + a

2 + a
 L 

 (c) M and 12 L

93.  3 collisions, final speeds 0.26v0 and 0.31v0

95. b
97. a

Chapter 10
13.  (a) 7.27 * 10- 5 s- 1 (b) 1.75 * 10- 3 s- 1  

(c) 1.45 * 10- 4 s- 1 (d) 31.4 s- 1

15.  (a) 75 rad/s (b) 2.4 * 10- 4 rad/s  
(c) 6 * 103 rad/s (d) 2 * 10- 7 rad/s

17. (a) 0.068 rpm/s (b) 7.1 * 10- 3 s- 2

19. (a) 0.16 rev (b) 0.07 rad/s
21. 1.2 m
23. 7.9 * 10- 2 N # m
25. (a) 2mL2 (b) mL2

27. (a) 4.4 *10- 4 kg #  m2  (b) 3.7 * 10- 3 N #  m
29. (a) mL2 (b) 

1

2
 mL2

31. (a)  3.2 * 1038 kg #  m2  (b)  1.8 * 1034 N #  m
33. 20 min
35. 12,000 y
37. (a) 1.6 * 108 J (b) 16 MW
39. 1/3
41. (a) 6.9 rad/s (b) 3.7 s
43. (a) 1.1 rad/s (b) 1.1 m/s
45.  (a) 170 s- 2 (b) 2.9 m/s2  

(c) 150 revolutions

47. 570 rev
49. (a) 2ML2/3 (b) 2ML2/3 (c) 4ML2/3
51. Ma2/3
53. 33 pN
55. (a) 7.2 h (b) 1900 rev
57. 0.36
59. {2.1 rad/s
61. v = 26

5 gd sin u
63. 17%
65. 0.494 MR2

67. 33 m

69. (a) M =
2pr0wR2

3
 (b) I = 3MR2/5

71.  yes for spin-up time (53 s), but no for 
efficiency (94%)

73. 3M R2/10

75. t =
1

2
 MGL sin u

77.  The specs are incorrect. The storage 
capacity is 3 MJ below what’s claimed.

79. 5.2 * 10- 5 kg #  m2

81. a
83. b

Chapter 11
15. v

!
= 63 s- 1 west

17. (a) 1.1 * 106 s- 2 (b) -37°
19.  (a) -12kn  N #  m (b) 36kn N #m  

(c) 12in + 36jn N #  m
21. 3.1 N #  m, out of the page
23. 414 kg #  m2 #  s- 1

25. 2.3 J #  s along axis
27. 17.4 rpm
29. 2.5 days.
31. -9.0kn N #  m
33. 1600 N #  m
35. 37 J #  s
37. 2.66 * 105 J #  s, out of plane of figure
39. 3.1 * 10- 16 J #  s
41. 0.21 kg #  m2

43. 63%
45. 5.5 m/s
47. 3.1 rpm
51. (a) 0.25 rad/s (b) 6.4 kJ
53.  (a) vd11

2 - I/2md22 (b) vd  
(c) vd12 + I/md22

55.  2.8%, orbital angular momentum of 
Jupiter

57. (a) 140 rpm (b) 27%

59. (a) 2v0 / 7 (b) t =
2Rv0

mkg
63. 9.2 * 1026N #  m
65. d
67. d

Chapter 12
15.  (a) t = mgL/2 (b) t = 0  

(c) t = -mgL/2
17. 16 m relative to the wall
19.   (a) 0.61 m from left end (b) 1.42 m 

from left end
21. 480 N
23. -0.797 m, unstable; 1.46 m, stable

25. (a) 40 N #  m (b) 1.3 kN
27. 500 N
29. 79 kg
31. 1.4 W
35. 87 kg
37. tan- 11L /w2
39.  (a) 

mg

2
3L sin u - w11 -  cos u24  

  (b)  tan - 11L /w2 (c) concave down, 
unstable

41. 74 kg
43. 0.366 mgs
47. Fapp = M g tan 1u/22
49. ms 6  tan a = 1/2

53. m Ú  
tan u

2 + tan2u
55. 840 N
57. 170 N

59. (a) F = G 
MEm

RE
2 11.2292, 21.3° 

 (b) t = G 
MEm

RE
1-0.03562

61.  The tie beam will not hold under the  
10 kN of tension.

63.  stable equilibrium at ∼6 nm and ∼14 nm, 
unstable equilibrium at ∼11 nm

65. a
67. b

Chapter 13
17. 2.27 * 10- 3 s
19. (a) x1t2 = 112.5 cm2 cos [142.0 s- 12t]
 (b) x1t2 = 12.15 cm2 sin [14.63 s- 12t]
21. 22 ms
23. 0.59 Hz; 1.7 s
25. (a) 10.6 s- 1 (b) 16.5 cm (c) 38.6 N/m
27. (a) 2.2 rad/s (b) 2.8 s (c) 0.63 m
29. 1.21 s
31. 1.6 s
33.  7 oscillations in x direction for  

4 oscillations in the y direction
35. {1.7 rad, {15 rad/s
37. 0.25 s
39. 65 km/h
41. 0.70 s
43. (a) t = p2m/k (b) A = v02m/k
45. 50 min
47. (a) 67 μN/m (b) 3.4 * 10- 10 kg
51. 821 kg
53.  (a) � r

!
� = A  

(b) v
!

= 1vA  cos vt2in - 1vA  sin vt2jn 
(c) � v

!
� = vA (d) v

55. 0.147%
57. (a) 1.3 N/m (b) 0.80 kg

59. v = 21k1 + k22/m

63. v = 22k/3M
65. 34
67. (a) 6.5 cm (b) 0.51 s

69. f =
1

2p
22a/m

71. (a) E1 = 4E2 (b) amax,1 = 4amax,2

73. 27°
75. T = 2p27/110ga2
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77. 0.54 Hz; 22 cm; -0.11 rad

79. c) T = 2pB r3
0

GM
 (d) 16 days

83. 2.1 m/s2

85. (a) up (b) 0.46 turn
87. c
89. c

Chapter 14
15. (a) 0.19 s (b) 6.5 cm
17.  (a) 300 m (b) 1.58 m (c) 3.0 cm  

(d) 8 μm (e) 500 nm (f) 3.0 Å
19. (a) 0.19 mm (b) 0.43 mm
21.  (a) 1.3 cm (b) 9.1 cm (c) 0.20 s  

(d) 45 cm/s (e) -x direction
23.  (a) 12.8 rad/s (b) 0.336 cm- 1  

(c)  12.34 cm2cos[10.336 cm- 12x +
112.8 s- 12t]

25. 250 m/s
27. 7.6 N
29. 9.9 W
31. 343 m/s
33. 420 m/s
35. 940 Hz
37. 5.4 m
39. (a) 280 Hz (b) 70 Hz (c) 210 Hz
41. 14 cm
43. 93 Hz
45. Galaxy receding
47. 30 m/s

49. E =
4p2F A2

l
51. 1.0 * 102 W

55. v = AkL1L - L02
m

57. 10 m
59. L0 = 5L1/7
61. 440 mph
65. 6.3 m
71. 7.3 km
73. 41 m/s
75. radar worked properly
77.  Not sufficient: The minimum measurable 

speed is 5.4 km/h.
79. 3.9 kg
81. b
83. c

Chapter 15
15. 1.2 kg
17. (a) 180 kg/m3 (b) 7.3 m3

19. 249 kPa
21. 322 kPa
23. 1.7 * 103 kg/m3

25. 92 m
27. 2.4%
29. 46 kg
31. 0.75%
33. 2.8 m/s
35. (a) 1.8 * 104 m3/s (b) 1.5 m/s
37. 1.8 cm/s
39. 830 cm2

41. (a) 620 Pa (b) 1.2 kPa

43. 3.6 mm
45. 8100 kg
47. The accused apparently drank 51 oz.
49. 27 m
51. (a) 49 kg (b) 2500 kg
53. 14 kPa
55. 14 m
57. (a) 1.5 m/s (b) 0.47 L /s
59. 70%
61. (a) 98% less (b) 17 cm
63. (a) 603 Pa (b) 11.0 km
65. 15 kg
67.  Yes, the wind farm could produce  

1 GW of power.

69. t =
A0

A1A2h

g
71. (b) 5.8 km

73. 
M

4pR311 - 2e - 12
75. 2.1 * 1012 N #  m
77. Yes

79. rH2O L tan 
u

2
1h0

2 - h1
22

81. c
83. e

Chapter 16
15. 2.5°F to 5.6°F
17. 20°C
19. -40°C = -40°F
21. 102°F
23. 32 kJ
25. 100 W
27. (a) 170 J/K (b) 480 J/1kg #  K2
29. 0.293 W
31. 55 kW
33. 4 W
35. Rair = 0.98 m2 #  K/W,
 Rconcrete = 0.03 m2 #  K/W,
 Rfiberglass = 0.60 m2 #  K/W,
 Rglass = 0.03 m2 #  K/W,
 RStyrofoam = 0.88 m2 #  K/W,
 Rpine = 0.23 m2 #  K/W
37. 2.2 kW
39. 2 * 10- 5 m2

41. (a) 138 kPa (b) 33.4 kPa (c) 233 kPa
43. 263 K = -10°C
45. 364 g
47. (a) 23.2 kJ (b) 337 kJ (c) 65.2 kJ
49. 138 s
51. 0.56 kg
53. 1.8 kg
55. 9.2 K
57. 0.20 kg
59. 2.0 * 102 W
61.  The house will remain at a comfortable 

19°C
63. (a) 1200 K (b) 700 K
65. 24°C
67. 1200 K
69. (a) $319/month (b) $37.58/month
71. 44 K
73. 418.76 kJ, 0.09% higher

75.  Mars: 207K vs. ∼210 K measured;  
Venus: 301 K vs. ∼740 K measured

77.  The solar increase accounts for only  
4% of recent warming.

79.  The hutch temperature will be -2.5°C, 
so the water will freeze.

81. 10 h
83. c
85. a

Chapter 17
17. 1.8 m3

19. 1.8 * 106 Pa
21. (a) 27 L (b) 330 K
23. 3.16 km/s
25. 22 kJ
27. 3.9 kg
29. 6.0 MJ
31. 0.987 L
33. 263°C
35.  1 * 1015 m- 3, which is over 10 billion 

times less dense than Earth’s atmosphere
37. (a) 235 mol (b) 5.65 m3

39. (a) 1.27 atm (b) 0.980 mol (c) 0.786 atm
41. 27.6 min
43. 14 min
45. 43.9 min
47. 10°C
49. 46.1°C
51. 177 g
53. 4.9°C
55. 19 kW
57. 56 min
59. 251 K
61. 307 K

63. d =
L0

2
22a∆T + a2∆T2

65. (a) 61 h (b) 52 h
67. 3.97°C
69. 34.1 km

73. (a) y2 =
1

4
1L 2

0 - d22 +
1

2
 L 2

0 a∆T

 (b) a = 2.35 * 10- 5/C°, d = 80.00 cm
 (c) aluminium
77. (a) 244 K (b) 247 K
79. c
81. c

Chapter 18
15. 29.3 kJ
17. 250 J
19. -14 kW
21. 2p1V1

23. (a) 4/3 (b) 220 J
25. 0.177
27. 2.1 MJ
29. 57.7%
31. (a) 200 K (b) 120 K
33. 380 W
35. (a) 1.49 mm (b) 10.7 μJ
37. 1.35
39. (a) 300 kPa (b) 240 J
41. 440°C
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43. (a) 810 K (b) 25.8 atm
45. 354
47.  (a) 1.27 (b) internal energy to raise gas 

temperature
49.  (a) 255 K, 1.75 kJ (b) 279 K  

(c) 272 K, 500 J
51. (a) 40 kPa (b) 83 kPa (c) 80 kJ
53. 930 J
57.  The temperature rises 75°C, missing the 

criteria.
59. 57 kJ
61. 330 K
63.  (a) 202 J (b) 500 J transferred out of 

the gas
65. 20 mol
67. 140 atm
73. 2.0 mJ
75. 4p1V1/3
77. Yes
79. 18%
81. a
83. c

Chapter 19
13. (a) 26.8% (b) 7.05% (c) 77.0%
15. 0.948 K
17. 9.10
19. No
21. 8.8 kJ/K
23. 21.9 kg
25. (a) 1/64 (b) 5/16
27. 52.1% (winter), 47.7% (summer)
29. (a) 1.75 GW (b) 43.0% (c) 232°C
31. 2 * 1011 kg/s
33. (a) 8.53 (b) 1.10 * 103 kg
35. $68
37. 2.83
39.  (a) 5.7 (b) 3.5 kW (c) pump: 54¢/h; 

oil furnace; $2.40/h
41. (a) 17.4% (b) 83.3%
43. 140 MJ/K
47. (a) 86.0 J/K (b) 120 J/K (c) 0
49. 0
51. 160 J/K
53. 12.1 kJ/K
55. 1-r1 -g

59. 61%
61. C011 - T0 /T12
63. W = CTh1ln x - 1 + 1/x2
65. ∆Stot = mc ln a1 +

1Th - Tc22

4ThTc
b

67. 36.2 J/K
69. 62%
71. c
73. c

Chapter 20
13. 3 C, or about 0.05 C/kg
15. (a) uud (b) udd
17. 1.1 * 109

19. 5.1 m
21. (a) jn  (b) - in  (c) 0.316in + 0.949jn

23. 3.8 * 109 N/C
25. (a) 2.2 * 106 N/C (b) 77 N
27. -1.6in pN
29.  (a) -26 MN/C (b) 5.2 MN/C 

(c) -58 MN/C
31. 1.1 kN/C
33. E = kQ/128a22
35. 5.1 * 104 N/C
37. 980 N/C
39. (a) 22.3 μC (b) no
41. 16in - 9.1jn N
43. 4q
45. (a) 20 μC (b) -1.6in N
47.  (a) 2.3in MN/C (b) 0.82in + 0.82jn MN/C 

(c) E
S

= 0.30in - 0.89jn MN/C
49. -4e
51.  (a) 8.0jn GN/C (b) 190jn MN/C 

(c) 220jn kN/C
53. 0
55. q1 = {40 μC, q2 = |6.9 μC
59. -14 μC/m
61.  The device doesn’t work because its two 

halves depend on charge-to-mass ratio in 
the same way.

63. 1.3 * 10- 30 C #  m
65. (a) 2kQqa/x2 (b) 2kQqa/x3 (c) upward
67. 0.4e, 0.03e

69. (a) E
S1x2 = 2kqa2

13x2 - a22
x21x2 - a22 in

 (b) E
S1x2 ≈  

6kqa2

x4  in

71. (a) 2.5 μC/m  (b) 300 kN/C  (c) 1.8 N/C
73. (b) dq = 2ps rdr 

 (c) dEx =
2p ks xr

1x2 + r223 / 2 dr

77. y = a/22

79. E = -
kl0in

L
c 1

2
+ 2 ln122 d

81. mdv2/qL2

83. a
85. a

Chapter 21
17. 3 μC
19. QC = 2Q = -QB

21. 650 kN/C
23. {1.5 kN #  m2/C
25. 69 N #  m2/C
27. (a) -q/P0 (b) -2q/P0 (c) 0 (d) 0
29. 49 kN #  m2/C
31.  (a) 1.2 MN/C (b) 2.0 MN/C  

(c) 50 * 104 N/C
33. Line symmetry
35. 49 * 103 N/C
37. (a) 5.1 * 106 N/C (b) 34 N/C
39. (a) 2.0 * 106 N/C (b) 7.2 * 103 N/C
41. (a) 0 (b) 4.0 * 10- 3 C/m2

43. 1.8 MN/C
45. {E0a

2/2
47. 7.0 MN/C; 17 MN/C
49. (a) 2.8 cm (b) 3.5 nC

51. {154 nC
53.  (a) 3.6rn MN/C (b) 3.8rn MN/C 

(c) 7.8rn MN/C
55. (a) 20rn kNC (b) 1.7rn kN/C
57. 6.3 μC/m3

59.  (a) rx/P0 (b) rd/2P0; away from the 
center plane of slab if r 7  0, toward 
center plane if r 6  0

61. 18 N/C
63. (b) -Q
67. (a) Q = pr0a

3 (b) E1r2 = r0r
2/14P0a2

69. a = 5r0 /13R22
71. R3r0

P0
1e - 22

73. 
r0r

2

3P0R

75. Ein =
r0x

2

2P0d
, Eout =

r0d

8P0
77. c
79. d

Chapter 22
15. 600 μJ
17. 3.0 kV
19. 910 V
21.  Proton, ionized He atom: 1.6 * 10- 17 J, 

proton: 3.2 * 10- 17 J
23. -E0y
25. 53 nC
27. (a) 440 kV, 9.2 * 106 m/s
31.  (a) 4 V  

(b)  Ex = 1 V/m, Ey = -12 V/m, 
Ez = 3 V/m

33. 3 kV
35. 5.6 kV/m
37. 4.5 V
41. 6.1 μC
43. 22keQ/1mR2
45. kQ/R
47. -ax2/2
49. -52 nC/m
51. -a/2, a/4
53. (a) 2.6 kV (b) 1.8 kV (c) 0
55. V = 2kQ/R
57. 2pks12x2 + b2 - 2x2 + a22
61. 1V/R2rn

63.  (a) 43 kV (b) 1.7 MN/C 
(c) 540 V (d) 0

65. -E0R/3
67. (a) 7.2 kV (b) 14 kV
69. 14 cm, 1.7 nC
71. 0.12 J
73.  v = 232 nC/m2, q = 3.75 nC,

r = 7.18 cm
77.  (a) p ks0a321 + 1x/a22 -
 1x/a22 ln 1a/x +  21 + 1a/x2224
79. -

kl0

L2 cLx + x2  ln a2x - L

2x + L
b d

81. 8.0 mm
83. d
85. b
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A-22 Answers to Odd-Numbered Problems

Chapter 23
13. 4.4 kJ
15. 0
17. -48.5 eV
19. (a) 1.4 J (b) 4.2 J
21. 22 nF
23. 740 pF
25. 1.5 J
27. 3.0 μF, 0.67 μF
29. (a) 1.20 μF  (b) Q1 = 14.4 μC,
 Q2 = 4.80 μC, Q3 = 9.60 μC
 (c) V1 = 7.2 V, V2 = V3 = 4.8 V
31. 8.2 * 105 V/m
33. No
35. Qy = 4Q0/122 + 12 ≈  1.66Q0

37. 2.8 μC
41. (a) 4.4 kV (b) 120 kW
43. 129 F
45. 0.86 μF
49. (a) 4.1 nF (b) 1.3 kV
51. 2.7 nm
53. 24 μJ
55. U = kQ2/12R2
57. 6.0 * 10- 4 J
59. 13 min

61. C =
4pP0ab

b - a

63. 
1

6

65. (b) 
C0V

2
0

2
 akx + L - x

L
b

 (c) 
C0V

2
0 1k - 12

2L

67. 
pr2R4

8P0

69. (b) 4.3 mF
71. a
73. c

Chapter 24
13. 9.4 * 1018

15. 1.9 * 1011

17. 3.2 * 106 A/m2

19. 6.8 cm
21.  (a) 5.95 * 1071Ω  #  m2- 1 

(b) 4.55 1Ω  #  m2- 1

23. 360 V
25. 32 mΩ
27. 4R
29. (a) 6.0 V (b) 8.0 Ω
31. 230 V
33. 300 Ω
35. (a) 0.12 mA (b) no
37. (a) 420 A/mm2 (b) 0.24 A/mm2

39. greater in Cu by factors of (a) 7.6; (b) 4
41. 9.7 μC
43. (a) 5.8 MA/m2 (b) 97 mV/m
45. Ge
47. 50 ft
49.  R1 = 388 μΩ, R2 = 0.971 μΩ,  

and R3 = 0.243 μΩ

51.  (a) 81 miles (b) 7.3 h at 3.3 kW, 3.6 h 
at 6.6 kW, 33 min at 44 kW (c) 203A

53. ∼  2 TW
55. 2.8 min
57. d1 = 22d2.
59. 0.63 A
61.  Aluminum at $3.30/m is more 

 economical than copper at  
$14/m.

63. 2.5 A
65. 250°C
69. 2pJ0 a

2/3
71. 19°
73. a
75. c

Chapter 25
17. 1.4 h
19. 43 kΩ
21. 10 V
23. 50 Ω
25. I1 = 2 A, I2 = 0.2 A, I3 = 2 A
27. 0 A
29. -0.66,
35. ER2 /1R1 + R22
37. 1.5 mA
39. 30 A
41. 14 W
43. 120 mA, so yes, possibility fatal
45. (a) ER1/1R + 2R12
47. 2.4 W
49. 7R/5
51. (a) 48 V (b) 57 V (c) 60 V
53. (a) 0.992 A (b) 0.83%
55. 360 μF; 1200 V
57. 3.4 μJ
59. a. VC = 0, I1 = 25 mA, I2 = 0
 b. VC = 60 V, I1 = I2 = 10 mA
 c. VC = 60 V, I1 = 0, I2 = 10 mA
 d. VC = 0, I1 = I2 = 0
61. (a) 5.015 V (b) 66.53 Ω
63. 1.07 A, left to right
65. 2.15 μF
67. 80 μs
69. 8 Ω; 89 W
71. (a) R1 (b) R1 (c) R1

75. (a) 9 V (b) 1.5 ms (c) 0.3 μF
77. 220 mV

79. t =
R1R2C

R1 + R2
81. Yes
83. b
85. c

Chapter 26
15. (a) 16 G (b) 23 G
17.    (a) 2.0 * 10- 14 N (b) 1.0 * 10- 14 N 
 (c) 0
19. 400 km/s
21. 360 ns
23. (a) 87.6 mT (b) 1.25 keV
25. 0.373 N

27.  12,500 lb, so clamping down the bar is a 
good idea.

29. (a) 9.85 cm (b) 14.8 μT
31. 1.2 mT
33. 5 mN/m
35. 4.05 * 10- 2 A #  m2 (b) 7.78 * 10- 2 N #  m
37. 7.0 A
39. (a) 0.569 mT (b) 3.90 mT
 (c) 2.85 mT
41. 17 T
43. 2.3 * 1027 A #  m2

45. 3.8 GA
49. (a) 71 μm (b) 440 μm
51. 0.53 A
53. 8.5 * 1022 cm- 3

55. (a) 4.6 A #  m2 (b) 0.43 N #  m
57. 0.021 N, 45° above horizontal

59. 11 + p2 m0I

2pa
, out of page

61. 
m0I

4a
, into page

63. 16 μN, toward long wire
65. (a) 0 (b) B = m0I /12pr2
67. (a) 2300 (b) 3.3 kW
71. (a) 8.0 μT (b) 4.0 μT (c) 0

73. 
m0 Js x

d
75. (a) B ≈  

m0I

2w
 (b) B ≈  

m0I

2pr

77. (a) pR2J0 /3 (b) B =
m0 J0R2

6r
 

 (c) B =
m0J0r

2
 a1 -

2r

3R
b

79.  Since t ∝  1/N, more torque from a 
1-turn loop.

81. 
m0I

2

2pw
 ln aa + w

a
b

83. m0nIl/2l 2 + 4a2

85.  No; the force between each meter of the 
two conductors is 150 N.

87.  The hall potential is 10,000 times smaller 
than bioelectric potentials.

89. d
91. d

Chapter 27
15. 1.2 * 10- 4 Wb
17. 160 T/s
19. 6.5 mH
21. 42 kV
23. 330 mH
25. 3.1 kJ
27. 66 mJ
31. 4.4 T
33. -rb/2
35. (a) -0.30 A (b) -0.20 A
37. 15 mT
39. (a) 3 s (b) clockwise
41. (a) 2.0 mA (b) 4.4 mA
43. -42 mA, clockwise
45. 130
47. (a) Upper bar (b) 0
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Answers to Odd-Numbered Problems A-23

49. (a) 25 mA (b) 1.3 mN (c) 2.5 mW
 (d) 2.5 mW
51. 58 T/ms
55. 0.76 s
57. 20 s
59. (a) 5 Ω (b) 500 J
61. (a) 1.0 A (b) 0.43 A (c) -1.7 A
63. 190 mΩ
65. 3.4 * 1021 J/m3

67. 
m0I

2

16p
69. 3 * 108 m/s (speed of light)

71. (a) -br/12r2 (b) 
pb2ha4

8r
73. 3.69 H

75. v1t2 =
F R

B2l 2 c 1 - exp a-
B2l 2

Rm
 tb d

77. (a) 
m0I

2

4p
 ln1b/a2

81. c
83. a

Chapter 28
15. (a) 294 V (b) 2.51 * 103 s- 1

17. (a) V102 ≈  Vp /22, 45°
 (b) V102 = 0, fb = 0
 (c) V102 = Vp, fc = 90°
 (d) V102 = 0, fd = {p

 (e) V102 = -Vp, fe = -90°
19.  IR,rms = 13 mA, IC,rms = 24 mA,

IL,rms = 22 mA
21. (a) 250 V (b) 15 V
23. 16 kHz
25. 78.1 H
27. (a) 32 mH (b) 1.0 V
29. 3.5 kΩ
31. 5.0 mA
33. 390 mA
35. 1
37. (a) 150 mA (b) 330 mA
41. 4.3 kHz
43. (a) 52 nF (b) 350 Hz
45. 0.199 μH
47. (a) 1/22 (b) 1/2 (c) -1/22 (d) 1/2
49. 50
51. 6.2 Ω
53. (a) Above resonance; (b) ∼50°
55. (a) 0.369 (b) 6.43 W
57. (a) 5.5% (b) 9.1%
59. 3.7 mF
61. 2.7 V
63. 1620 Hz
67. R = 400 Ω, L = 68 mH, C = 94 nF
71. 910 Hz, 36 V
73. a
75. d

Chapter 29
13. 1.3 nA
15. - kn

19. 11.2 km

21. 2.57 s
23. 5.00 * 106 m
25. x-direction
27. 12%
29. 1 * 1010 W/m2

31.  The radio has a minimum intensity of 
0.27 nW/m2, so it will work at the cabin.

33. 20 kW
35. 3.1 cm
37. 0.94 PHz -1.0 PHz
39. 1.07 pT
41. 91%
43. 19%
45. 0.00004%
47. Quasar power is greater by factor of 4 * 1010

49. (a) 4.6 kW (b) 53 mV/m
51. (a) 1/r (b) 1/r2

53. (a) 8.9 * 106 W/m2 (b) 58 * 103 V/m
55. 6.2 * 103 y
57. 2.52 kPa
59. (a) 1.12 MV/m (b) 4.14 mm
 (c) 91.0 mJ (d) 3.03 * 10- 10 kg #  m/s
 (e) 86.0 W
61. 6
65. 2.75 m
67. 2.2 km
69. (a) 51 MV/m (b) 0.17 T (c) 96 TW
71. b
73. d

Chapter 30
11. 15°
13. 0.5°
15. Ice
17. 77.7°
19. 14.2°
21. 1.9
23. 79.1°
25. 1.66
27. 6.41°
29. (a) 18° (b) 390 nm
31. Ethyl alcohol
33. 1.83
35. 5.1 m
37. 139 nm
39. 35°
41. Diagonal face, 23°
43. 1.07
47. 63.8°
49. red: 72.3°, violet: total internal reflection
51. 2.7 m
53. 1.9 m
57. c) 50.9°

61. 
d

c
 a2

3
 n1 +

1

3
 n2b

63. c
65. b

Chapter 31
15. 35°
17. (a) -1/4 (b) real, inverted
19. (a) 3f (b) 3f/2 (c) real

21. -2
23. 21 cm
25. 27 cm
27. 40 cm
29. 0.86 mm
31. 2.2 diopters
33. -1.3 diopters
35. -200
37.  (a) -24 cm (b) 29 mm  

(c) virtual, upright, enlarged
39. 18 cm
41. 16 cm
43. 7.59 cm
45. 12 cm
47.  (a) -7.7 cm, inverted, real  

(b) +7.7 cm, upright, virtual
49. 29 cm or 41 cm
51. 11 cm
53. s′ = 1.1 m, inverted real image
55. -67.9 cm
57. 2.0
59. 2
61.  Choose plastic, because it meets 

 requirements and is cheaper.
63. (a) Real, inverted image (b) -2.82
65. 3.3 diopters
67. 0.3°
69. 72 cm

79. (a) dn = -
2c

l3  dl (b) 0.858 mm
81. c
83. d

Chapter 32
11. 1.7 cm
13. 420 nm
15. 4
17. (a) 4.8°, 9.7° (b) 2.9°, 6.8°
19. (a) 2 (b) 1
21. 103 nm
23. 594 nm, 424 nm
25. The top 1.5-cm of the film
27. 29.3°
29. 1.62%
31. 37 cm
33. 3 * 10- 4 rad
35. 96°
37. (a) 38 (b) 3
39. 44 μm
43. 2
45.  Not feasible because a 2-km-diameter 

 telescope is needed
47. 3.3 Å
49. 5
51. 236
53. 128.8 μm
55. 1 + 2.93 * 10- 4

57. 34 m
59. 2.0 μm
61. 6.9 km
63.  Rep is correct, but microscope won’t 

resolve rhinovirus.

65. ngas = 1 +
ml

2L
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A-24 Answers to Odd-Numbered Problems

67. ∆y = Dl/2d
69. 92
71. c
73. a

Chapter 33
13. (a) 4.50 h (b) 4.56 h (c) 4.62 h
15. 33 ly
17. 40 m
19. 0.14c
21. (a) 2.0 (b) 2.5
23. 0.14c
25. (a) 2.1 MeV (b) 1.6 MeV
29. (a) 0.86c (b) 9.7 min
31. c/22
33.  Twin A = 83.2 years old,  

twin B = 39.7 years old
35. 0.96c
39. Civilization B, 3.8 * 105 y
41. yes, from A toward B at 0.45c
43. earlier by 5.2 min
47. 0.94c
49. (a) 10 ly, 13 y (b) 0 ly, 7.5 y
53. (a) 4.2 ly (b) -2.4 ly
55. (a) 0.758c (b) 1.09 GeV/c
57. 25 h
59. (a) 0.26 eV (b) 1.3 keV (c) 3.1 MeV
65. 0.866c
67. 0.95c

71. gma c 1 + agu

c
b

2

d
73. 0.31 c; 27 kV
75. (a) 2.976 * 108 m/s
  (b) 9.46 * 10- 31 kg, 4, higher than 

known electron mass
77. a
79. a

Chapter 34
15. 16
17. lpeak = 10.1 μm, lmedian = 14.3 μm
19. (a) 500.0 nm (b) 708.6 nm
21. 2.8 * 10- 19 J to 5.0 * 10- 19 J
23. 1.44
25. 122 nm, 103 nm, 97.2 nm
27. 91.2 nm
29. (a) 3.7 * 10- 63 m (b) 73 nm
31.  The electron moves 1836 times faster 

than the proton.
33. 6 * 107 m/s
35. 130 nm
37. 23 keV
39. UV is smaller by factor 5.4 * 10- 2

41. (a) 5.19 * 103 K (b) 0.748
43. (a) 1.7 * 1028 s- 1 (b) 3.2 * 1015 s- 1 
 (c) 1.3 * 1018 s- 1

45. (a) 1.12 * 1015 Hz (b) 2.79 eV
47.  (a) 2.9 eV and 1.9 eV (b) Plants absorb 

blue and red, reflect green.
49. 440 nm
51. (a) 154 pm (b) 222 eV

53. No
55. (a) 313 m/s (b) 96 km/s
57. 0.22 meV
59. (a) 26.4 cm (b) 4.70 μeV
61. 229
63. 3.40 eV
65. (a) 0.0265 nm (b) 40.8 eV
67. 1.62 km/s
69. 2.5 km/s
71. 1 ps
75. E0 = 1

2 mec
231g - 12 +

 21g - 121g + 324
83. (a) 6.65 * 10- 34 J #  s (b) 2.3 eV 
 (c) potassium
85. b
87. c

Chapter 35
13. (a) 0 (b) {a2 ln 2/2
15. 5
17. 3.8 meV
19. (a) 1.6 eV (b) 6.5 eV
21. Electron
23. 0.2 MeV
25. 33 eV
27. 8.0 eV
29. E S E/4
31. 930 pm
35. (a) 2.2 eV (b) 570 nm
37. 21 μm
39. (a) 6 (b) l4S1 = 153 nm, 
 l4S2 = 191 nm, l4S3 = 328 nm, 
 l3S1 = 287 nm, l3S2 = 459 nm,
 l2S1 = 765 nm (c) UV, visible, and IR

41. (a) cn - odd1x2 = A 2

L
 cos  anpx

L
b ,

   cn - even1x2 = A 2

L
 sin  anpx

L
b

 (b) En = n2h2/18mL22
43. 0.759 nm
45.  2.5 * 10- 17 eV; quantization is 

 insignificant
47. (a) 0.30 (b) 0.15
53. 4
55. (c) A0 = 1a2/p21/4

57. 2.23 nm
61. b
63. a

Chapter 36
15. 3
17. d
19. 5
21. 3d
23. 2.58 * 10- 34 J #  s
25. 3/2, 5/2
27. 11.5Uv
29. 1s22s22p63s23p64s23d1

33. 0.6934 meV
35. n = 4, l = 3

37. 2.67 * 1068

39. 90°, 65.9°, 114°, 35.3°, 145°
41. 0, {1, {2, {3

45.  (a) E1/16 (b) 212U (c) 
1

2
235U

47. (a) 16 Uv (b) 4 Uv
49. 1s22s22p63s23p64s13d10

51. 3.0 * 1017

53. 0.1
55. 2.50 meV
57. even N: Uv1N - 12/2; odd N: UvN/2
59. (a) 5 (b) 9E1

61. 3U, 6h
63. (a) 0.966 (b) 0.0595
65. P1r2dr = 4pr2c2s

2   dr, 3 + 25
67. (b) 54.4 eV, 870 eV, 91.4 keV, 115 keV
69. (b) 141 eV, 65.8 eV, 47.0 eV, 28.2 eV
71. 3a0 /2
77. a
79. c

Chapter 37
17. 3.48 mm
19. 9.41 * 10- 46 kg #  m2

21. 7.08 * 1013 Hz
23. 181 kcal/mol
25. 549 nm
27. 3.54 μm
29. 1.34 meV
31. lU2/I
33. 0.121 nm
35. (a) 0.179 eV (b) 0.358 eV
37. 14.95 μm
39. (a) 15.09 meV (b) 82.22 μm
 (c) far infrared
41. 35.8 μm
43. 10.2
45. -8.40 eV
49. 4.68 eV
51.  6.36 * 104 K, ∼200 times  

room  temperature
53. 709 nm, no
55. 1.8 kA
57. 508 nm
59. I = m1m2R

2/1m1 + m22; 0.128 nm
63. (a) 129/2pm3/2L3/3h32 E3/2

65. 64 kA
67. 2.75 * 10- 47 kg #  m2

69. a
71. a

Chapter 38
17. 211

86Ra, 220
86Ra, and 222

86Ra.
19. (a) A = 35 for both (b) ZK = ZCl + 2
21. 5.9 fm
23. 64

29Cu S 64
30Zn + e- + v 

  64
29Cu S 64

28Ni + e+ + v

 64
29Cu + e - S 64

28Ni + v
25. 17 Bq/L
27. (a) 190 y (b) 290 y
29. 4 * 10- 30 kg
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Answers to Odd-Numbered Problems A-25

31. 59.930 u
33. 5.612 MeV
35. 2
37. 1.0 * 1020 s- 1

39. 2 * 1020 m- 3

41. 103 s
43. 5.3 * 10- 12 eV
45. 8.80 MeV
47.  0 atoms; 5 * 105 atoms; 8 * 104 atoms; 

U-238 and K-40 are suitable
49. 9.6 d
51. (a) 228

90Th
53. 8.9 * 103 y
55.  Poland: 8.04 d; Austria: 16.2 d, 

 Germany: 10.0 d
57. 3.0 * 109 y
59. 3.31%
61. 3 * 10- 13

63. 1.3 * 103 kg
65. 88.9%
67. 580 kg

69. 0.461 s
71. (a) 4 * 1038 s- 1 (b) 7 * 109 y
73.  8 * 1017 s, which is about 20 billion years 

longer than the Sun will shine
75. Bohrium-262 1262

107Bh2
77. (a) 65

29Cu (b) 4 h
79. (a) 210 MJ (b) 14 s- 1 (c) 450 kg
81. Yes
85. (b) 1.4 μs
87. b
89. d

Chapter 39
21. 0.336 fs
23. p+ S m+ + vm

25. h S p+ + p- + p0

27.  No, violates conservation of baryon 
number and angular momentum

29. sss
31. 4.54 * 107 L

33. 1028 K
35. 1.2 Gly
37. 1.32 * 1010 yr
39.  Reaction (a) is not possible because it 

violates conservation of baryon number 
and angular momentum.

41. (a) No (b) yes
43. cc
45. (a) 0.16 μJ (b) 0.02 mm
47.  (a) essentially no change  

(b) essentially c (c) 90 μs
49. 313 ly
51. (a) 256 fm (b) -2.81 keV
53. (a) 5.740 * 103 km/s (b) 253 Mly
55. 2.6 * 10- 25 s
57.  older value gives 22% larger age,  

17.6 Gy vs. 14.4 Gy
59. 5.0 km/s/Mly
61. b
63. c
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I-1

A
Aberrations, 590

astigmatism, 590
chromatic aberrations, 574, 590, 594
of lenses, 574, 590, 594
of mirrors, 581
spherical aberration, 581, 590
of starlight, 624, 625

ABS (antilock braking system), 82
Absolute motion, 623, 626
Absolute temperature, 287
Absolute zero, 286, 710, 716
Absorption spectra, 654
AC circuits. See Alternating-current circuits  

(AC circuits)
Acceleration

angular acceleration, 170–171, 183
average, 19
average acceleration vector, 35
centripetal, 44
constant acceleration

in one dimension, 21–24, 27
in two dimensions, 37–38

defined, 20, 46
force and, 54
gravitation and, 57
of gravity, 130–131

constant acceleration, 24–25, 27
near Earth’s surface, 24–26, 130–131
in space, 130–131

instantaneous, 19, 35
instantaneous acceleration vector, 35
mass and, 54–56, 58
in one dimension, 19–23
radial, 45, 170
simple harmonic motion and, 226–227
straight-line motion, 19–23, 27
tangential, 45, 170
in two dimensions, 35–38
uniform circular motion and, 43–44

Acceleration vectors, 35–36, 43, 44
Acceptor levels, 711
Acousto-optic modulators (AOMs), 607
Actinide series, 695
Action-at-a-distance forces, 56, 138
Activation analysis, radioactivity for, 730
Activity, of radioisotopes, 726–728
Addition

scientific notation and, 5–6
of vectors, 33, 35

Adiabat, 323
Adiabatic compression, heat engine, 336
Adiabatic equation, 323
Adiabatic expansion, heat engine, 336
Adiabatic free expansion, 344
Adiabatic path, 323
Adiabatic processes, 322–324, 325, 329, 353
Aerodynamic lift and airflow, 276
Air

dielectric constant of, 422
optical properties of, 568
thermal properties of, 290

Air resistance, acceleration of gravity and, 24
Aircraft

aerodynamic lift and airflow, 276
motion of, 17, 23, 37

Alkali metals, electronic structure of, 696
Allowed transitions, 696
Alpha decay, 676, 729, 743
Alpha particle, properties of, 732
Alpha radiation, 728
Alternating current (AC), 525–526, 539
Alternating-current circuits (AC circuits), 525–539

circuit elements in, 526–530
electric power in, 536
high-Q circuit, 534
LC circuits, 530–533, 539
RLC circuits, 533–535, 539
See also Electric circuits

Aluminum
electrical properties of, 435
thermal properties of, 288, 290, 310
work function of, 651

Aluminum oxide, dielectric constant of, 422
Ammeters, 459, 464
Amorphous solids, 707
Ampere (A), 4, 433
Ampère, André Marie, 433
Ampère’s law, 484–490, 491, 564

ambiguity in, 544–545
Biot–Savart law and, 485
electromagnetic waves, 549–550
in magnetic fields, 486–490, 543, 544, 546, 560, 564

Ampèrian loop, 486
Amplifier, transistor as, 438
Amplitude

oscillatory motion, 223, 226
waves, 244

Anderson, Carl, 749
Angle, units of, 4, 11, 169
Angle of incidence, 567, 575, 580
Angle of reflection, 567, 575, 580
Angular acceleration, rotational motion, 170–171, 183
Angular displacement, 169
Angular frequency, 237, 245, 261
Angular magnification, 593, 595
Angular momentum, 192–195, 199

calculation of, 192
conservation of, 194–195, 199, 750
gyroscopes, 196
of the nucleus, 723
orbital, 687–688
quantization of, 716
space quantization, 688
spin angular momentum, 689, 698
total, 690
See also Spin

Angular momentum coupling rules, 690–691
Angular speed, 169, 183
Angular velocity, rotational motion, 169, 183
Annihilation, 639, 750
Anti-electron, 729
Antibaryons, 750
Anticolor, 753
Antineutrinos, 729, 750
Antinodes, 256
Antiparticles, 679, 752
Antiquarks, 752
Antireflection coatings, 568
AOMs. See Acousto-optic modulators (AOMs)
Aphelion, 134
Apparent weight, 64, 66

Apparent weightlessness, 58, 66
Archimedes’ principle, 269–271, 278
Argon

electronic structure of, 694
specific heat of, 327

Aristotle, 51
Artificial radioactivity, 730
Astigmatism, 590
Astronauts

escape speed of, 137, 140
orbital motion of, 133
space maneuvers, 138
weightlessness, 57–58, 61

Astrophysics
Big Bang theory, 758, 762
cosmic rays, 749
double-star system, 606
expansion of the universe, 757–758
Hubble’s law, 757
neutron star, 691
nucleosynthesis, 733
pulsars, 194
in Sun’s core, 740
supernova explosions, 635
telescopes, 581, 584, 593–594, 595, 613
white dwarf, 691
See also Telescopes; Universe

Asymmetric decay, 752
Atmosphere (atm), 266
Atmosphere (of earth), 555
Atom. See Atomic physics; Atoms; Nuclear physics
Atomic bomb, 740

See also Nuclear weapons
Atomic clock, 4, 26
Atomic energy, 660
Atomic number, 692, 721, 743
Atomic physics, 684–698

classical model of atom, 483
electron spin, 679, 688–691
exclusion principle, 691–692, 698, 752–753
hydrogen atom, 684–688
isotopes, 721, 726–728, 743
magnetic moment of electrons, 689
nuclear force, 56, 722
periodic table, 692–695
spin-orbit coupling, 690–691
Stern–Gerlach experiment, 689
total angular momentum, 690–691, 698

Atomic spectra, 654, 663, 696–697
hydrogen spectrum, 654, 663
sodium doublet, 696

Atoms
Bohr model, 656, 657, 663
ground state, 685–686
monatomic structure, 327
multinuclear, 692
See also Atomic physics; Elements; Hydrogen atom; 

Nuclear physics; Nucleus (nuclei)
Automobiles. See Cars
Average acceleration, 19
Average acceleration vector, 35
Average angular velocity, 169
Average motion, 15–16
Average speed, 15–16
Average velocity, 16, 17, 19
Average velocity vector, 35

Index
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I-2 Index

B
Back emf, 510, 511
Ballistic pendulum, 156
Balmer, Johann, 654
Balmer series, 654
Band gaps, 709
Band theory, 716
Bands, 709, 716
Bandwidth, 572
Bar magnet, 483
Bardeen, John, 715
Barometers, 267, 268
Baryon number, 750
Baryons, 750, 752–753, 754, 762
Baseball, 41, 51, 276
Batteries, 437, 451, 452
BCS theory, 714–715
Beam splitter, 609
Beats, 252–253
Becquerel (Bq), 726, 743
Becquerel, Henri, 726
Benzene, optical properties of, 568
Bernoulli effect, 274–275, 278
Bernoulli’s equation, 272–273, 274, 276, 278
Beryllium, electronic structure of, 694
Beta decay, 729, 743, 750, 752
Beta radiation, 728–729
Bicycling, 198
Big Bang theory, 758, 762
Binding energy, 731–733
Binnig, Gerd, 677
Biot–Savart law, 477–478, 491, 564

Ampere’s law and, 485
Birds, aerodynamic lift and airflow, 276
Blackbody, 293, 648

radiance of, 648, 650, 663
Blackbody radiation, 648–650, 663, 667
Blu-ray discs, 615, 712
Bohr, Aage, 725–726
Bohr, Niels, 654, 661, 674, 725–726
Bohr atom, 654–657, 658, 663
Bohr magneton, 689, 698
Bohr model, of hydrogen atom, 656, 657, 663
Bohr radius, 655, 663, 686
Boiling point, 287
Boiling-water reactors (BWRs), 737
Boltzmann’s constant, 286, 312, 649
Bonding, 702–704, 716

covalent bonding, 703–704
hydrogen bonding, 704
ionic bonding, 703
metallic bonding, 704, 716
van der Waals bonding, 704

Bone scans, 730
Born, Max, 669
Bose, Satyendra Nath, 692
Bose–Einstein condensate, 692, 697, 698
Bosons, 692, 698, 750
Bottom quarks, 753, 754
Bound state, 677, 680
Bound system, 122
Boundary conditions, 672
Bragg condition, 607
Brahe, Tycho, 130
Brain, 9
Brass, thermal properties of, 310
Breeder reactors, 737
Brewster angle, 570
Bridges, 204, 205, 236
Btu (British thermal unit), 101, 288
Bubble chamber, 749
Buckminsterfullerene, 704
Buildings, 227, 236

cogeneration, 343
energy-saving windows, 294
household voltage, 526

household wiring, 436
insulating properties of building materials, 292
solar greenhouse, 296
water heater, 295, 343

Bungee jumping, 97
Buoyancy

center of, 271
of fluids, 269–270

BWRs. See Boiling-water reactors (BWRs)

C
Calatrava, Santiago, 204
Calculations. See Problem solving
Caloric, 287
Calorie (cal), 101, 288
Calorimeters, 749
Cameras, 425, 462, 555, 592
Cancer

from radiation exposure, 730
radiotherapy for, 730

Candela (cd), 4
CANDU design, 737
Capacitance, 420
Capacitive reactance, 527, 539
Capacitors, 419–421, 428

in AC circuits, 527
displacement current, 545
in electric circuits, 459–463, 464
energy storage in, 420–421, 428
equivalent capacitance, 424–425
in LC circuits, 532
in parallel, 423, 428
parallel-plate capacitor, 419, 428, 545
practical version of, 421–422
reactance, 527, 539
in series, 423
ultracapacitors, 425
working voltage, 422

Carbon-14, 727
Carbon-14 dating, 727, 728
Carbon dioxide, optical properties of, 568
Carnot, Sadi, 336
Carnot cycle, 336, 343
Carnot efficiency, 339, 353
Carnot engine, 336, 337–338, 348
Carnot’s theorem, 338
Cars

ABS brakes in, 82
acceleration of, 100–101

on a curve, 54–55
banked curve, 77–78
changing a tire, 172
crash tests, 154
Doppler effect, 259
engines, 341
flywheel-based hybrid vehicles, 179
friction in engine, 80–84
frictional forces in stopping, 81–82
hybrid cars, 482, 506
lightning and, 393
physics of, 1
regenerative braking, 506
shock absorbers, 234
speed traps, 23
starting a car, 440–441, 453

Cartesian coordinate system, 33
Cavendish, Henry, 132
Cavendish experiment, 132
CDs, 570, 601, 607, 615, 713
Cell membrane, 434–435, 457
Cell phones, 559
Celsius temperature scale, 287, 298
Center of gravity, 206, 213
Center of mass, 144–149, 162

of continuous distribution, 147–148
finding location of, 146–147

kinetic energy of, 153
motion of, 144, 149
reference frame, 161–162

Center-of-mass frame, 160
Centripetal acceleration, 44
Centripetal force, 76
Ceramics, electrical properties of, 435
Cesium, work function of, 651
Cesium chloride, crystal structure of, 707
Chain reaction, 735, 743
Charge. See Electric charge
Charge conjugation, 752
Charge distributions, 358–359

continuous, 365
electric dipole, 363–364
electric field lines of, 375
of electric fields, 362–366

of arbitrary charge distributions, 388–390
with line symmetry, 386–388, 394
with plane symmetry, 388, 394
with spherical symmetry, 383–386, 394

electrical potential of, 402
Charged capacitors, 421
Charged conductors, 390–391
Charged particles

electromagnetic force on, 471
in magnetic field, 472–474
trajectories in three dimensions, 473
See also Point charges

Charmed quarks, 753, 754
Chart of the nuclides, 723
Chelyabinsk meteor, 137
Chemical elements. See Elements
Chemical properties, 694
Chemical reactions, energy of, 418
Chernobyl accident, 737
Chlorine, electronic structure of, 695
Chlorine atom, ionization energy of, 703
Chromatic aberrations, 574, 590, 594
Chromium, electronic structure of, 695
Circular motion

constant acceleration and, 44
forces involved in, 76
harmonic motion and, 231–232
Newton’s second law and, 76, 220
nonuniform, 45
uniform, 43–45, 46
See also Rotational motion

Circular orbits, 132–133, 134, 137, 140
Classical physics, 647, 657, 671, 710
Clausius statement, 338
Cliff diving, 24
Closed circuits, induced current in, 508
Closed orbits, 134
Closed-shell nuclear structure, 725
Cloud chamber, 749
CMB. See Cosmic microwave background (CMB)
Coal energy plants, 735
Coaxial cable, 393
Cobalt-60, beta decay of, 752
Coefficient of kinetic friction, 80–81, 85
Coefficient of linear expansion, 312
Coefficient of performance (COP), 341, 348
Coefficient of static friction, 80, 85
Coefficient of volume expansion, 310, 312
Coherence, waves, 600
Coherence length, 600
Cohesive energy, ionic, 708
Collective model, 725–726
Collisions, 162

center-of-mass frame, 160
defined, 153, 162
elastic, 154, 156–161, 162
energy in, 154
impulse, 154
inelastic, 154–156
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kinetic energy and, 156
momentum and, 154, 156
in systems of particles, 153–161
totally inelastic, 154–156, 162

Color charge (quarks), 752, 753, 755
Colorless particles, 753
Combined cycle power plant, 340
Comets, orbits of, 134
Complementarity, 661–662, 663
Compound microscope, 593, 595
Compressibility, of gases and liquids, 266, 278
Compression force, 55–56
Compton, Arthur Holly, 652
Compton effect, 652–653, 663, 668
Compton shift, 653
Compton wavelength, 653
Computer disks, 483–484, 507
Concave lenses, 585, 587
Concave meniscus lenses, 590
Concave mirrors, 583, 584
Concrete, thermal properties of, 288, 290
Condenser, 340
Conditionally stable equilibrium, 210
Conduction

in electric fields, 435–439, 710, 711
in ionic solution, 437, 445
in metals, 436–437, 445
in plasma, 437, 445
in semiconductors, 437–438, 445
in superconductors, 439, 445, 519

of heat, 289–292, 298
Conduction band, 711
Conductivity, electrical, 435, 445

See also Conductors; Superconductivity
Conductors, 368–369, 445

charged, 389–391
electric field at conductor surface, 392–393
Gauss’s law, 390–393, 394
magnetic force between, 479
mechanism of conduction in, 435–439
See also Conductivity, electrical; Electric current

Confinement time, 740
Conservation of angular momentum, 194–195, 199, 

750
Conservation of baryon number, 750
Conservation of electric charge, 356, 750
Conservation of energy, 109–124

in fluid flow, 272–273
gravitational potential energy, 136
mechanical energy, 115–117, 124
nonconservative forces, 115, 118–119
rolling downhill, 181

Conservation of mass, in fluid flow, 271–272
Conservation of momentum, 150–152, 220

angular momentum, 194–195, 199
fusion, 155

Conservation of parity, 752
Conservative electric field, 518
Conservative forces, 110, 115

See also Potential energy
Constant acceleration, 21–23, 27

angular, 183
circular motion and, 44
in two dimensions, 38

Constant of universal gravitation, 130
Constant-volume gas thermometers, 286
Constant-volume processes, 321–322, 325, 329, 353
Constructive interference, 251, 599, 601, 616, 620
Contact forces, 56
Continuity equation, 271–273, 278
Continuous charge distributions, 365
Continuum state, 678
Control rods, 736
Controlled fusion, 741
Convection, 293, 298
Converging lenses, 585, 586

Convex lenses, 587
Convex meniscus lenses, 590
Convex mirrors, 582, 583, 584
Coolant, for nuclear power reactors, 736
Cooper, Leon, 715
Coordinate systems, 16

vectors and, 33
COP. See Coefficient of performance (COP)
Copernicus, Nicolaus, 129
Copper

electrical properties of, 435
electronic structure of, 695
thermal properties of, 288, 290, 308, 310
work function of, 651

Corner reflector, 568
Corona discharge, 412
Corrective glasses, 591, 592
Correspondence principle, 662, 673–674
Cosmic microwave background (CMB), 758, 762
Cosmic rays, 749
Cosmological constant, 761
Coulomb (C), 356
Coulomb, Charles Augustin de, 356, 357
Coulomb’s law, 356–358, 370, 381, 388, 564

Gauss’s law and, 485
Covalent bonding, 703–704, 716
CP conservation, 752
CPT conservation, 752
CPT symmetry, 752
Crash tests, 154
Credit cards, 484, 507
Critical angle, 571, 575
Critical damping, 237, 533
Critical density, 761
Critical field, 714, 716
Critical ignition temperature, 740
Critical mass, 735, 743
Critical point, 309, 312
Croquet, 160
Cross product, 191, 199
Crossover network, 530
Crystal structure, 707–709
Crystalline solids, 707–709
Curie (Ci), 726
Curie, Irene, 730
Curie, Marie, 726
Curie, Pierre, 726
Curie temperature, 484
Curiosity rover, 51, 57
Current. See Electric current
Current density, 434–435, 445

Ohm’s law, 435, 439–441, 442, 445, 455, 564
Current loops, 477–478, 480, 482–483, 491
Curve of binding energy, 732–733, 743
Curved mirrors, 580–582, 595
Cyclic processes, thermodynamics, 325–326
Cyclotron frequency, 473, 491
Cyclotrons, 473–474

D
D-D reaction (deuterium–deuterium reaction), 739, 742
D-T reaction (deuterium–tritium reaction), 739, 742
Damped harmonic motion, 233–234, 237
Damping, 533
Dark energy, 761, 762
Dark matter, 761, 762
Daughter nucleus, 729
Davisson, Clinton, 659
DC. See Direct current (DC)
de Broglie, Louis, 657, 658
de Broglie wavelength, 658, 663
de Broglie’s wave hypothesis, 659, 669, 672
Decay

asymmetric decay, 752
radioactive. See Radioactive decay
string theory, 756

Decay constant, 726
Decay rate (radioactivity), 726–731
Decay series, 730
Deceleration, 19
Decibel (dB), 250
Defibrillator, 418, 425, 443
Definite integral, 96
Degenerate electron pressure, 691
Degenerate states, 678
Degree of freedom, 327, 329
Delayed neutrons, 736
Democritus, 648
Density, of fluids, 266
Density of states, 710
Derivative, 18, 19
Descartes, René, 569
Destructive interference, 251, 599, 616, 620
Deuterium, 721, 739
Deuterium–deuterium reaction. See D-D reaction 

 (deuterium–deuterium reaction)
Deuterium oxide, 737
Deuterium–tritium reaction. See D-T reaction 

 (deuterium–tritium reaction)
Deuteron, 159
Diamagnetism, 484, 491, 519, 520, 714
Diamond, 569, 704
Diatomic molecule, 327
Dielectric breakdown, 369
Dielectric constant, 422, 428
Dielectrics, 369, 370, 422, 428
Diesel engine, 324
Differential equation, 461
Diffraction, 610–613, 616, 620, 659

See also Interference
Diffraction gratings, 604–607, 620
Diffraction limit, 613–615, 616, 620
Diffuse reflection, 567
Diodes, 539
Diopter, 591
Dipole moment, 370

electric, 364, 370
induced, 369
magnetic, 480, 723
nuclear magnetic, 723

Dipoles. See Electric dipoles; Magnetic dipoles
Dirac, Paul, 669
Dirac equation, 679
Direct current (DC), 538
Disk, rotational inertia by integration, 175, 176
Disorganized states, 335
Dispersion

of light, 572–574, 575
in wave motion, 252

Displacement
angular displacement, 169
coordinate systems, 16
defined, 15–16

Displacement current, 545–546
Displacement vector, 33
Dissociation energy, 703
Diverging lenses, 585
Division, scientific notation and, 6, 7
DNA, bonding in, 704
Donor levels, 711
Doping, 438, 711, 716
Doppler, Christian Johann, 258
Doppler effect (Doppler shift), 258–260, 261

light, 260
redshift and, 757

Dot product. See Scalar product
Double concave lenses, 590
Double convex lenses, 590
Double-slit interference, 601–604
Double-star system, 606
Doublet, 691
Down quarks, 752, 754
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Drag forces, 84
Drift velocity, 433, 436, 445
Driven oscillations, 235
DVDs, 1–2, 168–169, 607, 615, 712
Dynamics, 51, 52

rotational dynamics, 177
See also Motion

Dynodes, 652

E
Earth

atmosphere, 555
climate of, 292, 297
convection and solar heat, 293
ether concept and motion of, 623, 643
global warming, 296–297
greenhouse effect, 296
Greenland ice cap, 270
interior structure of, 255
magnetic field of, 480
ocean waves, 2, 252, 253
precession of, 197–198
pressure at ocean depths, 267
rainbow, 573–574, 575
seasons on, 189
smog, 324
tides, 139

Eddy currents, 507
Efficiency

of Carnot engine, 336
of engine, 336
thermodynamic, 339

Eightfold Way, 752
Einstein, Albert, 52, 57

photoelectric effect, 651, 663
relativity and, 622, 625–626, 631, 761

Einstein cross, 642
Elastic collisions, 154, 156–161, 162

in one dimension, 157–159, 162
in two dimensions, 157, 159–160

Elastic potential energy, 113
Electric charge, 355–356, 370, 750

charge distribution, 358–359
conservation of, 356, 750–751
Coulomb’s law, 356–359, 370, 381, 388, 564
magnetism and, 470
moving, 564
point charges, 358–359
quantity of, 356
quantization of, 356, 648
source charge, 357
superposition principle, 359, 362, 370
test charge, 360
units of, 356
See also Charge distributions; Charged particles

Electric circuits, 449–464
AC circuits, 525–526
capacitors in, 459–463, 464
electromotive force (emf), 450
high-Q circuits, 534
inductors in, 512–513
Kirchoff’s laws, 456, 464
LC circuits, 530–533, 539
multiloop circuits, 456–457
parallel circuits, 564
RC circuits, 460–463, 530
resistors, 450–454, 464
RL circuits, 513, 530
RLC circuits, 533–535, 539
with series and parallel components, 454–455
series circuits, 564
symbols used, 449
See also Alternating-current circuits (AC circuits)

Electric current, 369, 433–435, 445, 564
ammeters, 459
current density, 434–435

induced currents, 498–499, 502–503
magnetic force and, 475–476
Ohm’s law, 435, 439–441, 442, 445, 455, 564
units of, 3, 433
See also Conductors

Electric dipole moment, 364
Electric dipole potential, 413
Electric dipoles, 363–364, 368, 370

in electric fields, 368, 370, 389
oscillating, 555
point charge, 389

Electric eels, 437
Electric field, 359–361, 370, 400, 564

of arbitrary charge distributions, 388–390
of charge distributions, 362–366

charged ring, 365
continuous, 365

or charge distributions, linear, 366, 370
conduction in, 435–439

in ionic solutions, 437, 445
in metals, 436–437, 445
in plasmas, 437, 445
in semiconductors, 437–438, 445
in superconductors, 439, 445, 519

at conductor surface, 392–393
conductors, 368–369
conservative/nonconservative, 518
corona discharge, 412
dielectrics, 369, 370
electric dipoles in, 368, 370
electric field lines, 375–376
energy in, 425–427
Gauss’s law, 380–388, 394, 484, 543, 544, 546, 

560, 564
insulators, 369
magnetic field and, 488–489
Ohm’s law, 435, 439–441, 442, 445, 455, 564
of point charge, 361, 370
point charges in, 366–368, 370
solenoids, 489–490, 491

Electric field lines, 375–377, 394
of charge distribution, 376

Electric flux, 377–380, 394
Electric force, 355, 370, 399, 564

gravity and, 358
superposition principle, 359, 362, 370

Electric generators, 2, 506, 507, 520
Electric motors, 2
Electric potential, 399, 413, 684

of charge distribution
charged disk, 407–408
charged ring, 407
charged sheet, 402
continuous, 407–408
curved paths, 402
dipole potential, 406
nonuniform fields, 402
point charge, 403–404
with superposition, 406

charged conductors, 410–411
electric field and, 408–410
zero of, 404
See also Electromotive force (emf); Voltage

Electric potential difference, 400, 413, 564
calculating, 403–410
high-voltage power line, 405
units of, 402
using superposition, 406

Electric power, 441–442, 445
in AC circuits, 536
fusion energy, 741–742
nuclear power, 738–739
nuclear reactors, 735, 736
pumped storage of, 113
See also Electric generators; Electric power lines; 

Electric power plants

Electric power lines, 441–442
magnetic force and, 475–476
potential relative to ground, 405

Electric power plants
combined cycle power plant, 340
steam system, 339
thermodynamics of, 339–340
See also Nuclear power; Nuclear reactors

Electric power supply
direct current (DC), 538
transformers and, 442, 537, 539
See also Electric power; Electric power lines; 

 Electric power plants; Nuclear power
Electric shock, 444
Electrical conduction. See Conduction
Electrical conductivity, 435, 445
Electrical energy. See Electric power; Electrostatic 

energy
Electrical measurements, 458–459
Electrical meters, 458–459
Electrical resistance. See Resistance, electrical
Electrical resistivity. See Resistivity
Electrical safety, 442–444, 445
Electrocution, 446
Electromagnetic force, 471, 564, 762

electroweak unification, 755
quantum electrodynamical description of, 748

Electromagnetic induction, 497–524, 564
defined, 499
eddy currents, 507
energy and, 503–508
Faraday’s law, 499–503, 504, 506, 511, 517, 520, 

543, 544, 546, 560, 564
induced currents, 498–499, 502
induced electric fields, 517–519
inductance, 509–514
Lenz’s law, 504, 520
See also Inductance; Inductors

Electromagnetic radiation, blackbody radiation, 
648–650, 663

Electromagnetic spectrum, 554–555, 560
Electromagnetic systems, 2
Electromagnetic waves, 244, 256, 547–551, 560, 

564, 748
Ampere’s law, 549–550
Doppler effect, 260
electromagnetic spectrum, 554–555, 560
Faraday’s law, 548–549
Gauss’s laws, 548
in localized sources, 558
momentum, 556–559
photons in, 668
plane electromagnetic wave, 547–548
polarization, 553–554, 560
producing, 555–556
properties of, 551–554
radiation of, 293, 298
radiation pressure, 559
in vacuum, 547, 560
wave amplitude, 552
wave fields, 550
wave intensity, 556–558
wave speed, 551
See also Light; Photons

Electromagnetism, 2, 56, 354–374, 564
four laws of, 485, 543, 544, 564
Maxwell’s equations, 546, 560, 564, 610, 623, 643, 668
quantization and, 648, 663
quantum-mechanical view of, 748
relativity and, 623, 625–626, 640–641
See also Electromagnetic force; Electromagnetic 

waves
Electromotive force (emf), 450, 464

back emf, 510, 511
induced emf, 499, 502
motional emf, 499
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Electron capture, 729
Electron diffraction, 659
Electron microscope, 658
Electron neutrinos, 751
Electron–positron pair, annihilation of, 750
Electron spin, 679, 688–691
Electronic scales, 64
Electrons

Bohr atom, 658, 663
Compton effect, 652–653, 663, 668
discovery of, 648
exclusion principle, 691–692, 698, 752
magnetic moment of, 689
photoelectric effect, 651, 663, 667, 668
properties of, 732, 751
relativistic electron, 639
split, 689

Electronvolt (eV), 101, 401
Electrostatic analyzer, 367, 370, 372
Electrostatic energy, 418–419
Electrostatic equilibrium, 390
Electrostatic precipitators, 412
Electroweak forces, 56
Electroweak unification, 755
Elementary charge, 356
Elementary particles. See Particles
Elements

chemical behavior and, 694
isotopes, 721, 743
origin of, 733
periodic table, 692–695
radioisotopes, 726–727
See also Atomic physics; Nuclear physics

Elevators, 58, 59–60, 112–113
Elliptical orbits, 134
emf. See Electromotive force (emf)
Emission spectra, 654
Emissivity, 293
Energy, 220

of chemical reactions, 418
in circular orbits, 137
in collisions, 154
conservation of, 109–128

in fluid flow, 272–273
consumption by society, 102–103
in electric field, 425–427
electromagnetic induction and, 503–504
energy–momentum relation, 640, 643
energy–time uncertainty, 661
fusion energy, 741–742
magnetic, 514–517
mass and, 638–639, 643
mass–energy equivalence, 638–639
from nuclear fission, 734–735
quantization and, 648, 663
in simple harmonic motion, 232–233, 237
units of, 101, 104, 287
wind energy, 277
work and, 426–427
work–kinetic energy theorem, 100, 104, 115,  

124, 272
See also Heat; Kinetic energy; Potential energy

Energy density, 425, 428
Energy-level diagram, 656
Energy levels, in molecules, 704–707
Energy–momentum 4-vector, 637
Energy–momentum relation, 640
Energy quality, 343
Energy storage, 418

in capacitors, 419–421, 428
in flywheels, 179

Energy–time uncertainty, 661
English system, 5, 101
Enrichment of uranium, 735, 736
Entropy, 342–347, 348, 353

availability of work, 344–345

second law of thermodynamics and, 346–347
statistical interpretation of, 345–346

Entropy change, 344
Equations of motion, 22–23
Equilibrium

conditionally stable, 210
conditions for, 204–205
electrostatic, 390
hydrostatic, 266–268, 278, 283
metastable, 210, 213
neutrally stable, 210, 213
potential energy and, 210, 213
stable, 209–212, 213
static equilibrium, 204–220
thermodynamic, 285–286
unstable, 209, 210, 213

Equilibrium temperature, 289, 298
Equipartition theorem, 327–328, 329
Equipotentials, 408, 413
Equivalent capacitance, 424–425
Erg, 101
Escape speed, 137, 140
Estimation, 8
Eta particles, 751
Ether concept, 623, 643
Ethyl alcohol

optical properties of, 568
thermal properties of, 308

Events in relativity, 626–628, 632
Excimer laser, 592
Excited states, 655

of hydrogen atom, 681
Exclusion principle, 691–692, 698, 752
Expansion, thermal, 310–311, 312
External forces, 145, 152
External torque, 193, 196
Eye, 591–592
Eyeglasses, 591, 592
Eyepiece, of microscope, 593

F
Fahrenheit temperature scale, 286, 298
Farad (F), 420
Faraday, Michael, 420
Faraday’s law, 499–503, 505–506, 511, 517, 520, 543, 

544, 546, 560, 564
electromagnetic waves, 548–549

Farsightedness, 592
Fermi, Enrico, 733
Fermi energy, 710, 716
Fermilab, 753
Fermions, 692, 698, 750
Ferromagnetism, 483–484
FET. See Field-effect transistor (FET)
Feynman, Richard, 748
Fiberglass, thermal properties of, 290
Fiber optics, 572
Field-effect transistor (FET), 438
Field particles, 750, 754
Field point, 362
Films, thin films, 608–609
Filtering (electrical), 538
Fine structure, 691, 698
Finite potential wells, 677–678, 680
Fire safety, radioactivity for, 730
First law of thermodynamics, 317–319, 329, 334, 353
Fissile nuclei, 734, 743
Fission, nuclear. See Nuclear fission
Fission products, 733–734, 738
Fissionable nuclei, 734
Fitzgerald, George F., 631
Flash camera, 425, 462
Floating objects, Archimedes’ principle, 270
Flow tube, 271, 272
Fluid dynamics, 271–273, 283

aerodynamic lift and airflow, 276

applications of, 273–277
Bernoulli’s equation, 272–273, 274, 276, 278
conservation of energy, 272–273
conservation of mass, 271–272
continuity equation, 271–272, 278
turbulence, 277
See also Fluids

Fluid flow
Bernoulli’s equation, 272–273, 274, 276, 278
viscosity, 277, 278

Fluid friction. See Viscosity
Fluid motion, 265–278

steady flow, 271
unsteady flow, 271
venturi flowmeters, 274–275
See also Fluid dynamics; Fluid flow

Fluid speed, 274–275
Fluids, 265–278

Archimedes’ principle, 269–271, 278
buoyancy, 269–271
density, 266
hydrostatic equilibrium, 266–268, 278, 283
Pascal’s law, 268
pressure, 267, 278
viscosity, 277, 278
See also Fluid dynamics

Fluorine, electronic structure of, 694
Flux. See Electric flux; Magnetic flux
Flywheels, 179
Focal length, 581, 583, 587, 591, 595, 620
Focal point, 580, 585, 595
Food preservation, radioactivity for, 730
Foot-pound, 101
Forbidden transitions, 696
Force(s), 51, 52, 54–55, 59, 220

action-at-a-distance, 56, 138
buoyancy force, 269–271
centripetal, 76
compression, 55–56
conservative, 109, 110
contact forces, 56
drag forces, 84
electroweak, 56
external/internal, 145
frictional, 56, 80–84
fundamental forces, 56, 755, 762
grand unification theories (GUTs), 755, 762
gravitational, 55
interaction forces, 52, 66
measurement of, 63–64
momentum and, 53
net force, 52, 53
nonconservative, 110–111
normal, 62–63
potential energy and, 123
strong, 56, 753, 762
tension, 56

of massless rope, 77–78
of spring, 63–64

unification of, 56, 755–757
units of, 54, 57
varying with position, 96–99
weak, 56
work, 92–95
See also Electric force; Gravity; Magnetic  

force
Forward bias, 712
Four-vectors, 637, 643
Fourier, Jean Baptiste Joseph, 251
Fourier analysis, 251
Frames of reference, 36

inertial, 55, 626, 643
Franklin, Benjamin, 355
Free-body diagram, 58, 66
Free expansion, 344
Free fall, 24–26, 27, 57, 58, 63
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Frequency, 244
angular frequency, 237, 245, 261
oscillatory motion, 223, 226, 237
units of, 223

Friction
kinetic, 80–81, 85
Newton’s first law and, 80–84, 85
static, 80, 85

Frictional forces, 56, 80–81
Frisch, Otto, 733
Fuel cells, 437
Fuel rods (nuclear reactor), 738
Fukushima accident, 720, 727
Fundamental forces, 56, 755, 762
Fusion

conservation of momentum, 155
heat of, 307
nuclear. See Nuclear fusion

G
Galaxies, Hubble’s law and, 757
Galilean relativity, 623
Galileo, 24, 52, 57, 130
Gallium, electronic structure of, 695
Gamma decay, 729, 743
Gamma rays, 555, 729
Gas. See Gases
Gas-cooled nuclear reactors, 737
Gas-cylinder system, heat engine, 335
Gas thermometers, 286
Gas water heater, cogeneration, 343
Gases, 312

adiabatic free expansion, 344
adiabatic processes, 322–324, 325, 329
constant-volume processes, 321–322, 325, 329
cyclic processes, 325–326
distribution of molecular speeds, 307
equipartition theorem, 327–328, 329
ideal-gas law, 303–304, 312, 323
isobaric processes, 322, 325, 329
isothermal processes, 320–321, 325, 329
microstates/macrostates, 345
phase changes, 307–310
plasmas, 437
quantum effect, 328
real gases, 307
specific heat of, 289
thermodynamics of, 319–320
universal gas constant, 304, 312
van der Waals force, 307
See also Ideal gases

Gasoline, thermal expansion of, 311
Gasoline engine, 322–323, 341
Gauge bosons, 750, 762
Gauge pressure, 268
Gauss’s law, 380–382, 394, 564

conductors and, 390–393, 394
Coulomb’s law and, 485
for electric field, 380–388, 484, 543, 544, 546, 560, 

564
for infinite line of charge, 386–387
with line symmetry, 386–388, 394
with plane symmetry, 388, 394
for point charge within a shell, 384–385
with spherical shell, 383–384
with spherical symmetry, 383–384, 394

for electromagnetic waves, 548
experimental tests of, 391–392
hollow conductor, 391
for magnetism, 481, 484, 485, 491, 543, 544, 

546, 560
Geiger, Hans, 654
Gell-Mann, Murray, 752
General theory of relativity, 55, 129, 626, 641–642, 

643, 761
Generation time, 735
Generators, 2, 506, 507, 520

Geomagnetic storm, 516
Geometrical optics, 566, 599, 620

See also Light
Geostationary orbit, 133–134, 135, 140
Gerlach, Walther, 689
Germer, Lester, 659
Giant Magellan Telescope, 594
Glashow, Sheldon, 753, 755
Glass

dielectric constant, 422
dielectric constant of, 422
electrical properties of, 435
optical properties of, 568
thermal properties of, 288, 290, 310

Global positioning system. See GPS (global positioning 
system)

Global warming, 296–297
Gluons, 753, 754, 755
Glycerine, optical properties of, 568
Gold, electrical properties of, 435
Goudsmit, Samuel, 689
GPS (global positioning system), 129, 574, 642
Grand unification theories (GUTs), 755, 762
Graphite moderators, 737
Grating spectrometer, 605
Gratings

acousto-optic modulators (AOMs), 607
diffraction gratings, 604–607, 620
reflection gratings, 605
resolving power of, 605–606
transmission gratings, 605
X-ray diffraction, 606–607

Gravitation
center of gravity, 206, 213
universal, 130–132, 140, 220
See also Gravity

Gravitational field, 138–139, 140, 359
Gravitational force, 55
Gravitational potential energy, 112, 124, 135–136, 140
Gravitons, 750, 755
Gravity, 56–58, 129–140, 762

acceleration and gravitation, 57
Cavendish experiment, 132
center of gravity, 206, 213
electric force and, 358
escape from, 137, 140
historical background, 129–130
hydrostatic equilibrium with, 266–268, 278, 283
inertia and, 57
inverse square feature of, 131
near Earth’s surface, 131

free fall, 24–26, 27, 57, 58, 63
projectile motion, 132
work done against, 99, 104, 119

orbital motion and, 130, 132–134
quantum physics and, 756
third-law pair, 63
universal law of, 130–132, 140
weight and, 56–57
work done against, 99

Gray (Gy), 731
Green-antired, 753
Greenhouse effect, 236
Greenhouse gases, 296
Greenland ice cap, 270
Ground fault circuit interrupter, 444
Ground state, 655, 685–686
Ground-state energy, 673
Ground-state wave function, 673
Guth, Alan, 760
GUTs. See Grand unification theories (GUTs)
Gyroscopes, 196

H
Hadrons, 750, 752, 754, 762
Half-life, 726, 727, 743
Hall coefficient, 476

Hall effect, 476
Hall potential, 476
Hard ferromagnetic materials, 483
Harmonic oscillators, 675–676

quantum harmonic oscillator, 706
quantum mechanical, 675, 680
selection rule for, 706
See also Oscillatory motion

Harmonics, 256
Head-on collisions, 157–159
Heat, 298, 353

defined, 287
phase changes and, 307–310
units of, 288

Heat capacity, 287–289, 298
specific heat and, 287–289

Heat conduction, 290–292, 298
Heat engine

adiabatic compression, 336
adiabatic expansion, 336
isothermal compression, 336
isothermal expansion, 336

Heat engines, 335–337
limitations of, 339–341

Heat loss, thermal-energy balance, 294–296, 298
Heat of fusion, 307

nuclear power plant meltdown, 308
Heat of sublimation, 307
Heat of transformation, 307, 308, 312, 353
Heat of vaporization, 307
Heat pumps, 341–342, 348
Heat transfer, 289–294, 353

conduction, 290–292, 298
convection, 293, 298
first law of thermodynamics, 317–319, 329, 334
radiation, 293, 298

Heavy water, 158, 737
Heisenberg, Werner, 659, 661, 669
Helicopters

aerodynamic lift and airflow, 276
weight in, 64–65

Helium
atomic structure of, 721
mass defect in, 732
specific heat of, 327
thermal properties of, 290

Helium-3, 723
Helium-4, 723, 732
Helium atom, electronic structure of, 693
Henry (H), 510
Henry, Joseph, 498, 510
Hertz (Hz), 223
Hertz, Heinrich, 223, 554, 650
Higgs bosons, 754
High-energy particles, 749–755
High-Q circuit, 534
High-temperature superconductors, 715
Hiroshima bomb, 733, 736, 740
Hockey, 155
Hodgkin, Alan L., 457
Holes (semiconductors), 711
Holograms, 697
Hooke’s law, 63–64, 65
Horizontal range, 42
Horsepower (hp), 101
Hubble, Edwin, 757
Hubble constant, 757
Hubble Deep Field, 758, 762
Hubble Space Telescope, 581, 584, 594, 614
Hubble’s law, 757
Human body

cardiac catheterization, 443
electric current, effects on, 443
electric shock, 444
eye, 591–592
radiation, effects of on, 730–731
resistance of skin, 443
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sound and the ear, 250
static equilibrium, 208–209
See also Medical devices and procedures

Huxley, Andrew F., 457
Huygens, Christian, 610
Huygens’ principle, 610, 616, 620
Hybrid-car motor, 482–483
Hydraulic lift, 268
Hydrogen

fusion of, 739
isotopes of, 721, 727
tritium, 727

Hydrogen atom, 684–688
Bohr model, 656, 657, 663
excited states of, 647
fine structure of, 691
ground state, 685–686
potential-energy curve for, 716

Hydrogen bomb, 740
Hydrogen bonding, 704, 716
Hydrogen spectrum, 654, 667
Hydrostatic equilibrium, 266–268, 278, 283
Hyperfine splitting, 723
Hyperfine structure, 691

I
Ice

boiling point of, 287
bonding in, 704
crystal structure of, 311
melting point of, 287
optical properties of, 568
thermal properties of, 288, 310
See also Water

Ice skating, 194
IDEA strategy, 9–10, 11

See also Problem solving
Ideal emf, 450
Ideal-gas law, 303–304, 312, 323, 353
Ideal gases, 304–306, 312, 353

adiabatic processes, 322–324, 325, 329
adiabatic free expansion, 344
constant-volume processes, 321–322, 325, 329
cyclic processes, 325–326
equipartition theorem, 327–328, 329
internal energy of, 322
isobaric processes, 322, 325, 329
isothermal processes, 320–321, 325, 329
quantum effect, 328
specific heats of, 326–328

Ideal spring, 63, 66, 116, 224
Image distance, 583, 587, 594
Images, 579, 595

with lenses, 585–588
with mirrors, 580–585
real images, 579, 581, 582, 583, 587, 620
virtual images, 579, 581, 582, 583, 587, 589, 620
See also Lenses; Mirrors

Impact parameter, 159
Impedance, 534, 539
Impulse, 154
Incandescent lightbulbs, 650
Incompressibility, of liquids, 266, 278
Index of refraction, 568, 620
Induced current, 498–499, 502, 503

closed and open circuits, 508
eddy currents, 507

Induced dipole moments, 369
Induced electric fields, 517–519
Induced emf, 499

Faraday’s law and, 499–503, 505–506, 511, 517, 
520, 543, 544, 546, 560, 564

Inductance, 509–514, 520
mutual inductance, 509
self-inductance, 509–511

Induction. See Electromagnetic induction
Inductive reactance, 528, 539

Inductive time constant, 513, 520
Inductors, 509, 520

in AC circuits, 527–528, 529–530
in electric circuits, 512–513
magnetic energy in, 514–515
reactance, 528, 539

Inelastic collisions, 154–156
Inert gases

electronic structure of, 694
specific heat of, 327

Inertia, 54
gravitation and, 57
rotational, 173–178, 183, 192, 237

Inertial confinement, 740
Inertial confinement fusion, 740–741, 743
Inertial guidance, 21
Inertial reference frames, 55, 626, 643
Infinite square well, 671–673, 680
Infinitesimals, 18, 27
Inflation (of universe), 760–761
Infrared cameras, 555
Infrared frequency range, 555
Insect control, radioactivity for, 730
Instantaneous acceleration, 19
Instantaneous acceleration vector, 35
Instantaneous angular velocity, 169
Instantaneous power, 101
Instantaneous speed, 17
Instantaneous velocity, 17–19
Instantaneous velocity vector, 35
Insulators, 368–369, 435, 710, 711
Integrals

definite integral, 96
line integral, 99, 104
setting up, 148

Integration, rotational inertia, 174–175
Intensity, waves, 248–249, 261
Interaction force pair, 61
Interaction forces, 52, 66
Interference, 251, 253, 283, 600–601, 616

constructive interference, 251, 599, 602, 606, 620
destructive interference, 251, 599, 620
double-slit interference, 601–604
interferometry, 607–610
multiple-slit interference, 604–607, 606
in two dimensions, 253
waves, 251, 253
X-ray diffraction, 607
See also Diffraction

Interference fringes, 601, 620
Interference pattern, intensity in, 603–604
Interferometry, 607–610, 616
Internal energy, 287, 317, 318, 322
Internal kinetic energy, 153
Internal resistance, 452, 464
International Space Station, 45, 133, 138, 146
Invar, thermal properties of, 310
Invariants, relativistic, 636–637, 643
Inverse Compton effect, 653
Inverse square force laws, gravity as, 131
Inversion (of atmosphere), 324
Inverted image, 580, 581, 582, 583, 587
Iodine-131, 727
Ionic bonding, 703, 716
Ionic cohesive energy, 708
Ionic conduction, 437, 445
Ionic solutions, electrical conduction in, 437, 445
Ionization, 657
Ionization energy, 657
Iron

electrical properties of, 435
thermal properties of, 288, 290

Irreversible/reversible processes, 320–321, 335, 344, 
353

Isobaric processes, 322, 325, 329
Isochoric processes, 321
Isometric processes, 321

Isotherm, 320–321
Isothermal compression, heat engine, 336
Isothermal expansion, heat engine, 336
Isothermal processes, 320–321, 325, 329, 353
Isotopes, 721, 743

radioisotopes, 721, 727
transuranic isotopes, 738

Isovolumic processes, 321
ITER fusion reactor, 741

J
Jensen, J. Hans, 725
Joliot-Curie, Frédéric, 730
Jordan, Pascal, 669
Joule (J), 93, 101, 104, 287
Joule, James, 93, 287

K
Kaon particles, 751
Kayaking, 151
Keck Telescopes, 594
Kelvin (K), 4, 286
Kelvin–Planck statement, 335
Kelvin temperature scale, 286, 287, 298
Kepler, Johannes, 130, 134
Kepler’s third law, 133
Kilocalorie, 288
Kilogram (kg), 3
Kilowatt-hours (kWh), 101
Kinematics, 15, 27

See also Motion
Kinetic energy, 99–101, 104

of center of mass, 153
collisions and, 156–157
of composite object, 180
defined, 100, 104
internal, 153
of mass element, 178
relativistic, 637–640
rotational, 178
of systems of particles, 153
work and, 100–101

Kinetic friction, 80, 85
Kirchoff’s laws, 456, 464
Krypton, electronic structure of, 695

L
Ladders, 207–208
Lakes

heat conduction in, 290–291
turnover, 311
wave motion in, 257

Lambda particles, 710, 751
Lanthanide series, 695
Lanthanum, electronic structure of, 695
Large Electron Positron Collider, 754
Large Hadron Collider (LHC), 747, 757
Laser Interferometer Gravitational Wave Observatory 

(LIGO), 610
Laser light, 552, 603
Laser printer, 412
Lasers, 692, 697

CDs or DVDs, 1, 2, 712
excimer laser, 592
laser light, 552, 603
vision correction with, 592

LASIK, 592
Law of conservation of mechanical energy, 124
Law of inertia, 54
Law of Malus, 553
Law of universal gravitation, 140
Laws of motion. See Newton’s laws of motion
Lawson criterion, 740
LC circuits, 530–533, 539
LCDs (liquid crystal displays), 553
Lead, thermal properties of, 308
LEDs (light emitting diodes), 712
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Lee, Tsung-dao, 752
Length, units of, 3, 4
Length contraction, 631–632, 643
Lens equation, 586–587
Lenses, 585, 620

aberrations of, 590, 594
antireflection coatings, 568
astigmatism, 590
chromatic aberration, 590, 594
concave lenses, 585, 587
contact lenses, 591, 592
converging lenses, 585, 586
convex lenses, 587
corrective glasses, 591
diverging lenses, 585
image formation with, 585–587, 595
lens equation, 586–587
magnifying glass, 587
optics of, 589–590
refraction in, 588–590
thin lenses, 585
See also Refraction

Lensmaker’s formula, 590, 595
Lenz’s law, 504, 520
Lepton–antilepton pairs, 750
Lepton number, 750
Leptons, 750, 754–755, 762
Lever arm, 172
Levitation, magnetic, 519, 714
LHC. See Large Hadron Collider (LHC)
Light

Compton effect, 652–653, 663, 668
diffraction, 610–613, 616, 620
diffraction limit, 577–579, 616, 620
dispersion of, 572–574, 575
Doppler effect, 260
double-slit interference, 601–604
as electromagnetic phenomenon, 551
interference, 251, 253, 600–601, 616, 620
laser light, 552, 603
Michelson–Morley experiment, 624–625,  

626, 643
multiple-slit interference, 604–607, 616
photoelectric effect, 650–652, 663, 668
photons, 650–653
polarization of, 552–553, 560, 570–571
rainbow, 573–574, 575
reflection of, 567–568, 570–571, 620
refraction of, 568–571, 620
Snell’s law, 569, 570, 620
speed of, 3, 649
total internal reflection of, 571–572, 575
visible light, 554
wave–particle duality, 652, 661, 663, 668–669
See also Electromagnetic waves; Images; Lenses; 

Light; Optical instruments; Photons
Light emitting diodes. See LEDs (light emitting diodes)
Light-water reactors (LWRs), 736, 737, 738
Lightbulbs, 650
Lightning, 361, 369, 393
LIGO. See Laser Interferometer Gravitational Wave 

Observatory (LIGO)
Line charge density, 365
Line integral, 99, 104
Line symmetry, charge distributions, 386–388, 394
Linear accelerators, 756
Linear-expansion coefficient, 310, 312
Linear momentum

conservation of, 150–151
defined, 150

Linear speed
vs. angular speed, 169–170
See also Speed

Liquid crystal displays. See LCDs (liquid crystal 
displays)

Liquid-drop model, 725

Liquids
optical properties of, 568
phase changes, 307–310

Liter (L), 4
Lithium atom, electronic structure of, 694
Longitudinal waves, 244, 261
Lorentz, H. A., 631
Lorentz–Fitzgerald contraction, 631
Lorentz transformations, 633–635, 643
Loudspeaker systems, 530, 535
Luminosity, units of, 4
LWRs. See Light-water reactors (LWRs)
Lyman series, 654

M
Mach angle, 260
Mach number, 260
Macrostates, 345
Madelung constant, 708
Magic numbers, 725
Magnetic confinement, 740
Magnetic confinement fusion, 741, 743
Magnetic dipole moment, 480, 723
Magnetic dipoles, 479–482
Magnetic domain, 483
Magnetic energy, 514–516
Magnetic-energy density, 516–517, 520
Magnetic field, 470, 564

Ampere’s law, 484–490, 543, 544–546, 549–550, 
560, 564

Biot–Savart law, 477–479, 491, 564
charged particles in, 472–475
electric field and, 488–489
Gauss’s law, 481, 484, 485, 491, 543, 544, 546, 548, 

560, 564
induced currents, 498–499, 502–503
Maxwell’s equations, 560, 564
origin of, 476–479
solenoids, 489–490, 491
superposition principle, 485
toroids, 490
units of, 470

Magnetic flux, 481, 500–502
Magnetic force, 470, 491, 564

between conductors, 479
electric current and, 475–476
Hall effect, 476
See also Electromagnetic force

Magnetic levitation, 519, 714
Magnetic matter, 483–484
Magnetic moment, of electrons, 689
Magnetic monopoles, 481
Magnetic permeability, 484
Magnetic recording, 507
Magnetic resonance imaging. See MRI (magnetic 

resonance imaging)
Magnetic torque, 481–483
Magnetism, 470, 491

diamagnetism, 484, 491, 519, 520, 714
ferromagnetism, 483–484, 491
Gauss’s law for, 481, 484, 485, 491, 543, 544, 546, 

560, 564
magnetic matter, 483–484
paramagnetism, 484, 491
superconductivity and, 713–714

Magnets, 483
Magnification, 582, 595
Magnifiers, 587–588, 593
Malus, law of, 553
Manometers, 267, 268
Marconi, Guglielmo, 554
Marsden, Ernest, 654
Mass

acceleration of, 54–55, 58
center of mass, 144–149
conservation of, in fluid flow, 271–272

energy and, 638–639, 643
mass–energy equivalence, 638–639
units of, 4
vs. weight, 56, 57, 66

Mass defect, 731
Mass elements, 147
Mass–energy equivalence, 638–639
Mass flow rate, 272
Mass number, 721, 743
Mass spectrometers, 472
Mass–spring system

harmonic motion in, 227, 232–233, 234, 675
vertical, 227
wave propagation in, 244

Matter
annihilation, 639, 750
antiparticles, 679
Bose–Einstein condensate, 692, 697, 698
in electric fields, 366–369
electromagnetic waves in, 552
matter-wave interference, 659
phase changes in, 307–310
quantization of, 648, 663
relativistic particles, 639
thermal behavior of, 303–312
wave–particle duality, 652, 661, 663, 669
See also Gases; Liquids; Particles; Solids

Matter-wave hypothesis, 658
Matter-wave interference, 659
Matter waves, 657–659
Maxwell, James Clerk, 307, 545, 551, 554
Maxwell–Boltzmann distribution, 307, 327
Maxwell’s equations, 546, 560, 564, 609

relativity and, 623, 643, 668
Mayer, Maria Goeppert, 725
Measurement

prefixes for units, 4, 11
units of, 3–5

Mechanical energy
conservation of, 115–118, 124
defined, 115

Mechanical waves, 244
Mechanics, 1, 14, 623, 647
Medical devices and procedures

bone scans, 730
defibrillator, 418, 425, 443
laser vision correction, 592
lasers, 592, 697
MRI, 197, 236, 439, 470–471, 515–516,  

713, 724
PET, 639, 728, 729
radioactivity used in, 730

Medium, 244
Meissner effect, 519, 716
Meitner, Lise, 733
Melting point, 287
MEMS (microelectromechanical systems), 64
Mendeleev Dmitri, 692
Mercury

electrical properties of, 435
thermal properties of, 288, 308

Mercury barometers, 267
Merry-go-rounds, 194
Mesons, 748–749, 750, 752, 754, 762
Metal detectors, 508
Metallic bonding, 704, 716
Metallic conductors, 710–711
Metals

electrical conduction in, 436–437, 445
thermal conduction in, 290

Metastable equilibrium, 210, 213
Metastable states, 696
Meter (m), 3
Metric system, 3–5
Michelson, Albert A., 609, 624
Michelson interferometer, 609–610, 616, 624
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Michelson–Morley experiment, 624–625, 626, 643
Microamperes, 433
Microelectromechanical systems (MEMS), 64
Microelectronics, 660
Microgravity, 58
Microscopes, 593, 595

electron microscope, 658
scanning tunneling microscope, 667, 677

Microstates, 345
Microwave ovens, 257, 369
Microwaves, 554

cosmic microwave background, 758–759, 762
Milliamperes (mA), 433
Millikan, Robert A., 356, 648, 651
Mirrors, 580–585, 620

aberrations of, 581
concave, 583, 584
convex mirrors, 582, 583, 584–585
curved mirrors, 580–582, 595
magnification, 582, 595
mirror equation, 582–583
parabolic mirrors, 580–581
plane mirrors, 580
See also Reflection

Mode number, 256
Moderator (nuclear power reactor), 158, 736
Modern physics, 2, 621

See also Quantum chromodynamics (QCD); 
 Quantum electrodynamics (QED);  
Quantum mechanics; Quantum physics; 
Relativity

Modes, 256
Molar specific heat at constant pressure, 322
Molar specific heat at constant volume, 321–322
Mole (mol), 4
Molecular bonding. See Bonding
Molecular spectra, 706–707
Molecular speed, 306, 307
Molecules

as electric dipoles, 363–364
energy levels in, 704–707
equilibrium states of, 212
potential-energy curve for, 122
resonance in, 236
spectra of, 706–707
See also Bonding

Moment of inertia, 173
Momentum, 149–152, 220

in collisions, 154, 156
conservation of, 150–152, 220
defined, 53, 66, 150
electromagnetic waves, 559
energy–momentum relation, 640, 643
forces and, 53
relativistic, 637, 643
uncertainty principle, 659–661, 663
viscosity and, 277, 278
See also Angular momentum

Monatomic structure, 327
Moon

circular orbit of, 133
gravity and, 130, 131

Morley, Edward W., 624
Motion

Aristotle on, 51
average motion, 15–17
of center of mass, 144, 149
changes in, 52
equations of motion, 22–23
ether concept and, 623, 643
kinematics and, 27
mechanics and, 1
relative motion, 36–37
straight-line motion

acceleration, 19–24
velocity in, 17–19

in three dimensions, 46
in two dimensions

circular, 43–45
with constant acceleration, 37–38, 44
projectile, 39–43, 46
relative motion, 36–37
vector description, 32–36

uniform motion, 53
See also Circular motion; Fluid motion;  

Newton’s laws of motion; Oscillatory motion; 
Projectile motion; Rotational motion; Wave 
motion

Motional emf
and changing fields, 499–500
defined, 499
and Lenz’s law, 505–506

Motors. See Electric motors
MRI (magnetic resonance imaging), 197, 236, 439, 

470–471, 515–516, 713, 724
Multimeters, 459
Multiple-slit diffraction systems, 612–613
Multiple-slit interference, 604–607, 616
Multiplication

scientific notation and, 6, 7
of vectors, 33, 35, 191

Multiplication factor, 735
Multiwire proportional chamber, 749
Muon neutrinos, 751, 754
Muons, 629, 749, 751, 754
Music

CDs, 570, 601, 607, 615, 713
loudspeaker systems, 530, 535
sound waves, 250, 257

Musical instruments
standing waves in, 257
tuning a piano, 532

Mutual inductance, 509
Myopia, 591

N
N-type semiconductor, 438, 711
Nagasaki bomb, 733
Nanotube, 621
National Ignition Facility (NIF), 740
Natural frequency, oscillatory motion, 235
Natural greenhouse effect, 296
Near point, 591
Nearsightedness, 591
Ne’eman, Yuval, 752
Negative work, 111
Neon

electronic structure of, 694
specific heat of, 327

Net charge, 356
Net force, 52, 53
Neutral buoyancy, 269
Neutrally stable equilibrium, 210, 213
Neutrinos, 729, 739, 749–750, 755
Neutron star, 691
Neutrons, 721, 729–730, 762

beta decay of, 729, 750
high-energy fission, 736
properties of, 732, 751

Newton (N), 54
Newton, Sir Isaac, 44, 51, 52, 129, 130, 132,  

134, 573
Newton-meter (Nm), 93, 104
Newtonian mechanics, 14
Newton’s laws of motion, 51, 85, 220

first law, 52–53, 54, 66, 220
friction and, 80–84, 85
uniform motion, 52–53

rotational analogs of, 189, 190
second law, 53–54, 66, 162, 220

applications, 58–60, 71–74, 85
circular motion, 76–80

drag forces, 84
for multiple objects, 74–75
for rotational motion, 171, 173, 177
for systems of particles, 144, 145, 150
weight and, 56

third law, 60–65, 66, 162, 220, 276
Nickel, work function of, 651
NIF. See National Ignition Facility (NIF)
NIST-F1 clock, 26
Nitrogen dioxide, specific heat of, 327
NMR (nuclear magnetic resonance), 236, 724
Nodal line, 253
Node, 256, 456
Nonconservative electric field, 518
Nonconservative forces, 110–111, 115

conservation of energy, 115, 118–119
Nonlinear pendulum, 229–230
Nonohmic materials, 435
Nonuniform circular motion, 45
Normal force, 62–63
Normalization condition, 671, 673–674, 680, 686
North Star, 198
Nuclear energy, 660
Nuclear fission, 732, 733–739, 743

chain reaction, 735, 743
energy from, 734–735
fission products, 733–734, 738
nuclear power, 736–737
radioactive waste, 734, 738
to trigger fusion reactions, 740
weapons, 733, 735, 736

Nuclear force, 56, 722, 748, 753
Nuclear fuel, 7
Nuclear fusion, 732, 739–742, 743

inertial confinement fusion, 740–741, 743
magnetic confinement fusion, 741, 743

Nuclear magnetic dipole moment, 723
Nuclear magnetic resonance. See NMR  

(nuclear  magnetic resonance)
Nuclear magneton, 723
Nuclear physics, 720–743

binding energy, 731–733
nuclear structure, 721–726
radioactivity, 726–731
See also Nuclear fission; Nuclear fusion;  

Nucleus (nuclei)
Nuclear power, 736–737, 738–739
Nuclear power plants

elastic collisions in, 158–159
meltdown, 308
thermal pollution, 319

Nuclear radiation. See Radioactivity
Nuclear radius, 723
Nuclear reactors, 735, 736
Nuclear shell model, 725
Nuclear spin, 723–725
Nuclear structure, 721–726
Nuclear symbols, 721
Nuclear waste, 734, 738
Nuclear weapons, 733, 735, 736, 740
Nucleons, 721, 722, 723
Nucleosynthesis, 733
Nucleus (nuclei), 720, 721

angular momentum of, 723
binding energy, 731–733
models of nuclear structure, 725–726
nuclear force, 56, 722
size of, 723
spin of, 723–725
stability of, 722–723

Nuclides, 723
Numbers

estimation, 9
prefixes, 4, 11
scientific notation, 5–6
significant figures, 7–8
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O
Object distance, 583, 587, 595
Objective lens, 593
Ocean waves, 2, 252, 253
Oceans

Archimedes’ principle, 270
pressure at depths, 267
turnover, 311

Ohm, 435
Ohm, Georg, 435
Ohmic materials, 435
Ohmmeters, 459
Ohm’s law, 440, 442, 445, 455, 564

macroscopic version of, 439, 440
microscopic version of, 435, 440

Oil drop experiment, 356, 648
Omega particles, 751
One dimension

acceleration in, 19–23
collisions in, 157–159, 162
straight-line motion, 17, 19–23
velocity in, 17–19

Onnes, H. Kamerlingh, 439
Open circuits, 439, 508
Open orbits, 134
Operational definition, 3
Optical fibers, 572, 575
Optical instruments, 425, 462, 579, 591–595

cameras, 425, 462, 555, 592
contact lenses, 591, 592
corrective glasses, 591, 592
diffraction gratings, 604–607, 620
electron microscopes, 658
magnifiers, 587, 593
microscopes, 593, 595
telescopes, 581, 584, 593–594, 613
See also Images; Lenses

Optical spectra, 696
Optics, 2, 566, 620

chromatic aberration, 574, 590, 594
focal length, 581, 583, 587, 591, 595, 620
focal point, 580, 585, 595
geometrical, 566, 599, 620
lens equation, 586–588
lensmaker’s formula, 590, 595
magnification, 582, 595
mirror equation, 582–583
physical, 599, 620
Snell’s law, 569, 570, 620
See also Images; Lenses; Light; Optical instruments

Orbital angular momentum, 687–688
Orbital magnetic quantum number, 688, 698
Orbital motion

circular orbits, 132–133, 134, 140
closed/open, 134
elliptical orbits, 134
geostationary orbits, 133–134, 135, 140
gravity and, 130, 132–134
precession, 196–198, 199

Orbital period, 133
Orbital quantum number, 687–688, 698
Orbitals, 693
Orbits, uniform circular motion, 43, 45
Order (of dispersion), 602, 605
Organized states, 335
Oscillating dipole, 555–556
Oscillatory motion, 222–237, 283

amplitude, 223, 225–226
basic characteristics of, 223
damped harmonic motion, 233–235, 237
driven, 235–236
frequency, 223, 225, 237
period, 223, 225, 237
phase, 226
resonance, 235–236, 237
simple harmonic motion, 224–227, 237

applications, 227–231
circular motion, 231–232
energy in, 232–233
pendulum, 228–231
potential-energy curves and, 233
tuned mass damper, 227

universality of, 222, 223
in waves, 244
See also Harmonic oscillators

Oscillatory system, 2
Oxygen

isotopes of, 721
radioisotope of, 726–727
thermal properties of, 308

Oxygen-15, 727
Ozone, 555

P
P-type semiconductor, 438, 711
Pair creation, 679
Paper, dielectric constant of, 422
Parabolic mirrors, 580–581
Parallel-axis theorem, 176
Parallel circuits, 564
Parallel-plate capacitor, 419, 421, 428, 545
Parallel resistors, 450, 453–454, 464
Paramagnetism, 484, 491
Paraxial rays, 581
Parent nucleus, 729
Parity, 752
Parity conservation, 752
Parity reversal, 752
Partial derivatives, 247, 549
Partial differential equation, 247
Partial reflection, 568
Particle accelerators, 753, 756–757
Particles

classifying, 749–750
conservation laws and, 750–751
detection of subatomic particles, 749
high-energy particles, 749–755, 762
particle accelerators, 753, 756–757
potential-energy curve, 671–678
properties of, 750–751, 762
quarks, 56, 356, 752–754, 755, 762
spin-1/2 particles, 689, 698, 723
standard model, 723, 754–755
symmetries, 752
wave–particle duality, 652, 661, 663, 669
See also Systems of particles

Pascal (Pa), 266
Pascal’s law, 268
Paschen series, 654
Pauli, Wolfgang, 688
Pauli exclusion principle. See Exclusion principle
Peak radiance, 648, 663
Peak-to-peak amplitude, 223
Pendulum, 228–231

ballistic pendulum, 156
nonlinear, 229–230
physical, 230
simple, 228

Perfect emitter, 293
Perihelion, 134
Period

oscillatory motion, 223, 225, 237
waves, 244, 245, 261

Periodic table, 692–695
Permeability constant, 477, 491
PET (positron emission tomography), 639, 728, 729
Phase

oscillatory motion, 226
wave motion, 246

Phase changes, 307–310, 353
critical point, 309, 312
heat and, 307, 309

sublimation, 307, 309
triple point, 310, 312

Phase constant, 226
Phase diagrams, 309–310, 312

critical point, 309, 312
triple point, 310, 312
of water, 310, 311

Phasor diagrams, 529, 534
Phasors, 529, 539
Phipps, T. E., 689
Phosphorescent materials, 696
Photocopier, 412
Photoelectric effect, 650–652, 663, 667, 668
Photomultipliers, 652
Photons, 650–653, 663, 692, 729, 748, 750

Compton effect, 652–653, 663, 668
energy states of, 748
gamma decay and, 729
in particle physics, 753
properties of, 755
virtual photon, 748
wave–particle duality, 652, 661, 663, 669
waves and, 668–669
See also Light

Physical optics, 599, 620
Physical pendulum, 230–231
Physics

problem solving with IDEA strategy, 9–10
realms of, 1–2, 11
simplicity of, 9

Piano, 532
Pions, 749, 750–751
Piston-cylinder system, 320
Planck, Max, 649
Planck’s constant, 649, 663
Planck’s equation, 649
Plane electromagnetic wave, 547–548
Plane mirrors, 580
Plane symmetry, charge distributions, 388, 394
Plane waves, 249
Planetary orbits, 130, 132, 134
Plano-concave lenses, 590
Plano-convex lenses, 590
Plasmas, 740

electrical conduction in, 437, 445
quark–gluon plasma, 760

Plexiglas, dielectric constant of, 422
Plutonium-239, 727, 734–735, 737
Plutonium weapons, 736
PN junction, 438, 716
Point charges, 358

in electric field, 366–368, 370
field of, 361, 370, 389
See also Charged particles

Point of symmetry, 383
Polaris, 198
Polarization, 552–553, 560, 571
Polarizing angle, 570, 575
Polyethylene, dielectric constant of, 422
Polystyrene

dielectric constant of, 422
electrical properties of, 435
optical properties of, 568

Population inversion, 697
Position

angular position, 183
with constant acceleration, 20, 21, 27
uncertainty principle, 659–660, 663
as vector, 32–33, 44

Position–momentum uncertainty, 659–660, 661, 663
Position vector, 32–33, 44
Positron emission tomography. See PET (positron emis-

sion tomography)
Positrons, 639, 679, 729, 739, 749
Potassium

electronic structure of, 695
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radioisotope of, 727
work function of, 651

Potassium-40, 727
Potential barrier, 121
Potential difference. See Electric potential
Potential energy

defined, 124
elastic, 113–114
equilibrium and, 210–211, 213
force as derivative of, 123
gravitational, 112–113, 124, 135–137, 140
stability and, 210
work and, 111–115

Potential-energy curves, 113, 120–123, 124, 671–678
for complex structures, 212
finite potential wells, 677–678, 680
hat-shaped, 756
for hydrogen atom, 716
infinite square well, 671–673, 680
molecular, 122
simple harmonic motion, 233
symmetry breaking and, 756

Potential-energy difference, 400
Potential-energy function, for ionic crystals, 708
Potential well, trapping in, 121
Pound (lb), 57
Power, 101–103

defined, 101, 104
energy storage, 179
units of, 101, 104
of waves, 248
work and, 103
See also Electric power

Power factor, 536, 539
Power plants. See Electric power; Electric power plants; 

Nuclear power; Nuclear power plants; Nuclear 
reactors

Power supply
direct current (DC), 538
transformers and, 442, 537, 539
See also Electric power supply

Power transmission, 442
Powers, numbers, 6
Poynting, J. H., 557
Poynting vector, 557
Precession, 196–198, 199
Prefixes, 4, 11
Presbyopia, 591
Pressure, 266, 278

barometers, 267
hydrostatic equilibrium, 266–268, 278, 283
manometers, 267, 268
measuring, 267–268
Pascal’s law, 268
units of, 266

Pressure melting, 311
Pressurized-water reactors (PWRs), 737
Priestley, Joseph, 357
Primary coil, transformer, 537
Principal quantum number, 687, 698
Principle of complementarity, 661, 663
Probability, 668–669, 670, 673–675

radial probability distribution, 686, 687
Probability density, 680
Probability distribution

hydrogen atom, 686
radial, 686

Problem solving
Ampere’s law, 486
checking answer, 10
conservation of mechanical energy, 116
Coulomb’s law, 357
estimation, 9
Faraday’s law and induced emf, 502
fluid dynamics, 273
Gauss’s law, 382

with IDEA strategy, 9–10
Lorentz transformations, 634
motion with constant acceleration, 22
multiloop circuits, 456–457
multiple answers, 25
Newton’s second law, 59, 66, 74
projectile motion, 40
significant figures, 7–8
static equilibrium, 207
thermal-energy balance, 295
units or measurement and, 23

Projectile motion, 39–43, 46
drag and, 84
flight times, 42–43
range of projectile, 42–43
trajectories, 41, 43, 132, 134

Projectiles, range of, 42–43
Propagation (wave), 243
Proper time, 628
Proton–proton cycle, 739
Protons, 721, 762

electric field, 362
grand unification theories (GUTs), 755, 762
properties of, 732, 751

Pulsars, 194
Pump (lasers), 697
Pumped-storage facilities, 113
Pumping, 697
pV diagram

cyclic process, 325, 326, 329
isothermal processes, 320–321

PWRs. See Pressurized-water reactors (PWRs)

Q
QCD. See Quantum chromodynamics (QCD)
QED. See Quantum electrodynamics (QED)
Quadratic potential-energy function, 675
Quanta, 651
Quantization, 648, 659, 663

of angular momentum, 716
Bohr atom, 654–657, 663
of orbital angular momentum, 688
space quantization, 698

Quantized spin angular momentum, 689, 698, 723
Quantum chromodynamics (QCD), 753
Quantum effect, gases, 328
Quantum electrodynamics (QED), 748
Quantum harmonic oscillator, 706
Quantum mechanics, 667–680, 716, 761

Bose–Einstein condensate, 692, 697, 698
Dirac equation, 679
electromagnetism and, 748
exclusion principle, 691–692, 698, 752
finite potential wells, 677–678, 680
harmonic oscillator, 675–676, 680, 706
infinite square wells, 671–673, 680
molecular energy levels, 704–707
orbital angular momentum, 687–688
orbital quantum number, 687–688
probability, 668, 670–671, 674, 686, 687
radial probability distribution, 686, 687
relativistic, 679
Schrödinger equation, 669–671, 678, 680
space quantization, 688
in three dimensions, 678
tunneling, 676–677, 680, 729

Quantum number, 673
orbital magnetic quantum number, 688, 698
orbital quantum number, 687–688, 698
principal quantum number, 687, 698
spin quantum number, 723

Quantum physics, 2, 667, 669
blackbody radiation, 648–650, 663, 667
complementarity, 661–662, 663
gravity and, 755–756
hydrogen spectrum, 654, 667

matter waves, 657–659
photoelectric effect, 650–652, 663, 667, 668
quantization, 648, 659, 663
uncertainty principle, 659–661, 663
wave–particle duality, 652, 661, 663, 669
See also Quantum chromodynamics (QCD); 

 Quantum electrodynamics (QED); Quantum 
mechanics; Relativity

Quantum state, 673
Quantum tunneling, 676–677, 680, 729
Quark–antiquark pairs, 752–753
Quark–gluon plasma, 760
Quarks, 56, 356, 752–754, 755, 762
Quartz, dielectric constant of, 422
Quasi-static process, 319

R
R-factor, 292, 294
Radial acceleration, 45, 170
Radial probability distribution, 686, 687
Radian (rad), 4, 169, 224
Radiance, 649, 650, 663
Radiation (heat), 293, 298
Radiation (nuclear). See Electromagnetic radiation; 

Radioactivity
Radiation pressure, electromagnetic waves, 559, 560
Radio transmitter, 555
Radio waves, 554–555
Radioactive decay, 726–728, 743

conservation of momentum in, 151–152
decay constant, 726
decay rate, 726–731
decay series, 730

Radioactive isotopes, 721
Radioactive tracers, 730
Radioactive waste, 734, 738
Radioactivity, 726–731

artificial, 730
biological effects of, 730–731
for cancer treatment, 730
Chernobyl disaster, 737
decay rate, 726–728
decay series, 730
decay types, 729, 743
Fukushima disaster, 727, 737–738
half-life, 726, 727, 743
human body, effects on, 730–731
radiocarbon dating, 727, 728
types of radiation, 728–729
units of, 743
uses of, 730

Radiocarbon dating, 727, 728
Radioisotopes, 721, 726–728
Radium-226, 727
Radius of curvature, 45
Radon-222, 727
Rainbows, 573–574, 575
Range of projectile, 42
Rankine temperature scale, 287, 298
Ray diagram

for lens equation, 586
for lenses, 587
mirrors, 583

Ray tracings
with lenses, 585–586
with mirrors, 581, 583

Rayleigh criterion, 613, 614, 616
Rayleigh–Jeans law, 650
Rays, 566, 620
RBMK reactors, 737
RC circuits, 460–463, 530
Reactance, 527–528, 539
Reactors. See Nuclear reactors
Real battery, 452
Real gases, 307
Real image, 579, 581, 583, 587, 620
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Rectangular coordinate system, 33
Red–antiblue, 753
Redshift, 757
Reference frames. See Frames of reference
Reflecting telescopes, 594
Reflection, 254–255

diffuse reflection, 567
of light, 567, 570, 620
partial reflection, 568
specular reflection, 567
total internal reflection, 571–572, 575
See also Mirrors

Reflection gratings, 605
Reflectors, 593
Refracting telescopes, 594, 595
Refraction, 255, 620

at aquarium surface, 589
at curved surfaces, 588–589
index of refraction, 568, 620
of light, 568–571, 620
See also Lenses

Refractors, 593
Refrigerators, 338, 341–342, 346, 348
Regenerative braking, 506
Relative motion, 36–37
Relative velocity, 36–37
Relativistic factor, 637
Relativistic Heavy Ion Collider (RHIC), 757, 760
Relativistic invariants, 636, 643
Relativistic momentum, 637, 643
Relativistic particles, 640
Relativistic quantum mechanics, 679
Relativistic velocity addition, 635–636
Relativity, 2, 622–642

electromagnetism and, 623, 625–626, 640–641
Galilean, 623
general, 626, 641–643, 761
invariants in, 636–637, 643
length contraction, 631–632, 643
Lorentz transformations, 633–635, 643
momentum and, 637–638
simultaneity, 632–633
special, 625–626, 643
time and, 626–632, 643
twin paradox, 629–630
velocity addition, 635–636
See also Quantum mechanics; Quantum physics

Reprocessing, of spent reactor fuel, 735
Resistance, electrical

in LC circuits, 533
Ohm’s law and, 435–436, 439, 440, 441, 442, 445, 

455, 564
of skin, 413

Resistance, thermal, 291
Resistivity, 435
Resistors, 441, 450–455

in AC circuits, 526
parallel resistors, 450, 453–455, 464
series resistors, 450, 451–452, 464

Resolving power of grating, 606, 616
Resonance, 236, 237

in RLC circuit, 533–534
standing waves, 256

Resonance curves, 235
Resonant frequency, 533, 539
Rest energy, 638
Restoring force, simple harmonic motion, 224
Reverse bias, 712
Reversible engine, 337
Reversible/irreversible processes, 319–320, 335, 344, 

345, 353
RHIC. See Relativistic Heavy Ion Collider (RHIC)
Rho particles, 751
Right-hand rule, rotational motion, 189–190
Rigid bodies, 144
Ring, rotational inertia by integration, 175–176

RL circuits, 513, 530
RLC circuits, 533–535, 539
rms. See Root-mean-square (rms)
Rocket propulsion, 19, 43, 60, 136, 153, 162
Rods, rotational inertia by integration, 174–175, 176
Rohrer, Heinrich, 677
Roller coaster, 78, 79, 120–121, 123
Rolling motion, 180–183
Root-mean-square (rms), 525
Roots, numbers, 6
Rotational dynamics, 177–178
Rotational energy, 178–180, 716
Rotational energy levels, 705–706
Rotational inertia, 173–176, 183, 192, 237
Rotational kinetic energy, 178
Rotational motion, 168–182, 220

angular acceleration of, 170–171, 190
angular momentum, 192–193, 199
angular velocity of, 169, 183, 189
conservation of angular momentum, 194–195, 199
direction of, 189
energy of, 178–180
inertia, 173–175, 183, 192, 237
Newton’s law, analogs of, 189, 190, 199
Newton’s second law for, 171, 173, 177, 220
right-hand rule, 189–190
of rolling body, 180–182, 183
torque, 171–172, 183, 190–191, 193, 199
See also Angular momentum; Circular motion; 

Torque
Rotational vectors, 189–199
Rubber, electrical properties of, 435
Rubbia, Carlo, 755
Rutherford, Ernest, 654, 720–721
Rutile, optical properties of, 568
Rydberg atoms, 657
Rydberg constant, 654

S
s states, 687
Safety

electrical, 442–445
nuclear power plants, 738–739

Sakharov, Andrei, 752
Salam, Abdus, 755
Satellites

de-spinning, 177
orbital motion of, 132–134

Scalar, vector arithmetic with, 35
Scalar product, 94–95
Scales, force measurement with, 64
Scanning tunneling microscope (STM), 676, 677
Schrieffer, John Robert, 715
Schrödinger, Erwin, 669
Schrödinger equation, 669–671, 678, 680, 702

for crystals, 709
multielectron atoms, 692
spherical coordinates, 685

Schwinger, Julian, 748
Scientific notation, 5–6
Scintillation detectors, 749
Scuba diving, 321
Second (sec), 3
Second derivative, 21
Second law of thermodynamics, 335–342, 348, 353

applications of, 339–342
Clausius statement, 338
entropy and, 346–347
general statement, 346
heat engines, 335–337
Kelvin–Planck statement, 335

Secondary coil, transformer, 537
Selection rules, 696
Self-inductance, 509–511
Semiconductors, 711–713, 716

electric conduction in, 437, 445

stability analysis of, 211
Series circuits, 564
Series resistors, 450–452, 464
Shell of multinuclear atoms, 692
SHM. See Simple harmonic motion (SHM)
Shock absorbers, 234
Shock hazard, tools, 444
Shock waves, 260–261
Short circuit, 439–440, 444
SI units, 3–4, 11

of absorbed dose of radiation, 731
of activity (radioactivity), 726
of electric charge, 356
of energy, 101, 287
prefixes for units, 4, 11
of R, 291
of resistivity, 435
of specific heat, 288
of temperature, 287
of thermal resistance, 291

Sievert (Sv), 731, 743
Sigma particles, 751
Significant figures, 7–8
Silicon

crystalline structure, 437–438
phosphorus-doped, 438
work function of, 651

Silver
electrical properties of, 435
work function of, 651

Simple harmonic motion (SHM), 224–227, 237
applications of, 227–231
circular motion, 231–232
energy in, 232–233, 237
mass–spring system, 227, 232, 233, 234, 235
pendulum, 228–229
potential-energy curves and, 233
tuned mass damper, 227

Simple harmonic wave, wave motion, 245, 261
Simple pendulum, 228
Simultaneity, 632
Single-slit diffraction, 611–612
Sinusoidal wave, wave motion, 245
Skiing, 72, 73–74, 81, 85, 90
Skyscrapers, 227
SLAC. See Stanford Linear Accelerator Center (SLAC)
Smog, 324
Snell, van Roijen, 569
Snell’s law, 569, 570, 575
Soap film, 608–609
Sodium, work function of, 651
Sodium atom

band structure of, 710
electronic structure of, 694, 696
ionization energy of, 703

Sodium chloride
cohesive energy of crystal, 708
optical properties of, 568

Soft ferromagnetic materials, 484
Solar currents, 486
Solar energy, 558
Solar greenhouse, 296
Solenoids

electric field and, 489, 490, 491
induced electric field in, 518
inductance, 510
magnetic flux, 500

Solids, 707–713
band theory, 709–713
crystal structure of, 707–709
phase changes, 307–310
semiconductors, 211, 437–438, 711–712, 716
superconductors, 439, 445, 519, 714–715

Sound
human ear and, 250
units of, 250
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Sound intensity level, 250
Sound waves, 2

music, 253
musical instruments, 257
wave motion, 250–251

Source charge, 357
Space quantization, 688
Spacecraft, 3, 51

escape speed of, 137, 140
International Space Station, 45
weightlessness, 57–58, 61

Spacetime, 637, 641, 642, 643
Spatial frequency, wave motion, 246
Special theory of relativity, 625–626, 643

See also Relativity
Specific heat, 287–288, 298, 329

of gas mixture, 328
of ideal gases, 326–328
molar specific heat at constant pressure, 322
molar specific heat at constant volume, 321–322

Spectra
atomic, 654, 663, 696–697
molecular, 706–707
optical, 696

Spectral lines, 654
Spectrometers, 605
Spectroscopy, 574, 620
Specular reflection, 567
Speed

angular speed, 169, 183
average speed, 15–16
in circular orbit, 137
instantaneous speed, 17
of light, 623
linear speed vs. angular speed, 169
terminal speed, 84
uniform circular motion and, 43–45
units of, 5
as vector, 44
of waves, 245, 252, 261
See also Acceleration; Velocity

Speed limits, expressing, 5
Speed of light, 3, 649
Speed traps, 23
Spherical aberration, 580–581, 590
Spherical coordinates, Schrödinger equation, 685
Spherical symmetry, charge distributions, 383–386, 394
Spherical waves, 249
Spin, 679, 688–691, 750
Spin-1/2 particles, 689, 698, 723
Spin angular momentum, quantized, 689, 698, 723
Spin-orbit coupling, 690–691, 698
Spin-orbit effect, 691
Spin quantum number, 723
Split, electrons, 689
Spontaneous emission, 697, 698
Spring constant, 64, 66
Spring scale, 64
Springs, 66

elastic potential energy, 113–114, 117, 124
forces exerted by, 63
Hooke’s law, 63–64, 66
ideal, 63, 66, 116, 224
mass–spring system, 227, 232–233, 234, 235
simple harmonic motion, 224
stretching of, 97–98
work done on, 97–98, 104

Square wave, 251
Square-well ground state, 674–675
Stable equilibrium, 209–213

See also Static equilibrium
Standard model (particle physics), 754–755, 762
Standing waves, 255–257, 261, 283
Stanford Linear Accelerator Center (SLAC), 631, 

749, 753
Starlight, aberration of, 624, 625

State variable, 344
Static equilibrium, 204–212, 220

center of gravity in, 206, 213
conditions for, 204–205
examples of, 207–209
stability of, 209–212
See also Stable equilibrium

Static friction, 80, 85
Statistical mechanics, 285, 353
Steady flow, fluid motion, 271
Steel, thermal properties of, 288, 290, 310
Stefan–Boltzmann constant, 293, 648
Stefan–Boltzmann law, 293
Step-down transformers, 442, 537
Step-up transformers, 537
Steradian (sr), 4
Stern, Otto, 689
Stern–Gerlach experiment, 689
Stimulated absorption, 697, 698
STM. See Scanning tunneling microscope (STM)
Stored energy. See Energy storage
Straight-line motion

acceleration, 19–21
velocity in, 17–19

Strange quarks, 752, 453, 754
Strangeness, 750
Strassmann, Fritz, 733
Streamlines, 271, 278
String, wave motion on, 247–249
String instruments, standing waves in, 257
String theory, 756
Strong force, 56, 753, 762

See also Nuclear force
Strontium-90, 727
Styrofoam, thermal properties of, 290
Subatomic particles. See Particles; Systems  

of particles
Sublimation, 309

heat of, 307
Subshells, 692–693
Subtraction

scientific notation and, 5–6
of vectors, 35

Sulfur, thermal properties of, 308
Sulfur dioxide, specific heat of, 327
Sun

beta decay in, 729
magnetic field of, 480, 485, 516
nuclear fusion, 739–740
solar currents, 486
solar energy, 558
temperature of, 294
as white dwarf, 691

Super Kamiokande experiment, 755
Superconductivity, 713–715, 716
Superconductors

electric conduction in, 439, 445, 519
at high temperatures, 715

Supercritical mass, 735–736
Superfluidity, 723
Supernova explosions, 635
Superposition principle

electric charge, 359, 361, 370, 599
magnetic fields, 485, 599
wave motion, 251

Surface charge density, 365
Surfing, 246
Symmetries, particles, 752
Symmetry axis, 386
Symmetry breaking, 756
Synchrotrons, 474, 756
System, 91
Systems of particles, 144–161

center of mass, kinetic energy of, 153
collisions in, 153–161
continuous distribution of matter, 147–148, 174

equilibrium states of, 212
kinetic energy of, 153
momentum, 149–152
Newton’s second law and, 145, 149

T
Tangential acceleration, 45, 170
Tantalum oxide, dielectric constant of, 422
Taser, 443
Tau neutrinos, 751, 754
Tau particles, 750, 751, 754
Taylor, J. B., 689
Teflon, dielectric constant of, 422
Telescopes, 580–581, 584, 593–594, 614
Temperature, 285–287, 298

absolute temperature, 287
absolute zero, 286, 710–711, 716
defined, 286
equilibrium temperature, 289, 298
transition temperature, 713
units of, 4, 285–287

Temperature scales, 286–287, 298
Tension forces, 56

massless rope, 83–84
spring, 63–64

Terminal speed, 84
Terminals, 450
Tesla (T), 470
Tesla, Nikola, 470
Test charge, 360
Theory of everything, 762
Theory of relativity. See Relativity
Thermal conductivity, 290, 291
Thermal contact, 286
Thermal-energy balance, 294–296, 298
Thermal expansion, 310–311, 312
Thermal noise, 437
Thermal pollution, 319
Thermal resistance, 291
Thermal speed, 306
Thermally insulated, 286
Thermochemical calorie, 288
Thermodynamic efficiency, 339
Thermodynamic equilibrium, 286, 298, 353
Thermodynamic state variable, 318
Thermodynamics, 2, 285, 353

adiabatic processes, 322–324, 325, 329, 353
constant-volume processes, 321–322, 325,  

329, 353
cyclic processes, 325–326
entropy, 342–347, 348
equipartition theorem, 327, 329
first law of, 317–319, 329, 334, 353
isobaric processes, 322, 325, 329
isothermal processes, 320–321, 325, 329, 353
quantum effect, 328
reversible/irreversible processes, 319–320, 335, 

344, 345, 353
second law of, 335–342, 346, 347, 348, 353
state variable, 344
work and volume changes, 320
zeroth law of thermodynamics, 286, 353

Thermometers, 286
Thermonuclear weapons, 740
Thin films, interferometry, 608–609
Thin lenses, 585
Third-law pair, 61, 63
Thompson, Benjamin, 287
Thomson, George, 659
Thomson, J. J., 648, 659
Three dimensions

charged particle trajectories in, 473–474
quantum mechanics in, 678

Thunderstorms, 426
Tidal force, 139
Tides, 139
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Time
atomic clock, 4, 26
energy–time uncertainty, 661
proper time, 628
relativity and, 626–630, 643
time dilation, 626–629, 643
units of, 3

Time constant, 461
Time dilation, 626–629, 643
Time-independent Schrödinger equation, 670, 680
Tokamak, 741
Tomonaga, Sin-Itiro, 748
Tools, shock hazard, 444
Top quarks, 753, 754
Toroid, 490
Torque, 171–172, 183, 190–191, 193, 199, 205

angular momentum and, 193
external, 193, 197
on magnetic dipole, 481–483
torsional oscillator, 228

Torsional oscillator, 228, 237
Total angular momentum, 690–691, 698
Total energy, 638
Total internal reflection, 571–572, 575
Totally inelastic collisions, 154–156, 162
Trajectory, of a projectile, 41, 43, 132, 134
Transformation, heat of, 307, 308, 312, 353
Transformers, 537, 539

power supplies and, 537
step-down transformers, 442, 537
step-up transformers, 537

Transistors, 438–439
Transition elements, 695
Transition temperature, 713
Transmission gratings, 604–605
Transuranic isotopes, 738
Transverse waves, 244, 261
Trapping in potential well, 121
Triple point, 310, 312

of water, 286, 287
Tritium, 727
Tsunamis, wave motion, 6
Tuned mass damper, 227
Tunneling, 676–677, 680, 729
Turbulence, 277
Tweeter, 530
Twin paradox, 629–630
Two dimensions

acceleration in, 35–38
constant acceleration, 37–38, 44

circular motion in, 43–45
collisions in, 157, 159–161, 162
interference in, 253
projectile motion in, 39–43, 46
relative motion, 36–37
vector description, 32–36
velocity in, 35–36

Two-source interference, 253
Type I/II superconductors, 714, 716

U
U value, 292
Uhlenbeck, George, 689
Ultracapacitors, 421, 425
Ultraviolet catastrophe, 650
Ultraviolet rays, 555
Unbound states, 678, 680
Uncertainty

energy–time uncertainty, 661
position–momentum uncertainty, 659–661, 663

Uncertainty principle, 659–660, 661, 663
quantum tunneling, 676–677, 680

Underdamped motion, 234
Unification, of forces, 56, 755–757
Unified electroweak force, 755
Unified mass units, 732

Uniform circular motion, 43–45, 46
Uniform motion, 53
Unit vectors, 34
Units of measurement, 3–5
Universal gas constant, 304, 312
Universal gravitation, 130–132, 140, 220
Universe, 757–761, 762

Big Bang theory, 758, 760
cosmic microwave background (CMB), 758–759, 762
dark matter and dark energy, 760–761
electromagnetic spectrum, 555
expansion of, 757–758
Hubble’s law, 757
inflationary universe, 760

Unstable equilibrium, 209–210, 213
Unstable isotopes, 743
Unsteady flow, fluid motion, 271
Up/down quark pair, 753
Up quarks, 753, 754
Upright image, 580, 581, 582, 583, 587
Uranium

enrichment of, 735, 736
isotopes of, 721, 727
nuclear fission of, 733–739

Uranium-233, 734
Uranium-235, 727, 734
Uranium-238, 727, 730, 734, 737
Uranium dioxide, thermal properties of, 308
Uranium enrichment, 735, 736

V
Vacuum

electromagnetic waves in, 547, 560
Maxwell’s equations in, 546

Valence band, 711
van der Meer, Simon, 755
Van der Waals bonding, 704, 716
Van der Waals force, 307, 704
Vaporization, heat of, 307
Variable of integration, 176
Vector cross product, 191, 199
Vectors, 32–36, 46

acceleration vectors, 35–36
addition of, 33, 35
components of, 33–34
cross product, 191
defined, 32
displacement vector, 33
four-dimensional, 636, 643
multiplication of, 33, 35, 191
position as, 32–33, 44
rotational, 189–198, 199
scalar product, 94–95
subtraction of, 35
unit vectors, 34
velocity vectors, 35–36, 44

Vehicle stability control, 209
Velocity

angular, 169
average velocity, 16, 17, 19
average velocity vector, 35
defined, 20, 46
instantaneous velocity, 17–19, 35
instantaneous velocity vector, 35
power and, 103
relative velocity, 36–37
relativistic addition of, 635–636
simple harmonic motion and, 226–227
in two dimensions, 35–36
uniform circular motion and, 43–45
as vector, 35–36, 44
See also Acceleration; Speed

Velocity addition, 635–636
Velocity selectors, 472
Venturi flow, Bernoulli effect and, 274–275, 278
Venus, phases of, 130

Vibrational energy, 716
Vibrational energy levels, 706, 716
Virtual image, 556, 579, 581, 582, 583, 589, 620
Virtual photon, 748
Viscosity, 273, 277
Visible light, 554–555
Vision

astigmatism, 590
contact lenses, 590, 591, 592
corrective glasses, 592
the eye, 591–592
laser vision correction, 592
lenses, 585–590, 620

Volt (V), 401
Voltage, 401

household voltage, 526
measuring, 458, 459
Ohm’s law, 435–436, 439, 440, 441, 442, 445, 455, 

564
working voltage of capacitor, 422–423
See also Electromotive force (emf)

Voltage divider, 451
Voltmeters, 458, 459, 464
Volume, units of, 4
Volume charge density, 365
Volume-expansion coefficient, 310, 312
Volume flow rate, 272
von Fraunhofer, Josef, 654
Voyager spacecraft, 129, 137

W
W particles, 755
Walking, 230–231
Water

dielectric constant of, 422
optical properties of, 568
phase diagram, 311, 312
phases of, 308
thermal expansion of, 311
thermal properties of, 288, 290, 308
triple point of, 286, 287
wave motion in, 257
See also Ice

Water heaters, 295, 343
Watt (W), 101, 104
Watt, James, 101
Wave. See Waves
Wave amplitude, electromagnetic waves, 552
Wave equation, 246–247
Wave fields, 550
Wave function, 669, 680

constraints on, 671
See also Schrödinger equation

Wave intensity, electromagnetic waves, 556–557
Wave motion, 2, 243–260

angular frequency, 245, 261
dispersion, 252
mathematical description of, 245–247
period, 244, 245, 261
phase, 245–246
propagation, 244
simple harmonic wave, 244, 261
sinusoidal wave, 245
sound waves, 250–251
spatial frequency, 246
speed of, 245
on stretched string, 247–249, 255–256, 261
superposition principle, 251
tsunamis, 6
wave equation, 246–247
wave number, 245, 261
waveforms, 244

Wave number, 245, 261
Wave–particle duality, 652, 661, 663, 669
Wave speed, 245, 252, 261

electromagnetic waves, 551
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Waveforms, 244
Wavefronts, 249
Wavelength, 244, 245

electromagnetic spectrum, 554–555
Waves, 261, 283

amplitude, 244
beats, 252–253
coherence, 600
diffraction, 610–613, 616, 620
diffraction limit, 613–615, 616, 620
Doppler effect, 258–260, 261
double-slit interference, 601–604
frequency, 244
Huygens’ principle, 610, 616, 620
intensity, 248–249, 261
interference, 251, 253, 600, 601, 616, 620
longitudinal, 244, 261
matter-wave interference, 659
multiple-slit interference, 604–607
period, 244, 245, 261
power of, 248
reflection, 254–255
refraction, 255
shock waves, 260, 261
simple harmonic wave, 245, 261
sinusoidal, 245
square, 251
standing, 255–257, 261, 283
transverse, 244, 261
types, 244
wave speed, 245, 252, 261
wavelength, 244, 245
See also Electromagnetic waves; Light; Sound waves

Weak force, 56, 762
electroweak unification, 755

Weight, 56–57, 66
apparent weight, 65, 66
mass vs., 56, 57
units of, 57

Weightlessness, 57–58, 61
Weightlifting, 146
Weinberg, Steven, 755
Wheel, rolling motion, 180–182
White dwarf, 691
Wide-angle mirrors, 582
Wien’s law, 648
Wind energy, 277
Wind instruments, standing waves in, 257
Wind turbines, 168, 170, 171, 277
Windsurfing, 38
Wireless technologies, 2
Wollaston, William, 654
Wood

electrical properties of, 435
thermal properties of, 288, 290

Woofer, 530
Work, 92–95, 100, 103, 104, 220

against gravity, 99
by conservative forces, 110–111, 115
energy and, 426–427
by force varying with position, 96–99
heat engine efficiency, 336
kinetic energy and, 99–101
negative work, 111
by nonconservative forces, 110–111, 115
potential energy, 111–115

power and, 101–103
scalar product and, 95
thermodynamics, 318, 320, 329
units of, 93, 104
work–kinetic energy theorem, 100, 104, 115, 124, 

272, 638
Work function, 651
Work–kinetic energy theorem, 100, 104, 115, 124, 

272, 638
Working fluid, 337
Working voltage, 422
Wu, Chien-Shiung, 752

X
X-ray diffraction, 606–607, 616
X rays, 555

potential difference in X-ray tube, 401–402

Y
Yang, Chen Ning, 752
Yerkes refractor, 594
Young, Thomas, 551, 600, 601
Yukawa, Hideki, 748, 749

Z
Z particles, 751, 755
Zeeman effect, 691
Zeeman splitting, 691
Zero of electrical potential, 404
Zeroth law of thermodynamics, 286, 353
Zweig, George, 752
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